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ABSTRACT We discuss non-monotone fuzzy connectives in large-scale image processing. We present an
image reduction algorithm capable of differentiating between fine image details and noise in the image,
particularly salt and pepper noise. The reduction algorithm is based on mode-like averaging functions.
We compare the performance of the proposed method to the alternative reduction methods on artificial
images and on two case studies: content-based image retrieval and pedestrian detection. Our algorithm
improves the speed of the subsequently applied image analysis methods and allows efficient filtering of salt
and pepper noise. Applications to on-board image recognition in autonomous robotic devices are envisaged.

INDEX TERMS Aggregation operators, fuzzy connectives, image reduction, averaging, mode.

I. INTRODUCTION
Modern data is captured much faster than it can be
analyzed. Novel applications of digital imaging demand
super-fast image analysis and recognition. Self-driving vehi-
cles, unmanned aerial vehicles (UAV) and autonomous
robots are some examples where recognition (of small
objects or pedestrians) from video footage must be per-
formed in real time. UAVs and underwater robots are
restricted in their computational capabilities, as more com-
puter power means heavier battery and larger dimen-
sions which are at a premium, and therefore sophisticated
on-board image recognition algorithms are way too slow for
autonomous operation of these devices.

One common issue in these applications is that the large
amount of visual data captured by the high resolution cameras
cannot be analyzed on the low computing capacity devices
by which the data is captured. The main reasons here are
severe limitations on the cost, size, weight and power con-
sumption. While image acquisition is performed at a linear
rate (with image resolution), image analysis has a super-linear
computational cost, and the computational bottleneck is thus
inevitable. As the technology develops, more advanced pro-
cessing hardware also means even higher resolution cameras,
and the hence even higher demands on processing power.

Furthermore, the high rate of image acquisition leads to
unavoidable noise in the image data, thermal noise being
one of the problems here, but also missing data due to

interference, radiation, etc. The likelihood of corrupted pixels
in an image, while not very large per se, is not negligible and
grows with image resolution. While dropping image resolu-
tion seems a feasible alternative here, that also degrades the
quality of the subsequent analysis. One of the challenges in
big data (at least in image processing) is that most of the data
captured are uninteresting and are subsequently discarded,
but have to be processed in order to identify the interest-
ing parts, that need to be captured at the highest resolution
available. Timely image analysis on board is also important
for automation of the behavior of autonomous devices, like
identification of targets and obstacles.

This paper advocates the use of image reduction tech-
niques based on granular computing, in particular on fuzzy
sets aggregation techniques. The goal here is to artificially
reduce image resolution to facilitate faster processing, for
example on autonomous underwater or aerial vehicles, yet in
such a way that the reduced image preserves the important
characteristics of the original image and at the same time
filters out Gaussian and non-Gaussian noise. Furthermore,
we aim to achieve reduction while preserving very fine details
of the high resolution image but distinguish them from noise.
Often the objects of interest in the images are small, or have
particular characteristics (like texture) that are not usu-
ally preserved by the simple reduction methods. Finally,
the linear time complexity of the reduction algorithm is
paramount.
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Thus image reduction consists in diminishing the reso-
lution of the image while keeping as much information as
possible from the original image [2], [31]. Image reduction
(and the inverse process, image magnification) is a widely
studied topic due to its applicability in mobile gadgets such
as phones, PDAs or cameras, where the images must be
visualized in small screens and the need of changing the size
of the images without significantly changing their quality is
very important.

In the literature there exist many different image reduction
methods. Some of them consider the image to be reduced
globally or in a transform domain [26], [29], [33]. Some oth-
ers divide the image into pieces and act on each of them
locally [2], [18], [28], [31], [34]. The latter procedure allows
one to design algorithms which are very efficient in time
(so the image reduction is performed at the same rate as
image acquisition) and which preserve some of the specific
properties of the images such as textures, edges, etc.

Our aim in this work is to design a reduction algorithm that,
given an image, provides a new image of lower resolution that
keeps the intensity properties of the original image, filters out
non-additive noise and in addition preserves even very small
details of the original image, such as 1-pixel wide lines. The
latter is very challenging, as such details are easy to confuse
with the noise.

We follow the approach presented in [2], [30], and [31]
where the concept of local image reduction operators was for-
malized. The input image is divided into possibly overlapping
small rectangular blocks, and the intensities of the pixels in
each block are combined to produce a representative value,
which will be the intensity of one pixel in the output image.
Thus we perform fusion of intensities of pixels in a block,
which is then reduced to one pixel. Evidently, this process is
computationally efficient and easily parallelizable.

The representative pixel value is calculated by using
aggregation functions employed in the fuzzy sets theory,
also called fuzzy connectives, and in particular averaging
functions [1], [7], [23]. Typical averaging functions are the
arithmetic mean and the median, and they are relied upon
in the naive image reduction methods. We shall see later
on that such averages result in oversmoothing of the images
and losses of small details. We explore more sophisticated
averages, such as penalty-based and mode-like functions pre-
sented in [1], [3], [5], and [42] andwe show their superior per-
formance in image reduction tasks, especially in the presence
of noise.

In order to study the use of sophisticated reduction oper-
ators, we carry out several experimental studies. Firstly,
we perform laboratory experiments using artificially gen-
erated images, in order to demonstrate the capability of
the selected averaging functions to differentiate between the
noise and small image details.

Then, we perform experiments with real-world images
on two case studies. The first case study is image
retrieval [17], [36], [37]. We use state-of-the-art retrieval
methods in order to query image databases and select images

matching a particular query image. In this task the vector
of image features is computed and matched against feature
vectors in the image database. We analyze the performance
of image retrieval algorithms (in terms of the accuracy and
CPU time) for full scale and reduced images as a function of
image reduction method employed.

The second case study is pedestrian identification [21].
This problem is particularly important for the development
of self-driving vehicles. It is conjectured that the expensive
equipment currently used on prototypes of such vehicles can
be replaced with inexpensive small cameras coupled with
pedestrian identification algorithms. Here again, we analyze
the performance of pedestrian identification algorithms for
full-scale and reduced images in the presence of noise in the
data, as a function of image reduction method.

In both cases we use off-the-shelf third party image analy-
sis algorithms and apply them to the full-scale and reduced
images. Evidently, the analysis algorithm will work much
faster on the reduced images. The question is: what are
the losses in quality of the output (e.g., accuracy), and
whether such losses are justified by the gains in the speed of
processing.

In both case studies we contaminate the query images
with different types of noise: Gaussian, speckle, and salt and
pepper noises, and analyze the accuracy of the recognition
methods as a function of noise and the reduction method
applied.

The paper is structured as follows. Section II gives
preliminary definitions. Section III presents mode-like aver-
aging functions based on minimization of various penal-
ties. Section IV outlines the image reduction algorithm.
Section V details our the experimental analysis. Section VI
concludes.

II. PRELIMINARY DEFINITIONS
A. IMAGE REDUCTION
We now formulate the problem of image reduction based
on local, block-based reduction operators. Local opera-
tors based on aggregation functions have been shown to
be both effective and fast, and they easily admit parallel
implementations [2], [31], [32]. In this approach an image
of size M × N is subdivided into non-overlapping blocks
of size m × n, and each block is aggregated to generate a
single value representative of the original data, as illustrated
on Figure 1. This value becomes the intensity of a single pixel
within the reduced image. The original image is reduced to
the sizeM ′ × N ′ = bMm c × b

N
n c. Image reduction should not

be confused with image compression. The former attempts to
represent the image using a smaller number of pixels having
the same data precision, whereas the latter attempts to repre-
sent the original image data using a lower precision. Image
reduction is frequently employed when displaying images on
smaller screens, when performing operations such as zoom-
ing (dilation), or to speed up subsequent image analysis tasks,
such as feature detection or recognition.
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FIGURE 1. A scheme for image reduction based on representative values
within 3 × 3 blocks.

The core of block-based reduction algorithms is a function
which generates a representative intensity value for a given
block of pixels. Such functions require the properties of
averaging functions, such that the output is within the range
of the intensities of the input pixels, and is also idempotent.
This latter property ensures that if the block is of uniform
intensity, its representative value is exactly the same as the
intensity of all input pixels.

There are several alternative methods of image reduc-
tion. The interpolation methods, like bilinear and bicubic
interpolation, build a piecewise polynomial model of the
image, and then compute the pixel values of the reduced
image by using such an interpolant. Fuzzy transformmethods
(F-transform) [18], [32]–[34] have also been applied to
image reduction and will be used here for benchmarking.

Color image reduction is typically performed componen-
twise, by calculating intensities of each color channel sepa-
rately. However that might lead to pixel colors not present in
the original image. We show later how this can be avoided by
using penalty-based approach.

B. AVERAGING FUNCTIONS
The class of functionswith the abovementioned requirements
is known asmeans (or averages), and is well studied, in partic-
ular from the point of view of fuzzy connectives [1], [7], [11].
The simplest examples are the weighted arithmetic mean
and the median, which play an important role in Gaussian
and median filtering. All suitable averaging functions can
be obtained by using penalty-based approach [13], wherein a
certain penalty for intensity deviations is minimized. A com-
parative analysis of various penalty-based averages in this
context was presented in [2], [12], and [31].

Typically, averaging functions satisfy another condition,
that of monotonicity [7], [11]. If any of the input values
increases, the output cannot decrease. This condition is useful
when the data are noiseless, however, when the data may
be contaminated by noise, monotonicity is not desirable.
An increase or decrease of the intensity of a pixel to an
extreme (or away from the most prevalent value in a region)
is plausibly indicating that it is corrupted and thus should be

disregarded in the average. Permitting outlying pixel intensity
to affect the average of the image block leads to a degradation
of performance in tasks such as filtering and image reduction.

Non-monotone averages have been treated in [4], [5], [8],
[9], [41], and [42], and they also play a significant role as
robust estimators of location [35]. Typical examples here are
the shorth and the least trimmed squares (LTS) estimator.
Non-monotone averages can be represented as penalty-based
functions [1], [13], and it is within this context that we wish
to design penalties that account for the spatial organization
of pixels. The subsequent averaging functions may then be
applied within block-based image reduction of noisy images.

Formally, following [2] and [13], if the input intensities in
a block are represented by x ∈ Ik , k = m × n, the average
intensity is found by solving the minimization problem

y = f (x) = argmin
y

P(x, y),

where P : Ik+1 → R is a penalty function satisfying the
conditions:

1) P(x, y) ≥ c ∀ x ∈ Ik , y ∈ I;
2) P(x, y) = c if and only if all xi = y

for some constant c ∈ R and any closed, non-empty interval I.
That is, the average is the value y which minimizes the
total penalty P for disagreement between that value and the
individual pixel intensities xi. It is known that all idempotent
functions can be represented in this way [1], [13].

For example, the arithmetic mean is obtained by using
squares of the differences,

P(x, y) =
k∑
i=1

(xi − y)2,

whereas the median is obtained by using the absolute differ-
ences

P(x, y) =
k∑
i=1

|xi − y|.

III. MODE-LIKE AVERAGING
It is known that the arithmetic mean is not robust against
outliers [35]. Just one extreme value of an input (likewhenwe
have the salt and pepper noise) drives the output in its direc-
tion away from themain group of uncontaminated inputs. The
median is robust, as its value is not affected by the outliers, but
it discards all but one (central) input. There are other robust
estimators of location [35] such as the shorth and the least
trimmed squares estimator, which all belong to the class of
weakly monotone averages [1], [42]. These averages model
the majority: the output is always a value representing the
majority of inputs, which are considered uncontaminated by
noise.

However, in this study we want to model the ‘‘vocal
minority’’ - a subset of inputs with consistently close values,
which may or may not represent the majority. For example,
a fragment of a thin one pixel-wide line on a not perfectly
uniform background consists of just a few pixels of close
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intensities, whereas the majority of pixels in a block belong to
the background, but their intensities are more spread. To pre-
serve such fine lines in the reduction process we need to select
a compact cluster of inputs and discard the majority which are
not closely aligned with each other.

The mode function selects the most frequent input, and
if we have a perfect cluster of inputs that share the same
value, the mode would identify such a value. Mode-seeking
algorithms are known in image filtering [14], [40]. In reality,
however, a cluster of pixels intensities will not have one com-
mon value, and in fact all inputs might be distinct, in which
case there is no unique mode. For this reason belowwe define
a mode-like average which mimics the mode when the inputs
are distinct. For this we use penalty based approach [13].

Unlike in [2], [12], and [13], where P was required to
be quasiconvex to guarantee a unique minimum, and also to
ensure continuity of f , we do not impose this condition as we
are interested in non-monotone averages. In [41] a penalty
function based on a weighted sum of intensity-based partial
penalties was given by

P(x, y) =
k∑
i=1

wi(y)ρ(xi, y) (1)

where

ρ(xi, y) =

{
r(j) r(j) < τ,

βτ r(j) ≥ τ.

τ = αmax(ε, r(t)) and α > 0, 0≤β≤1, 2≤ t≤k.

(2)

The parameters of this model are described below.
Given ri = |xi−y| then r(j) denotes the jth smallest element

of the set of ordered (ascending) values of ri, the abso-
lute deviations from the aggregate value y. This function
generates a mode-like non-monotonic average of the input
vector x, and it was shown to outperform other monotonic
and non-monotonic block-based reduction operators when
applied to images corrupted by speckle or impulse noise.

The function ρ favors compact clusters of intensity values
in x by assigning smaller penalties to inputs closer to the
proposed output. Thus the value y that minimizes P is a
value representative of themost compact cluster within x. The
parameter α tunes the cluster boundary as a function of the
minimum non-zero intensity difference between inputs, and
β is a fixed constant penalty for non-cluster members. ThusP
attempts to minimize the number of outliers while also trying
to identify the most compact cluster. This averaging method
is called Pmode.

However, ρ does not take into account spacial information
of the pixels; i.e., it does not distinguish between a geo-
metrically compact group of pixels having similar intensity
and similar pixels scattered within a given block. To account
for this the weights wi should depend on the position of the
pixels within the block. In [41] this was achieved using a

normalized distance,

wi(y) =
d(xi, y)∑k
i=1 d(xi, y)

, ∀y = xj ∈ {x1, ..., xk}. (3)

This function arose from the additional constraint that the
average must also be a locally internal function (i.e., the out-
put should be one of the inputs), which is a reasonable
requirement in image reduction tasks. A more sophisticated
weighting function was presented in [6], which is based on
fuzzy measures. That function favors larger clusters of pixel
intensities, which are also compact in the geometrical sense.
For example three neighboring pixels with similar intensities
are favoredwith respect to pixels spread over the image block.
The penalty in [6] which accounts for spatial organization of
pixels is expressed as

P(x, y) = w(A)
k∑
i=1

ρ(xi, y), (4)

where cluster-based weights w(A) replace the individual
pixel weights wi(y) in (1). Here w(A) = 2 − v(A) ≥ 1,
v is a fuzzy measure computed by one of three approaches
in [6] and A denotes the subset of pixels having intensities
that satisfy r(k) < τ as per Eqn. (2). This average is called
the Cmode. The values of w are precomputed and thus do not
affect the run time of the Cmode algorithm.

IV. REDUCTION ALGORITHM
The overall block-based image reduction algorithm is as
follows.

Algorithm 1 Image Reduction Algorithm
Inputs: A (original image as an M × N array), M ,N
(dimensions), m, n (reduction ratios)
Output: B (the reduced image of size M ′ × N ′)

1 M ′ = bMm c N
′
= b

N
n c

2 Select an averaging function F
3 For each (non-overlapping) block of A of size m × n

denoted by C
3.1 c = F(C);

4 Build the reduced image B from the outputs of Step 3.1.

In our study we used several different averaging functions
as F , the Pmode and Cmode functions as described in the
previous section, shorth, and the LTS estimator [35] as exam-
ples of robust estimators, and the arithmetic mean and the
median for comparison purposes. We also used alternative
reductionmethods based on bilinear and bicubic interpolation
and Lanczos method (available in Matlab Image Processing
toolbox), as well as based on the F-transform [32], [33].

The minimization of the penalty function in the Pmode and
Cmode functions was performed over the set of input intensi-
ties, which ensured the output did not contain pixel intensities
not present in the input image. The weighting functions w
were precomputed. Note that in the case of color images, it is
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FIGURE 2. Lines image before and after reduction (not to scale). (a) Original. (b) Original with Noise. (c) BILINEAR. (d) MEAN.
(e) MEDIAN. (f) SHORTH. (g) PMODE. (h) CMODE.

not necessary to perform reduction for each color channel
independently. Penalty minimization can be performed on a
product lattice of color intensities as presented in [2].

V. EXPERIMENTAL ANALYSIS
A. FINE DETAIL PRESERVATION
In the first series of experiments we used synthetic grayscale
images called respectively lines and circles (Figures 2-3).
The lines and circles are one pixel wide, nearly white on
non-uniform gray background. The intensities of pixels of
the lines and circles are not constant but vary within 10% of
the range of intensities (the standard 0–255 range), whereas
the intensities of the gray background vary within 30% of

the range of intensities. Subsequently salt and pepper noise
was added to the image, changing 0.5% of pixels to black or
white.

Our aim here is to establish the robustness of the reduction
methods to the salt and pepper noise and their ability to
preserve visible fine line structures. In addition to visual
inspection, which can be done using Figures 2-3), we also
calculated various quantitative characteristics of the original
image, noisy image and the reduced images. The image
characteristics are presented in Table 1, together with the
references to their origins.

It is assumed that a good reduction method would pre-
serve the numerical characteristics of an image as much
as possible, and would not allow noise in the image alter
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FIGURE 3. Circles image before and after reduction (not to scale). (a) Original. (b) Original with Noise. (c) BILINEAR. (d) MEAN.
(e) MEDIAN. (f) SHORTH. (g) PMODE. (h) CMODE.

these characteristics. Therefore we computed the mentioned
characteristics for the noiseless image, for the noisy image for
comparison, and then for reduced noisy images. The images
were reduced by one of the mentioned methods by a factor
of 9 (both m, n = 3 in Algorithm 1).

Figures 2-3 reveal that the mean block-reduction and bilin-
ear interpolation methods preserve the lines structure, but
smoothen the lines. Indeed, the pixel intensity of the visible
lines is only a fraction of that in the original image, which is
averaged with the intensity of the background. The median
and the shorth functions, while robust to the salt and pepper
noise, also remove the lines and circles from the image, which
is unsatisfactory. The Pmode and Cmode functions produce

the lines and the circles with their original intensity and filter
most but some noise.

In Tables 2-3 the results for the original and noisy images
are in the first two rows of these tables. The rest of the rows
refer to reduction of the noisy images, but are compared to
the original image, as we aim to preserve its characteristics
despite the presence of noise. The values which match the
best those for the original image are in boldface, whereas the
differences, in the second half of each table, are illustrative
in comparison to the values in row 1, as they indicate by
how much the best performing method is better than the
alternatives. Drastic differences indicate that one method was
significantly better than the others. We see that in the Lines
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TABLE 1. List of features reflecting image characteristics.

image, all the characteristics are better preserved when using
the Pmode and Cmode algorithms. In case of the Circles
image, some characteristics are better preserved using Pmode
and Cmode, but there are some which are preserved better
with more smoothing.

B. IMAGE RETRIEVAL
Content-Based Image Retrieval (CBIR), where an image is
represented by its visual and semantic contents, is crucial to
successfully retrieve images from huge databases [36], [37].
A feature vector is extracted for each query image and then
compared to the feature vectors in the database. Based on the
matching of feature vectors, the most similar images to the
query are retrieved.

While extracting feature vectors from the database can
be done offline, and hence computation time is not that
critical, extraction of the features from the query images is
usually performed online and it is time-critical. In addition
query images could be noisy, and therefore noise filtering is
required. Performing noise-cancelling reduction of the query
images allows to significantly speed up the whole CBIR
process.

We studied how image reduction affects the precision of
the image retrieval process measured as

precision =
Number of relevant retrieved images

Number of retrieved images
.

We have used the scope value (i.e., the number of retrieved
images presented to the user) of 20.

We have chosen Wang database (http://wang.ist.psu.edu/
docs/related), a benchmark database that has been widely
used in CBIR research community. The Wang database is
a subset of 1,000 images of the Corel stock photo database
which has been manually selected and which form 10 classes
(contains Africa, Beach, Buses, Dinosaurs, Elephants, Flow-
ers, Food, Horses, Monuments, Mountains) of 100 images
each. Each image is of size 256 x 384. All images have been
converted to png from jpeg format (using Format Factory
software) to form the original dataset.

To model a scenario when the CBIR system is presented
with noisy images, noise (as indicated in Table 4) was

added to query images, and then the images were either
reduced by one of the mentioned methods by a factor
of 9 (both m, n = 3 in Algorithm 1), or left unchanged
(for comparison).

A compact 25-dimensional feature vector using the ele-
ments of Colour Co-occurrence Matrices (CCM) in Hue, Sat-
uration, Value (H,S,V=16,3,3) space [15] was then extracted
from the query images and compared against feature vec-
tors in the original, noiseless database. The L1-norm was
used to measure similarity between query and database
images.

As expected, we obtained a reduction in computation time
by a factor of 7.8 when using reduced images (total time
242.49 sec for 1000 full images vs 30.74 sec for reduced
images). The retrieval time was not affected by reduction.

The results are presented in Table 4. We can observe that
compared to clean original images (the gold standard in this
case) all reduction methods have shown a degradation in
retrieval accuracy. This reduction is least for our Pmode and
Cmode algorithms. On the other hand, when noisy query
images were presented, in all cases reduction resulted in
improvements to the retrieval precision, attributed to smooth-
ing filtering effect of reduction.

The algorithms performed differently depending on the
type of noise in the images. For Gaussian and speckle noise
with variances indicated in Table 4, block-based reduction by
using the mean function delivered the best results. This is
expected, as the arithmetic mean is precisely the minimizer
of the sum of squared deviations, which is the maximum
likelihood estimator under Gaussian noise assumption [13].
F-transform also delivered similar precision. For speckle
noise with small variance, bicubic reduction and Cmode
resulted in good precision, but so was the benchmark - using
noisy original size images. This means that filtering in the
reduction process did not play a major role. For speckle noise
with larger variance the arithmetic mean-based reduction
delivered better results.

For the salt and pepper noise the proposed Pmode and
Cmode algorithms were clear winners. These two methods
also performed well for clean images. The median filtering,
which is usually used for this type of noise, was not as effec-
tive, most likely because of reduction in image contrast and
other related features. The mean-based filtering was unable
to remove the outliers. In contrast, Pmode and Cmode did
not affect the features used for retrieval, yet were able to
successfully filter out the salt and pepper noise.

C. PEDESTRIAN DETECTION
Pedestrian detection is an essential task in Computer
Vision [21], where the quality and speed of the detector is
of importance. The use of reduced test images can contribute
towards less computation time and provide better detection
accuracy in noisy environment.

In this studywe looked at the performance of theAggregate
Channel Features (ACF) object detector [20], [21], which is
a fast and effective sliding window detector, on the original,

VOLUME 6, 2018 68409



G. Beliakov et al.: Fuzzy Connectives for Efficient Image Reduction and Speeding Up Image Analysis

TABLE 2. Features extracted from the lines images.

TABLE 3. Features extracted from the circles images.

TABLE 4. Precison (%) at scope 20 with query images, both clean and noisy, original and reduced by the indicated method. The noise level is indicated by
the percentage (S&P) and variance (Gaussian and Speckle). The best precision is indicated in boldface.

noisy and reduced noisy images. Computations were per-
formed using Piotr’s Computer Vision Matlab Toolbox [19].
We used the INRIA pedestrian dataset [25], one of the

most popular static pedestrian detection datasets. It con-
tains high resolution (varying from 1280x960 to 531x333)
video (.seq) files which are converted into image frames.
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FIGURE 4. Performance of detector with both original and reduced test images. Noisy images are corrupted with 5% Salt and
Pepper noise and then reduced. (a) Clean & Original. (b) Noisy & Original. (c) Clean & Pmode-reduced. (d) Noisy &
Pmode-reduced. (e) Clean & Median-reduced. (f) Noisy & Median-reduced. (g) Clean & Mean-reduced. (h) Noisy & Mean-reduced.

There are 614 positive training images along with ground
truth Bounding Box( BB) and 1218 negative images with no
pedestrians. For testing we used 288 positive images along
with ground truth BBs. Ground truth BBs are scaled down by

3 when reduced test images are used. The test images were
added different types of noise: Salt and pepper, Gaussian,
speckle, and a mixture of Gaussian, speckle and salt and
pepper noises added one after another in that order.
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TABLE 5. Log-average Miss Rate (%) with test images, both clean and noisy, original and reduced by the indicated method. The noise level is indicated by
the percentage (S&P) and variance (Gaussian and Speckle). The best precision is indicated in boldface.

FIGURE 5. Performance of the pedestrian detector with both original and reduced test images. ROC curves are obtained using Piotr’s
Matlab Toolbox [19], and with INRIA dataset. (a) Salt and pepper noise. (b) Gaussian noise.

For reduced test images the detector was modified to
work with downscaled images. The training images were
not reduced. Features for training images are computed once
only, and the features at other scales can be approximated.
This makes the detector fast.

The following reduction operators were used: Mean,
Median, Pmode, Cmode, Bicubic and F-transform. Other
reduction methods did not show any significant difference in
performance to the existing methods used for benchmarking,
and hence the results are omitted.

As expected, the use of reduced test images resulted
in significant reduction in the detection time, by a factor
of 9.5 (7.95 frames per second vs. 0.83 frames per sec-
ond). The accuracy of the detector was measured through
the Log-averageMiss Rate [20], [21], where the lower values
mean better accuracy.

The results are presented in Table 5. As expected, added
noise degrades the performance of the detector, often signif-
icantly (data row 1). The reduction of clean test images did
not result in a drastic decrease in performance for the existing
reduction methods, but led to some decrease in performance
for the proposed Pmode and Cmode (data column 2).

However, reduction of noisy images resulted in a better
performance than with non-reduced images. For Gaussian
and speckle noise, as well as mixtures with these noises,
the arithmetic mean-based reduction was the best approach,

followed by F-transform. This is expected as the arithmetic
mean effectively filters out Gaussian noise. For the salt and
pepper noise the Pmode andCmode have shown superior per-
formance, very significant at the 5% noise level. Surprisingly,
the median-based reduction led to very poor performance of
the detector.

Figure 4 shows one example of a frame with pedestrians
and the bounding boxes found by the ACF algorithm. The
ROC curves for different reduction methods are presented
in Figure 5.

VI. CONCLUSION
This paper discussed the use of fuzzy connectives in process-
ing large image streams as a tool to overcome computational
bottlenecks. Local image reduction is computationally effi-
cient, easily parallelizable method of reducing and filtering
images at approximately the same rate of image acquisition.
The subsequent image analysis can then be performed at a
much faster pace. To preserve the accuracy of image anal-
ysis algorithms it is important to preserve important fea-
tures of an image and differentiate between noise and fine
details.

In this article we applied mode-like averaging functions
as local reduction operators. We found that such functions
are better at preserving the essential characteristics of an
image and can differentiate between salt and pepper noise and
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1-pixel wide lines and curves. The traditional reduction tech-
niques often oversmooth the images, but are better dealing
with Gaussian and speckle noises. We also conducted two
case studies, content based image retrieval and pedestrian
detection, where we applied third party image analysis algo-
rithms to the original, noisy and reduced images.

We found that the proposed Pmode and Cmode algorithms
are better at preserving accuracy of the subsequently applied
methods in the presence of salt and pepper noise. In all cases
significant acceleration of the queries (in CBIR) and detec-
tion (Pedestrian) was achieved by using the reduced images,
and the accuracy of these methods was better when compared
to the large-sized but noisy images. The question as to which
reduction method to use depends much on the type of noise
in the images. For salt and pepper noise we recommend
the mode-like reduction, whereas for Gaussian and speckle
noise mean-based local reduction and F-transform methods
are preferable.
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