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Abstract. Rainfall prediction is a challenging task due to its dependency 
on many natural phenomenon. Some authors used Hurst exponent as a 
predictability indicator to ensure predictability of the time series before 
prediction. In this paper, a detailed analysis has been done to ascertain 
whether a definite relation exists between a strong Hurst exponent and 
predictability. The one-lead monthly rainfall prediction has been done for 19 
rain gauge station of the Yarra river basin in Victoria, Australia using 
Artificial Neural Network. The prediction error in terms of normalized Root 
Mean Squared Error has been compared with Hurst exponent. The study 
establishes the truth of the hypothesis for only 6 stations out of 19 stations, 
and thus recommends further investigation to prove the hypothesis. This 
concept is relevant for any time series which need to be used for real time 
process control. 

1 Introduction 
Due to rapid growth of population, urbanization and industrialization, the demand for 

water has increased tremendously. The sustainable planning of water resources of a country 
needs prediction of hydrological and meteorological parameters among which the spatial and 
temporal variability of rainfall is indispensable due to its importance in issuing flood warning 
and to plan for crop scheduling. When considering process automation and control 
particularly under the changing Industry Revolution 4.0 scenario, the forecasting of a given 
variable from its time series plays very important role. Before forecasting, it is preferred to 
ensure that the time series is actually predictable. For example, Qian and Rasheed [1] have 
studied the predictability of financial time series data. In this study, rainfall prediction is 
considered.  
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When compared to the traditional statistical methods, the performance of Artificial Neural 
Network (ANN) is reported to be the best in rainfall prediction [2, 3]. Hence ANN is being 
more commonly adopted for rainfall predictions [4, 5, 6, 7, 8]. The ANN is also used in many 
other hydrological applications such as modeling of runoff, improving spatial interpolation 
of rainfall, bias correction of simulated climate data, modeling of flash flood prediction etc. 
[2, 9, 10, 11, 12] 

Since prediction of rainfall is a very arduous task due its chaotic nature and its dependency 
on many other climatological parameters, the researchers’ adopted many methodologies as 
recourse of rainfall prediction using ANN. For instance, Haviluddin et al., [13] had attempted 
to improve the prediction by changing the hidden layer and epochs. Some authors hybridized 
ANN with other techniques to improve predictions. Ramana et al. [14] integrated wavelet 
technique with ANN. Mohd-Safar et al. [6] hybridized ANN with Fuzzy Logic to predict 
short term rainfall in tropical climate. Yet others used mutual information techniques for the 
identification of best input variable among various available input parameters to predict 
rainfall [15]. Pre-processing of inputs has also been commonly used to improve rainfall 
prediction using ANN [16]. 

Despite all such efforts, developing a robust rainfall prediction model continue to remain 
a challenge. Some researchers tried to ascertain first if a rainfall series is predictable or not 
before attempting prediction by using the knowledge of the memory effect of the time series 
[5]. If a time series have correlation among themselves either as a short memory or long 
memory then the predictability will be more. Hurst exponent is a measure of long term 
memory having value between 0 and 1. If the Hurst exponent value in very near to 0.5, then 
the time series is random. On the other hand, if the Hurst exponent value is close to either 0 
or 1, the current trend will persist or show anti-persistent respectively in future as well. It is 
believed hypothetically that a persistent time series will always be predictable because of its 
low randomness. Some authors used Hurst exponent as a measure of predictability, but the 
actual predictability is not considered in the scope of their reported works [17, 18, 19, 20]. 
For instance, Rangarajan andSant [19] proposed a predictability index which is derived from 
Hurst exponent. Rehman [20] explored dependence of rainfall predictability on pressure and 
temperature using predictability indices. Similarly, Rehmanand Siddiqi [21] indicated the 
dependency of temperature and pressure with predictability indices of precipitation and wind 
speed. 

The work reported by Khalili et al.[5] is an attempt towards demonstrating the 
relationship between Hurst exponent and predictability of a monthly rainfall time series of 
50 years. They studied rainfall series in Mashhad station and found Hurst exponent to be 
0.96.They reported that the rainfall prediction is good as predictability is strong with a high 
Hurst value. Since, the relationship between Hurst exponent and predictability of rainfall time 
series has not received sufficient attention, it is necessary to investigate in more detail the 
validity of this hypothesis. This study investigates the Hurst exponent of 19 stations in the 
Yarra River catchment in Victoria, Australia. ANN is used for one lead prediction. 

2 Study area and data set 
The Yarra River catchment comprises of three segments which are upper, lower and middle. 
The lower segment is an urbanized one, which in danger of flash flood, if any extreme rainfall 
occurs in middle segment. Also the lower segment is highly depends on middle segment 
catchment for its water requirement [22]. Though area is less, it is one of the highest 
productive regions in Victoria. Hence, rainfall-related studies are of importance for this 
catchment [23]. 

The observed monthly rainfall time series from January 1981 to December 2012 of the 
middle segment of Yarra River Catchment are used in this study. To study the predictability, 
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Fig. 1. Location of the study area and the nineteen rain gauge stations 

3 Methodologies 

Many methods are available to find the Hurst exponent, of which the rescaled range (R/S) 
analysis method is commonly adopted by many researchers [18, 19, 20].To predict the 
rainfall, ANN is used in this study. Both R/S analysis method and ANN technique are 
explained in the upcoming sub-section. 

3.1 R/S Analysis 

For prediction of Nile River flooding, a British Water Engineer, Harold E. Hurst developed 
the R/S analysis method [20].  
 
The procedure to find the Hurst Exponent is as follows: 
 

1) The data have to be arranged into a number of different time length (size) of data, 
Then the Rescaled range of each size will be calculated as follows, 
 

(𝑅𝑅
𝑆𝑆) = 𝑅𝑅𝑡𝑡

𝜎𝜎𝑡𝑡
for t = 1,2,3, . . . . . . . n                     (1) 

 
where: 
 
(𝑅𝑅

𝑆𝑆) = the rescaled range for the size under consideration 
 
σt= the standard deviation for the range under consideration 
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𝑅𝑅𝑡𝑡 = [max(𝑦𝑦1, 𝑦𝑦2, … … . . 𝑦𝑦𝑡𝑡) − min(𝑦𝑦1, 𝑦𝑦2, … … . . 𝑦𝑦𝑡𝑡)]   𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1,2, … . 𝑛𝑛       (2) 
 
Where: 
 
Rt = the widest spread in each range 
 

 
𝑦𝑦𝑡𝑡 =  ∑ (𝑥𝑥𝑖𝑖 −𝑡𝑡

𝑖𝑖=1 𝜇𝜇) 𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡 = 1, 2,3 … . . 𝑛𝑛                           (3) 
 
𝑦𝑦𝑡𝑡  = the new time series adjusted for deviations from the mean 
𝑥𝑥𝑖𝑖= any of the value in the range 
μ = the mean for the range  
 

2) Calculate the logarithmic values for the size of each region and for each region’s 
rescaled range 

3) Plot the logarithm of the size (x-axis) of each series versus the logarithm of the 
rescaled range (y-axis). Slope of the line is the ‘Hurst Exponent’ 

3.2 Artificial Neural Network 

The architecture of ANN is motivated by the structure of the human brain and nerve cells. 
This technique is used identifying the statistical pattern present in the time series and applies 
it to unknown data to predict. A network of countless simple elements called neurons with a 
small amount of local memory is considered. The neurons are connected through connections 
which carry numeric data encoded by various means. Each neuron operates only when it 
receives data through the connections. The architecture is formed by the learning algorithm 
which is responsible for the extraction of the regularities present in the data through the 
finding of a suitable synapses set during the process of observation of the examples. 
Accordingly, ANNs solve problems by self-learning.  
 The feed-forward architecture is used in this study. One input layer, one output layer and 
one or more hidden layers are available in the architecture. The information passes from the 
input layer to the output layer through hidden layer. Each layer is fabricated by several 
neurons, and the layers are interconnected by a set of weights. Neurons operate the input and 
transform it to produce an analog output. More details about ANN have been discussed in [9, 
24, 25, 26]. 
 
The performance of the forecast is evaluated by the normalized root-mean squared-error 
(NRMSE) goodness-of-fit measure, represented by the following equation: 
 

 
         (4) 

 
 
Where, MAX= highest value of the validation set 
              MIN = Lowest value of the validation set 
and,  Root-mean squared-error RMSE is calculated as follows, 
 
 
        (5) 
 
 

    
2

1

1 
n

isim XX
n

RMSE
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NRMSE



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Where X is the variable that is being forecasted; the subscripts m and s represent the measured 
and the simulated values, respectively, and n is the total number of training records. 

4 Results and Discussions 
The averages, standard deviations and Hurst exponents for the Rainfall time series of all the 
19 rain gauge stations are tabulated in Table 1.For all the 19 stations, 384 values of monthly 
data are used for one-lead monthly prediction. To develop the ANN model, out of the 383 
data values, the first 150 are used for training, the next 150 are used for testing and the 
remaining 83 are used for validation. The optimal architecture is found to be 13 hidden 
neurons using logistic activation function. The calculated NRMSE for all the 19 stations are 
also given in Table 1.  
 It is seen that for all the stations, Hurst exponent ranges from 0.66 to 0.88 and NRMSE 
ranges from 0.12 to 0.19. As per the hypothesis, a lower value of NRMSE is expected for a 
high value of Hurst exponent. But, from Table 1, it is seen that only in six stations this 
hypothesis is found to be true. Hence this outcome doesn’t fully support the conclusions 
arrived at by Qian and Rasheed [1] for the financial data. This may be due to the difference 
in the characteristics of the financial data and rainfall data. The structures of the rainfall time 
series do not have serial correlation as much as in financial time series. From this, it can be 
concluded that Hurst exponent value also depends on the pattern of the data used.   
 Further, interesting information can be observed in Table 1 that the stations having 
identical Hurst exponent can have dissimilar NRMSE also.  For example, Hurst exponent for 
the stations Fernshaw, Gladysdale (Little Feet Farm), Seville and Silvan are same i.e.0.72, 
but the NRMSE values are different i.e., 0.15, 0.19, 0.16 and 0.16 respectively. This shows 
evidently that the higher Hurst exponent time series are predictable but not always.  
  For discussion we considered only Fernshaw and Gladysdale station, due to its identical 
Hurst exponent with highest deviation in NRMSE. The time series plots of these two stations 
are shown in Figure 2 and Figure 3 respectively. Both these stations have negative trend 
which is not statistically significant.   
 The plot of actual and predicted validation set for Fernshaw and and Gladysdale stations 
are shown in Figure 4 and Figure 5 respectively. Despite, both stations having the same Hurst 
exponent , the predictability of rainfall for Fernshaw is noticeably better than that for 
Gladysdale. This leads to the conclusion that there is a need to further investigate the pattern 
of rainfall and Hurst exponent estimation and it is difficult to conclude clearly about the 
predictability of rainfall time series with the Hurst exponent alone.  
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Table 1. Relation between Hurst exponent and NRMSE for all the rain gauges 

S.N
o 

Station Name Average 
Rainfall 

(mm) 

Standard  
Deviation 
of Rainfall 

(mm) 

Hurst 
exponent 

NRMSE 
 

1 Toolangi (Mount St 
Leonard DPI) 

111.14 55.7 0.66 0.17 

2 Fernshaw 97.43 52.44 0.72 0.15 

3 Black Spur 109.15 58.95 0.67 0.16 

4 Maroondah Weir 
(Melbourne Water) 

88.1 44.96 0.71 0.17 

5 Healesville (Mount 
Yule) 

74.52 37.9 0.71 0.19 

6 Tarrawarra 70.29 37.26 0.74 0.18 

7 TarrawarraMonastery 65.14 33.36 0.66 0.17 

8 Coranderrk Badger Weir 114.98 58.36 0.66 0.15 

9 Coldstream 68.17 35.99 0.77 0.17 

10 Healesville 
(ValleyViewFarm) 

80.81 40.68 0.69 0.17 

11 Seville 76.67 40.12 0.72 0.16 

12 Gladysdale 
(LittleFeetFarm) 

101.49 51.2 0.72 0.19 

13 Powelltown DNRE 114.25 60.63 0.7 0.18 

14 Kangaroo Ground 66.24 34.08 0.7 0.14 

15 Lilydale 71.64 38.39 0.76 0.15 

16 Montrose 97.63 55.79 0.88 0.12 

17 Silvan 94.64 48.25 0.72 0.16 

18 Monbulk (Spring Road) 105.22 50.9 0.69 0.19 

19 Ferny Creek 114.18 59.55 0.78 0.17 
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Fig. 2. Time series plot of rainfall at the Fernshaw station 
 

 
 
Fig. 3.Time series plot of rainfall at the Gladystale station 
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Fig. 4. Comparison of actual vs predicted rainfall of validation set in  Fernshaw station 

 

 
 
Fig. 5. Comparison of actual vs predicted rainfall of validation set in Gladysdale station 
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5 CONCLUSIONS 
1) Out of the nineteen stations considered in this study, only in 6 stations a strong Hurst 

indicated a stronger predictability.  
2) The hypothesis that a value of Hurst exponent greater than 0.5 indicates persistence 

of a time series and hence predictability is not found to hold true always. Thus, this 
hypothesis needs further investigation.  
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