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Exploring business intelligence and its depth of 
maturity in Thai SMEs
Waranpong Boonsiritomachai1*, G. Michael McGrath2 and Stephen Burgess2

Abstract: Increased complexities in making effective and timely business decisions 
in highly competitive markets have driven organisations worldwide to adopt business 
intelligence (BI) technologies. Large enterprises have reached a mature stage of BI 
adoption while small- and medium-sized enterprises (SMEs) still lag behind—despite 
organisations of all sizes can benefit from the use of this technology to aggregate, 
manage and analyse data for assisting decision-making that enhances profitability. 
This study proposes a BI maturity model for SMEs that distinguishes different levels 
of BI maturity and identifies the factors that currently impact their levels of BI adop-
tion. The proposed model is empirically tested using survey data from 427 SMEs and 
analysed using multinomial logistic regression. Results indicate that BI adoption in 
Thai SMEs is still at an initial stage, with the majority being classified in the lowest 
level of BI maturity. Significant factors that impact the levels of BI adoption are rela-
tive advantage, complexity, organisational resource availability, competitive pres-
sure, vendor selection and owner-managers’ innovativeness. Results from the study 
can be used by government agencies to develop strategies to increase the rate of BI 
adoption among SMEs. IT vendors also can use the results to determine which SMEs 
they should target.
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1. Introduction
For over two decades, research into business intelligence (BI) has become increasingly significant in 
supporting the industry. For instance, Gartner’s survey of 2,053 IT chiefs in 41 countries found that 
BI is a first priority in technological investment (Gartner, 2013). The International Data Corporation 
reported that worldwide investments in BI are significant and growing, having increased from 
US$10.53 billion in 2011 to US$11.35 billion in 2012, and estimated to reach US$17.1 billion by 2016 
(IDC, 2013). Implementation of BI technology to support businesses has grown due to its increasing 
affordability (Chaudhuri, Dayal, & Narasayya, 2011) and the desire among organisations to make 
decisions in a timely manner (Habjan & Popovic, 2007). This demand for BI is not restricted to firm 
size, even though it has normally been associated with larger firms (Gäre & Melin, 2011) reaching BI 
maturity (O’Brien & Kok, 2006). Indeed, although small- and medium-sized enterprises (SMEs) now 
have as much need for BI as large companies (Cheung & Li, 2012), their adoption rates still lag be-
hind. This low rate of adoption could in fact reduce the ability of SMEs to compete with larger organi-
sations and loss of competitive advantage.

However, despite the benefits of adopting BI by SMEs are known and attempts made to provide 
commercially relevant BI systems, many SMEs remain reluctant to use this technology (Grabova, 
Darmont, Chauchat, & Zolotaryova, 2010). Furthermore, as research in this area remains sparse, 
there is insufficient knowledge in understanding the adoption of BI by SMEs. Additionally, the major-
ity of such studies have been conducted for specific countries such as Australia (Elbashir, Collier, & 
Davern, 2008), Northern Ireland (Hill & Scott, 2004) and United States (Ramamurthy, Sen, & Sinha, 
2008), with very few exploring the situation of BI in Thailand—despite rapid growth of IT spending in 
this country. The International Data Corporation reported that Thailand in 2015 was estimated to 
increase IT spending by 10.6% to US$13.4 billion (Pornwasin, 2015), whereas IT spending in Europe 
would increase by less than 1% (IDC, 2015). These spending trends make it crucial to further under-
stand IT and BI implementation in Thailand.

There are two main objectives of this study. The first objective is to investigate the current state of 
BI adoption by four main types of Thai SMEs including manufacturing, service, wholesale and retail. 
In order to identify the current BI adoption state, this study is based on the concept of maturity 
model to classify organisations into different BI levels. The second objective is to identify the factors 
that influence such adoption. Rather than viewing BI adoption as a dichotomous decision to adopt or 
not adopt, this study has developed a maturity model to depict the stages of BI adoption on a scale 
from low level to high level. To explore the important factors that influence the levels of BI adoption, 
this study is based on the “Diffusion of Innovation” theory (Rogers, 1983), technology–organisation–
environment (TOE) framework (Tornatzky & Fleischer, 1990) and the IS integration model (Thong, 
1999). Clearly, recognising the factors that influence levels of BI adoption will be useful in suggesting 
strategies to overcome the constraints that inhibit adoption. This line of inquiry benefits both re-
searchers and practitioners.

2. Theoretical background

2.1. Business intelligence
BI is defined differently in various fields according to interpretation and context (Niu, Lu, & Zhang, 
2009). However, although there is no commonly agreed definition of BI, existing definitions share 
two common characteristics. The first is the fundamental aspect of BI which includes collecting, 
storing, analysing and delivering information available both internally and externally. The second is 
the aim of BI, which is to support the strategic decision-making process of the firm.
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2.2. Adoption of innovation theory
The adoption of BI in SMEs can be viewed from the perspective of innovation (Igartua, Garrigós, & 
Hervas-Oliver, 2010). Damanpour and Evan (1984) defined an innovation as any idea, practice or 
object that the adopting individual or organisation regards as new. Although a wide variety of theo-
retical models have been used to explore the adoption of innovations, this study employs a multiple 
perspective framework based on three related theoretical frameworks as the basic foundation for 
development of a conceptual model: diffusion of innovation theory (DOI), TOE framework and the IS 
integration model.

DOI was developed by Rogers (1983) with the initial aim of describing the elements that impact 
the process of innovation diffusion and adoption. This theory posits that potential adopters evaluate 
an innovation based on their perceptions, and will make a decision to accept the innovation if they 
perceive that it exhibits one or more of five general factors, being relative advantage, complexity, 
compatibility, trialability and observability. Of these factors, relative advantage, complexity and 
compatibility have provided the most consistent explanation for the adoption of ISs (Tornatzky & 
Klein, 1982). According to the review of literature by Jeyaraj, Rottman and Lacity (2006), DOI has 
been the most often cited work dealing with innovation adoption, as can be observed in numerous 
studies. However, DOI has been criticised as it is biased towards the technological component of the 
adoption process (Fichman, 2000). Even when technological superiority is assured, it does not guar-
antee the adoption of IT innovation by organisations. This is because other social, organisational and 
individual factors may impact IT adoption (Segal, 1994).

The TOE framework, proposed by Tornatzky and Fleischer (1990), combines innovation character-
istics with other elements. This framework can be viewed as an extension to the DOI theory to 
strengthen what has been generally neglected, namely organisation and environment circumstanc-
es which add both opportunities and constraints to the technology adoption decision (Zhu, Dong, Xu, 
& Kraemer, 2006). To facilitate an understanding of innovation adoption in organisations, several 
studies have adopted TOE in combination with DOI to examine the impact of relevant organisational 
and environmental characteristics including variables such as competitive pressure, selection of 
vendors, absorptive capacity and organisational resource availability (Chong, 2008; Ghobakhloo, 
Arias-Aranda, & Benitez-Amado, 2011; Ifinedo, 2011; Tan & Lin, 2012).

An IS adoption model for small business was first developed by Thong (1999), for the reason that 
the available organisational theories or practices applicable to large organisations may not fit the 
SME context. Thong developed his integrated perspective model of IT adoption in SMEs to identify 
four contextual variables relevant to IT adoption, including owner-manager, technological, organisa-
tional and environmental characteristics. Thong found that small businesses with owner-manager 
who have innovativeness and IT knowledge are more likely to adopt technologies. As owner-manag-
ers have a significant impact on making IT adoption decisions, several studies conducted on SMEs 
have further included owner-managers’ characteristics into the factors that impact technology 
adoption (Chang, Hung, Yen, & Lee, 2010; Fogarty & Armstrong, 2009; Ghobakhloo et al., 2011).

The above-mentioned factors that are generally crucial in the adoption of IT have been exten-
sively examined in the literature. These factors are significant to the success of technology adoption 
in the organisational context. However, limited studies have focused on the factors that specifically 
influence BI in the particular context of SMEs. For this reason, there is a need to conduct studies that 
focus more on BI in SMEs. Based on the assumption that the adoption of BI in SMEs may follow simi-
lar patterns to that of general IS and IT, this study has used the above-mentioned factors and in-
cluded in the initial version of the research model.

2.3. A BI maturity model
BI involves a broad range of technologies from simple to complex (Negash & Gray, 2008; Sacu & 
Spruit, 2010); thus, a flexible classification of BI level is desirable. This is to recognise that organisa-
tions that adopt advanced technologies tend to have characteristics that are distinct from those 
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with relatively simple technologies (Teo, 2007). However, there is no common classification of BI 
level adoption among researchers. Although some researchers categorise the levels of BI in terms of 
solutions and technologies (Hawking, Foster, & Stein, 2008; McDonald, 2004), the majority define BI 
as representing not only technologies but also processes that transform data into information and 
then knowledge (Pirttimaki, Lonnqvist, & Karjaluoto, 2006; Wixom & Watson, 2010). Therefore, the 
concept of a maturity model is applied in this study to explain the different levels of BI adoption. 
Maturity is described as a “state of being complete, perfect or ready” or the “fullness of develop-
ment” (Soanes & Stevenson, 2008, p. 906). To reach a desired state of maturity, an evolution trans-
formation path from initial (first adoption) stage to a target stage needs to occur (Klimko, 2001).

For classifying organisations into different levels of BI, IT consulting companies have developed a 
variety of BI-specific maturity models such as the information evolution model (IEM) (Davis, Miller, & 
Russell, 2006), The Data Warehouse Institute (TDWI) (Eckerson, 2007), BI Development Model 
(BIDM) (Sacu & Spruit, 2010) and the Enterprise BI Maturity Model (EBIMM) (Chuach, 2010). Each 
model focuses on different dimensions or perspectives and have their own limitations such as being 
based only on technical dimensions or only on organisational dimensions (Rajteric, 2010). However, 
analysis of these models revealed that they also have repetitive information due to the model ad-
dressing similar concepts, despite using different designations. For example, most BI maturity mod-
els in the first level focus on the individual, while the second level focuses on department, despite 
using different designations. Table 1 shows the summary of a BI maturity model.

This study adopted the IEM as proposed by SAS, the leading company in business analytics soft-
ware and services (Davis et al., 2006), to classify organisations into specific BI levels. The IEM model 
was selected as the fundamental model as it is not restricted to the technological dimensions and 
also focuses on the alignment between the four dimensions of infrastructure, knowledge process, 
human capital and culture. All four dimensions are used to classify the level of BI in organisations. 
However, Lahrmann, Marx, Winter and Wortmann (2010) suggested that the IEM model had limita-
tions in addressing the analytical applications, one of the key BI components (Ranjan, 2005). 
Therefore, this study includes the “Application” dimension as derived from Sacu and Spruit (2010) to 
more comprehensively conceptualise BI and enhance the IEM model.

2.3.1. Five dimensions in BI maturity model
There are five levels defined in the proposed BI maturity model spanning across five dimensions as 
follows:

Infrastructure: the implementation of technologies including hardware, software and networking 
tools to create, store and distribute information;

Knowledge process: the role of information in corporate knowledge sharing, the role of informa-
tion in decision-making and the improvement of information accuracy;

Table 1. Summary of example BI maturity models

Source: Chuach (2010), Davis et al. (2006), Eckerson (2007) and Sacu and Spruit (2010).

BI maturity 
model

Concentration area
First level: 
individual

Second level: 
department

Third level: 
enterprise

Fourth level: 
strategy

Fifth level: 
sustainable 
growth

IEM Operarte Consolidate Integrate Optimise Innovate

TDWI Infant Child Teenager Adult Sage

BIDM Predefined 
reporting

Department 
data warehouse

Enterprise-wide 
data warehouse

Predictive 
analysis

Operational BI

EBIMM Initial Repeatable Defined Qualitative Optimising
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Human capital: capabilities, responsibilities, decision-making, training, enterprise goals and im-
provement of personnel skill sets related to technological information;

Culture: social and behavioural norms of corporate culture in relation to the information flow with-
in an organisation; and

Application: analytic applications that organisations have adopted from using basic software pro-
grams for generating reports to advanced programs that provide predictive results.

2.3.2. Five levels in the BI maturity model
A unique feature of the BI maturity model presented in this study is the recognition of the relation-
ships between the five dimensions. Organisations can be classified into five different levels of BI 
adoption from low to high levels (operate, consolidate, integrate, optimise and innovate) depending 
on how they are situated in relation to the five dimensions. In accordance with Davis et al. (2006) 
and Sacu and Spruit (2010), each dimension is given five levels of maturity in the following order:

2.3.2.1. Operate.  A company in the “Operate” level is one with the most basic BI and is typically a 
start-up organisation. Companies at this level focus on general information for day-to-day opera-
tions. They operate in a chaotic information environment where information access and formats are 
not standardised. Their employees generally keep information on individual computers. They also 
fear organisational change. Simple software programs to generate personal reports or personalised 
spreadsheets are used in this type of organisation.

2.3.2.2. Consolidate.  A company in the “Cconsolidate” level is one that integrates and stores infor-
mation at the departmental level. The knowledge process at this level shifts from the individual to 
departments. Data management is well defined in each department but not across departments, 
leading to problems of mismatch between departments. Employees at this level work effectively in 
teams with rewards from contributing to departmental goals. The “Consolidate” company typically 
uses software programs that can keep data in standardised formats but with limited user views.

2.3.2.3. Integrate.  A company in the “Integrate” level recognises the significance of defining infor-
mation consistently across the organisation by integrating data and storing it in a central data ware-
house. Information is well managed in a standardised approach and clearly tied to organisational 
goals. As a result, decision-making is from the organisational perspective. There is cooperation in 
managing data between employees from various departments. Employees in the integrated com-
pany accept change when it is clearly understood. The integrated company typically uses software 
programs that keep data in a standardised format throughout the enterprise and allow users a 
multidimensional view of data.

2.3.2.4. Optimise.  A company in the “Optimise” level explores methods to maximise performance in a 
competitive context to better serve their customers. This company views the business model as ex-
tending beyond the business; thus, infrastructure is linked through internal business systems across 
the supply chain. At this level, the company needs to have employees with intellectual skills, including 
predictive analysis, to work with other colleagues to improve organisational effectiveness. Employees 
embrace the idea of improving incrementally, and view change as an opportunity rather than a threat. 
The company in the “Optimise” organisation level typically uses software programs with automated 
data analysis techniques to detect relationships in the data and provide predictive results.

2.3.2.5. Innovate.  A company in the “Innovate” level seeks ways to transform its value proposition for 
sustainable growth. The company uses flexible systems that can manage data including structured 
and unstructured data. In addition to having standardised processes, the company prepares for new 
processes to support forthcoming new innovations. Employees at this company require expertise in 
advanced decision-making software to analyse new ideas that align with enterprise goals. As an 
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organisation that encourages novel ideas, the innovate company understands that failures are inevi-
table and part of the learning process. The innovate organisation typically uses software programs 
that allow users to generate an automated exception reporting when something unusual occurs.

2.4. Conceptual model and hypotheses
Based on the BI maturity model and three related theoretical frameworks, the proposed conceptual 
model is presented in Figure 1. Nine hypotheses are proposed below.

2.4.1. Relative advantage
Ifinedo (2011) found that the more organisations perceive technology as having advantage over 
existing practices and systems, the more the adoption of such technology will be positively encour-
aged. In the case of BI, the advantages of adopting this technology to support business operations 
are clear (Ko & Abdullaev, 2007). For example, retail companies can use BI to determine which of 
their products are most profitable, and where to place them in their stores (Williams & Williams, 
2003). Hence, we hypothesise that:

H1: Relative advantage of BI significantly impacts on BI adoption levels among SMEs.

2.4.2. Complexity
Complexity can present a barrier to innovation adoption (Chang et al., 2010). For example, 
Ramamurthy, Sen and Sinha (2008) found that lower complexities in a technology result in higher 
positive effects on its adoption, which infers that the high complexity of BI technology can cause 
employees to resist its adoption (The Economist Intelligence Unit, 2007). Voicu, Zirra and Ciocirlan 
(2009) confirmed that BI models are highly complicated because they integrate mathematical func-
tions to predict trends in a firm’s performance that provide solutions in a variety of situations. Hence, 
we hypothesise that:

H2: Complexity of BI significantly impacts on BI adoption levels among SMEs.

Figure 1. Research model.

Source: Research study (2016).
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2.4.3. Compatibility
Some studies employing the compatibility factor have proven its validity in predicting technology 
adoption among organisations (Chang et al., 2010; Grandon & Pearson, 2004). Bajaj (2000) indicated 
that this factor can bring changes to the organisation by converting old data to be read on new ar-
chitecture, retraining users to use and allowing IT personnel to effectively maintain software. 
However, if existing systems are not compatible with BI technology, it may take a significant invest-
ment of time and resources to migrate data. Hence, we hypothesise that:

H3: Compatibility of BI significantly impacts on BI adoption levels among SMEs.

2.4.4. Absorptive capacity
The absorptive capacity of an organisation has been identified as the ability of its members to use 
existing or pre-existing knowledge (Griffith, Sawyer, & Neale, 2003) to increase recognition of new 
and external information that can be applied to increase economic benefit. This capacity can be 
used as a predictor of the organisation’s ability to adopt an innovation or not (Khalifa & Davison, 
2006). However, a survey conducted on telecommunication firms by O’Brien and Kok (2006) indi-
cated that many organisations were not fully utilising BI due to lack of knowledge, technical skills 
and training. Hence, we hypothesise that:

H4: Absorptive capacity significantly impacts on BI adoption levels among SMEs.

2.4.5. Organisational resource availability
Organisational resource availability has also been identified as influencing innovation adoption 
(Adler-Milstein & Bates, 2010; Oliveira & Martins, 2010). However, due to high complexity and cost, 
BI implementation is often out of reach to organisations with less financial resources and skilled 
workers (Sahay & Ranjan, 2008). As Chong (2008) mentioned, managers will support the adoption of 
a new technology when capital, human resources and organisational time to implement are avail-
able. Hence, we hypothesise that:

H5: Organisational resource availability significantly impacts on BI adoption levels among 
SMEs.

2.4.6. Competitive pressure
Competitive pressure tends to stimulate firms to look for new approaches to business by raising ef-
ficiency and increasing productivity for survival (Themistocleous, Irani, Kuljis, & Love, 2004). This 
pressure can come from either competitors or trading partners, which results in a greater intention 
by firms to adopt the technologies that are being used by competitors. To avoid being labelled as 
less receptive to change and incompatible with industry norms, some organisations adopt new tech-
nologies that are commonly used by other companies (Teo, 2007), indicating a strong relationship 
between the degree of competitive pressure and technology adoption (Dholakia & Kshetri, 2004; 
Hwang, Ku, Yen, & Cheng, 2004). Hence, we hypothesise that:

H6: Competitive pressure significantly impacts on BI adoption levels among SMEs.

2.4.7. Vendor selection
Selection of vendors is a significant factor in IT adoption as they can help facilitate adoption imple-
mentation and ongoing success (Moffett & McAdam, 2003). This is important because even when 
innovative enterprise systems are advanced, they may not be stable enough to meet the entire in-
formation processing needs required (Davenport, 2000). Due to BI being different from other enter-
prise information technologies, it requires tailored solutions to suit each particular firm and industry 
(Hill & Scott, 2004). Hence, we hypothesise that:

H7: Vendor selection significantly impacts on BI adoption levels among SMEs.
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2.4.8. Owner-managers’ innovativeness
Innovativeness refers to a willingness to introduce newness and novelty through experimentation 
and creativity aimed at developing new products, services and processes (Zhu et al., 2006). 
Parasuraman (2000) found that personal innovativeness exists in certain individuals who are willing 
to take risks when adopting an innovation. For instance, Chang et al. (2010) found that owner-man-
agers’ innovativeness is a significant determinant of enterprise resource planning (ERP) adoption in 
SMEs. Hence, we hypothesise that:

H8: Owner-managers’ innovativeness significantly impacts on BI adoption levels among 
SMEs.

2.4.9. Owner-managers’ IT knowledge
Greater owner-manager knowledge in IT can decrease the degree of uncertainty and lead to lower 
risk in IT adoption (Thong, 1999). This view has been reinforced by Mirchandani and Motwani (2001) 
who found that owner-managers’ IT knowledge is a key factor highly associated with IT adoption. In 
agreement, Chao and Chandra (2012) reported that owner-managers have more capability in tech-
nology adoption when they are able to gain knowledge about the new technology. Hence, we hy-
pothesise that:

H9: Owner-managers’ IT knowledge significantly impacts on BI adoption levels among SMEs.

3. Methodology

3.1. Data collection
A quantitative methodology through a survey questionnaire was employed to explore the current 
state of BI adoption by Thai SMEs. A self-administered questionnaire was initially developed and 
reviewed for content validity by five BI experts specialising in SMEs. In defining these SMEs, this study 
used employee numbers in line with small business research principles. Consequently, these SMEs 
were defined as companies with fewer than 200 employees in line with the definition by the Thailand 
Ministry of Industry (Brimble, Oldfield, & Monsakul, 2002) and randomly selected from a database of 
organisations that had submitted trade declarations to the Thai Government. Two thousand SMEs 
from four main industries including service, manufacturing, wholesale and retail were randomly 
selected. A total of 485 responses were eventually received, showing a returning rate of 24.25%. 
However, 58 questionnaires were excluded, where 32 respondents failed to complete the research 
instrument appropriately, and 26 respondents were identified as having more than 200 employees. 
The final number of usable responses was 427, yielding a response rate of 21.35%. The demographic 
characteristics of respondents are shown in Table 2.

3.2. Measurement of variables

3.2.1. Dependent variables (The levels of BI adoption)
The dependent variables in the research model are the levels of BI adoption. It is a categorical variable 
incorporating five groups (BI levels): operate, consolidate, integrate, optimise and innovate. The con-
structs and measures for classifying these levels of BI information use in enterprises were adapted 
from the IEM check list provided by Davis et al. (2006) and Sacu and Spruit (2010). As the model in this 
study classifies organisations into five levels of BI based on five dimensions of infrastructure, knowl-
edge process, human capital, culture and application, respondents were asked five questions which 
represent the five dimensions. Each question had five answers representing the five levels of BI adop-
tion. Respondents were asked to choose answers that best described their organisations. The total 
sum of frequencies in responses given was then used to classify each organisation into one of the five 
levels of BI adoption.
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3.2.2. Independent variables (Adopting factors)
The independent variables were measured by asking respondents to evaluate which factors impact-
ed the levels of BI adoption in their organisations. The measurement used for analysing responses in 
the independent variables was developed by adapting and amalgamating measures from previous 
studies. The constructs of relative advantage, complexity and compatibility were adopted from 
Moore and Benbasat (1991), whereas absorptive capacity and organisational resource availability 
were adopted from Iacovou, Benbasat and Dexter (1995). The constructs of competitive pressure 
and vendor selection were adopted from Grandon and Pearson (2004), whereas owner-managers’ 
innovativeness and IT knowledge were adopted from Hung, Hung, Tsai and Jiang (2010). A five-point 
Likert scale was used for all items, anchoring from “Strongly Agree” to “Strongly Disagree”.

3.3. Measurement model evaluation
This study categorises Thai SMEs into different BI adoption levels based on five dimensions and the 
Spearman correlation was used to test accuracy and reliability. Using the BI maturity model, an or-
ganisation was classified into the level where the organisation possesses properties mostly similar 
to the description of that level in each of the dimensions. It was assumed that if respondents’ or-
ganisations were ranked high in one dimension, they were also to be ranked higher in other dimen-
sions. The Spearman correlation was used to identify the correlation between each of the dimensions. 

Table 2. Demographics of the respondents

Source: SPSS descriptive analysis (2016).

Demographics Categorises n = 427 (%)
Gender Male 257 60.2

Female 170 39.8

Age 18–20 18 4.2

21–30 90 21.1

31–40 142 33.3

41–50 117 27.4

More than 50 years old 59 13.8

Education level High school or equivalent 54 12.6

Vocational or diploma 111 26.0

Bachelor degree 160 37.5

Master degree or higher 102 23.9

Position Owner-manager 272 63.7

Manager 146 34.2

Other 9 2.1

Industry type Manufacturing 88 20.6

Service 100 23.4

Wholesale 79 18.5

Retail 160 37.5

Number of employees Sole proprietor 12 2.8

2–9 persons 119 27.9

10–50 persons 142 33.3

51–100 persons 100 23.4

101–200 persons 54 12.6

Number of years in business Less than 1 year 59 13.8

1–5 years 139 32.6

6–10 years 109 25.5

More than 10 years 120 28.1
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All dimensions had positive correlation between the paired dimensions, which means that the ranks 
of both dimensions were moving in the same direction. Moreover, the p-values of all dimensions 
were 0.00, which was lower than the significance level of 0.05 revealing a significant association 
between each dimension. As all dimensions in the study model had relationships with each other, 
the study model had a degree of accuracy and reliability in categorising organisations into the vari-
ous BI adoption levels.

Instrument reliability related with enabling factor was ascertained using Cronbach’s alpha (α). The 
values obtained for each of the factors were as follows: relative advantage: 0.841; complexity: 0.844; 
compatibility: 0.665; absorptive capacity: 0.611; organisational resource availability: 0.807; competi-
tive pressure: 0.794; vendor selection: 0.772; owner-managers’ innovativeness: 0.689; and owner-
manager’s IT knowledge: 0.624. These values indicated that the constructs and their respective 
measurement items had strong internal consistency and were suitable for the study.

4. Data analysis and hypotheses testing

4.1. Data analysis
Descriptive statistics were used to explain the fundamental features of the data in regard to the 
proportion of BI adoption in each level. From 427 responses, 206 organisations were categorised as 
being at the operate level, 136 organisations at the consolidate level, 73 organisations at the inte-
grate level, 12 organisations at the optimise level and no organisation at the innovate level. However, 
Israel (2009) recommended a minimum sample size of around 20% for each group when samples 
were categorised into sub-groups. Consequently, the two levels of BI maturity, optimise and inno-
vate, were incorporated into a new “integrate +” level. The “integrate +” level yielded 85 organisa-
tions. The dependent variables of BI adoption are thus: operate, consolidate and integrate +.

Multinomial logistic regression was formed to test the hypotheses due to the dependent variable 
being the level of BI adoption, and all independent variables coming from the proposed model. 
Logistic regression is suitable for this situation in which the dependent variable is categorised 
(Hosmer, Lemeshow, & Sturdivant, 2013; Pett, 1997; Stevens, 1946). Also, as this regression requires 
fewer assumptions than discriminant analysis, it was more robust in the face of data conditions. 
Even though the multinomial logistic regression does not require any assumptions of normality, 
linearity and homogeneity of variance for the independent variables, it does require identification of 
numerical problems in multicollinearity between the independent variables. According to Hair, Black, 
Babin, Anderson and Tatham (2010), when numerical problems are found, the analysis should be 
ignored and not interpreted. In order to detect multicollinearity in this study, the standard errors for 
beta coefficients were identified as having no error values higher than the limit of 2.0. Therefore, no 
numerical problems or multicollinearity issues were found in the independent variables of this study.

To assess the overall fit of the model, the difference between twice the log of likelihood (−2LL) in 
the base model (intercept only) and proposed model (with intercept and independent) was com-
pared. A summary of the results obtained by fitting a linear model to the dependent variable is 
shown in Table 3. Results show that the full model is significant (χ2 = 606.580, df = 18, p < 0.01) and 
the pseudo-coefficients of determination for the model are relatively high (Cox and Snell 0.867; 
Nagelkerke 0.758 and McFadden 0.685). Model classification in Table 4 shows that 97.6% of the op-
erate group, 83.8% of the consolidate group and 72.9% of the integrate + group were correctly clas-
sified. As a result, the overall percentage correctly predicted was 88.3%. Given that these three 
categories were correctly predicted, the results are impressive and fully confirm the usefulness of 
the model.

In order to assess relationships between the dependent variable and independent variables, re-
sults from the likelihood ratio test using multinomial logistic regression were interpreted (see Table 
5). The independent variable contributed significantly to the full model (with p-value < 0.01 at a 99% 
confidence interval). Of the nine factors used in the model, six have a significant relationship with 
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the levels of BI adoption. The six were relative advantage, complexity, organisational resource avail-
ability, competitive pressure, vendor selection and owner-managers’ innovativeness. Thus, support 
for Hypothesis H1, H2, H5, H6, H7 and H8 was provided.

Effects of the significant independent variables differentiating the levels of BI adoption can be 
more deeply analysed using the parameter estimates from multinomial logistic regression (see 
Table 6). In this study, the reference group was defined as the dependent variable group “operate” 
and was used to test the predicting power of the independent variables in differentiating the other 
two groups (both the “consolidate” and “integrate +”) from the reference group. The results of two 
separate regressions showed that all six independent factors that found significant relationships 
with the levels of BI adoption could be successfully distinguished between consolidate and operate, 
and integrate + and operate, with the exception of organisational resource availability that could not 
be differentiated between consolidate and operate. Furthermore, taking into consideration the char-
acteristics of this analysis, positive signs of β increased the odds and negative signs of β decreased 
the odds that an individual organisation belonged to the reference group (operate) (Hair et al., 2010). 

Table 3. Model fitting summary

Source: SPSS multinomial logistic regression (2016).

Model −2 Log likelihood χ2 df Sig.
Intercept only 885.916

Final 279.335 606.580 18 .000

Pseudo-R-suare Cox and Snell 0.867 Nagelkerke 0.758 McFadden 0.685

Table 4. Classification accuracy

Source: SPSS multinomial logistic regression (2016).

Observed Predicted
Operate Consolidate Integrate + (%) Correct

Operate 201 5 0 97.6

Consolidate 5 114 17 83.8

Integrate + 3 20 62 72.9

Overall percentage 48.9% 32.6% 18.5% 88.3

Table 5. Likelihood ratio tests

Source: SPSS multinomial logistic regression (2016).
*Represents significant level at 0.01.

Independent variables Model fitting criteria Likelihood ratio tests
−2 log likelihood of reduced model χ2 df Sig.

Intercept 286.99 7.654 2 .009

Relative advantage 284.482 26.647 2 .000*

Complexity 330.650 72.816 2 .000*

Compatibility 260.111 2.277 2 .298

Absorptive capacity 283.297 3.962 2 .138

Organisational resource availability 324.591 45.256 2 .000*

Competitive pressure 310.935 31.599 2 .000*

Vendor selection 299.871 20.536 2 .000*

Owner-managers’ innovativeness 268.907 9.984 2 .007*

Owner-managers’ IT knowledge 283.467 4.131 2 .127
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As shown in Table 6, based on both regressions, five of the six significant factors were found to be 
positive sign. For example, a positive β1 of the relative advantage (2.591) indicated that organisa-
tions in the consolidate group had a higher perception of BI relative advantage than those in the 
operate group. Only one factor, complexity, had a negative β1 (−2.419), indicating that these organi-
sations in the consolidate group had a lower perception of BI complexity than those in the operate 
group.

5. Discussion of findings
The first main research aim of the study was to investigate the current stage of BI adoption in SMEs. 
Findings showed that Thai SMEs are at an early stage of BI adoption, with high numbers classified in 
the lowest level (operate). This is in line with previous studies that found the adoption of IT, enter-
prise systems by SMEs is still low in many countries. For example, a comparative analysis between 
SMEs and large enterprises in Germany by Struker and Gille (2010) found that the use of customer 
relationship management, ERP and BI systems was lower among SMEs. This result is the same in 
Taiwan, where ERP was at an early development for SMEs, and had not yet attained maturity stage 
(Chang et al., 2010). A national survey of SMEs’ use of IT in the UK by Dyerson, Harindranath and 
Barnes (2008) revealed that although there was extensive use of IT to automate recordings of sales 
and processing of orders, the use of more complex technology like ERP and BI was low. The main 
reason for this may be due to financial and human resources not being readily available, despite 
SMEs often operating in chaos when managing data (Rajteric, 2010). Therefore, this low operate level 
in SMEs can be seen as the starting point for adoption of BI because BI applications used by organisa-
tions in this level are not complicated and do not require high IT infrastructure or knowledge to im-
plement. The problem here is that these low BI applications may be insufficient to clean up and link 
the data in a meaningful way to gain benefit from information assets and improve opportunities.

Another aim of this research was to develop and test a BI maturity adoption model that can iden-
tify the levels of BI adoption in SMEs and the factors that impact these levels. Tests of reliability and 
validity found that the proposed research model is a good measurement tool with six of the nine 
factors supporting the research hypotheses. Relative advantage and complexity were significant in 
BI adoption, which is consistent with prior research (Ghobakhloo et al., 2011; Grandon & Pearson, 
2004; Ramamurthy et al., 2008). Interestingly, results in this study also indicate that the higher the 
perception of relative advantage and the lower the complexity, the more likely SMEs will adopt 
higher levels of BI technology. As SMEs have limited resources for IT investment and BI adoption is 

Table 6. Parameter estimates

Note: The reference category is operate.
Source: SPSS multinomial logistic regression (2016).
*Represents significant level at 0.05.
**Represents significant level at 0.01.

Independent variables Consolidate vs. operate Integrate + vs. operate
β1 Sig Exp(β) β2 Sig. Exp(β)

Intercept −10.7650 .004 – −14.432 .007 –

Relative advantage 2.591 .000** 13.339 2.236 .001** 9.357

Complexity −2.419 .000** .089 −4.630 .000** .010

Compatibility −.810 .133 .445 −.722 .245 .486

Absorptive capacity −.882 .133 .414 −1.404 .050 .246

Organisational resource availability −.156 .713 .856 2.098 .000** 8.147

Competitive pressure 3.029 .000** 20.682 2.709 .000** 15.011

Vendor selection 2.156 .000** 8.634 1.990 .002** 7.317

Owner-managers’ innovativeness 1.381 .008** 3.980 1.452 .019* 4.273

Owner-managers’ IT knowledge −.810 .055 .445 −.647 .011 .523
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regarded as a risky undertaking (Hustad & Olsen, 2014), when owner-managers have relevant infor-
mation and understand its advantages, their adopt decisions can be supported. Surprisingly, com-
patibility factor was not found to be significant in a BI adoption decision. A possible explanation for 
this may be that BI is not used as the main operational technology in the business, but only used to 
support the analysis and sharing of relevant information (Sahay & Ranjan, 2008). This would infer 
that the use of this technology may not require radical changes in the routine business practices.

Organisational resource availability was found to be a significant factor influencing SMEs’ BI adop-
tion decisions. SMEs with high organisational resource availability were found to show a greater 
likelihood of adopting high levels of BI, whereas low organisational resource availability showed low 
levels of BI adoption. Insufficient financial and technological resource may force SMEs to be cautious 
with their investment and capital expenditure and be the reason that they adopt lower levels of BI 
technology. The implementation of new IT normally requires a long-term investment involving high 
costs in IT infrastructure. Consequently, only SMEs with adequate financial resources would regard 
the adoption of BI as a feasible project to undertake. Another finding was that absorptive capacity 
was not a significant determinant of decisions to adopt BI in participant SMEs. A possible explana-
tion for this may be that SME owner-managers are the IT decision-makers who can ignore their or-
ganisations’ absorptive capability if they regard the technology as necessary and are willing to take 
risks in adopting new technology (Fuller-Love, 2006).

Competitive pressure and vendor selection factors were found to have significance in the levels of 
BI adoption in SMEs. The results indicated that the more the firm perceives competitive pressure, the 
more likely it is that they will adopt higher levels of BI technology. As SMEs now face more competi-
tive challenges due to the rapid development of IT, these pressures can signal the need to adopt 
advanced technologies that improve organisational performance (Beheshti, Hultman, Jung, Opoku, 
& Salehi-Sangari, 2007). According to Hocevar and Jaklic (2010), managers cannot maintain com-
petitiveness by merely depending on intuition—they need accurate information-based decision-
making. As SME owner-managers usually make intuitive decisions (MacGregor & Vrazalic, 2005), 
their strategies are based on limited essential skills that frequently fail to meet and achieve their 
business objectives, resulting in a loss of competitiveness (Pansiri & Temtime, 2008). As SMEs not 
using BI could fail to compete effectively, intense competition may positively affect their decision to 
utilise BI technology. In regard to the significance of vendor selection in BI adoption, a possible ex-
planation is that SMEs focus on selecting software packages provided by vendors rather than devel-
oping their own IT systems. As there are many types of IT vendors in the business analytics market, 
the selection of a suitable vendor is important (Hiziroglu & Cebeci, 2013). The expertise of the IT 
vendor can significantly compensate for the lack of internal IT expertise, the difficulty in recruiting IT 
professionals and the costs of providing required IT training for employees (Thong, 1999).

In line with previous studies (Chang et al., 2010; Ghobakhloo et al., 2011), owner-managers’ in-
novativeness was found to be significant in the levels of BI adoption. The results indicated that SMEs 
with highly innovative owner-managers will adopt higher levels of BI. This is supported by Fernández 
and Nieto (2006) who found that SMEs with innovative and non-risk-averse owners are more likely 
to apply distinctive and risky solutions. This is especially the case in BI, when organisations that in-
vest in these technologies find it difficult to quantify their return on investments, as benefits of 
streamlining traditional activities are somewhat intangible (Hannula & Pirttimaki, 2003). For this 
reason, many owner-managers who lack innovativeness may see the adoption of BI as a risky in-
vestment. In this study, it is surprising to find that owner-managers’ IT knowledge did not have a 
significant effect on SMEs’ decisions to adopt BI. This can be explained by Mehrtens, Crag and Mills 
(2001) whose findings show that SME owners with low levels of IT knowledge seek advice from either 
staff with IT knowledge within their organisations or hire IT experts. In this case, owner-managers 
with both low and high IT knowledge can access similar information on IT adoption.



Page 14 of 17

Boonsiritomachai et al., Cogent Business & Management (2016), 3: 1220663
http://dx.doi.org/10.1080/23311975.2016.1220663

6. Limitations and further research
The findings of this study should be considered in the light of limitations that need to be acknowl-
edged and addressed in future research. First, this study adopted a modified IEM model as the ma-
turity model to categorise SMEs into BI levels. Use of a different maturity model may yield different 
results. So further research to compare the criteria in classifying BI levels is to be considered. Second, 
the sample for this study was drawn from SMEs of four main industries. However, as the character-
istics of each industry are different, it may be of interest to examine BI adoption in specific business 
sectors such as service, manufacturing, wholesale and retail. This would expand the understanding 
of the engagement process in the adoption of BI. Third, as this study was conducted in Thailand, the 
results may only be generalisable to countries that have similar industrial infrastructure. Therefore, 
it would be of interest to conduct the same research in other countries with a different industrial 
infrastructure to the Thailand context.

7. Conclusion
This study explored the current BI adoption situation of Thai SMEs. The results showed that the ma-
jority of Thai SMEs were classified at the lowest level, suggesting that they are still at an early stage 
of BI technology adoption. This leaves ample scope for Thai SMEs to be elevated into higher levels by 
focusing on understanding the enabling factors of BI as a strategy. In identifying the factors that 
elevate BI levels in Thai SMEs, results found that high relative advantage, high organisational re-
source availability, high competitive pressure, high vendor selection, high owner-managers’ innova-
tiveness and low levels of complexity were all important.

By acknowledging the current stage of BI adoption and understanding the enabling factors that 
encourage Thai SMEs to move to higher levels, government agencies and technology suppliers can 
develop strategies to advance BI adoption. Initiatives that could support the use of more advanced 
BI could be through marketing and advertising campaigns that persuade SME owner-managers on 
the perceived potential advantage of using BI technologies, as well as to provide financial support 
and educational seminars to increase their innovativeness. IT vendors can also help advance SMEs 
to higher BI levels by providing their expertise for customised solutions relevant to the particular 
SME. Interactions between the SME and IT vendor can further benefit them in navigating the com-
plexities of BI technology choice and implementation.
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