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S. S. Dragomir

INEQUALITIES FOR THE NUMERICAL RADIUS

IN UNITAL NORMED ALGEBRAS

Abstract. In this paper, some inequalities between the numerical radius of an element
from a unital normed algebra and certain semi-inner products involving that element and
the unity are given.

1. Introduction

Let A be a unital normed algebra over the complex number field C and
let a ∈ A. Recall that the numerical radius of a is given by (see [2, p. 15])

(1.1) v(a) = sup{|f(a)|, f ∈ A′, ‖f‖ ≤ 1 and f(1) = 1},
where A′ denotes the dual space of A, i.e., the Banach space of all continuous
linear functionals on A.

It is known that v(·) is a norm on A that is equivalent to the given
norm ‖ · ‖. More precisely, the following double inequality holds:

(1.2)
1

e
‖a‖ ≤ v(a) ≤ ‖a‖

for any a ∈ A, where e = exp(1).
Following [2], we notice that this crucial result appears slightly hidden in

Bohnenblust and Karlin [1, Theorem 1] together with the inequality ‖x‖ ≤
eΨ(x), where Ψ(x) = sup{|λ|−1 log ‖eλx‖} over λ complex, λ 6= 0, which
occurs on page 219. A simpler proof was given by Lumer [5], though with
the constant 1/4 in place of 1/e. For a simple proof of (1.2) that borrows
ideas from Lumer and from Glickfeld [6], see [2, p. 34].

A generalisation of (1.2) for powers has been obtained by M. J. Crabb
[3] who proved that

(1.3) ‖an‖ ≤ n!(
e

n
)n[v(a)]n n = 1, 2, . . .

for any a ∈ A.
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130 S. S. Dragomir

In this paper, some inequalities between the numerical radius of an ele-
ment and the superior semi-inner product of that element and the unity in
the normed algebra A are given via the celebrated representation result of
Lumer from [5].

2. Some subsets in A

Let D(1) := {f ∈ A′|‖f‖ ≤ 1 and f(1) = 1}. For λ ∈ C and r > 0, we
define the subset of A by

∆̄(λ, r) := {a ∈ A | |f(a) − λ| ≤ r for each f ∈ D(1)}.

The following result holds.

Proposition 1. Let λ ∈ C and r > 0. Then ∆̄(λ, r) is a closed convex

subset of A and

(2.1) B̄(λ, r) ⊆ ∆̄(λ, r),

where B̄(λ, r) := {a ∈ A|‖a − λ‖ ≤ r}.

Now, for γ, Γ ∈ C, define the set

Ū(γ, Γ ) := {a ∈ A | Re[(Γ − f(a))(f(a) − γ)] ≥ 0 for each f ∈ D(1)}.

The following representation result may be stated.

Proposition 2. For any γ, Γ ∈ C, γ 6= Γ, we have:

(2.2) Ū(γ, Γ ) = ∆̄

(

γ + Γ

2
,
1

2
|Γ − γ|

)

.

Proof. We observe that for any z ∈ C we have the equivalence
∣

∣

∣

∣

z − γ + Γ

2

∣

∣

∣

∣

≤ 1

2
|Γ − γ|

if and only if

Re[(Γ − z)(z̄ − γ̄)] ≥ 0.

This follows by the equality

1

4
|Γ − γ|2 −

∣

∣

∣

∣

z − γ + Γ

2

∣

∣

∣

∣

2

= Re[(Γ − z)(z̄ − γ̄)]

that holds for any z ∈ C.

The equality (2.2) is thus a simple conclusion of this fact.

Making use of some obvious properties in C and for continuous linear
functionals, we can state the following corollary as well.

Brought to you by | Victoria University Australia
Authenticated

Download Date | 3/7/19 2:35 AM



Numerical radius in unital normed algebras 131

Corollary 1. For any γ, Γ ∈ C, we have

Ū(γ, Γ ) = {a ∈ A | Re[f(Γ − a)f(a − γ)] ≥ 0 for each f ∈ D(1)}(2.3)

= {a ∈ A | (Re Γ − Re f(a))(Re f(a) − Re γ)

+ (ImΓ− Im f(a))(Im f(a) − Im γ) ≥ 0 for each f ∈D(1)}.
Now, if we assume that Re(Γ ) ≥ Re(γ) and Im(Γ ) ≥ Im(γ), then we can

define the following subset of A :

(2.4) S̄(γ, Γ ) := {a ∈ A | Re(Γ ) ≥ Re f(a) ≥ Re(γ) and

Im(Γ ) ≥ Im f(a) ≥ Im(γ) for each f ∈ D(1)}.
One can easily observe that S̄(γ, Γ ) is closed, convex and

(2.5) S̄(γ, Γ ) ⊆ Ū(γ, Γ ).

3. Semi-inner products and Lumer’s theorem

Let (X, ‖ · ‖) be a normed linear space over the real of complex number
field K. The mapping f : X → R, f(x) = 1

2‖x‖2 is obviously convex and
then there exist the following limits:

〈x, y〉i = lim
t→0−

‖y + tx‖2 − ‖y‖2

2t
,

〈x, y〉s = lim
t→0+

‖y + tx‖2 − ‖y‖2

2t

for every two elements x, y ∈ X. The mapping 〈·, ·〉s (〈·, ·〉i) will be called
the superior semi-inner product (the interior semi-inner product) associated
to the norm ‖ · ‖.

We list some properties of these semi-inner products that can be easily
derived from the definition (see for instance [4]). If p, q ∈ {s, i} and p 6= q,
then:

(i) 〈x, x〉p = ‖x‖2; 〈ix, x〉p = 〈x, ix〉p = 0, x ∈ X;
(ii) 〈λx, y〉p = λ〈x, y〉p; 〈x, λy〉p = λ〈x, y〉p for λ ≥ 0, x, y ∈ X;
(iii) 〈λx, y〉p = λ〈x, y〉q; 〈x, λy〉p = λ〈x, y〉q for λ < 0, x, y ∈ X;
(iv) 〈ix, y〉p = −〈x, iy〉p; 〈αx, βy〉 = αβ〈x, y〉 if αβ ≥ 0, x, y ∈ X;
(v) 〈−x, y〉p = 〈x,−y〉p = −〈x, y〉q, x, y ∈ X;
(vi) |〈x, y〉p| ≤ ‖x‖‖y‖, x, y ∈ X;
(vii) 〈x1 + x2, y〉s(i) ≤ (≥)〈x1, y〉s(i) + 〈x2, y〉s(i) for x1, x2, y ∈ X;

(ix) 〈αx + y, x〉p = α‖x‖2 + 〈y, x〉p, α ∈ R, x, y ∈ X;
(x) |〈y + z, x〉p − 〈z, x〉p| ≤ ‖y‖‖x‖, x, y, z ∈ X;
(xi) the mapping 〈·, x〉p is continuous on (X, ‖ · ‖) for each x ∈ X.

The following result essentially due to Lumer [5] (see [2, p. 17]) can be
stated.
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Theorem 1. Let A be a unital normed algebra over K (K = C, R). For

each a ∈ A,

(3.1) max{Re λ|λ ∈ V (a)|} = inf
α>0

1

α
[‖1 + αa‖ − 1] = lim

α→0+

1

α
[‖1 + αa‖ − 1],

where V (a) is the numerical range of a (see for instance [2, p. 15]).

Remark 1. In terms of semi-inner products, the above identity can be
stated as:

(3.2) max{Re f(a)|f ∈ D(1)} = 〈a, 1〉s.
The following result that provides more information may be stated.

Theorem 2. For any a ∈ A, we have:

(3.3) 〈a, 1〉v,s = 〈a, 1〉s,
where

〈a, b〉v,s := lim
t→0+

v2(b + ta) − v2(b)

2t

is the superior semi-inner product associated with the numerical radius.

Proof. Since v(a) ≤ ‖a‖, we have:

〈a, 1〉v,s = lim
t→0+

v2(1 + ta) − v2(1)

2t
= lim

t→0+

v2(1 + ta) − 1

2t

≤ lim
t→0+

‖1 + ta‖2 − 1

2t
= 〈a, 1〉s.

Now, let f ∈ D(1). Then, for each α > 0,

f(a) =
1

α
[f(1 + αa) − f(1)] =

1

α
[f(1 + αa) − 1],

giving

Re f(a) =
1

α
[Re f(1 + αa) − f(1)] ≤ 1

α
[|f(1 + αa)| − 1]

≤ 1

α
[v(1 + αa) − 1].

Taking the infimum over α > 0, we deduce that

Re f(a) ≤ inf
α>0

[

1

α
[v(1 + αa) − 1]

]

= lim
α→0+

[

v2(1 + αa) − 1

2α

]

(3.4)

= lim
α→0+

v(1 + αa) − 1

α
= 〈a, 1〉v,s.

If we now take the supremum over f ∈ D(1) in (3.4), we obtain:

sup{Re f(a)|f ∈ D(1)} ≤ 〈a, 1〉v,s

which, by Lumer’s identity, implies that 〈a, 1〉s ≤ 〈a, 1〉v,s.
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Corollary 2. The following inequality holds

(3.5) |〈a, 1〉s| ≤ v(a) (≤ ‖a‖).
Proof. Schwarz’s inequality for the norm v(.) gives that

|〈a, 1〉v,s| ≤ v(a)v(1) = v(a),

and by (3.3), the inequality (3.5) is proved.

4. Reverse inequalities for the numerical radius

Utilising the inequality (3.5) we observe that for any complex number β
located in the closed disc centered in 0 and with radius 1 we have |〈βa, 1〉s|
as a lower bound for the numerical radius v(a). Therefore, it is a natural
question to ask how far these quantities are from each other under vari-
ous assumptions for the element a in the unital normed algebra A and the
scalar β. A number of results answering this question are incorporated in
the following theorems.

Theorem 3. Let λ ∈ C \ {0} and r > 0. If a ∈ ∆̄(λ, r), then

(4.1) v(a) ≤
〈

λ̄

|λ|a, 1

〉

s

+
1

2
· r2

|λ| .

Proof. Since a ∈ ∆̄(λ, 1), we have |f(a) − λ|2 ≤ r2, giving that

(4.2) |f(a)|2 + |λ|2 ≤ 2Re[f(λ̄a)] + r2

for each f ∈ D(1).
Taking the supremum over f ∈ D(1) in (4.2) and utilising the represen-

tation (3.2), we deduce that

(4.3) v2(a) + |λ|2 ≤ 2〈λ̄a, 1〉s + r2

which is an inequality of interest in and of itself.
On the other hand, we have the elementary inequality

(4.4) 2v(a)|λ| ≤ v2(a) + |λ|2,
which, together with (4.3) implies the desired result (4.1).

Remark 2. Notice that, by the inclusion (2.1), a sufficient condition for
(4.1) to hold is that a ∈ B̄(λ, r).

Corollary 3. Let γ, Γ ∈ C with Γ 6= ±γ. If a ∈ Ū(γ, Γ ), then

(4.5) v(a) ≤
〈

Γ̄ + γ̄

|Γ + γ|a, 1

〉

s

+
1

4
· |Γ − γ|2
|Γ + γ| .

Remark 3. If M > m ≥ 0 and a ∈ Ū(m, M), then

(4.6) (0 ≤) v(a) − 〈a, 1〉s ≤
1

4
· (M − m)2

m + M
.
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134 S. S. Dragomir

Observe that, due to the inclusion (2.5), a sufficient condition for (4.6) to
hold is that M ≥ Re f(a), Im f(a) ≥ m for any f ∈ D(1).

The following result may be stated as well.

Theorem 4. Let λ ∈ C and r > 0 with |λ| > r. If a ∈ ∆̄(λ, r), then

(4.7) v(a) ≤
〈

λ̄
√

|λ|2 − r2
a, 1

〉

s

and, equivalently,

(4.8) v2(a) ≤
〈

λ̄

|λ|a, 1

〉2

s

+
r2

|λ|2 · v2(a).

Proof. Since |λ| > r, we have
√

|λ|2 − r2 > 0, hence the inequality (4.3)
divided by this quantity becomes

(4.9)
v2(a)

√

|λ|2 − r2
+

√

|λ|2 − r2 ≤ 2
√

|λ|2 − r2
〈λ̄a, 1〉s.

On the other hand, we also have

2v(a) ≤ v2(a)
√

|λ|2 − r2
+

√

|λ|2 − r2,

which, together with (4.9), gives

(4.10) v(a) ≤ 1
√

|λ|2 − r2
〈λ̄a, 1〉s.

Taking the square in (4.10), we have

v2(a)(|λ|2 − r2) ≤ 〈λ̄a, 1〉2s,
which is clearly equivalent to (4.8).

Corollary 4. Let γ, Γ ∈ C with Re(Γ γ̄) > 0. If a ∈ Ū(γ, Γ ), then,

(4.11) v(a) ≤
〈

Γ̄ + γ̄

2
√

Re(Γ γ̄)
a, 1

〉

s

.

Remark 4. If M ≥ m > 0 and a ∈ Ū(m, M), then

(4.12) v(a) ≤ M + m

2
√

mM
〈a, 1〉s,

or, equivalently,

(0 ≤) v(a) − 〈a, 1〉s ≤
(
√

M −√
m)2

2
√

mM
〈a, 1〉s

(

≤ (
√

M −√
m)2

2
√

mM
‖a‖

)

.

The following result may be stated as well.
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Theorem 5. Let λ ∈ C\{0} and r > 0 with |λ| > r. If a ∈ ∆̄(λ, r), then

(4.13) v2(a) ≤
〈

λ̄

|λ|a, 1

〉2

s

+ 2(|λ| −
√

|λ|2 − r2)

〈

λ̄

|λ|a, 1

〉

s

.

Proof. Since (by (4.2)) Re[f(λ̄a)] > 0, dividing by it in (4.2) gives:

|f(a)|2
Re[f(λ̄a)]

+
|λ|2

Re[f(λ̄a)]
≤ 2 +

r2

Re[f(λ̄a)]
,

which is clearly equivalent to:

(4.14)
|f(a)|2

Re[f(λ̄a)]
− Re[f(λ̄a)]

|λ|2

≤ 2 +
r2

Re[f(λ̄a)]
− Re[f(λ̄a)]

|λ|2 − |λ|2
Re[f(λ̄a)]

=: I.

Further we have

I = 2 − Re[f(λ̄a)]

|λ|2 − (|λ|2 − r2)

Re[f(λ̄a)]
(4.15)

= 2 − 2

√

|λ|2 − r2

|λ| −
[

√

Re[f(λ̄a)]

|λ| −
√

|λ|2 − r2

√

Re[f(λ̄a)]

]2

≤ 2

(

1 −

√

1 −
(

r

|λ|

)2)

.

Hence by (4.14) and (4.15) we have

(4.16) |f(a)|2 ≤ (Re[f(λ̄a)])2

|λ|2 + 2

(

1 −

√

1 −
(

r

|λ|

)2)

Re[f(λ̄a)].

Taking the supremum in f ∈ D(1) and utilising Lumer’s result, we deduce
the desired inequality (4.13).

Corollary 5. Let γ, Γ ∈ C with Re(Γ γ̄) > 0. If a ∈ Ū(γ, Γ ), then

v2(a) ≤
〈

Γ̄ + γ̄

|Γ + γ|a, 1

〉2

s

+ 2

(
∣

∣

∣

∣

γ + Γ

2

∣

∣

∣

∣

−
√

Re(Γ γ̄)

)〈

Γ̄ + γ̄

|Γ + γ|a, 1

〉

s

.

Remark 5. If M > m ≥ 0 and a ∈ Ū(m, M), then

(0 ≤)v2(a) − 〈a, 1〉2s ≤ (
√

M −
√

m)2〈a, 1〉s(≤ (
√

M −
√

m)2‖a‖).

Finally, the following result can be stated as well.
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Theorem 6. Let λ ∈ C and r > 0 with |λ| > r. If a ∈ ∆̄(λ, r), then

(4.17) v(a) ≤ (|λ| +
√

|λ|2 − r2)〈 λ̄

r2
a, 1〉s

+
|λ|(|λ| +

√

|λ|2 − r2)(|λ| − 2
√

|λ|2 − r2)

2r2
.

Proof. From the proof of Theorem 3 above, we have

|f(a)|2 + |λ|2 ≤ 2Re[f(λ̄a)] + r2

which is equivalent with

|f(a)|2 + (|λ| +
√

|λ|2 − r2)2

≤ 2Re[f(λ̄a)] + r2 − |λ|2 + (|λ| −
√

|λ|2 − r2)2

= 2Re[f(λ̄a)] + |λ|2 − 2|λ|
√

|λ|2 − r2.

Taking the supremum in this formula over f ∈ D(1) and utilising Lumer’s
representation theorem, we get:

(4.18) v2(a) + (|λ| −
√

|λ|2 − r2)2 ≤ 2〈λ̄a, 1〉s + |λ|(|λ| − 2
√

|λ|2 − r2).

Since r 6= 0, then |λ| −
√

|λ|2 − r2 > 0, giving

(4.19) 2(|λ| −
√

|λ|2 − r2)v(a) ≤ v2(a) + (|λ| −
√

|λ|2 − r2)2.

Now, utilising (4.18) and (4.19), we deduce

v(a) ≤ 1

|λ| −
√

|λ|2 − r2
〈λ̄a, 1〉s +

|λ|(|λ| − 2
√

|λ|2 − r2)

2(|λ| −
√

|λ|2 − r2)
,

which is clearly equivalent with the desired result (4.17).

Remark 6. If M > m ≥ 0 and a ∈ Ū(m, M), then

v(a) ≤ M + m

(
√

M −√
m)2

[

〈a, 1〉s +
1

2

(

m + M

2
− 2

√
mM

)]

.

In particular, if a ∈ Ū(0, δ) with δ > 0, then we have the following reverse
inequality as well

(0 ≤) v(a) − 〈a, 1〉s ≤
1

4
δ.
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