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INEQUALITIES FOR THE NUMERICAL RADIUS
IN UNITAL NORMED ALGEBRAS

Abstract. In this paper, some inequalities between the numerical radius of an element
from a unital normed algebra and certain semi-inner products involving that element and
the unity are given.

1. Introduction
Let A be a unital normed algebra over the complex number field C and
let a € A. Recall that the numerical radius of a is given by (see [2, p. 15])

(1.1) v(a) =sup{|f(a)l, f €A, [If| <1 and f(1)=1},
where A’ denotes the dual space of A, i.e., the Banach space of all continuous
linear functionals on A.

It is known that v(-) is a norm on A that is equivalent to the given
norm | - ||. More precisely, the following double inequality holds:

(12) Jlall < v(a) < Jal

for any a € A, where e = exp(1).

Following [2|, we notice that this crucial result appears slightly hidden in
Bohnenblust and Karlin [1, Theorem 1| together with the inequality ||z|| <
eV (z), where ¥(z) = sup{|\|~'log ||e’*||} over A complex, A # 0, which
occurs on page 219. A simpler proof was given by Lumer [5|, though with
the constant 1/4 in place of 1/e. For a simple proof of (1.2) that borrows
ideas from Lumer and from Glickfeld [6], see |2, p. 34].

A generalisation of (1.2) for powers has been obtained by M. J. Crabb
[3] who proved that

(1.3) la"| < n(=)"pl@]" n=12....
for any a € A.
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130 S. S. Dragomir

In this paper, some inequalities between the numerical radius of an ele-
ment and the superior semi-inner product of that element and the unity in
the normed algebra A are given via the celebrated representation result of
Lumer from [5].

2. Some subsets in 4

Let D(1) :={f € A|||f]| <1and f(1) = 1}. For A € C and r > 0, we
define the subset of A by

AN r):i={a€ A||f(a) =N <r foreach fe D(1)}.
The following result holds.

PROPOSITION 1. Let A € C and v > 0. Then A(\,7) is a closed convex
subset of A and

(2.1) B(\, 1) C A\ 7),
where B(\,7) := {a € Al|la — \|| <7}
Now, for v, I" € C, define the set
U(y,I) :={a € A|Re[(I" = f(a))(f(a) —7)] >0 for ecach fe D(1)}.

The following representation result may be stated.

PROPOSITION 2. For any v,I" € C, v # I, we have:

- —(yv+T 1
(22 06,1 = A( 155 G -1).
Proof. We observe that for any z € C we have the equivalence
v+ I 1
T <=
2= 5| S 5=

if and only if
Re[(I' = 2)(z — 9)] > 0.
This follows by the equality

2
HI ’Z -] =Rl -2

that holds for any z € C.
The equality (2.2) is thus a simple conclusion of this fact. m

Making use of some obvious properties in C and for continuous linear
functionals, we can state the following corollary as well.
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Numerical radius in unital normed algebras 131

COROLLARY 1. For any v,I" € C, we have
(2.3) U(y, ) ={ac A| Re[f(I"—a)f(a—~)] >0 for each f € D(1)}
={a€ A| (Rel'—Re f(a))(Re f(a) — Re~)
+ (ImI'=Im f(a))(Im f(a) —Im~) > 0 for each feD(1)}.

Now, if we assume that Re(I") > Re(y) and Im(I") > Im(~y), then we can
define the following subset of A :

(24) S(3I):={a€ A| Re(I') > Re f(a) > Re(5) and
Im

Im(I") > Im f(a) > Im(y) for each f € D(1)}.
One can easily observe that S(v, I') is closed, convex and
(2.5) S(v,I) S U, I).

3. Semi-inner products and Lumer’s theorem

Let (X, |- ||) be a normed linear space over the real of complex number
field K. The mapping f : X — R, f(z) = 3|z|? is obviously convex and
then there exist the following limits:

ly + tz||> = ||y

|
(@, y)s = lim 57 ,
)2 = |ly)?
=1
<$ y> t—lglJr 2t

for every two elements =,y € X. The mapping (-,-)s ((-,-);) will be called
the superior semi-inner product (the interior semi-inner product) associated
to the norm || - ||.

We list some properties of these semi-inner products that can be easily
derived from the definition (see for instance [4]). If p,q € {s,i} and p # q,
then:

(i) (z,2)p = ]|?; (iz,2)p = (z,iz), = 0, z € X;;

(i) (Az,y)p = Mz, y)p; (T, A\y)p = Xz, y)p for A >0, z,y € X;
(iii) (A\z,y)p = Mz y>q, (, A\y)p = ANz, y)q for A <0, z,y € X;
(iv) (iz,y)p = —(@,iy)p; (az, By) = aﬁ< y) if af >0, 2,y € X;
(V) (=z,9)p = (z,—y)p = —(z,Y)q, 2,y € X;

(vi) [(z, y> | < zlllyll, z,y € X;
(vii) (21 4+ 22,¥)s0) < (2NT1,¥)s() + (T2, Y) 55) for 1, 72,9 € X5
(IX) <a$ + y7 >p - OJHCCH2 <y7:c>p7 o€ R? .Z',y € X;

(X; [y + 2, 2)p — (2, 2)p| < lyllllz]l, 2.y, 2 € X;

(

the mapping (-, z), is continuous on (X, || - ||) for each z € X.

The following result essentially due to Lumer [5] (see |2, p. 17]) can be
stated.

Brought to you by | Victoria University Australia
Authenticated
Download Date | 3/7/19 2:35 AM



132 S. S. Dragomir

THEOREM 1. Let A be a unital normed algebra over K (K = C,R). For
each a € A,

1 1
1 = inf ~[||1 —1]= lim —[|1 ~1
(3.1) max{ReAlA € V(a)|} = inf —[|1+aal| —1] = lim —{|[1 +aaf 1],

where V(a) is the numerical range of a (see for instance |2, p. 15]).

REMARK 1. In terms of semi-inner products, the above identity can be
stated as:

(3.2) max{Re f(a)|f € D(1)} = (a, 1)s.

The following result that provides more information may be stated.
THEOREM 2. For any a € A, we have:
(3.3) (a,1)y,s = (a,1)s,

where

2 2
. v¥(b+ta) —v*(b)
(@ bos = Jim O
18 the superior semi-inner product associated with the numerical radius.

Proof. Since v(a) < ||a||, we have:

(@, 1) s = Tim v (1 +ta) — v3(1) — lim v (1 +ta) — 1
' t—0+ 2t t—0+ 2t
< lim w = <a 1>
= 10+ 2t 9 S
Now, let f € D(1). Then for each a > 0,
1
fla) = [(1+aa)—f(1)]Za[f(1+aa)—1]7
giving
Re f(a) = ~[Re (1 +aa) ~ f(1)] < ~[[f(1 +aa)| - 1]

IN

é[v(l + aa) — 1.

Taking the infimum over o > 0, we deduce that

(34)  Ref(a) < inf | ~[(1 + aa) — 1]] = lim [M]

a>0| o a—0t 20
1 —1
ek ST
a—0t [0

If we now take the supremum over f € D(1) in (3.4), we obtain:

sup{Re f(a)|f € D(1)} < (a,1)vs
which, by Lumer’s identity, implies that (a,1)s < (a,1)ys. =
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Numerical radius in unital normed algebras 133

COROLLARY 2. The following inequality holds

(3.5) [(a, 1)s| <wv(a) (< al]).

Proof. Schwarz’s inequality for the norm v(.) gives that
(@, v,s| < v(a)v(1) = v(a),

and by (3.3), the inequality (3.5) is proved. m

4. Reverse inequalities for the numerical radius

Utilising the inequality (3.5) we observe that for any complex number (3
located in the closed disc centered in 0 and with radius 1 we have |(Ga, 1)4]
as a lower bound for the numerical radius v(a). Therefore, it is a natural
question to ask how far these quantities are from each other under vari-
ous assumptions for the element a in the unital normed algebra A and the
scalar B. A number of results answering this question are incorporated in
the following theorems.

THEOREM 3. Let A € C\ {0} and r > 0. If a € A(\, 1), then

A > 1 r?
4.1 v(a) < (—a,l) + - —.
-y @=(5e1) *5 7
Proof. Since a € A(\, 1), we have |f(a) — A\|? < 72, giving that
(4.2) |f(@)]” + [A* < 2Re[f(Aa)] + 1

for each f € D(1).
Taking the supremum over f € D(1) in (4.2) and utilising the represen-
tation (3.2), we deduce that

(4.3) v2(a) + M\?* < 2(\a, 1), + 12

which is an inequality of interest in and of itself.
On the other hand, we have the elementary inequality

(4.4) 20(a)|\| < v3(a) + [N,
which, together with (4.3) implies the desired result (4.1). m

REMARK 2. Notice that, by the inclusion (2.1), a sufficient condition for
(4.1) to hold is that a € B(A,r).

COROLLARY 3. Let vy, I" € C with I’ # +~. Ifa € U(v,I'), then

r+7 > 1[I —9f

45 v(a) < a1y +-. 27
49 @) <!F+7| s 4 I+
REMARK 3. If M >m >0 and a € U(m, M), then
1 (M —m)?

, < — s < —
(4.6 09) v() — fa, 1y < 5 50
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134 S. S. Dragomir

Observe that, due to the inclusion (2.5), a sufficient condition for (4.6) to
hold is that M > Re f(a),Im f(a) > m for any f € D(1).

The following result may be stated as well.

THEOREM 4. Let A € C and r > 0 with |\| > r. If a € A(\,7), then

(4.7) v(a) < <\/ﬁa,l>s

and, equivalently,
A 2 g2
2 2
(4.8) vi(a) < <—|)\’a,1>s + e -v*(a).

Proof. Since |A| > 7, we have \/|\|2 — 72 > 0, hence the inequality (4.3)
divided by this quantity becomes

(4.9) _ vl AP < — 2 (Ra,1)s.
On the other hand, we also have
s(a) < —2W L E— e,
which, together with (4.9), gives
1
(4.10) v(a) < \/ﬁ
Taking the square in (4.10), we have
V(@) (A? = 77) < (A, 13,
which is clearly equivalent to (4.8). m
COROLLARY 4. Let v, I" € C with Re(I'y) > 0. If a € U(v,T), then,
I'+%
(4.11) v(a) < <2\/W >
REMARK 4. If M >m > 0 and a € U(m, M), then

M+m<a 1)
2\/— 9 S

(Aa, 1)s.

(4.12) v(a) <

or, equivalently,
0.9 v(0) - o, < VL < WOy
(0 <) v(a) = (a,1)s < ———F—=="(a,1)s |< lall ).
2vm 2vVm
The following result may be stated as well.
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Numerical radius in unital normed algebras 135

THEOREM 5. Let A € C\{0} and r > 0 with |\| > r. If a € A(\,r), then

(4.13) v?(a) < <&a 1>2 +2(]A — \/m)<’—i|a, 1>S.

Proof. Since (by (4.2)) Re[f(\a)] > 0, dividing by it in (4.2) gives:
|f(a)f? A r?

a <2
Re[f(Aa)] ~ Re[f(Aa)] Re[f(Aa)]
which is clearly equivalent to:
[f(@)]*  Re[f(Aa)]
U ReffOa] T AR
?  Re[f(Ma)] P
=2 RG] A2 RelfOa)]
Further we have
_ o Re[f(Aa)] (AP -7
@15 =2 e T Relf(Ra)
VAP VRe{f(Xa)] VAP }
Al RY Re[f(\a)]

oo (1)

Hence by (4.14) and (4.15) we have

o WelfOa)? o NN pn
wio) 1@< B (1o i (1)) RelrGa

Taking the supremum in f € D(1) and utilising Lumer’s result, we deduce
the desired inequality (4.13). m

COROLLARY 5. Let v, I’ € C with Re(I'y) > 0. If a € U(v,T"), then

o= () (5] ) ()

[T+

REMARK 5. If M >m >0 and a € U(m, M), then
(0 <)v?(a) = (a,1)7 < (VM — Vm)*(a, 1)5(< (VM — vm)?||a])).
Finally, the following result can be stated as well.
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136 S. S. Dragomir

THEOREM 6. Let A € C and r > 0 with |A\| > r. If a € A(\,r), then

A
(4.17) w(a) < (JA + VA2 = 72)( —a,l s
L RIALH VIAR = 72) (A = 2VIAR = %)
2r2

Proof. From the proof of Theorem 3 above, we have
f(@)]* + IA? < 2Re[f(Aa)] + 1
which is equivalent With
f(@)? + (A + VIAZ = r2)?
< 2Re[f(>\a)] +17 = AP+ (A = VAR = r2)?
= 2Re[f(Aa)] + > = 2]A[V/]A2 = 2.

Taking the supremum in this formula over f € D(1) and utilising Lumer’s
representation theorem, we get:

(4.18)  v*(a) + (IAl = VIAZ = r2)® < 2(Aa, 1)s + |A[(JA] = 2V/|A]2 = 12)
Since r # 0, then |[A| — y/|A\|2 — 2 > 0, giving
(4.19) 2011 = VIAR = 72)v(a) < v*(a) + (A — VIA2 —r?)
Now, utilising (4.18) and (4.19), we deduce
1 5 —2V/|A\]2 —r?
o) < b1y, + IO =2/ PE =)

SRV 201 = VAP =12)
which is clearly equivalent with the desired result (4.17). m
REMARK 6. If M >m >0 and a € U(m, M), then
M+m m+ M
ofa) < s |t 5 (M5 —2vt)|.
NENDE 2\ 2

In particular, if @ € U(0,§) with § > 0, then we have the following reverse
inequality as well

mgwmw—mgggi&
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