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Battery Energy Storage System to Stabilize
Transient Voltage and Frequency and Enhance
Power Export Capability

Ujjwal Datta, Akhtar Kalam, and Juan Shi

Abstract—This paper investigates the enactment of Battery
Energy Storage System (BESS) and Static Compensator
(STATCOM) in enhancing large-scale power system transient
voltage and frequency stability, and improving power export
capacity within two interconnected power systems. A PI-lead and
lead-lag controlled BESS is proposed for multimachine power
system to provide simultaneous voltage and frequency regulation
within the defined battery state-of-charge (SOC) ranges and
an equivalent Finnish transmission grid is used to evaluate the
system performance. According to Australian National Electricity
Market (NEM) grid requirements, the performances of the
proposed control schemes are compared with conventional PI
controlled BESS and STATCOM under multiple temporary and
permanent fault conditions. In addition, two adjacent disturbance
events are also applied to evaluate system performance with
BESS and STATCOM. Through simulation results, it is shown
that when there is a 44% increase in power export and the
STATCOM fails, incorporating BESS improves the performance
and justifies the novelty of this study. Moreover, the proposed
lead-lag controlled BESS manifests better transient performance
than BESS with PI-lead and traditional PI controller, in the event
of divergent temporary and permanent faults.

Index Terms—Battery energy storage system, frequency
stability, PI lead controller, Lead-lag controller, power export,
STATCOM, voltage stability.

I. INTRODUCTION

HE present power transmission system is experiencing

numerous control and stability challenges with growing
energy demand and penetration of renewable energy
resources (RES). Structural reform of vertically integrated
traditional power system is very complex and challenging.
The ever-increasing size and complexity of electric grid
infrastructure has drawn much attention in power system
operation, stability and performance as it is often susceptible
to diverse small or large dynamic and transient disturbances
that inevitably occur in power system. Deregulated electricity
market and electricity pricing schemes cause unplanned
exchange of power within the network. This may result in
overloading certain lines of transmission network and may lead
to system instability in the event of network faults. In addition,
compelled by sustainable energy initiatives, large-scale PV
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and wind farms are often located far away from load center.
Therefore, transmission system stability and reliability needs
to be ensured to satisfy power system reliability requirement
of (N-1) criterion in order to maximize the utilization of
accessible transmission resources.

In the electric grid, every disturbance events, regardless
of temporary or permanent in nature, generates low or
high frequency oscillations. Flexible AC Transmission System
(FACTS) devices have been contributing significantly in
enhancing power system transient stability (low/high order
oscillation) by regulating power flows and enhancing power
transfer capacity of transmission system [1]-[3]. Among the
multiple FACTS devices, the particular interest of this study
is on static synchronous compensators (STATCOM) as this
device improves power transfer capability [4], [5], enhances
transient stability by regulating voltage [6], ameliorates
inter-area oscillation [7] and provides faster and smoother
voltage recovery through reactive power compensation [8].
In addition, STATCOM outperforms other FACTS devices in
damping power system oscillations [9] and enhancing power
transmission capacity in many occasions [10].

In comparison to STATCOM, BESS principally plays
divergent role in power system i.e. frequency control
[11], active power output smoothing in RES farm [12],
transient stability improvement [13], improving the damping
of electromechanical power oscillation [14], [15], and
providing voltage and power quality support. Kawabe et al.
[13] have indicated that BESS improves transient stability
whereas Setiadi et al. [14] concluded that BESS provides
better electromechanical oscillation damping performance than
power system stabilizer (PSS). Maleki et al. [15] have shown
that BESS provides better power oscillation damping than
STATCOM in a single machine infinite bus (SMIB) power
system. In many occasions, STATCOM with super-capacitor
[16] or battery [17] is proven to be more efficient than a
standalone STATCOM mainly in RES integrated system. In
particular, BESS has been mainly investigated in improving
transient stability and power oscillation damping. In this
frame of reference, the application of BESS in providing
power system transient stability and enhancing power transfer
capability within interconnected power systems is relatively
a new area of interest and it is to be explored thoroughly.
A study in [18] demonstrated that BESS can reduce network
congestion and defer network expansion planning. The authors
in previous study [19] demonstrated that BESS can effectively
stabilize transient frequency and enhance power export in the
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event of permanent disturbance. Kanchanaharuthai et al. [20]
have shown that STATCOM with battery storage outperforms
PSS in reducing power system oscillations. In another
study, Beza et al. [21] demonstrated that STATCOM with
energy storage provides effective power oscillation damping.
However, in earlier studies [13]-[17], power transfer capacity
was not investigated. Moreover, the studies in [20] and [21] did
not perform comparative stability analysis between STATCOM
and BESS in terms of their impact on power transfer within
interconnected power systems under permanent disturbance
events in view of issues of simultaneous voltage and frequency
stability.

Several research works have been carried out in regulating
voltage and frequency to enhance the damping capability
of the power system. Authors in [22]-[24] demonstrated
that STATCOM with BESS can improve the damping of
voltage and frequency or power. However, the studies either
did not consider battery SOC or considered as a constant
value which is not considered in a real power system.
Moreover, only the conventional PI is applied to regulate
BESS [23], [24] and also the proposed BESS control is prone
to rapid charging/discharging as no deadband is employed
in the design [22]-[24]. Active or reactive power priority
controlled BESS in an isolated power system is investigated
in [25] for regulating frequency or voltage, one at a time.
STATCOM with BESS in a large-scale power system is
proposed in [26] where BESS is employed either as an active
or reactive power stabilizer to reduce inter-area oscillations.
However, coordinated voltage and frequency regulation and
battery SOC are not considered in the study. The prior
studies come with the shortcomings of lack of simultaneous
voltage and frequency regulation or battery SOC consideration
or equivalent performance analysis between STATCOM and
BESS in increasing active power between two areas of
large-scale systems.

In this paper, comparative performance of STATCOM
and BESS in enhancing power transfer capability across
interconnected electric grid is explored. This paper investigates
the performance of STATCOM and BESS in enhancing
transient stability, making contribution in voltage and
frequency regulation to support the increased amount of power
export between two large-scale interconnected power systems,
with the conventional synchronous generators and RES. The
impact of disturbance events such as temporary and permanent
short circuit faults, permanent line outage are considered for
transient stability analysis following voltage and frequency
operating standards published by the Australian Energy Market
Operator (AEMO) according to NEM policy [27], [28]. The
main contributions of this paper are summarized as follows:

e The evaluation and comparative performance analysis

between STATCOM and BESS is to enhance transient
stability and support the increased amount of power
transfer between interconnected power systems, under
various temporary and permanent contingencies. BESS is
designed to provide simultaneous voltage and frequency
regulation and operate within the defined SOC operating
ranges and this research has not been reported in current
literatures.

o Pl-lead and lead-lag controlled BESS are proposed in
this study and to the authors’ best knowledge these
types of controllers have not been applied to BESS to
regulate both the voltage and frequency simultaneously
by controlling BESS active and reactive power. The
design effectiveness is compared to conventional PI
controlled BESS in stabilizing voltage and frequency of
a large-scale real power system and enhancing power
transfer capability of the power system.

o The analysis of the impact of multiple adjacent
disturbance events on the transient stability and the
efficacy of state-of-the-art STATCOM technology and
BESS with the proposed control strategies to avoid
blackout that has been neglected in earlier studies of
power system stability analysis.

To evaluate the performance of BESS with the proposed
control approaches and STATCOM in enhancing transient
stability, multiple case studies have been carried out using an
equivalent 400kV Finnish transmission grid and comparative
performances are evaluated and presented. The rest of the
paper is outlined as follows: detail modeling of BESS
is described in section II, the test network and stability
criterion are explained in section III, results and discussion
are described in section IV and the conclusion is drawn in
section V.

II. DETAILED MODELING OF BESS WITH THE PROPOSED
CONTROLLERS

The BESS model includes battery bank, a three-phase
bi-directional DC/AC converter and a three-phase step up
transformer connecting BESS into the system. In this section,
the modeling and detail control techniques of BESS are
discussed. Fig. 1 illustrates the BESS structure used in this
study. Active power support to control frequency is limited
by battery capacity and reactive power support is limited by
the PWM converter capacity. BESS can provide voltage and
frequency support as its features allow the ability to control
the active and reactive power independently by two separate
current parameters in d and q axis within converter capacity.
The main BESS controller design is divided into 6 different
segments and those are explained in detail as follows:
Frequency controller
Voltage controller
Active/reactive (PQ) power controller
Charge controller
d and q axis current controller
Battery model

mmO QW

A. Frequency Controller

Frequency Controller as shown in Fig. 2 generates active
power control reference based on the frequency error between
the grid and the nominal frequency beyond deadband limit
according to the droop setting.

Active power supply (discharging) and consumption
(charging) are controlled by positive and negative error
(ferror) value, given that sufficient battery capacity is
available.
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along with the conventional PI controller. The detail working
strategies of the proposed controllers can be found in the
articles [29]-[33]. The output power at BESS AC terminal
is measured and compared with the active power activation
signal. The “Ai,” signal from the charge controller is added
and then used as an input to PI/PI-lead/lead-lag controller
to generate active power reference signal. For reactive power
control, “Ai,” signal is added to PI/PI-lead/lead-lag controller
input to generate reactive power reference signal.

1) Anti-windup PI controller: An anti-windup limiter is
utilized with the conventional PI controller to avoid integrator
windup as shown in Fig. 4.
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Fig. 1. Schematic of a BESS and its control

ref

P-f
droop

erid error

Deadband

Fig. 2. Frequency controller model

B. Voltage Controller

The voltage controller as shown in Fig. 3 generates reactive
power control signal reference depending on error between
the actual bus and the nominal reference voltage according to
droop value and the direction of reactive current is regulated
with respect to a positive and a negative value of Veyrop-

Vbus

Deadband

Fig. 3. Voltage controller model

The local voltage and frequency measurement at BESS
connected point (central-north bus) are selected as input
signals to generate and control BESS active and reactive
power.

C. Active/Reactive (PQ) Controller

Once the voltage and frequency controller initiates active
and reactive power signal, the PQ controller will produce the
control signal. Frequency and P controller serve the same
purpose of generating active power control signal whereas
voltage and Q controller initiates reactive power signal.
However, the input signals are different for each controller.
Two new control strategies are proposed in PQ controller

A 4

fx-dt _/_

Ymin

Fig. 4. PI controller with anti-windup on power limits

The equation of PI controller with anti-windup [29], [30]
can be written as :

Ymazx
K Ymaz
Yo = Kp * Yerror T ?; Yerror dt (D
Yrmin Ymin
where,  Yo=ig—ref=iq—ref at PQ controller output,

ymamzidfmamziquar and yminzidfminziquin for d
and q axis.

The PQ controller with conventional PI is shown in Fig. 5.
Each PI controller in d and q axis are mainly independently
controlled in PQ controller. However, they are coordinated
and regulated by the current limiter in the charge controller
where the reference current on d and q axis are calculated to
ensure converter operation within the converter capacity. The
PI controller parameters (which are tuned by Ziegler-—Nichols
method) are given in Appendix A. The time constant in the
first order filter significantly affects the dynamic behavior and
therefore larger time constant value results slower transient
response.

2) PI-lead controller: Pl-lead controller is a composite of
PI and Lead controller connected in series as shown in Fig. 6.
The lead controller yields better transient system response
i.e. reduces overshoot and settling time by contributing
improvements in phase margin. The lead controller transfer
function for d and q axis are given as:

i1 (s +1/Thn)
Kals) = Tar (5 +1/Ta1) @
BOcmenm O

DC gain= 1. Tp1>Ty,1 and Tye>T,s.
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Fig. 6. PQ controller with PI-lead control

In a lead compensator, the zero is placed closer to the
origin than the pole and provides faster response by shifting
the closed loop poles to the left of left hand s-plane. The
detailed discussion on lead controller and PI-lead can be found
in [31], [32]. To contribute in improved system response,
a lead controller is added with conventional PI to regulate
active/reactive power of BESS. The pole and zero locations are
tuned through iterative process whereas PI parameters remain
the same as in the conventional PI controller. The transfer
function of the designed PI-lead controller for d and q axis
are the same and can be written as follows:

K(s) = 1+s  2(s+1)

14055 (s+2) @)

3) Lead-lag controller: With non-stationary behavior of
the power system, in many occasion PI controller fails to
accomplish its purpose of stability improvement. Considering
such limitation of PI controller, a lead-lag controller is
proposed in this study as shown in Fig. 7. A Lead-lag
controller is a combination of lead and lag controller to attain
solitary benefit of reduced steady-state error i.e improved
and reliable system stability and faster transient response by
eliminating each controller’s drawbacks. The detail working
principles of a lead-lag controller can be found in [32],
[33]. The limiter controls the output power reference within
predefined boundary. The associated lead-lag parameters are
listed in Appendix A.

Aid id—max
P. d 1 T, i -ref
in Pl sT é 1+ 5Tn N + 5Tz Kp |p|Limiters ot
1+sT 1+ 5Ty 1+ 5Ty
dpyer Washout filter Lead Lag —I
14-min
Ai :
lq lq—max
; d % 1+ sT, 1+ sT, g ref
Qin af st z3 > 24 KQ Limiters f——> iy
1+ sT 1+ 5Ty 1+ 5Ty
dqyer Washout filter Lead Lag —I
1q-min

Fig. 7. PQ controller with lead-lag control method

The poles/zeros are determined by trial and error. The
transfer function of the proposed lead-lag controller for d-axis
is:

Tzl (3 + 1/Tzl) TzQ (5 + 1/T22)
Tpl (S + 1/Tp1) Tpg (S + ]./TpQ)
where DC gain= 1. T},; >T},; (lead) and T}, >T> (lag). The

transfer function of the proposed lead-lag controller for q-axis
is:

Kl(S) =

(&)

Tz13 (S + 1/Tz3) Tz4 (S + 1/Tz4)
Tp3 (5 + I/Tp?)) Tp4 (S + 1/Tp4)

The lead-lag controller with the designed poles/zeros locations
for d and q axis are as follows:

8(s+1)(s +0.25)
(5 +2)(s + 0.067)

with T,3>T,3 (lead) and T4 >T,4 (lag).

Ka(s) = (6)

Ki(s) = Ks(s) =

)

D. Charge Controller

The first block of charge controller is SOC control which
defines BESS active power participation i.e. charging or
discharging conditions according to frequency oscillation
beyond nominal value (positive or negative) as shown in Fig.
5. BESS can consume active power if battery SOC is less than
the maximum SOC limit and can supply active power if SOC
is greater or equal to the minimum SOC level to comply with
safe depth-of-discharge of battery. In this study, the values for
the maximum and the minimum SOC is selected as 100% and
20%.

SOC,
SOCinitial :
if SOC < SOCpin ig =0 iin
iy =  if SOC > S0Cpay iq =0 *
1
SOC,i,

Fig. 8. SOC control strategy



The active power contribution of BESS is delimited by
SOC level and therefore, the current reference on d-axis are
executed according to the conditions specified as follows:

. Z'df'ref SOszn é SOC S SOCmaa:
ld—in = .
¢ 0 otherwise

The second block as shown in Fig. 9 illustrates the
maximum value of absolute current which is a function of
d and q axis current reference. The charge controller block
diagram is shown in Fig. 6. The difference between “ig_,..¢”
and “¢4—ref—out Of charge controller “Ai;” is added with
active power reference input in PQ controller. The difference
between “ig_ s~ and “ig_ref—ous” Of charge controller “Ai,”
is added with reactive power reference input in PQ controller.

éamd -

|maxCurrent| K
Ldoref ‘
1 M
Charge | ¢in
5| control L4 ref-out
SOC Current
limiter 1q-rcf-out
lq—ref iq-in

Fig. 9. Charge controller model

The BESS apparent power is limited by the converter
capacity. Therefore, the summation of total current on d and
q axis must be equal to the nominal value of the converter to
avoid converter overloading. Hence, the total current should be
equal to the maximum absolute value (maxValue) of 1 per unit.
The coordination between d and q axis current are calculated
as follows:

|maxV alue|
idfreffout = Ig—in dt )
— |mazValue|
Yvalue
Z-q—ref—out = iq—in dt 9
— Yvalue
|maxV alue|?
where, Yyaiue = i |mazValue|? — i3 .
0

E. d and q axis Current Controller

The main characteristics of dq current controller is its
capability to adjust BESS active and reactive power by
regulating d and ¢ axis current component based on PI
controller output as shown in Fig. 10. The controller input
currents are the converter’s AC current in dq reference
frame. The voltage angle is calculated using Phase-locked-loop
(PLL) and the output is connected to a reference system to
define transformation between dq reference frame and global
reference frames. The output signal is pulse width modulation
index on d-axis (mg) and g-axis (mg).

14-ref-out

PLL
my
i
abc d .
—> 1g-ref-out
iabc dq
i m,
PI —>

Fig. 10. d and q axis current controller model

F. Battery Model

The battery model used in this paper is an electrical
equivalent battery model described in [34] where the battery
is modeled as a DC voltage source and an internal resistance
where SOC of the battery is a function of battery current.

III. SYSTEM DESCRIPTION AND TRANSIENT STABILITY
CRITERION

A. System Configuration

An equivalent representation of Finnish transmission
network is considered in this study to investigate the
contribution of BESS and STATCOM devices. The schematic
diagram of the studied transmission system is shown in Fig. 11
which comprises of 15 equivalent synchronous generators,
7 series capacitors and 11 equivalent loads. Capacitors
parameters, active and reactive power of generators and loads
are given in Appendix A. The other associated parameters
of generators, generator step-up transformers (13.8/400kV),
step-down transformers at load terminal (400/110kV) and
transmission lines are available in [35].

The electrical parts of synchronous generator at north
area (North-West (NW), North (N), North-East (NE), and
Central-North (CN)) of the grid are represented by 5th order
state-space models and the mechanical parts are represented
by hydro type turbine and governor systems. The synchronous
generators’ electrical parts in Nordic (Nordic N1, Nordic
N2, Nordic S and Nordic C) are represented by 6th order
state-space models and the mechanical parts are represented
by hydro type turbine and governor systems. The synchronous
generators’ electrical parts in central (Central-West (CW),
Central (C), Central-South (CS) and Central-East (CE)) and
south (South-West (SW), South (S) and South-East (SE)) are
represented by 6th order state-space models and operating
as constant torque. IEEE-ACS5A type exciter is chosen for
South-West generator and ST2A type exciter is used for the
rest of generators.

The generators are coupled at 13.8kV bus and connected to
400kV system through a step-up transformer. The 4 generators
in Nordic region are an equivalent representation of Swedish
generation system. The generator at SW terminal (SW-gen)
is considered as reference machine for the network whereas
other generators are designed as PV at their local bus. There
are no PSS installed at generators’ terminal. Transmission lines
between south area to CE, CS, CW, CS to C and Sirttoverkko
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Fig. 11. Modified Finnish equivalent transmission network

to Nordic area comprised of two parallel lines whereas all
other transmission lines are composed of single line. Three
phase balanced load with active and reactive power is selected
in this study. The loads are connected at 110kV level.

B. STATCOM and Wind Model

The basic STATCOM diagram consists of a DC source to
supply constant voltage to voltage-source converter (VSC).
This VSC converts DC/AC output whose AC terminal is
connected to the transformer which acts as an interface
between the VSC and the AC grid. The modelling details of
STATCOM used in this paper can be found in [36]. The local
measurements at STATCOM connected point (Central-north
bus) are selected as input signal to control STATCOM. Doubly
fed induction generator (DFIG) based wind turbine generator
is used for wind farm modeling. The wind farm is designed
to remain connected during fault period and is considered as
operating at constant wind speed i.e. constant output.

C. Stability Criterion

The power system oscillatory response must be contained
within the boundary, in the occurrence of single/multiple
contingency events, to comply with the grid operating
standards. Presently, successful frequency control according to
the NEM requires that system frequency should be maintained
between 0.99-1.01 pu of the nominal value within 1 minute

for network event and should recover between 0.997-1.003 pu
within 5 minutes as shown in Fig. 12. In the case of multiple
contingency events, post-fault frequency should be between
0.99 and 1.01 pu within 2 minutes and 0.997-1.003 pu within
10 minutes [27]. The proposed operation limit of voltage by
the AEMO is = 10% of the nominal value with disturbance
events for the duration of 20 minutes [28]. The power system
should not exceed voltage and frequency operating standards
in any circumstances. Following an contingency event, if the
voltage and frequency reaches to the recovery band, the power
system is stabilized and considered as sufficiently secure.

vmax
fmax [~ ~ . =mmm==mm
1.003
11
[pu] N 0
Normal \
operating —— >
frequency/ -
voltage t
band 0.9 /
[radir fpress==ssscssssesd  sssssssws
Vnadir

Fig. 12. NEM voltage and frequency operating standards

The amount of power transfer within areas are limited
by transient voltage and frequency stability that apparently
depends on overall system conditions and parameters at any
given point in time. An extensive simulation study by AEMO
demonstrated that loss of line outage significantly affects the
power transfer limit to satisfy and keep the system within grid
specified restrictions [37]. In addition, multiple outage events
are more severe in limiting the maximum amount of power
transfer compare to single outage event for meeting transient
stability requirements [38]. Therefore, the contribution of
single/multiple outage events are imperative to investigate as
they can have severe consequences in power system stability
such as blackout [39].

Traditionally, STATCOM is one of the state-of-the-art
technologies that are being preferred in providing transient
stability to provide better oscillation damping and enhancing
power export in the grid. In this research, the effectiveness of
BESS undergoing temporary and permanent single/multiple
contingencies is the prime focus. Stability margin of the
studied network with the integration of STATCOM and BESS
will be evaluated according to NEM stability criteria as
presented in Fig. 12.

IV. RESULTS AND ANALYSIS

In this study, the performance of STATCOM and BESS with
the proposed control strategies are evaluated on an equivalent
real power system and comprehensive analysis of power export
cases are evaluated using simulation studies following multiple
transient events. The study encompasses the identification of
maximum power export within large network from south area
to north area in Nordic border. Afterwards, with increased
volume of power export, stability support from STATCOM



and BESS is investigated to restore system stability following
disturbances. Since the two networks are connected by two
transmission lines, therefore they have significant impact on
system stability.The performance of BESS with the proposed
controllers (BESS with PI-lead and Lead-lag) are compared
with the STATCOM and conventional PI controlled BESS.

Three studies (Cases I-III) are investigated to assess the
control performance of STATCOM and BESS with the
proposed control strategies to provide system stability. In
addition, three other studies (Cases IV-VI) are investigated to
establish BESS efficiency in transient stability enhancement.

o Case I: Fault of N-Sirttoverkko line and fault clearing by

loss of line permanently (single support).

o Case II: Load growth, fault of N-Sirttoverkko line and

fault clearing by loss of line (multiple supports).

o Case III: Fault of N-Sirttoverkko line, fault clearing by

loss of line and load growth (multiple supports).
The Effectiveness of BESS in other transient conditions:

e Case IV: Temporary single-phase short circuit fault.

o Case V: Permanent single-phase short circuit fault.

o Case VI: Without series compensation between two

systems.

To identify the stable operation limit of grid, different
amount of active power export cases are investigated. The
generators at South-West, South and South-East supplies
S0MW, 200MW and 200MW of the total exported power to
the power export point in Nordic region. In the fault simulation
study a three-phase fault is applied at t=3s on N-Sirttoverkko
line which is carrying about 220.7MW power and the fault is
cleared at t=3.1s by removing faulted line permanently. From
simulation results, it is identified that without any support
from STATCOM/BESS devices, 450MW power export is the
maximum power transfer limit following a line fault and
permanent loss of the faulted line. Therefore, to investigate
STATCOM/BESS contribution, higher amount of power is
exported and STATCOM/BESS devices are placed.

A. Case I: 650MW export
N-Sirttoverkko line

To substantiate STATCOM/BESS impact in enhancing
power export within the network, 650MW active power
export is considered. The active power contribution of SW
generator is increased to 250MW, whereas generators at
South and South-East supplies 200MW individually. When
650MW power is exported, three-phase line fault at t=3s on
N-Sirttoverkko line is applied. The line is carrying about
321MW. The PCC voltage and generator frequency plots at
different location shows that because of inadequate damping
contributed by the generator excitation systems, system
becomes unstable with 44.44% higher power export than stable
condition when faulted line is permanently removed at t=3.1s
to clear line fault as shown in Fig. 13. The system does not
settle down within the grid required level and the time frame
as mentioned in Fig. 12. This emerged instability requires to
be settled to ensure the opportunity of higher power transfer
across two interconnected systems and thus an additional
damping support is required. The STATCOM and BESS

and Permanent loss of

is integrated at CN bus to provide supplementary damping
into the system to mitigate the instability phenomena that
emerges during higher order power exchange and unintended
disturbance events. The location of STATCOM/BESS is
selected based on overall satisfactory performance for all of
the case studies through iterative process.
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Fig. 13. The frequency of generators [p.u.] and voltages [p.u.] at bus and
PCC without STATCOM/BESS support

STATCOM has proven its ability to increase power
transfer capability in power system. A 80OMVA STATCOM
is integrated at CN bus to contribute in added damping
and support system stability. The relative PCC voltage and
generator frequency with incorporated STATCOM is shown
in Fig. 14. It is observed that STATCOM fails to provide
sufficient system damping and stabilize system responses. The
post fault output responses of the system remain oscillatory
and never settles down within the specified stability recovery
band as mentioned in NEM regulations [27], [28]. Relatively, a
large size of STATCOM is chosen to provide system damping.
However, it is observed that even the large size of STATCOM
remains ineffective to stabilize the post fault system responses.
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Fig. 14. The frequency of generators [p.u.] and voltages [p.u.] at bus and
PCC with STATCOM

STATCOM delivers nil active power and SOMVAR reactive
power. Therefore, it is evident that unavailability of active
power results in the failure of STATCOM when stabilizing
the system. Hence, a STATCOM is incapable to enhance
network power export capability in a situation when voltage
and frequency is affected by the disturbance. As a result, there
is a requisite of active and reactive power provision to supply
sufficient systems damping and stabilize system voltage and
frequency.

BESS is integrated at CN bus to provide active and reactive
power oscillation damping. Simulation results with integrated
BESS as shown in Fig. 15 illustrates that BESS effectively
contributes in system damping and stabilizes system voltage
and frequency within the specified system recovery band as
demonstrated in Fig. 12 while exporting 650MW across the
interconnected network. The system responses reaches post



fault stability margin with the integrated BESS. Thus, the
incorporated BESS improves power system stability with the
proposed control strategies. To evaluate the transient stability
responses, BESS with the proposed controllers are compared
with conventional PI controlled BESS. As shown in Fig. 15,
the proposed controllers not only stabilizes system responses
Fig. 15 (a) but also BESS with lead-lag provides improved
responses compare to BESS with conventional PI and PI-lead
Fig. 15 (b).
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Fig. 15. The frequency of generators [p.u.] and voltage oscillations [p.u.]
at bus and PCC with BESS (a) and responses with PI, PI-lead and lead-lag
controlled BESS (b)

The active and reactive power by BESS is shown in Fig. 16.
It can be seen that a very small amount of active power output
is available with PI controlled BESS, this is due to limitation
of PI controlled controller which is dependent on operating
strategies and load and may not work satisfactorily for all
conditions. On the contrary, the lead-lag controlled BESS
output power is zero once the system stability is achieved,
and this indicates robust control efficiency than conventional
PI controlled BESS. It is observed that battery SOC does not
change significantly as essentially high power is indispensable
and BESS operation is required few seconds to few minutes.
Mainly, turbine and governor system will strive to damp out
oscillation in the case of energy surplus or shortfall beyond
the battery capacity. A minimum size of BESS is essential
to ensure sufficient BESS capacity (required SOC level) is
obtainable for participating in transient stability enhancement.
Therefore, a large size of battery capacity is considered to
avoid surplus/shortfall during the studied transient periods. The
size of BESS is selected considering all the case studies and
the selected BESS converter is rated as 40MVA. The deadband
for BESS active power triggering is £ 0.0002 p.u. of grid
frequency value. The selected frequency droop value is 0.002
p.u. which defines that in a S0Hz frequency system, full BESS
power is activated with 4+ 0.1Hz frequency deviation. On the
contrary, the reactive power support capability of BESS is
limited by the converter capacity. Deadband value for reactive

power triggering is = 0.004 p.u. value of nominal voltage
at BESS connection point and droop value is 0.08 p.u. which
defines full reactive power activation the minute voltage differs
+ 8% of nominal bus voltage. Higher value of reactive power
droop is selected to avoid excessive use of BESS converter for
reactive power as grid voltage fluctuates often above/below 1
p-u. value. However, these droop values can be adjusted based
on grid code requirements. The battery parameters are given
in Appendix A.

5.000

2.000

-1.000

-4.000

-7.000

-28.22 L
-0.100 23.92 47.94 71.96 95.98[s]120.0
e BESS: Active power in MW w/lead-lag
m m m BESS: Active power in MW w/Pl only
BESS: Active power in MW w/PI lead

-10.00 L L -

-0.100 23.92 47.94 71.96 95.98[s]120.0
emmmmme BESS: Reactive power in MVar w/lead-lag
e BESS: Reactive power in MVar w/Pl only
m m m BESS: Reactive power in MVar w/Pl lead

Fig. 16. BESS active and reactive power

In summary, comparative analysis between STATCOM
and control strategies of BESS demonstrates that BESS not
only stabilizes system voltage and frequency to continue
power export but also maximizes the utilization of available
transmission line power transfer capacity. Therefore, a
STATCOM cannot compete with BESS in enhancing higher
power export and hence, BESS has higher potential to be
applied on grid level stability support than a STATCOM
in such a case. At steady state operation, loading of
N-Sirttoverkko line is 15.3% while NW-Sirttoverkko line is
17.4%. The minute N-Sirttoverkko line is lost after fault
clearance, loading for the NW-Sirttoverkko increases to 32.4%
which clearly evidents the above claim of BESS effectiveness
in enhancing transient stability and power transfer capacity.

B. Case II: Loss of N-Sirttoverkko line and load growth at
NW bus

Considering the impact of multiple disturbance events
on transmission line [38], [39], STATCOM and BESS
effectiveness are analyzed during two different faults in a row
while exporting power within areas. The disturbance events are
applied at about 20s apart from each other and the occurrence
order of two events are reversed in two separate simulations.
Simulation results are presented and discussed to demonstrate
the feasibility of BESS in providing multiple stability services
in a row. With the same amount of power being exported
(650MW), a three-phase fault is applied on N-Sirttoverkko
line at t=3s, fault is cleared at t=3.1s by removing faulted line
and 10% active and reactive power increment in North-West
load demand (about 30MW and 20MVAR) is activated at
t=23.1s. Simulation results with multiple contingency events in
Fig. 17 (a and b) show that without a BESS, system damping
is not sufficient to stabilize the system responses that leads
to escalating oscillations and fails to reconcile within the
grid recovery voltage and frequency band according to NEM
stability criteria mentioned in Fig. 12.

However, the results shown in Fig. 18 illustrates that a
40MVW integrated BESS at CN bus provides adequate system
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Fig. 17. The frequency of generators [p.u.] and voltage oscillations [p.u.] at
bus and PCC without STATCOM support (a) and with STATCOM (b)

damping to stabilize post fault system responses in the case of
multiple disturbances and ensures uninterrupted power export.
The system responses demonstrate that according to NEM
criteria, BESS with the proposed control approaches achieves
power system stability. The droop values in this case study are
the same as in Case I. The total active and reactive power of
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Fig. 18. The frequency of generators [p.u.] and voltage oscillations [p.u.] at
bus and PCC with PI, Pl-lead and lead-lag controlled BESS

BESS are shown in Fig. 19. In the case of PI controlled BESS,
the output power of BESS does not settle to zero at post fault
steady state whereas lead-lag controlled BESS output settles
down to zero.
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Fig. 19. BESS active and reactive power

C. Case IlI: Load growth at NW bus and loss of
N-Sirttoverkko line

In this case study, the orders of disturbance events are
reversed as in Case II. A 10% load increment is applied at
t=3.1s and three-phase fault on N-Sirttoverkko line is applied
at t=23s and the fault is cleared at t=23.1s by removing
the faulted line permanently. The system responses with
multiple fault events without BESS illustrates an accelerating
oscillatory behavior and due to insufficient damping, voltage
and frequency of the system never resolved within grid
required band and continues toward instability as shown in
Fig. 20 (a and b).
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Fig. 20. The frequency of generators [p.u.] and voltage oscillations [p.u.] at
bus and PCC without STATCOM support (a) and with STATCOM (b)

Simulation results in Fig. 21 illustrates that BESS installed
at the same location as in previous case study turns out
to be successful in stabilizing system voltage and frequency
responses in the case of multiple disturbance events in a row.
BESS delivers the required damping to the system and reduces
the transient oscillation within the grid required recovery
band that clarifies the stability achievement of BESS with the
proposed control approaches. Same droop value for voltage
and frequency is chosen as in Case 1. BESS active and reactive
power are shown in Fig. 22. A very similar behavior can be
seen for active power output of PI controlled and lead-lag
controlled BESS as in previous study.
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bus and PCC with PI, Pl-lead and lead-lag controlled BESS
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Fig. 22. BESS active and reactive power

A report from Australian Energy Market Operator (AEMO)
on South-Australia blackout has identified that multiple
transmission line faults are recorded within 87 seconds in
the transmission network. These faults caused a reduction
in generation and an increase in power transfer. The line
outage from the persisted faults in such condition has resulted
in voltage and frequency instability that conclusively led
to blackout [39]. This study provides significant insights of
applying BESS to improve voltage and frequency stability in
a realistic power system. It is shown that outage events limit
the maximum power transfer to 450MW in the case studies in
this paper. When the amount of power exported is increased
by 44%, the system becomes unstable (Figs. 13, 17(a) and
20(a)) following single or multiple transient events, and
similar phenomena happened in South-Australia. From the
aforementioned three case studies and simulation results with
STATCOM and BESS, it is evident that BESS can potentially
contribute in simultaneous voltage and frequency regulation
to improve system stability and enhance power export within
areas regardless of single (Fig. 15) or multiple disturbance
events (Figs. 18 and 21). However, a STATCOM remains
unsuccessful in achieving such an outcome (Figs. 14, 17(b)
and 20(b)). Therefore, this study demonstrates that BESS can
maintain system stability within the grid defined operating
ranges (according to NEM) and hence such blackout incident
may be avoided with the incorporation of BESS considering
large-amount of power flows between inter-connected systems.

D. The Effectiveness
Conditions

of BESS under Other Transient

The efficacy of BESS in different transient conditions play
significant role to validate the argument of BESS competence
in power system application for stability enhancement.
Therefore, in addition to earlier case studies, three additional
case studies have been carried out to scrutinize BESS authority
to mitigate instability distress while the system is exporting
650MW power and they are as follows:

1) Case IV: Temporary single-phase short circuit fault: A
single-phase-ground fault is the most common disturbance in a
power system. Hence, a single-phase-ground (phase-a fault) is
applied at ¢ = 1s on South-West bus for 150ms. The generator
frequency response with a BESS shown in Fig. 23 indicates
that BESS effectively stabilizes the post fault system responses
compared to system without the BESS. In addition, BESS
with lead-lag controller provide better response in contrast to
a BESS with PI and PI-lead by reducing frequency oscillation

at a faster rate. Since the fault is cleared after a certain period
of time, the active power of BESS reduces to nearly zero once
the system has been stabilized.
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Fig. 23. The frequency of generator [p.u.] and BESS output power with
temporary single-phase-ground fault

2) Case V: Permanent single-phase short circuit fault: To
further investigate BESS performance in case of permanent
bus fault, a permanent single-phase-ground (phase-a fault)
is applied at ¢ = 1s on South-West bus. The generator
frequency becomes unstable with the critical permanent
single-phase-ground fault without BESS, as illustrated in
Fig. 24. Hence, a BESS is installed to provide oscillation
damping and to stabilize the system responses. The results
illustrated in Fig. 24 indicate that BESS not only reduces
oscillations right after the fault but also stabilizes the system.
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Fig. 24. The frequency of generator [p.u.] and PCC voltage [p.u.] with
permanent single-phase-ground fault

In particular, BESS justifies the efficacy of enhancing
transient stability performance in terms of stabilization and
oscillations damping in the case of critical permanent fault.
Moreover, BESS with PI-lead provides improved performance
than conventional PI controlled BESS. However, BESS with
lead-lag outperforms BESS with PI and PI-lead. Nevertheless,
the required BESS converter size is 140MVA in comparison to
40MVA in the previous case studies. The active and reactive
power of BESS reduces to zero once the system is stabilized.

3) Case VI: Without series compensation between the two
systems: Series compensation significantly improves voltage
stability of the system. According to the main design of
the network, two connecting lines between the two systems
are compensated by series compensation. To evaluate BESS
competence without series compensation between these two
lines, a permanent line outage at ¢ = 3.1s on N-Sirtoverkko
line is applied. The system responses shown in Fig. 25
illustrate that even if there are no series compensations
installed between the two interconnected systems, BESS
effectively diminishes accelerating oscillations and stabilizes



the system voltage and frequency according to NEM stability
requirements.
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Fig. 25. The frequency of generator and PCC voltage [p.u.] w/out series
compensation

E. Performance index analysis

Performance index analysis is a way of determining
controller performance and robustness in achieving the desired
system outcome. The sum of squared errors (SSE) is applied
as performance indices to evaluate the proposed controllers
effectiveness in tracking set point.

SSE = (zx —yk)?

k=1

(10)

where, x=initial steady state value and 3= real empirical k"
value.

The SSE calculation of voltage and frequency for Cases
I, I & V in Table I shows that, the proposed PI-lead
and lead-lag controlled BESS has smaller SSE value that
demonstrates better performance of the proposed controllers
than conventional PI controlled BESS. Similar performance
of the proposed controller is also observed in other case
studies. Moreover, lead-lag controlled BESS exhibits improved
performance than BESS with all other controllers.

TABLE I
INDIVIDUAL CONTROLLER PERFORMANCE ANALYSIS ACCORDING TO SSE

Pl-only PI-lead Lead-lag | Observation
Case I | 0.001171 | 0.000819 | 0.000621 frequency
0.002051 | 0.001602 | 0.001244 voltage
Case II | 0.001127 | 0.000804 | 0.000633 frequency
0.001904 | 0.001501 | 0.001207 voltage
Case V | 0.062582 | 0.053704 | 0.050276 frequency
0.05222 | 0.048938 | 0.048168 voltage

From the multiple simulation studies and post fault transient
dynamics with STATCOM and BESS, it is evident that BESS,
installed at the same location for all case studies, is effective in
maintaining transient stability by providing required oscillation
damping following various levels of temporary and permanent
faults. Moreover, the proposed BESS with PI-lead and lead-lag
control strategies provides improved transient performance in
mitigating instability problem as compared to traditional PI
controlled BESS.

V. CONCLUSION

In this research, BESS with PI-lead and lead-lag controller
design methods are proposed to support transient voltage
and frequency regulation and strengthen power exports
between the two large-scale interconnected power systems.
The effectiveness of the proposed controllers are compared
and demonstrated with the conventional PI controlled BESS
and state-of-the-art STATCOM technology. Detailed modeling
of BESS with the proposed controllers and the dynamic
performance of STATCOM and BESS in regulating and
enhancing transient responses are demonstrated and discussed.
The following can be summarized from the presented studies:

e During a permanent network fault, there is a limit
of maximum power export between two interconnected
power systems and beyond that limit, the system lost its
stability without additional damping support.

« When considering instability phenomena, it is observed
that STATCOM failed to provide supplementary system
damping whereas BESS with simultaneous voltage and
frequency regulating ability ensures transient stability and
dynamic security of the power system. The dynamic
simulation results evidently indicate that BESS is capable
of providing sufficient power system damping, enhancing
the transient stability of two interconnected large-scale
power systems in a multi-machine environment and
enhancing 44.44% higher amount of power export in
contrast to normal power transfer limit. It is also observed
that the changes in battery SOC are minimum as high
power is more imperative than energy capacity.

e This study provides the convincing recognition of
BESS competence in avoiding voltage and frequency
collapse and thus could prevent the potential blackout
in real power system such as the outage happened in
South-Australia.

o Moreover, BESS with lead-lag controller demonstrates
better performance compare to both conventional PI and
PI-lead controller in terms of faster settling time and
smaller oscillation and provide smoother response once
the system stability is achieved in all case studies. In
addition, SSE based performance index analysis also
rationalizes improved performance of lead-lag controlled
BESS.

o Considering the non-stationary behaviors of power
system, BESS has been proven to be effective in
enhancing transient stability in multiple temporary and
permanent disturbance occasions and allowing to make
use of available transmission capacity.

Hence, it can be concluded that the proposed Pl-lead and
lead-lag control strategies for BESS not only contributes in
oscillation damping to stabilize the unstable system in contrast
to STATCOM but also outperforms conventional PI controlled
BESS. Finally, it is recognized that increased penetration level
of low inertial RES may have additional impacts on power
system oscillation damping during transient events which can
significantly affect power system stability. Future study will
focus on the impact of low inertia due to RES penetration
on power system dynamic performance and power transfer



capability across interconnected network and BESS efficacy in
such circumstances. Also, coordinated control of synchronous
machine and BESS in other network events will be carried out
to analyze BESS effectiveness. Moreover, intelligent control
strategies and controller robustness is bounded to get further
attention in future development of BESS control strategies.

APPENDIX A
SYSTEM PARAMETER
Capacitor parameters: Cap-Siirto-N=
Cap-CN-NW=106 wF, Cap-NW-Siirto=114.83 wF,

Cap-C-CN= Cap-C-CN-1=62.63 pF, Cap-CN-N=81.06 puF’

BATTERY PARAMETER

Capacity/Cell-30 Ah, Empty cell minimum voltage-22 V,
Full cell voltage-13.85 V, Cells in parallel-60, Cells in row-65,
Nominal source voltage-0.9 kV, Resistance/cell-0.001 ohm.

CONTROLLERS PARAMETER
PI controller: T),=0.01, T;,=0.02, K ;=K =1, T;4=4, T;,=4,

'Ld—mar=zq—mam=1s Zoi—min=lq—min=‘1~

Pl-lead controller: 7,=0.01, 7,=0.02, T3=Ty=1,
To1=T42=0.5, Kg=Kg=1, Ti=4, Ti;=4, td—maz=1,
Z‘dfminziquin:'] .

Lead-lag controller: T=6; T,1=1, T,;=0.5, T,»=4,
Tpo=15, Tu=1, Tp3=0.5, To=4, Tpu=15, Kp=Kg=5,
id—m,am=iq—mam=la Z‘d—min=iq—min=‘1~

TABLE II
LOAD PARAMETER
Load MW  MVar Load MW  MVar
South-West 570 250 Central-South 485 150
South 570 250 Central-North 570 250
South-East 570 250 North 135 50
Central 428 0 North-East 135 50
Central-East 285 100 North-West 285 50
Central-West 428 150
TABLE IIT

GENERATOR ACTIVE AND REACTIVE POWER PARAMETERS:

South-West 481  -137 Central-East 285 210
South 570 -87 Central-North 570  -170
South-East 570 30 North 85 -144
Wind-S 200 0 North-East 85 -75
Wind-SE 100 0 Wind-NE 50 0
Central 428  -336 North-West 285 -184
Wind-C 100 0 Nordic N2 0 -163
Central-West 428  -144 Nordic N1 0 0
Wind-CW 50 0 Nordic C 0 0
Central-South 285  -251 Nordic S 0 -585
REFERENCES

[1] B. S. Joshi, O. P. Mahela, and S. R. Ola, “Reactive power flow control
using static var compensator to improve voltage stability in transmission
system,” in 2016 International Conference on Recent Advances and
Innovations in Engineering (ICRAIE), Dec 2016, pp. 1-5.

[2]

[3

=

[4

flnar

[5]

[6

=

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

C. R. Fuerte-Esquivel and E. Acha, “Newton-raphson algorithm for
the reliable solution of large power networks with embedded FACTS
devices,” IEE Proceedings - Generation, Transmission and Distribution,
vol. 143, no. 5, pp. 447-454, Sep 1996.

M. Yesilbudak, S. Ermis, and R. Bayindir, “Investigation of the effects
of FACTS devices on the voltage stability of power systems,” in 2017
IEEE 6th International Conference on Renewable Energy Research and
Applications (ICRERA), Nov 2017, pp. 1080-1085.

A. Abu-Siada and C. Karunar, “Transmission line power transfer
capability improvement, case study,” IFAC Proceedings Volumes, vol. 45,
no. 21, pp. 495 — 499, 2012, 8th Power Plant and Power System Control
Symposium.

M. Kolcun, Z. Conka, L. Berina, M. Kandalik, and D. Medvead,
“Improvement of transmission capacity by FACTS devices in central east
europe power system,” IFAC-PapersOnLine, vol. 49, no. 27, pp. 376 —
381, 2016, iFAC Workshop on Control of Transmission and Distribution
Smart Grids CTDSG 2016.

K. Karthikeyan and P. Dhal, “Transient stability enhancement by optimal
location and tuning of STATCOM using pso,” Procedia Technology,
vol. 21, pp. 345 — 351, 2015.

M. Darabian and A. Jalilvand, “Improving power system stability in
the presence of wind farms using STATCOM and predictive control
strategy,” IET Renewable Power Generation, vol. 12, no. 1, pp. 98-111,
2018.

L. M. Castro, E. Acha, and C. R. Fuerte-Esquivel, “A novel STATCOM
model for dynamic power system simulations,” IEEE Transactions on
Power Systems, vol. 28, no. 3, pp. 3145-3154, Aug 2013.

G. Cakir and G. Radman, “Placement and performance analysis of
STATCOM and SVC for damping oscillation,” in 2013 3rd International
Conference on Electric Power and Energy Conversion Systems, Oct
2013, pp. 1-5.

S. Bagchi, R. Bhaduri, P. N. Das, and S. Banerjee, “Analysis of
power transfer capability of a long transmission line using FACTS
devices,” in 2015 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Aug 2015, pp. 601-606.
J. Servotte, E. Acha, and L. M. Castro, “Smart frequency control in
power transmission systems using a BESS,” in 2015 IEEE Innovative
Smart Grid Technologies - Asia (ISGT ASIA), Nov 2015, pp. 1-7.

A. V. Savkin, M. Khalid, and V. G. Agelidis, “A constrained monotonic
charging/discharging strategy for optimal capacity of battery energy
storage supporting wind farms,” IEEE Transactions on Sustainable
Energy, vol. 7, no. 3, pp. 1224-1231, July 2016.

K. Kawabe and A. Yokoyama, “Effective utilization of large-capacity
battery systems for transient stability improvement in multi-machine
power system,” in 2011 IEEE Trondheim PowerTech, June 2011, pp.
1-6.

H. Setiadi, N. Mithulananthan, and M. J. Hossain, “Impact of battery
energy storage systems on electromechanical oscillations in power
systems,” in 2017 IEEE Power Energy Society General Meeting, July
2017, pp. 1-5.

H. Maleki and R. K. Varma, “Comparative study for improving damping
oscillation of SMIB system with STATCOM and BESS using remote and
local signal,” in 2015 IEEE 28th Canadian Conference on Electrical and
Computer Engineering (CCECE), May 2015, pp. 265-270.

M. J. Hossain, H. R. Pota, and R. A. Ramos, “Improved
low-voltage-ride-through capability of fixedspeed wind turbines using
decentralised control of STATCOM with energy storage system,” IET
Generation, Transmission Distribution, vol. 6, no. 8, pp. 719-730,
August 2012.

A. Chakraborty, S. K. Musunuri, A. K. Srivastava, and A. K.
Kondabathini, “Integrating STATCOM and battery energy storage
system for power system transient stability: A review and application,”
Advances in Power Electronics, vol. 2012, 2012.

J. Aguado, S. de la Torre, and A. Trivifio, “Battery energy storage
systems in transmission network expansion planning,” Electric Power
Systems Research, vol. 145, pp. 63 — 72, 2017.

U. Datta, A. Kalam, and J. Shi, “Battery energy storage system
for transient frequency stability enhancement of a large-scale
power system,” in 2017 Australasian Universities Power Engineering
Conference (AUPEC), Nov 2017, pp. 1-5.

A. Kanchanaharuthai, V. Chankong, and K. A. Loparo, “Transient
stability and voltage regulation in multimachine power systems vis-a’-vis
STATCOM and battery energy storage,” IEEE Transactions on Power
Systems, vol. 30, no. 5, pp. 2404-2416, Sept 2015.

M. Beza and M. Bongiorno, “An adaptive power oscillation damping
controller by STATCOM with energy storage,” IEEE Transactions on
Power Systems, vol. 30, no. 1, pp. 484-493, Jan 2015.



[22]

[23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

B. Jena and A. Choudhury, “Voltage and frequency stabilisation in a
micro-hydro-PV based hybrid microgrid using FLC based STATCOM
equipped with BESS,” in 2017 International Conference on Circuit
,Power and Computing Technologies (ICCPCT), April 2017, pp. 1-7.
J. Park, J. Yu, J. Kim, M. Kim, K. Kim, and S. Han, “Frequency/Voltage
regulation with STATCOM with battery in high voltage transmission
system,” [FAC-PapersOnlLine, vol. 49, no. 27, pp. 296 — 300, 2016,
iFAC Workshop on Control of Transmission and Distribution Smart
Grids CTDSG 2016.

B. Singh and Z. Hussain, “Application of Battery Energy Storage System
(BESS) in voltage control and damping of power oscillations,” in 2010
Sth International Conference on Industrial and Information Systems,
July 2010, pp. 514-519.

X. Xu, M. Bishop, D. G. Oikarinen, and C. Hao, “Application and
modeling of battery energy storage in power systems,” CSEE Journal
of Power and Energy Systems, vol. 2, no. 3, pp. 82-90, Sept 2016.

Y. Ge, W. Du, and T. Littler, “Applying STATCOM/BESS stabilizers in a
real large-scale power system,” in 2nd IET Renewable Power Generation
Conference (RPG 2013), Sept 2013, pp. 1-4.

NEM, “The Frequency Operating Standard-stage one
final, [Available Online]:https://www.aemc.gov.au/sites/
default/files/content/c2716a96-e099-441d-9e46-8ac05d36f5a7/

rel0065- the- frequency-operating- standard- stage- one-final- for-publi.
pdf, [Accessed on: 2018-06-08].”

NEM/AEMO, “Generator technical requirements, [Available
Online]:https://www.aemo.com.au/-/media/files/electricity/nem/
security_and_reliability/reports/2017/aemo- gtr-rcp-110817.pdf,
[Accessed on: 2018-06-08].”

Anti-Windup, “Integral Anti-Windup for PI Controllers, [Available
Online]:https://www.scribd.com/document/181677842/anti- windup,
[Accessed on: 2018-06-09].”

A. Visioli, “Modified anti-windup scheme for PID controllers,” IEE
Proceedings - Control Theory and Applications, vol. 150, no. 1, pp.
49-54, Jan 2003.

ControlTheoryPro, “PI-Lead Control, [Available Online]:http://wikis.
controltheorypro.com/pi-lead_control, [Accessed on: 2018-06-09].”

Z. K. Jadoon, S. Shakeel, A. Saleem, A. Khaqan, S. Shuja, Q. Hasan,
S. A. Malik, and R. A. Riaz., “A comparative analysis of PID, lead,
lag, lead-lag, and cascaded lead controllers for a drug infusion system,”
Journal of Healthcare Engineering, vol. 2017, Jan 2017.

G. Xu, L. Xu, and J. Morrow, “Power oscillation damping using
wind turbines with energy storage systems,” IET Renewable Power
Generation, vol. 7, no. 5, pp. 449-457, Sept 2013.

M. Chen and G. A. Rincon-Mora, “Accurate electrical battery model
capable of predicting runtime and I-V performance,” IEEE Transactions
on Energy Conversion, vol. 21, no. 2, pp. 504-511, June 2006.

U. Datta, “Enhanced operational performance of siirtoverkkomalli using
static compensators and bess equipment,” Master’s thesis, Tampere
University of Technology, Aug, 2016.

D. GmBH, “Power Equipment Models, [Available
Online]:https://www.digsilent.de/en/faq-reader- powerfactory/
do-you-have-a-model-for-a-statcom-2/searchfag/statcom.html,
[Accessed on: 2018-06-01].”

AEMO, “Victorian transfer limit advice — outages, [Available
Online]:https://www.aemo.com.au/-/media/files/electricity/
nem/security_and_reliability/congestion-information/2017/

victorian-transfer-limit-advice---outages-v5.pdf, [Accessed on:
2018-06-08].”
AEMO/NEM, “Transfer limit advice - NEM oscillatory

stability, [Available Online]:https://www.aemo.com.au/-/media/files/
electricity/nem/security_and_reliability/congestion-information/2017/
transfer-limit-advice---nem-oscillatory-stability-v3.pdf, [Accessed on:
2018-06-08].”

AEMO/SA, “Black system South Australia 28 September 2016,
[Available  Online]:https://www.aemo.com.au/-/media/files/electricity/
nem/market_notices_and_events/power_system_incident_reports/
2017/integrated-final-report-sa-black-system-28-september-2016.pdf,
[Accessed on: 2018-06-08].”

Ujjwal Datta received the Bachelor of Science
(Honours) in Electrical and Electronic Engineering
from Stamford University, Bangladesh and Master of
Science in Smart Grid with distinction from Tampere
University of Technology, Finland. Currently he
is continuing studies towards PhD at Victoria
University, Melbourne, Australia. His research
interests are power system stability, FACTS devices,
Battery energy storage system, smart grid, home
energy management system, EV and renewable
energy system.

Akhtar Kalam is a Professor at Victoria University
(VU), Melbourne since 1985 and a former Deputy
Dean of the Faculty of Health, Engineering and
Science. He is currently the Head of Engineering
and Director of Externalization at the College of
Engineering and Science, VU. He is also the current
Chair of the Academic Board and lectures in the
Masters by coursework program in the Engineering
Institute of Technology, Perth, Australia. Again he
is the Editor in Chief of Australian Journal of
Electrical & Electronics Engineering. Further he has
Distinguished Professorship position at the University of New South Wales,
Sydney, Australia; MRS Punjab Technical University — Bhatinda, India;
Crescent University — Chennai, India; VIT — Vellore, India and 5 Malaysian
universities. He has wide experience in educational institutions and industry
across four continents. He received his B.Sc. and B.Sc. Engineering from
Calcutta University and Aligarh Muslim University, India. He completed his
MS and Ph.D. at the University of Oklahoma, USA and the University of Bath,
UK. His major areas of interests are power system analysis, communication,
control, protection, renewable energy, smart grid, IEC61850 implementation
and co-generation systems. He provides consultancy for major electrical
utilities, manufacturers and other industry bodies in his field of expertise.
Professor Kalam is a Fellow of EA, IET, AIE, a life member of IEEE and a
member CIGRE AP B5 Study Committee.

Dr. Juan Shi received the Bachelor of
Engineering (Honours) in Electrical Engineering
from Northeastern University, China, in 1988 and the
PhD degree in Electrical Engineering from Victoria
University (VU), Melbourne, Australia, in 1995. Dr
Shi received the Graduate Certificate in Tertiary
Education from VU in 2003. She joined VU as
a Lecturer in 1994, where she is currently an
Associate Professor in the College of Engineering
& Science. Her current research interests include
automatic control and applications, power system
stability, intelligent control and applications to smart energy systems, system
identification, and engineering education.



https://www.aemc.gov.au/sites/default/files/content/c2716a96-e099-441d-9e46-8ac05d36f5a7/rel0065-the-frequency-operating-standard-stage-one-final-for-publi.pdf
https://www.aemc.gov.au/sites/default/files/content/c2716a96-e099-441d-9e46-8ac05d36f5a7/rel0065-the-frequency-operating-standard-stage-one-final-for-publi.pdf
https://www.aemc.gov.au/sites/default/files/content/c2716a96-e099-441d-9e46-8ac05d36f5a7/rel0065-the-frequency-operating-standard-stage-one-final-for-publi.pdf
https://www.aemc.gov.au/sites/default/files/content/c2716a96-e099-441d-9e46-8ac05d36f5a7/rel0065-the-frequency-operating-standard-stage-one-final-for-publi.pdf
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/reports/2017/aemo-gtr-rcp-110817.pdf
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/reports/2017/aemo-gtr-rcp-110817.pdf
https://www.scribd.com/document/181677842/anti-windup
http://wikis.controltheorypro.com/pi-lead_control
http://wikis.controltheorypro.com/pi-lead_control
https://www.digsilent.de/en/faq-reader-powerfactory/do-you-have-a-model-for-a-statcom-2/searchfaq/statcom.html
https://www.digsilent.de/en/faq-reader-powerfactory/do-you-have-a-model-for-a-statcom-2/searchfaq/statcom.html
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/congestion-information/2017/victorian-transfer-limit-advice---outages-v5.pdf
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/congestion-information/2017/victorian-transfer-limit-advice---outages-v5.pdf
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/congestion-information/2017/victorian-transfer-limit-advice---outages-v5.pdf
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/congestion-information/2017/transfer-limit-advice---nem-oscillatory-stability-v3.pdf
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/congestion-information/2017/transfer-limit-advice---nem-oscillatory-stability-v3.pdf
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/congestion-information/2017/transfer-limit-advice---nem-oscillatory-stability-v3.pdf
https://www.aemo.com.au/-/media/files/electricity/nem/market_notices_and_events/power_system_incident_reports/2017/integrated-final-report-sa-black-system-28-september-2016.pdf
https://www.aemo.com.au/-/media/files/electricity/nem/market_notices_and_events/power_system_incident_reports/2017/integrated-final-report-sa-black-system-28-september-2016.pdf
https://www.aemo.com.au/-/media/files/electricity/nem/market_notices_and_events/power_system_incident_reports/2017/integrated-final-report-sa-black-system-28-september-2016.pdf

	Introduction
	Detailed Modeling of BESS with the Proposed Controllers
	Frequency Controller
	Voltage Controller
	Active/Reactive (PQ) Controller
	Anti-windup PI controller
	PI-lead controller
	Lead-lag controller

	Charge Controller
	d and q axis Current Controller 
	Battery Model

	System Description and Transient Stability Criterion
	System Configuration
	STATCOM and Wind Model
	Stability Criterion

	Results and Analysis
	Case I: 650MW export and Permanent loss of N-Sirttoverkko line 
	Case II: Loss of N-Sirttoverkko line and load growth at NW bus
	Case III: Load growth at NW bus and loss of N-Sirttoverkko line
	The Effectiveness of BESS under Other Transient Conditions
	Case IV: Temporary single-phase short circuit fault
	Case V: Permanent single-phase short circuit fault
	Case VI: Without series compensation between the two systems

	Performance index analysis

	Conclusion
	Appendix A: System Parameter
	References
	Biographies
	Ujjwal Datta
	Akhtar Kalam
	Dr. Juan Shi 




