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Abstract: Melatonin (N-acetyl-5-methoxytryptamine) is not only a pineal hormone, but also an
ubiquitary molecule present in plants and part of our diet. Numerous preclinical and some clinical
reports pointed to its multiple beneficial effects including oncostatic properties, and as such, it has
become one of the most aspiring goals in cancer prevention/therapy. A link between cancer
and inflammation and/or metabolic disorders has been well established and the therapy of these
conditions with so-called pleiotropic drugs, which include non-steroidal anti-inflammatory drugs,
statins and peroral antidiabetics, modulates a cancer risk too. Adjuvant therapy with melatonin may
improve the oncostatic potential of these drugs. Results from preclinical studies are limited though
support this hypothesis, which, however, remains to be verified by further research.
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1. Introduction

Prevention and/or delay of progression of cancer are great challenges for oncologists. Cancer
incidence is higher in older subjects, which can be a result of hormonal imbalance and metabolic
dysregulation, and is the leading cause of worldwide morbidity and mortality [1]. Numerous drugs
have been shown to inhibit malignant transformation in preclinical research, however, the transfer
of these results to clinical practice remains complicated. A possible approach is to focus on drugs
that are primarily used for therapy of other diseases but also exert oncostatic properties, which may
be potentiated in combination with other oncostatic substances, preferably those with minimum
toxicity. Melatonin (MEL (Figure 1)), a derivate of amino acid tryptophan, is an ubiquitous molecule
with numerous beneficial effects including being oncostatic [2–5]. Clinical results showed that
chemotherapy in combination with MEL supplementation increased survival in patients with various
solid tumors [6]; however, long-term epidemiological studies are needed as MEL efficacy in humans
is yet to be determined. Nonetheless, preclinical evidence regarding the effects of MEL in cancer [7],
but also in a number of other pathologies, including metabolic, cardiovascular and neurodegenerative
disorders [8] is promising. In addition, MEL has been reported to increase the efficacy and reduce
the toxicity of numerous drugs [9,10]. Overcoming drug resistance in chemo/radiotherapy of various
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cancers is of particular interest [11]. Considering its excellent safety profile [12], it seems plausible that
among many other options, adding MEL to the therapy of common diseases of (but not limited to)
older age, arthritis, dyslipidemia and type 2 diabetes might be useful in cancer management. In this
review, we summarized the preclinical and clinical results regarding the oncostatic efficacy of MEL
and three groups of pleiotropic drugs, non-steroidal anti-inflammatory drugs (NSAIDs), statins and
peroral antidiabetics, together with available data on their combination.
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Source of Data

Data from the biomedical literature were collected and analyzed. Relevant studies published
almost exclusively in the English-language literature were retrieved by the use of “melatonin” or
“cancer” or “cell lines” or “mechanism of action” or “non-steroidal anti-inflammatory drugs” or
“coxibs” or “statins” or “antidiabetics” or “metformin” or “glitazones” or “thiazolidinediones” or
“retinoids” or “treatment” or “chemoprevention” or “animal model” or “clinical trials” as either
a keyword or MeSH (medical subject heading) term in searches of the PubMed bibliographic database.
We focused primarily on the most recent scientific papers from the years 2013–2018.

2. MEL—A Versatile Molecule

From the identification in the bovine pineal gland in 1958 [13], and later in extrapineal sites [14],
MEL synthesis was long believed to be restricted to vertebrates. MEL was then identified in the eyes
of the non-vertebrate, locust, in 1984 [15], and since then, MEL has been detected in other taxa too,
including unicellulars, bacteria and fungi [16]. The production of MEL in mammals is not restricted to
the pineal gland; synthesis takes place in other organs including the retina, gastrointestinal tract, and
reproductive tract; however, the functions of extrapineal MEL are not yet fully understood [17].

MEL synthesis in plants is only evidenced from 1995 [18] and it was already well-known that,
like in animals, phytoMEL (the structure of plant and animal MEL are same) displays a large
set of functions including regulation of growth and development and response to abiotic/biotic
stressors [19–21]. A circadian rhythm of MEL seems to also exist in plants [22].

The effect of MEL in mammals reaches far beyond its role as a chronobiotic. A vast number of
reports point to cytoprotective efficacy of MEL in multiple taxa, which is contributed, but not restricted
to antioxidant effects [23]. The protection of normal cells from oxidative stress and pro-oxidant activity
in cancer cells [24], together with other properties including cell cycle regulation, pro-apoptotic,
anti-metastatic, antiangiogenic and immunomodulatory activity, stand behind the anti-cancer effects
of this indolamine [25].

3. Sources of MEL

In most species, the pineal gland, a secretory organ, is the major source of MEL production in
response to darkness [26,27]. It has been established that the orbital associated organs such as the
eye (retina and iris), Harderian gland and lacrimal gland can also produce MEL [28,29], as well as
serotonin-rich entero-endocrine cells of the gastrointestinal mucosa [30].
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Although MEL is produced within the body, it can also be obtained from animal foods, edible or
medicinal plants and MEL supplements. Once exogenous MEL is consumed, it gets absorbed by the
gastrointestinal tract (GIT) and then enters the circulation.

Quantified by High Performance Liquid Chromatography (HPLC), MEL content in animal foods,
meat (lamb, beef, pork), fish (salmon) and chicken, was found to range from 1 ng/g to 3.7 ng/g [31].
These ranges are higher than the MEL concentration found in the serum of healthy individuals
(reported to range from 0.05 to 0.2 ng/g) [32], suggesting that a dietary intake of these animal foods
could possibly increase MEL in humans when required.

In 1995, it was discovered that MEL is also found in plants, including fruits, vegetables, seeds and
nuts [33]. PhytoMEL is structurally identical to animal and synthetic (supplementary) MEL, and
therefore, intake of phytoMEL should exert the same effect [33].

MEL in the form of powder and tablets are designed for conditions in which MEL supplementation
is recommended, however, factors including insufficient absorption (possibly due to poor solubility) or
conversion of MEL before entering the circulation at the hepatic system can influence the bioavailability
and its optimal effect during treatments [34,35]. Various techniques have been used to assess the
drawbacks of raw/oral MEL; for example, recently, a group in Italy studied the bioavailability of
MEL in gel capsules and found that compared to powdered MEL, the capsule improved serum
bioavailability of MEL in humans [36]. Other techniques include melt crystallization technique to
enhance solubility of MEL [37] and nanotechnology, where MEL is encapsulated into a nano-matrix
called a nanosphere for sustained release of MEL [38,39].

3.1. MEL in Animal Foods

There is limited research regarding MEL in animal foods [40]; however, Tan et al. [31] reported
that MEL is found in animal products and in cow’s milk at 0.014 ng/g [31,41,42], human breast milk,
containing up to 0.042 ng/g [31,43] and in the colostrum [31]. Interestingly, the concentration of MEL
was found to be higher in fish sources (specifically salmon at 3.7 ng/g) and eggs (6.1 ng/g), compared
to other animal products including beef (2.2 ng/g), lamb (1.6 ng/g), pork (2.5 ng/g) and milk [31].

In summary, it is likely that MEL levels can increase after the consumption of animal foods rich in
MEL. Future studies are required to confirm the relationship between animal food intake and serum
MEL concentrations/bioavailability in humans.

3.2. MEL in Edible and Medicinal Plants

There are a number of studies on MEL and its concentration in a variety of edible and medicinal
plants. A recent review by Bonomini [44] provided a succinct description of most of the plants
and their associated MEL concentrations. The average concentration of fruits such as banana,
cucumber, tomatoes and beetroot is 0.47 ng/g, 0.09 ng/g, 0.25 ng/g and 0.009 ng/g, respectively [44].
Interestingly, MEL concentration is much more abundant in rice compared to fruits ranging from 73 to
207 ng/g [44,45]. MEL in nuts has also been investigated, a group in America determined through
HPLC that the average MEL content in walnuts (Juglans regia L.) is 3.5 ng/g, and this concentration is
enough to influence serum MEL levels in rats [46], suggesting that the intake of nuts alone may be
beneficial in increasing MEL levels.

Moreover, MEL is found in medicinal plants that have been used for centuries. The Mediterranean
shrub (buckthorn) and subshrub (sage), as well as laurel, were found to have MEL levels from 0.3 to
8 ng/g within the leaves and associated fleshy fruits [47,48]. However, Chinese medicinal herbs, such as
Viola philipica Cav, Uncaria rhynchophylla Mig and Phellodendron amurens, exhibit much higher MEL
concentrations, at 2368 ng/g, 2460 ng/g 1235 ng/g, respectively [49], compared to the Mediterranean
herbs and edible plants. Furthermore, MEL content in plants varies greatly [40], not only among
various species, but also within one species depending on environmental factors. Abiotic stressors
as chemicals [50], high temperature [51] or UV radiation [52] were reported to increase its content
in plants.
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3.3. MEL Supplements and Bioavailability

MEL is a general supplement that can be purchased both over the counter and with
a prescription from the pharmacy. It comes in various formulations including tablets, gel capsules
and nanospheres [53]. The bioavailability of oral MEL (2 mg and 4 mg) is only 15% in the circulation,
suggesting that 85% of oral MEL is metabolized by large first pass metabolism or due to poor oral
absorption [34]. To combat the large first pass metabolism, gel capsules have been designed to improve
the bioavailability. Previously, a study reported that 1 mg of MEL encapsulated within a soft gel capsule
takes the same time as a 1 mg oral MEL (in powder form) to reach maximum peak in the plasma
of healthy individuals. However, measured as Area Under the Curve (AUC), MEL bioavailability
was markedly increased from the soft gel capsule compared to the 1 mg oral MEL [36]. Further
studies are required to assess the gel capsule MEL compared to commercial MEL to confirm these
promising results.

Over 30 oral MEL supplements were analyzed by liquid chromatography for detection of MEL
and serotonin content and found that 26% of the oral supplements contained serotonin [53], suggesting
that MEL supplements are not free of contaminants and may affect other physiological factors.
To address this, a group in China proposed a method using nanotechnology whereby silicon dioxide
as a nanosphere coated with hydroxypropyl methylcellulose phthalate was used as MEL carrier in rats,
ensuring that it was only MEL being absorbed upon administration [39]. The nanosphere increased
maximum peak concentration of MEL in the plasma and increased the AUC compared to commercial
oral MEL in rats [39]. Future studies are required to determine the effects of nanosphere MEL in
animal studies followed by the pharmacokinetic parameters in humans to establish whether it can be
beneficial in releasing MEL into the bloodstream with improved bioavailability.

4. MEL and Cancer and Vice Versa

Disturbances in MEL secretion may contribute to cancer risk and it has been reported that
MEL secretion in patients with breast, endometrial and colon cancer is impaired [54]. Apart from
physiological decline with age, nocturnal serum levels of MEL are mainly reduced by artificial
light exposure at night, which leads to disruption to the circadian system, with alterations of
sleep-activity patterns, suppression of MEL production, and deregulation of circadian genes involved
in cancer-related pathways [55]. The relationship between continuous exposure to light at night,
known as functional pinealectomy, and higher cancer rates is long well-known from animal studies
and MEL was proven to reverse this effect of light [56,57]; however, human data have not been
cohesive. In addition, most experimental and human data concerns mammary cancer. Several studies
reported increased risk of breast [58,59], colorectal [60] and prostate cancer [61,62] in night shift
workers, however, according to others [63,64], no relation can be confirmed. The large differences
in definitions of both exposure and outcome may contribute to the observed heterogeneity of the
results [65]; therefore, additional standardized studies are needed to improve the epidemiologic
evidence. Nevertheless, exogenous MEL may compensate for disturbances in endogenous production
and subsequent adverse consequences. In the next chapters, the mechanisms of oncostatic activity of
MEL and results of preclinical and clinical studies are summarized.

4.1. Mechanism of Antitumor Activity of MEL

It has been documented that the disruption of the circadian nocturnal melatonin signal promotes
the consequent signaling, including the metabolism, initiation and progression, of carcinogenesis [66].
Circadian genes demonstrate clock functions that modulate the expression of numerous genes
with circadian rhythmicity, which are linked with the daily oscillations of proteins. In this regard,
the disruption in the circadian organization of these genes and related protein expressions leads to
deregulated cell proliferation and subsequent tumorigenesis. Additionally, circadian genes possess
non-clock activities, which are crucial in the processes related to cancer, such as cell cycle progression,
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DNA damage response and genomic stability, and drive cancer cells to endocrine and chemotherapeutic
resistance [67]. Growing evidence suggests that prolonged shift work and other activities during night
may negatively impact circadian rhythms and lead to multi-system disease, including cancer [68].
Therefore, circadian rhythm disruption may play an important role in cancer biology [67,69].

In addition to the timekeeping function of MEL, the pleiotropic functions of this molecule involve
numerous physiological processes, including anticancer activity. MEL is an effective antioxidant, and
is characterized by an apparent pro-apoptotic signaling function and the modulation of cell cycle
and differentiation. Moreover, MEL demonstrates anti-metastatic and antiestrogenic properties and
immunomodulatory effects (review [70] (Figure 2)).
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4.1.1. Antioxidant Effects

It has been well-described that MEL and its metabolites manifest significant antioxidative effect,
providing protection against DNA damage from mutagenic molecules and behaving as an effective
free radical scavenger [71,72]. Recent reviews by Galano et al. [73] and Reiter et al. [5] concluded
that MEL antioxidant action also includes indirect mechanisms; they comprise enhancing the activity
of mitochondrial electron transport chain, inhibition of metal-induced DNA damage, protection
against non-radical triggers of oxidative DNA damage, continuous protection after being metabolized,
activation of antioxidative enzymes (such as glutathione), inhibition of pro-oxidative enzymes and
boosting of the DNA repair machinery.

4.1.2. Apoptosis, Cell Cycle and Differentiation

Among the main direct anticancer mechanisms of MEL belong pro-apoptotic, antiproliferative,
differentiating and anti-angiogenic mode of action. MEL has been described as a molecule activating
caspases through the intrinsic, mitochondrial-dependent mechanisms and increasing the Bax/Bcl-2
ratio and p53 expression, which lead to programmed cell death [74,75]. The role of MEL in the
apoptosis of cancer cells seems to be attractive for oncology research, because it promotes apoptotic
processes in most cancer cells, in contrast to the obvious inhibition of apoptosis in normal cells [76].
MEL is capable to induce apoptosis itself [74,77–79], even though not all studies have been able to
confirm this effect [80]; however, combined treatment increases the pro-apoptotic effects of MEL in
cancer cells [81–83].

The tumor suppressive effects of MEL have also been attributed to the reduction of cancer
promotion or progression, which are associated with antiproliferative activities. It has been
well-described that the antiproliferative properties of MEL take place through cell cycle arrest [84–86].
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Moreover, MEL’s ability to decrease cancer cell proliferation has been ascribed to enhancing of
phosphoactivation and transactivation of a number of transcription factors and nuclear binding sites
that are involved in the modulation of carcinogenesis [5,87]. MEL’s differentiating properties against
solid and liquid tumors have also been documented (review of Di Bella et al. [4]). MEL decreases
prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and protein kinase
A (PKA) independent mechanism [88]. In breast cancer, MEL stimulates the differentiation of fibroblasts
and downregulates the aromatase activity and expression in both fibroblasts and adipocytes, resulting
in the suppression of estrogen-producing cells proximal to malignant cells [89]. Gastric adenocarcinoma
cell line SGC-7901 treated with MEL showed more differentiated morphologic phenotype when
compared to untreated cells [90], suggesting that MEL acts as a differentiation inducer.

4.1.3. Angiogenesis and Invasiveness

MEL may also exert its anticancer effects also through angiogenesis inhibition. Hypoxia induced
factor-1α (HIF-1α) and the genes controlled by HIF-1a, such as the vascular endothelial growth factor
(VEGF), are the important molecular targets of MEL in the angiogenesis inhibition. MEL blocks
the translocation of HIF-1α into the nucleus thereby suppressing VEGF expression and reduces
the formation of HIF-1α, phospho-STAT3 and CBP/p300 complex, which is the key regulator of
the angiogenesis-related genes expression [91]. Moreover, the anti-angiogenic effect of MEL was
described in an animal model of ethanol consumption, where MEL attenuated HIF-1a, VEGF, and
transforming growth factor-b1 expression in ovarian cancer [92]. Through the downregulation of
VEGF, MEL confirmed anti-angiogenic effects in SH-SY5Y neuroblastoma cells [93] and MDA-MB-231
xenograft model of breast carcinoma [94].

4.1.4. Antiestrogenic Activity

MEL, through its antiestrogenic and antigonadotropic actions, behaves as an anti-tumor substance,
predominantly in hormone-dependent breast tumors. There are numerous experimental data proving
the obvious interference of MEL with the modulation of estrogen receptor (ER) activity [87] with the
production of estrogens via the inhibition of the enzymes involved in the synthesis of estrogen [95,96],
and with the metabolism of estrogens through the transformation of estradiol into inactive estrogen
sulphate/sulfate form [97]. MEL behaves as selective ER modulator (SERM) that downregulates the
expression of ER and also weakens the ER binding to DNA [98].

4.1.5. Immunomodulatory Effects

Pleiotropic effects of MEL in organisms include immunomodulatory effects. While some
investigators described MEL as an immuno-stimulant, many other studies have also argued
anti-inflammatory activities (review of Carrillo-Vico et al. [99]). MEL is involved in the regulation of
both cellular and humoral immunity. The fundamental physiological role of MEL on the immunity has
been well-described. The immunomodulatory properties of MEL are mediated through the activated
T-lymphocytes via opiatergic mechanism [100] or enhanced immunity mediated by CD8+ T cells [101].
MEL has been shown to increase T-helper cell activity by releasing several specific cytokines [102].
MEL’s oncostatic actions include the direct augmentation of natural killer cell, monocytes and
leukocytes activity, which increases immunosurveillance, as well as the stimulation of cytokine
production, such as interleukin-2, interleukin-6, interleukin-10, interleukin-12 and interferon-gamma
by the mononucleate cells [4,54]. Most recent study pointed to MEL’s immunomodulatory activities
through the suppression on eosinophils and Th17 cells and Foxp3 expression, on the other hand,
enhancing of CD4+ cells and TNF-α [103].

4.2. Preclinical Studies

MEL could be an excellent candidate for the prevention and treatment of several cancers, such as
breast, ovarian, prostate, gastric, colorectal, pancreatic, liver, renal or lung. Numerous preclinical
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studies have aimed to evaluate the anticancer activity and mechanisms of action of MEL. Moreover,
MEL analogs developed in recent years and tested for their role in the prevention or treatment of
neoplastic disease [104–107] may initiate a whole new era in cancer research.

4.2.1. MEL and Cancer: In Vitro

Using MEL as an anticancer drug, many cancer types have been analyzed and multiple modes of
action have been proposed. Among the most studied cancer type belongs breast carcinoma. In estrogen
receptor-positive (ERα+) human breast cancer cells, MEL downregulated both ERα mRNA expression
and estrogen-induced transcriptional activity of the ERα through MEL receptors 1 (MT 1)-induced
activation of G(αi2) signaling with the consequent reduction of cAMP levels [108]. Additionally,
MEL regulates the transcription of additional members of the nuclear receptor super-family which
play an important role in cancer signaling [109]. The anti-invasive effects of MEL include the blockade
of p38 phosphorylation [82] and the expression of matrix metalloproteinases [110,111]. In addition,
MEL’s anticancer mode of action includes the modulation of cell viability and angiogenesis and
inflammation in triple-negative breast cancer cell line (MDA-MB-231) [112].

In ovarian cancer, MEL possess both membrane and intracellular mode of actions that lead
to the inhibition of cell proliferation, angiogenesis, migration and anti-cancer stem cells (CSC)
activity. This regulation may directly involve intracellular targets or it may occur indirectly via
MT1 receptors [113]. MEL showed antiproliferative activity in two ovarian cancer cell lines (OVCAR3
and SKOV3) via inhibition of ERα expression [114]. In another study, MEL induced a marked increase
in E-cadherin along with decrease in VEGF expression levels in SKOV3 cell line. This result determines
the anti-invasive activities of this indoleamine [115]. Akbarzadeh et al. [116] evaluated invasiveness
and migration of cancer stem cells (CSCs) isolated from SKOV3 cells. MEL inhibited epithelial
mesenchymal transition related gene expressions including ZEB1, ZEB2, snail and vimentin with
increase in E-cadherin. MEL treatment showed an apparent decrease in the expression and activity of
matrix MMP-9 in CSCs. Finally, MEL inhibited migration of CSCs in a partially receptor dependent
and PI3k and MAPK independent manner.

In prostate cancer, LNCaP and 22Rv1 prostate cancer cells transiently overexpress androgen
receptor splice variant-7 (AR-V7), and consequently activate the nuclear factor-kappa B (NF-κB)
and upregulate interleukin (IL)-6 gene expression. MEL inhibited NF-κB activation through MT1

receptor-mediated antiproliferative pathway, and can disrupt bi-directional positive interactions
between AR-V7 and NF-κB in prostate cancer cell lines. Through this mechanism, MEL delays the
development of castration resistance in advanced prostate cancer [117]. In another study, MEL blocked
nuclear translocation of androgen receptor in LNCaP cells, and thus, confirmed anti-androgenic mode
of actions. Moreover, the authors found that IGFBP3 and MAPK/ERK signaling mediate MEL-induced
anticancer effects in prostate cancer cells [118]. Another in vitro study showed that MEL decreased the
expression of hypoxia-inducible factor (HIF)-1 alpha, HIF-2 alpha, and vascular endothelial growth
factor (VEGF) at mRNA level in hypoxic PC-3 prostate cancer cell line [119]. Further evaluation
showed that upregulation of miRNA3195 and miRNA374b regulated the anti-angiogenic property
induced by MEL in hypoxic PC-3 cells [119]. Finally, MEL promoted phenotypic changes making
prostate cancer cells more sensitive to cytokine mediated apoptosis (via TNF-alpha or TRAIL) [120] or
is able to induce positive epigenetic changes in these cells [121].

MEL causes cell cycle arrest and suppression of CDC25A, phospho-CDC25A (at Ser75),
p21 (p21Cip1/p21Waf1) and phospho-p21 (at Thr145) expressions in SGC-7901 gastric cancer cell
line [74]. In the same study, MEL showed the involvement of the mitochondria in MEL-induced
apoptosis (upregulation of Bax, downregulation of Bcl-xL, an increase in cleaved caspase-9 and
caspase-3 levels). All these anticancer activities were regulated through the blockade of the
AKT/MDM2 signaling pathway. In addition, MEL was described as an inductor of apoptosis in
AGS gastric cancer cells by activating the caspase-dependent apoptotic pathway and by suppressing
the nuclear translocation of NF-x03BA;B p65, two processes that are controlled by p38 and JNK [122].
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In another in vitro study, MEL suppressed the proliferation of gastric cancer cells via modulation of the
miR-16-5p/Smad3 signaling pathway [123]. Wang et al. [124] pointed to the involvement of nuclear
receptor RZR/RORγ in MEL-induced suppression in HIF-1α accumulation and VEGF generation in
SGC-7901 human gastric cancer cells under hypoxic conditions. Finally, MEL acts as a differentiation
inducer [90] and inhibits cell migration [125] in gastric cancer cells in vitro.

MEL demonstrated anticancer potential against colorectal cancer in vitro by the downregulation
of endothelin-1 expression via the FoxO-1/NF-κβ signaling pathway [126]. Pro-apoptotic effects of
MEL were analyzed in LoVo colorectal cancer cells. MEL-induced apoptosis was dependent on the
nuclear import of HDAC4 and subsequent H3 deacetylation of the Bcl-2 promoter via the inactivation
of CaMKIIα in this in vitro study [78]. Recent studies demonstrated that MEL promotes apoptosis via
the inhibition of cellular prion protein expression [127,128].

In pancreatic cancer, MEL suppressed the activity of NF-κB p65 and stimulated the mitogen-
activated protein kinase pathways (c-jun N-terminal kinase/extracellular-regulated kinase 1/2),
which increased Bax/Bcl-2 ratio and caspase-3 cleavage in MIA PaCa-2 pancreatic carcinoma cell
line [129]. Using MiaPaCa-2, AsPc-1 and Panc-28 cancer cells, MEL inhibited proliferation and invasion
in a receptor-independent manner, but also overcame gemcitabine resistance in PDAC cells [130].
Most recently, MEL enhanced the efficacy of sorafenib against pancreatic cancer by downregulation of
PDGFR-β/STAT3 cell signaling and MEL receptor (MT)-mediated STAT3 in PDAC cells [131].

The combinational use of standard chemotherapy with some natural compounds such as MEL may
provide a potential option to improve clinical efficacy and reduce side effects within cancer treatment.
In this regard, MEL sensitized the cisplatin-mediated growth suppression of liver cancer through the
targeting of NF-κB/cyclooxygenase (COX)-2 and AP-2β/hTERT signaling pathway in hepatocellular
carcinoma cells [132]. Similarly, MEL increased sorafenib-induced apoptosis via synergistic activation
of the JNK/c-jun pathway [133] or through reactive oxygen species production in mitochondria and
mitophagy in the HCC cell line [134].

Renal cell carcinoma demonstrates the highest metastasis potential among urological malignancies.
MEL at the pharmacologic concentration (0.5–2 mM) significantly suppressed the migration and
invasion of Caki-1 and Achn renal carcinoma cells via regulation of Akt-MAPKs cell signaling and
NF-κB DNA-binding activity. These results were accompanied with the downregulation of MMP-9 by
reducing p65- and p52-DNA-binding activities [135]. Another in vitro study showed that MEL increases
apoptosis in Caki cells through Bim mRNA expression increase and the induction of Sp1 and E2F1
expression and transcriptional activity [136]. Furthermore, combined treatment of human renal cancer
cells with MEL plus thapsigargin induced increased apoptosis when compared with thapsigargin
alone. This activity was linked with ROS-mediated upregulation of CCAAT-enhancer-binding protein
homologous protein [137].

Several in vitro studies pointed to the anticancer potential of MEL against lung cancer.
Lu et al. [138] concluded that MEL increased the tumor suppressive effects of berberine via the
inhibition of cell proliferation and migration and increased apoptosis. These changes were associated
with the activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK
cell signaling [138]. In vitro-administered MEL significantly decreased the viability of human A549
and PC9 lung adenocarcinoma cells. The same study revealed that MEL reduced cell adhesion,
migration and the intracellular glutathione level and increased apoptosis via the increasing of caspase
3, PUMA and Bax activity and reactive oxygen species in the cells and through decreasing of PCNA
and Bcl-2 activity [139]. Moreover, MEL targeted HDAC signaling in lung adenocarcinoma cells [139].
Recently, MEL has been described as a molecule that interrupts PARP-1 interaction with the telomeric
long noncoding RNA (lncRNA) or chromatin, and thus, controls the senescence-associated secretory
phenotype in human fetal lung fibroblast cells [140].

The anticancer effect of MEL in vitro has also been observed in cervical [141,142], melanoma [143,144],
osteosarcoma [145,146], glioblastoma [147,148] or leukemia cancer cell lines [149–151].
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4.2.2. MEL and Cancer: In Vivo

In 1959, Wurtman et al. reported that bovine pineal extracts reversed the hypertrophy of the
pituitary, the adrenals and the ovaries induced by pinealectomy in rats [152]. The first published
evidence of the involvement of pineal gland in carcinogenesis was in 1963, when it was shown that
pinealectomy accelerates the growth and spread of Walker 256 carcinoma in rats [153]. The research
interest in pineal gland and MEL grew, and in 1973, two in vivo reports pointed to the antitumor
activity of MEL, the first by Anisimov et al. who evaluated its effects together with extracts from
the epiphysis and hypothalamus in mice with transplantable mammary tumors [154] and the second
by El-Domeiri and Das Gupta, who reported the reversal by MEL of the effect of pinealectomy on
melanoma transplants growth in hamsters [155]. Since then, various animal models, predominantly
rodents, have been used to determine the oncostatic effects of MEL, particularly in mammary cancer.
It was not the aim of this paper to bring these data in detail; these have been covered in several
excellent reviews [5,7,156,157]. Most of them confirmed the inhibition of tumor growth through
different mechanisms, including apoptosis induction, cell cycle and epigenetics regulation, antioxidant
activity, modulation of immunity and tumor microenvironment and regulation of angiogenesis [5].
MEL enhanced chemotherapy-induced toxicity in cancerous cells through increasing apoptosis,
oxidative stress and mitochondrial malfunction also alleviated side-effects of chemotherapeutics,
including reproductive injury [9,98,158–160]. An overcome of radioresistance after MEL administration
was reported too [161]. The disappointing fact to remember, however, is that none of the in vivo model
(chemically-induced tumorigenesis, xenografts, genetically-engineered or animals with spontaneous
cancer) can fully reproduce human cancer. In addition, experimental protocols differ greatly regarding
the time, manner, dose and route of administration of MEL. Relevant proof of MEL oncostatic relevance
can be obtained only from standardized human studies.

4.2.3. MEL and Cancer: Clinical Results

The research concerning MEL used as an adjuvant to chemotherapy in cancer patients has been
initiated by Lissoni group in the 1980s. Most of the trials evaluated MEL effects (administered per os for
several weeks/months) as an adjuvant to standard chemotherapy; the doses were supraphysiological,
ranging in tenths of mg per day. To compare, a typical dose of commercially available peroral
MEL used to treat jet-lag or sleep disorders ranges from 3–5 mg. In patients with metastatic solid
tumors (breast cancer, non-small cell lung carcinoma, gastrointestinal and head and neck carcinoma),
MEL reduced the toxicity and enhanced the effect of standard chemotherapy resulting in tumor
regression and increased survival time [162–165]. MEL also prolonged survival in patients with
advanced primary hepatocellular carcinoma [166], melanoma [167] and glioblastoma patients treated
with radiotherapy [168]. The effect of immunomodulator IL-2 on solid tumors (breast cancer, non-small
cell lung carcinoma, gastrointestinal cancer) was potentiated by co-administration with MEL as
evidenced by the increase in tumor objective regression rate and survival [169,170]. MEL enhanced
the effect of chemotherapy in patients with colorectal metastatic cancer, the percent of disease-control
achieved in patients concomitantly treated with MEL was significantly higher than that observed in
those treated with chemotherapy alone [171].

Even though these results were encouraging, almost all trials were performed in the same center
and mostly with a limited sample size. No other large studies were performed to confirm the results of
Lissoni et al. Two studies by different research groups did not confirm prolonged survival after MEL
administrations, the first in patients with brain metastases [172] and the second in non-small cell lung
carcinoma [173]. MEL effect might be potentiated when applied as a part of multimodal treatment,
like the Di Bella Method (MEL combined with somatostatin and biologically active compounds as
retinoids, vitamins E, D3 and C and prolactin inhibitors) which showed positive results in lymphoma,
leukemia, breast and prostate cancer patients [174–178]. However, these preliminary data have to
be verified before this method can be recommended. Another important factor to establish is the
pharmacokinetic properties of exogenous MEL in order to achieve an optimized clinical efficacy [179].
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Nevertheless, with regards to its safety and positive reports in terms of alleviating the side-effects of
chemotherapy or radiotherapy [180–182], systemic and/or topical application of MEL may at least
improve the quality of life of cancer patients.

5. Pleiotropic Drugs and MEL in Cancer Prevention/Treatment

Preclinical and clinical reports support the hypothesis that MEL can improve the effect of other
chemotherapeutics in several cancers. Our research group evaluated the effect of MEL combined
with various agents including retinoids, non-steroidal anti-inflammatory drugs, statins and peroral
antidiabetics in mammary cancer in vivo. In most cases, the effect of combinatory therapy was better
in comparison with alone treatment. In the next sections, we focused on the latter three drugs that are
used for metabolic disorders treatment, and we wrote a brief summary on the efficacy of these drug
classes in cancer, together with available reports on their combination with MEL. The results of the
relevant studies are summarized in Table S1.

5.1. NSAIDs

The history of the first representative of NSAIDs, which remains available to the present,
dates back to 1899 when acetylsalicylic acid (aspirin) was introduced to the market by Bayer [183].
NSAIDs are widely prescribed for patients with coronary heart disease and rheumatoid arthritis.
However, over the past three decades, epidemiological, clinical and experimental studies pointed
to the significant anticancer effects of NSAIDs in various cancer types. In this regard, long-term
administration of NSAIDs have been associated with reduced risk from cancer-related mortality
and distant metastasis [184–186]. A recent meta-analysis demonstrated that NSAIDs are related
to a significantly reduced risk of metastasis development (with the exception of lymph nodes),
regardless of pre-diagnostic or post-diagnostic use [187]. Moreover, regular usage of NSAIDs is
linked with a decreased risk of developing colonic adenomatous polyps and lower incidence of
colorectal cancer [188,189] and several other neoplasia such as breast [190,191], ovary [192], lung [193],
prostate [194], esophagus [195], gastric [196], endometrial [197] or pancreatic [198]. Based on the
preclinical research, there is strong evidence about the chemopreventive efficacy of NSAIDs in
cancer disease (review [199,200]). On the other hand, cancer chemoprevention using NSAIDs is
not recommended, due to the potentially severe gastrointestinal, renal, and cardiovascular side effects
that result from COX inhibition [201].

The anti-inflammatory effects of NSAIDs are attributed to the downregulation of cyclooxygenase
(COX) enzymes that catalyze the conversion of arachidonic acid into prostaglandin H2, the precursor for
the synthesis of eicosanoids, i.e., prostaglandins (PGs), prostacyclins and thromboxane A2. In addition,
eicosanoids are critically important within the processes of homeostatic maintenance in organisms;
it concerns with the gastrointestinal mucosa, blood clotting, regulation of blood flow and kidney
functions [202]. There are two cyclooxygenase forms: constitutive COX-1 and the inducible COX-2
type; the latter is upregulated in inflammation and carcinogenesis. COX activation stimulates
carcinogenesis through increased proliferation, invasiveness, angiogenesis, apoptosis inhibition and
immune response modulation [203]. However, numerous studies provided evidence that anticancer
effects can also be exerted through a COX-independent mechanism. COX-independent mechanisms
of action include multiple pathways (such as PPARγ, PPARδ, RXRα, IKKβ, SERCA, CA IX/XII, Sp1,
AMPK and gene expression of NAG-1 and 15-Lox-1) through direct molecular targets as well as
epigenetic and post-transcriptional regulation responsible for the anticancer activities of NSAIDs
(review [201]). COX-2 independent anticancer effects of NSAIDs comprise also decreasing of nuclear
β-catenin levels and induction of β-catenin degradation, which could explain antiproliferative and
pro-apoptotic activity of these drugs [204,205]. In addition, several studies with NSAIDs demonstrated
that cyclic guanosine monophosphate phosphodiesterase (cGMP PDE) inhibition belongs among
an important COX-independent mechanism suppressing β-catenin signaling pathway [206,207].
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These data confirmed a mechanistic link between inhibition of cGMP PDE by NSAID and the blocking
of Wnt/ β-catenin cell signaling.

NSAIDs and MEL

As mentioned above, the anticarcinogenic, chemopreventive and oncostatic potential of MEL
has been reported in many in vitro and/or in vivo experimental studies against a variety of cancer
types. A presumption exists that the combination of several anticancer substances with different
mechanisms of efficacy can be more effective than application of individual substance. It is possible
that the administration of NSAIDs in combination with MEL may elicit additive effects against
cancer. Based on Pubmed and Scopus databases, there are only limited data describing anticancer
efficacy of NSAIDs in combination with MEL. In our in vivo studies, we have evaluated the
effect of indomethacin (non-selective COX inhibitor), nimesulide (preferential COX-2 inhibitor)
and celecoxib (selective COX-2 inhibitor) as NSAIDs in combination with MEL in premenopausal
chemically-induced mammary carcinogenesis in female rats (results are summarized in Table S1). In our
first study, with 7,12-dimethylbenz(a)anthracene (DMBA)-induced carcinogenesis, MEL decreased
tumor frequency and incidence versus controls; moreover, the combined chemoprevention with
indomethacin manifested a slight additive effect when compared to indomethacin alone [208].
Interestingly, the combination of indomethacin and MEL reversed the oncostatic effect of indomethacin
administered alone in N-methyl-N-nitrosourea (NMU)-induced rat mammary carcinogenesis [209].
We have evaluated tumor suppressive effects of nimesulide and MEL and their combination in
both the NMU and DMBA models of rat mammary carcinogenesis. In the NMU study, nimesulide
administered alone decreased tumor incidence and frequency and combined chemoprevention
prolonged latency when compared to nimesulide alone. In the DMBA study, nimesulide alone
was not effective, but a combination of nimesulide and MEL decreased the frequency compared to
nimesulide alone [210]. Based on our results, it seems probable that the chemopreventive effect of
indomethacine and nimesulide in rat mammary carcinogenesis depends on the type and dose of the
carcinogenesis inducer, dose of the chemopreventive substance, the length and possibly also the way of
administration and the time of the day when it is administered [210]. In our last study, celecoxib alone
and in combination with MEL decreased tumor frequency. Combined treatment slightly improved the
effect of single celecoxib as latency period increased. An interesting finding was the absence of tumors
with comedonecrosis, which are more aggressive, in both goups with celecoxib [211].

A group in Spain conducted a preclinical study on the effects of celecoxib administered alone or in
combination with MEL in Syrian hamsters with N-nitrosobis(2-oxopropyl)amine-induced pancreatic
cancer [212]. The drugs were administered during induction, during postinduction and in both
phases. MEL alone demonstrated a more potent anticancer activity compared to celecoxib regarding
in that it reduced the oxidative stress and number of tumor nodules during the induction and the
postinduction phases of pancreatic carcinogenesis and improved the survival of the animals. However,
the combination of MEL and celecoxib administration showed a synergistic beneficial effect (restoring
the survival of the animals) only during the postinduction phase (Table S1).

Taken together, the above studies suggested that the significance of MEL as an antineoplastic
substance comes mainly from its combination with other oncostatic substances rather than from
single administration.

5.2. Statins

The first statin, lovastatin was isolated from Aspergillus terreus by Merck in 1978, though it took
several years of clinical investigation before it was approved for the market in the USA in 1987.
At present, statins are the most-widely used drugs for the treatment of hypercholesterolemia. They had
become a first choice in current prescribing practice and are pivotal in the primary and secondary
prevention of cardiovascular disease [213,214]. Current preclinical studies have proven the pleiotropic
properties of statins that can be useful for cancer therapy and prevention. Statins, influence mevalonate
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synthesis, inhibit dolichol-, farnesyl- and geranylgeranyl pyrophosphate production and block cancer
from developing [215]. In vitro studies on various cell lines demonstrated the role of statins as growth
inhibitors, by the induction of the G0/G1-arrest [216], G2/M arrest or cell death [217,218]. Proposed
mechanisms for statin-mediated apoptosis include an upregulation of pro-apoptotic protein expression
(Bax, Bim), together with decreased anti-apoptotic protein expression (Bcl-2), or activation of caspase-3,
caspase-8 and caspase-9 [219,220]. In experiments of our group, the significant preventive effects of
atorvastatin and simvastatin in rat mammary carcinogenesis were accompanied by an increase in
the Bax/Bcl-2 ratio [221] and expression decrease of proliferating cell nuclear antigen (Ki67) [222] in
mammary cancer in vivo. Angiogenesis plays an important role in tumor promotion and progression.
Statins demonstrate significant anti-angiogenic and anti-metastatic activities by decreasing the vascular
endothelial growth factor (VEGF) and matrix metalloproteinases expressions [223]. Fluvastatin in
our preclinical study significantly downregulated VEGFR-2 expression in rat mammary carcinomas
in vivo [224]. Moreover, statins were found to selectively slow proliferation of cancer stem cells through
Rho-associated kinase 1 and focal adhesion kinase [225] or via inactivation of the Hippo/YAP/RhoA
signaling in a mevalonate synthesis-dependent manner [226]. The promising anti-cancer effects of
statins in preclinical research have stimulated investigations into their possible clinical implications
as an anticancer agent in specific cancer types. There are several meta-analyses of clinical trials and
observational studies available that have explored the potential benefits of statins in carcinogenesis.
In some cases, promising results have been reported regarding their efficacy [227–232].

The oncostatic activities of statins summarized from preclinical and clinical research demonstrate
their potential in the treatment of cancer patients. However, the doses of statins effective in the
inhibition of proliferation and inducing the apoptosis are associated with higher toxicity in patients
(myopathy, rhabdomyolysis and hepatotoxicity). For this reason, the use of statins as a monotherapy
in cancer disease appears doubtful [233]. In order to reduce statins’ adverse effects, there are
favored continuous low-dose drug clinical regimens. By using low statin doses during long-term
administration, the inhibition of the mevalonate pathway might provide a more effective anti-cancer
activity when combined with other chemotherapeutic agent [234]. Therefore, it seems likely that statins
will be utilized within a combination with other anti-cancer drug in the treatment or prevention of
cancer diseases. It could be foreseen that statins administered in combination with MEL will be more
effective when compared with isolated drugs.

Statins and MEL

Regarding the evaluation of statins in combination with MEL, there are very limited data
within oncological research. Recently, our group performed two experiments, where pravastatin or
pitavastatin were combined with MEL in the chemopreventive/curative model of a chemically-induced
rat mammary cancer model (results are summarized in Table S1). In our first study, only a slight
non-significant anti-cancer effects of pravastatin alone was found, as tumor frequency decreased
compared with the untreated control group. On the other hand, pravastatin combined with MEL
markedly decreased tumor frequency (the most important parameter of rat mammary carcinogenesis)
compared with control animals and also to pravastatin alone; tumor latency increased in the
combination group compared to pravastatin alone [235]. The data from preclinical research have led us
to hypothesize that statins and MEL might inhibit proliferation and angiogenesis and induce apoptosis
in rat mammary tumor cells. Immunohistochemical analysis of tumor cells showed significant increase
in the expression of caspase-3 and -7 after pravastatin and combined treatment in comparison with
control group. Mammary cancer cell proliferation (KI67 expression) was higher in the pravastatin group
but decreased in the combination of pravastatin and MEL when compared with pravastatin alone.
Concerning the expression of VEGFR-2, there was a trend of decreased expression in tumor cells in
both treated groups in comparison with the control group. Histopathological analysis confirmed
an apparent shift in the rate of poorly differentiated (high-grade (HG)) and well-differentiated
(low-grade (LG)) mammary carcinomas towards LG lesions in both groups; however, this effect
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was more pronounced after single pravastatin treatment. HG lesions are highly malignant or poorly
differentiated, with loss of glanduliformity with solid growth, high grade of cellular atypia, high mitotic
activity and abundant necrosis. On the other hand, LG tumors retain glandularity and show little
variations in cellular changes and low mitotic activity and do not show comedonecrosis [235]. In our
second experiment in the same model, pitavastatin did not show a significant anticancer effect,
however, the combination of pitavastatin+MEL decreased tumor frequency and volume and slightly
lengthened tumor latency compared to the control group. Moreover, compared to pitavastatin alone,
a combination of pitavastatin+MEL decreased the tumor frequency. Immunohistochemical evaluation
of carcinoma cells revealed a significant increase in the expression of caspase-3 and decrease in KI67
after pitavastatin and combined treatment. Additionally, the combination of pitavastatin and MEL
decreased VEGF expression, which indicates suppression of angiogenesis [236]. The results from our
laboratory showed that MEL has the potential to elevate the anti-cancer effects of statins. Although
statins (mainly lipophilic) administered alone demonstrate significant anti-tumor effects, malignant
cancer tissue as a highly dynamic structure manifests typical resistance to many forms of chemotherapy.
Therefore, it is important to determine whether statins in combination with other chemotherapeutic
agent (such as MEL) would provide a greater clinical benefit compared to single chemotherapy. Future,
more prospective long-term follow-up studies should definitively answer the question about statins’
utilization within combination therapy in clinical oncology.

5.3. Peroral Antidiabetics

Diabetes incidence rises worldwide and type 2 diabetic patients constitute up to 90% of all
cases [237]. For therapy, peroral antidiabetics are used predominantly; insulin is administered when
peroral therapy is no longer effective. Patients with type-2 diabetes have a higher risk for almost all
site-specific cancers, particularly liver and pancreatic cancer, with the exception of prostate cancer and
melanoma [238,239]. Therefore, a great deal of attention is paid to antidiabetics with reported ability
to modify carcinogenesis—metformin from biguanide group and glitazones (thiazolidinediones).

5.3.1. Metformin

In 1950s, phenformin, buformin and metformin were synthesized and later approved for diabetes
treatments; however, due to an increased risk of lactic acidosis, the first two were withdrawn from
the market in the 1970s [240]. Metformin, though, has established its role and is now likely the most
used therapy for type-2 diabetes all over the world. Biguanides were first suggested as a potential
anticancer drugs as early as 1971 by Dilman [241] and preliminary in vivo research in late 1970s and
early 1980s supported this expectation [242]; however, extensive research was not initiated until 2005,
when results of a case-control study indicated that metformin use in patients with type 2 diabetes may
reduce cancer risk [243]. Since then, a number of preclinical and clinical studies were conducted.

The key mechanism of antiproliferative action of metformin is contributed to mTOR inhibition
via AMPK; however, metformin also inhibits cell proliferation through AMPK-independent
mechanisms [244] and possesses the ability to target cancer stem cells and induce epigenetic changes
which point to its pleiotropic beneficial effects [245]. In vitro results confirmed metformin’s oncostatic
effects in a broad spectrum of neoplastic cells; we offer the readers some of these reports [246–252].
In vivo studies were performed almost exclusively in rodents, using different carcinogenic agent
(chemocarcinogen, ionizing radiation, virus, spontaneous cancer) and various doses, routes and
time-manner of metformin application. The main target organ was the mammary gland and colon
(reviewed in [253]). Although inhibitory effects of metformin were not proved in all studies [254,255],
none of the studies reported a stimulation of tumorigenesis. Variable outcomes, apart from differences
in the dosing and manner of metformin administration, may be attributed to varying expression of
genes related to pharmacokinetics and pharmacodynamics of metformin [255]. In addition, the effect
may be modified by nutrition status; metformin toxicity against cancer cells increased in nutrient-poor
conditions, which was proved both in vitro [256,257] and in vivo [256].
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A recent comprehensive review summarizing the results of meta-analyses on the association
between metformin use in diabetic patients and cancer risk reported decreased risk of gastric, liver,
lung and endometrial cancer. Metformin significantly decreased the risk of advanced colorectal
adenoma and improved colorectal cancer-related survival. Breast cancer incidence was not changed,
however, overall survival was improved in metformin users [258]. Similarly, metformin did not
significantly affect prostate cancer risk [259], however, it did improve recurrence-free [260] and overall
survival [261]; overall survival was also improved in patients with pancreatic cancer [262]. Metformin
as an adjuvant anticancer treatment in cancer patients with diabetes decreased all-cause mortality rates
for colorectal cancer, endometrial cancer, breast cancer, prostate cancer and ovarian cancer and also
cancer-specific mortality for breast cancer [263]. Available data justify the conclusion that metformin
use is at least associated with reduced overall mortality of diabetic cancer patients.

Data on metformin use in non-diabetic cancer subjects are limited and include only a small
number of patients. Except for one study which reported delayed response to chemotherapy in
melanoma patients [264], metformin had beneficial effects. Brief metformin administration (in doses
comparable to those used in diabetes treatment) to breast cancer patents before surgery decreased
proliferation and increased apoptosis in tumor samples [265]; long-term administration as adjuvant
therapy decreased risk of metastasis [266]. Short-term administration decreased colon carcinogenesis,
as evidenced by suppressed aberrant crypt foci [267]. A decrease in proliferation after brief metformin
treatment was also reported in endometrial [268] and prostate cancer patients [269]. This outcome
supports the idea of a so called “metabolic rehabilitation” of cancer patients receiving metformin as
adjuvant therapy suggested by professor Dilman [270]. Reported protective cardiovascular effects,
reduction of inflammation, white adipose tissue remodeling, improvement of dyslipidemia and gut
microbiota [271] contribute to the now generally accepted idea of an off-label use of metformin, not only
in oncostatic therapy, but in a wide spectrum of pathologies.

Metformin and MEL

Research on simultaneous administration of metformin and MEL in cancer is surprisingly
sparse (results are summarized in Table S1). In 2010, Anisimov et al. [272] reported inhibition of
growth of transplantable mammary and Ehrlich carcinoma, though it did not influence spontaneous
mammary tumor growth in mice. The same group reported inhibitory effects of metformin on
benz(a)pyrene-induced skin carcinogenesis in mice [273,274] and an increase of the cytotoxic effect of
paclitaxel on transplantable mammary tumors in mice after metformin and MEL combination [275].
The only available clinical report on the effect of this combination is a case report on adrenocortical
carcinoma, a patient on maintenance therapy with metformin and MEL was reported to be free of
disease some seven years post diagnosis [276] (Table S1).

Our group evaluated the effect of this combination in chemically-induced mammary cancer in
rats and found more prominent inhibition of tumor growth and stimulation of apoptosis than in
monotherapy in a DMBA model. However, it has to be emphasized that the effect of the combinatory
therapy did not differ much from MEL monotherapy. Surprisingly, the proportion of HG tumors was
not significantly changed [277]. No effect on tumor growth was recorded in the same model using
NMU as tumor initiator single metformin. MEL alone reduced the proportion of HG tumors, but the
combinatory therapy did not [278]. However, in these two experiments, we used a high-fat diet (10% of
total fat), which likely interfered with the effects of chemopreventive agents (Table S1). The difference
in impact on tumor progression might also arise from inhibition of cytochrome P450 family 1 enzymes
involved in metabolic activation of DMBA in mammary epithelial and stromal cells [279] by MEL [280]
whereas NMU act as a direct DNA-alkylating agent.

5.3.2. Glitazones (Thiazolidinediones)

The first glitazone for diabetes treatment, troglitazone, was launched to market in 1997 (first in
USA, then in Europe) but was withdrawn in Europe shortly after on the grounds of hepatotoxicity.
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The other derivates, pioglitazone and rosiglitazone, were introduced in USA in 1999 and the following
year in Europe [281]. Later, however, concerns regarding its cardiovascular safety emerged and
meta-analysis confirmed increased risk of myocardial infarction (though not overall cardiovascular
mortality) in rosiglitazone users [282]. As a result, the European Medicines Agency recommended
its suspension from the market. It is currently still available in the USA but with several restrictions.
Pioglitazone has remained the only available glitazone in Europe, however, it was withdrawn from
the market in France and Germany in 2011 due to a suspected risk of bladder cancer. This concern still
persists, as the conclusions of recent meta-analyses are contradictory [283–285]. A third commercially
available glitazone analogue, lobeglitazone, was approved for use in Korea in 2013. A number of
compounds have been developed, including dual PPAR (peroxisome-proliferator-activated receptors)
agonists (PPARα/γ, PPARα/δ and PPARδ/γ) and pan-PPAR agonists or selective modulators.
Unfortunately, many of them have been discontinued during the clinical research stage due to safety
and tolerability issues such as weight gain, edema, congestive heart failure and bone fracture [286].

Glitazones exert their effects through the modulation of PPARγ, one of three subtypes of
transcription factors from nuclear hormone receptor superfamily. The other two involve PPARα and
PPARδ (also known as PPARβ [287]). PPARγ may be activated by natural ligands including fatty acids
and synthetic ligands like glitazones. After the formation of a heterodimer with retinoid X receptor
(RXR), this complex then binds to PPAR-responsive elements in DNA [288]. PPAR target genes are
involved in the regulation of adipocyte differentiation and adipogenesis, energy homeostais, glucose
and lipid metabolism and also in inflammation [289]. Expression of PPARγ was detected in various
cancers [290]. Glitazones may inhibit cell growth and proliferation through the decrease in circulating
insulin and modulation of the key pathways of the insulin/IGF axis (e.g., PI3K/mTOR, MAPK,
and GSK3-β/Wnt/β-catenin cascades), which regulate cancer cell survival, cell reprogramming and
differentiation [291]. PPARγ activation is regarded as the key mechanism of anticancer effects of
glitazones. PPARγ agonists, in most cases, inhibited proliferation and growth of experimental breast,
lung, gastrointestinal, liver, pancreatic, ovarian, testicular and urinary system cancers [292–296].
Antitumor properties independent of PPARγ activation were reported too, including the regulation of
differentiation, inflammation and apoptosis; however, it is not always possible to determine whether
an effect that is independent of PPARγ-regulated transcriptional control is also independent of the
presence of PPARγ protein [297,298].

Adjuvant treatment with glitazones increased the effect of chemotherapy and radiotherapy [299].
However, neither expression [300] nor activation of PPARγ [301] was invariably correlated with
a positive outcome in cancer.

Unlike preclinical data, which showed oncostatic effect in wide range of neoplasms, results of
meta-analyses on the impact of glitazone therapy (rosiglitazone or pioglitazone) in diabetic patients
showed the inverse relation only with liver and colorectal cancer [302,303]. The risk of breast cancer
reported previously [304] was not confirmed in the recent meta-analysis by Du et al. [305], however,
diabetic women with HER2-positive breast cancer showed lower breast cancer specific mortality
when treated with glitazones [306]. No association was found with lung, prostate and pancreatic
cancer [262,302]. The slight increases of bladder cancer risk regarding pioglitazone use, particularly in
higher doses and long-term administration is still being discussed. However, firstly, bladder cancer
is more likely to occur in patients with diabetes [307] and secondly, pioglitazone is recommended as
a third-line therapy for type 2 diabetes. Thus, it is being prescribed to patients with more advanced
forms of the disease with a higher possibility of metabolic and other complications which could be
another confounding factor for the increased bladder cancer risk [284]. Another adverse effect is the
increased risk of bone fractures in women, both after pioglitazone and rosiglitazone [308]. Therefore,
doubts and safety concerns about the role of glitazones in diabetes type 2 management persist.
On the other hand, it is important to point to other beneficial effects of glitazones as favorable fat
distribution, amelioration of renal and liver functions and also, in the case of pioglitazone, improvement
of cardiovascular profile in patients with diabetes [309]. Moreover, severity and duration of diabetes,
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related comorbidities and other risk factors such as exposure to environmental carcinogens, must be
considered in evaluation of any adverse effects of antidiabetic therapy.

Due to safety issues, reports on glitazone therapy in nondiabetic cancer patients are scarce and
based on a limited numbers of patients, mostly in advanced stages of the disease, and when glitazones
were administered for short time periods. In liposarcoma patients, troglitazone decreased proliferation
in tumor biopsies [310], however, no effect was found after rosiglitazone treatment [311]. Troglitazone
treatment did not led to tumor response and improved survival in patients with metastatic colon
cancer [312]. Rosiglitazone had no redifferentiating effect in patients with thyroid cancer [313] and did
not prolong the time to disease progression in patients with prostate cancer [314]. No effect was found
in women with breast cancer after rosiglitazone [315] or troglitazone treatment [316]. Combinatory
therapy may improve the outcome of standard chemotherapy: pioglitazone and rofecoxib combination
showed some response in patients with metastatic melanoma and soft tissue carcinoma [317], malignant
vascular tumors [318] and in glioma patients [319]. On the other hand, rosiglitazone in combination
with metformin did not improve the efficacy of exemestane therapy in non-diabetic postmenopausal
women [320] and in combination with bexarotene did not result in an objective response in patients
with refractory solid tumors [321]. Preliminary data indicate that pioglitazone may improve the effect
of imatinib in chronic myeloid leukemia [322]. Appropriate conclusion regarding the role of glitazones
in cancer treatment cannot be made due to the limitations of available studies.

Glitazones and MEL

MEL enhanced troglitazone-induced apoptosis in the MDA-MB-231 breast cancer cell line [323].
Our working group has investigated the effect of pioglitazone and combination pioglitazone+MEL in
a mammary cancer model in rats. In this experiment, we used, unlike in our previous research where
pioglitazone inhibited the growth of NMU-induced tumors [324], a diet with higher fat content in order
to better reflect the situation in human population. Although parameters of tumor growth were not
significantly changed, pioglitazone alone decreased proportion of HG tumors and increased apoptosis
in mammary cancer cells. MEL potentiated the effect of pioglitazone as evidenced by decrease in
tumor frequency and further reduction in HG/LG ratio (Table S1, [325]).

5.4. Retinoids and MEL

The oncostatic abilities of retinoids are well-known, although some adverse effects have been
reported too [326]. In this review, we did not bring the summary on the mechanism of action and
effects of retinoids and rexinoids in preclinical and clinical cancer research; we refer readers to several
excellent reviews, e.g., [327–330]. Nonetheless, we wished to highlight the ability of MEL to potentiate
their oncostatic effects; thus, we included the results of relevant animal studies (Table S1) which clearly
point to this capability [331–336].

6. Conclusions

Now, sixty years after MEL discovery, extensive research has brought clear evidence on its
beneficial effects in modulation of cancer progression and even if data are not always cohesive,
none point to the stimulation of malignant growth. An increase in autoimmune proinflammatory
states and/or metabolic disturbances and a decline in physiological MEL levels with age on one
side and increase in cancer rates in elderly subjects on the other supports the hypothesis that the
addition of exogenous MEL to therapy of above-mentioned states by non-steroidal anti-inflammatory
drugs/statins/antidiabetics may modulate a cancer risk as well. As malignant transformations,
from initiation to clinical manifestation, may take years or even decades, long-term application of
MEL should be performed. Available experimental data on the efficacy of the combination of MEL
with pleiotropic drugs are limited and human data are practically non-existent. However, preliminary
results and safety of MEL provide a rationalization of further, more systematic research.
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