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Abstract 
 

It is well established that different types of exercise can provide a powerful stimulus for mitochondrial 

biogenesis. However, there are conflicting findings in the literature and a consensus has not been reached 

regarding the efficacy of high-intensity exercise to promote mitochondrial biogenesis. The purpose of this 

review is to examine current controversies in the field and to highlight some important methodological 

issues that need to be addressed in order to resolve existing conflicts. 

 

 

 

 

 

 

  



1. Introduction 
 

Mitochondria are double-membrane organelles that generate cellular energy via oxidative 

phosphorylation (OXPHOS). In skeletal muscle, they range in size from 0.1 to 5.0 µm in diameter and 

form a reticulum that provides a pathway for energy distribution along the cell (36, 102) (Figure 1). 

Mitochondria contain their own genome, the mitochondrial DNA (mtDNA), which encodes for 37 

proteins - of which 13 are essential polypeptides of the electron transport chain (ETC). However, the 

vast majority of the mitochondrial proteome (~ 1100 proteins) consists of nuclear-encoded proteins that 

are imported into the mitochondria.  

 

 

 

Figure 1. (A) Structure of a skeletal muscle fiber. Two sub-populations of mitochondria can be found: 

subsarcolemmal mitochondria (SS) and intermyofibrillar mitochondria (IMF). (B) Transversal illustration 

of a skeletal muscle fiber. Mitochondria create a reticulum that connects SS and IMF mitochondria for 

optimal energy distribution. (C) Transmission electron microscopy transversal image from a human 

skeletal muscle biopsy showing the nucleus (N), and the SS and IMF mitochondria. (D) Image of a 

mitochondrion. High-resolution imaging allows visualization of the densely-packed cristae within a 

mitochondrion. (E) Image of how a mitochondrion is usually illustrated in textbooks or research articles. 

Notice how the mitochondrial DNA (mtDNA) and the mitochondrial ribosomes are found in the matrix. 

The electron transport chain respiratory complexes are located on the IMM, and for the most part in the 

cristae. 



As mitochondria are involved in many essential cell functions related to cellular metabolism and 

homeostasis (120), it is not surprising that sub-optimal mitochondria characteristics have been related to 

an increasing number of diseases and medical conditions (99, 107) (Figure 2). Mitochondria are also 

thought to be important for endurance performance, as their content and respiratory function have been 

correlated with maximal oxygen consumption (�̇�O2max) (58, 127), time-trial performance (45, 64), 

and the lactate threshold (LT) (61). Hence, a better understanding of how mitochondria adapt to 

exercise has implications for both health and endurance performance. 

 

It is well established that different types of exercise can provide a powerful stimulus for mitochondrial 

biogenesis (55, 76, 85, 114). However, there are conflicting findings in the literature, and a consensus has 

not been reached, regarding the efficacy of high-intensity exercise to promote mitochondrial biogenesis. 

The purpose of this review is to examine current controversies in the field and to highlight some important 

methodological issues that need to be addressed to resolve existing conflicts. 

 

 

 

Figure 2. Summary of diseases or medical conditions that have been linked to sub-optimal mitochondrial 

characteristics. 



2. Mitochondrial Biogenesis  

Despite its widespread use in the literature, there is currently no widely-accepted definition of 

“mitochondrial biogenesis” (87, 117) (a Google Scholar search for “mitochondrial biogenesis” returns > 

60 000 hits) and this has contributed to confusion and conflicting interpretations about the effects of 

exercise on mitochondrial biogenesis. Given its etymological meaning (i.e., the synthesis of new 

mitochondrial components), it has been suggested that mitochondrial biogenesis can best be assessed by 

measuring the rate of mitochondrial protein synthesis (mitoPS) (1, 87). However, a relationship between 

changes in mitoPS and subsequent changes in mitochondrial content (and/or respiratory function) remains 

to be established; this relationship cannot be assumed, especially as increases in muscle protein synthesis 

(MPS) following a single session of resistance exercise do not correlate with subsequent changes in 

muscle size in response to repeated resistance exercise sessions (i.e., exercise training) (80, 89). Further 

research is needed to establish whether exercise-induced changes in mitoPS can provide quantitative or 

qualitative information about subsequent training-induced changes in mitochondrial content and/or 

respiratory function before mitoPS can be adopted as the best measure of mitochondrial biogenesis. 

Changes in mitoPS occur in conjunction with the processes of mitochondrial remodeling (mitochondrial 

fusion and fission) (28), as well as catabolic events such as mitochondrial protein breakdown (mitoPB), 

mitophagy (19), and apoptosis (131) (Figure 3). Thus, measuring only the global synthesis rate of 

mitochondrial proteins does not provide information about mitochondria remodeling, or changes in 

mitochondrial content (the net outcome of mitoPS and mitoPB), mitochondrial respiratory function, or 

other aspects of mitochondrial quality such as cristae density or supercomplex formation (84, 117). 

Therefore, while it is of value to assess exercise-induced changes in mitoPS, which indicates that 

mitochondrial biogenesis has been activated, researchers should consider including a comprehensive 

assessment of training-induced changes in mitochondrial content, structure, quality, and respiratory 

function, to put the results of mitochondrial biogenesis in context (12, 117). Furthermore, to expand the 

knowledge of the mechanisms leading to exercise-induced mitochondrial biogenesis, measurement of 

changes in gene expression, as well as proteins and transcription factors mediating these molecular 

processes, should be included where possible. 



 

Figure 3. Schematic representation of the effects of high-intensity exercise and training on mitochondrial 

adaptations. AMP: Adenosine monophosphate, ATP: Adenosine triphosphate, Ca2+: Calcium, La-: 

Lactate, Pi: Inorganic phosphate, ROS: Reactive oxygen species, NAD: Nicotinamide adenine 

dinucleotide, CaN: Calcineurin, CAMK: Ca2+/calmodulin-dependent protein kinase, AMPK: AMP-

activated protein kinase, p38: p38 mitogen-activated protein kinase, TFEB: Transcription factor EB, 

NFAT: Nuclear factor of activated T-cells, PGC-1α: Peroxisome proliferator-activated receptor gamma 

co-activator-1a, p53: Tumor protein 53, TFs: Transcription factors, NUGEMPs: Nuclear genes encoding 

mitochondrial proteins, OXPHOS: Oxidative phosphorylation, TCA cycle: Tricarboxylic acid cycle, 

TFAM: Mitochondrial transcription factor A, mtDNA: Mitochondrial DNA, mitoPS: Mitochondrial 

protein synthesis, mitoPB: Mitochondrial protein breakdown. 



3. High-intensity exercise and mitochondrial biogenesis  
 

a)  Defining high-intensity exercise  

While others have attempted to provide 

standardized definitions of endurance exercise 

intensity (133), a consensus has not been reached. 

For the purpose of this review, we have defined 

high-intensity exercise as including intervals 

performed above 75% of the maximal power 

(Ẇmax) achieved during an 8- to 12-minute 

graded exercise test (GXT)1. Consequently, this 

includes both high-intensity interval exercise and 

training (HIIE and HIIT, respectively) and sprint-

interval exercise and training (SIE and SIT, 

respectively). Moderate-intensity continuous 

exercise or training (MICE or MICT, 

respectively) has been defined as consisting of 

continuous exercise performed at an intensity 

below 75% Ẇmax (Figure 4). We acknowledge 

this classification is imperfect, and, as we discuss 

later, this lack of consensus on how to define 

high-intensity exercise is a major hurdle to 

reconciling some of the conflicting findings in 

the literature.  

 

 

  

                                                 
1 Longer GXTs will underestimate Ẇmax and the final power is typically referred to as peak power (Ẇpeak) (9).  

Figure 4. Schematic representation of the definitions 

used in this review to categorize (A) moderate-intensity 

continuous exercise or training (< 75% Ẇmax), and high-

intensity exercise or training, which includes both (B) 

high-intensity, and (C) sprint-intervals (> 75% Ẇmax). 

Adapted from MacInnis & Gibala (75). 
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b) Genes and proteins associated with mitochondrial biogenesis  

The measurement of exercise-induced changes in genes and proteins is not sufficient by itself as a 

measurement of mitochondrial biogenesis (i.e., the synthesis of new mitochondrial components) (87); 

nonetheless, these changes can provide an indication that mitochondrial biogenesis has been activated. In 

this regard, many studies have reported exercise-induced changes in the mRNA or the sub-cellular 

localization of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α, encoded by the 

PPARGC1A gene) (3, 21, 34, 42, 44, 73)  - often described as the “master regulator” of mitochondrial 

biogenesis (67, 103, 104). However, while there is evidence that exercise-induced changes in both PGC-

1α mRNA and protein are intensity-dependent (29, 44, 98), the initiation of mitochondrial biogenesis is 

complex and the assessment of exercise-induced changes in other genes and proteins is important to better 

explain some of the purported intensity-dependent effects of exercise on mitochondrial biogenesis (67, 

71). Potential targets that warrant further investigation include  p53 (44, 45), transcription factor EB 

(TFEB) (56, 79), nuclear factor of activated T-cells (NFAT) (18), nuclear respiratory factor (NRF-1) (3, 

7, 67), and mitochondrial transcription factor A (Tfam) (67). However, to advance the field, researchers 

need to go beyond examining just a small fraction of the potential total number of genes and proteins that 

are altered by high-intensity exercise. The reduced costs and the increased accessibility and sensitivity of 

several “omics” techniques (e.g., transcriptomics, proteomics) provide an opportunity to obtain an in-

depth map of all the genes and proteins associated with mitochondrial biogenesis that change in response 

to high-intensity exercise (5, 54, 72). More research is also needed to better understand how high-intensity 

exercise affects protein abundance in different sub-cellular locations (e.g., in the cytosol, the nucleus, and 

the mitochondria) and protein-protein interactions (e.g., using techniques such as quantitative LC-MS/MS 

and co-immunoprecipitation, respectively). 

     c) Mitochondrial protein synthesis  

Even though it has been proposed that assessing mitoPS may best reflect exercise-induced mitochondrial 

biogenesis (87), few studies have directly assessed changes in mitoPS in response to high-intensity 

endurance exercise. In one of these studies, a single session of unilateral cycling (45 min, 75% �̇�O2max) 

was reported to elicit similar increases in mitoPS 4 h post-exercise (~2.0 to 2.5-fold) in both untrained 



and trained participants (136). High-intensity cycling has also been shown to induce greater mitoPS 

compared to higher volume (~1.5-fold greater following 10 x 1 min at ~86% Ẇmax vs 30 min at ~59% 

Ẇmax) (6) or work-matched (~2.5-fold greater with 30 min at 60% Ẇmax vs 60 min at 30% Ẇmax) (27) 

moderate-intensity cycling. Even though the “high” intensity protocol in this latter study was less intense 

than what is typically defined as high-intensity exercise, these studies indicate high-intensity exercise 

may provide a more potent stimulus to increase mitoPS than moderate-intensity exercise; however, further 

research is clearly required to resolve this controversy. 

 

There are some methodological issues that likely contribute to existing conflicts. For example, changes 

in mitoPS are sometimes inferred from changes in protein synthesis in the sarcoplasmic fraction (sarcoPS) 

(6). This is based on the notion that during fractionation the majority of skeletal muscle mitochondria is 

retained in the sarcoplasmic fraction and changes in sarcoPS should indirectly reflect changes to mitoPS 

(a notion supported by unpublished data from our laboratory). However, while the sarcoplasmic fraction 

may be enriched with mitochondria, it will also contain other cellular components; thus, quantifying 

protein synthesis rates within this fraction is likely to provide only a crude estimate of mitoPS. Where 

tissue sample sizes permit, researchers should aim to directly measure mitoPS. Future research would also 

benefit from incorporating additional analyses to verify the purity of each analyzed sub-fraction. 

 

The fractional protein synthesis rates of mixed muscle protein, and its sub-fractions, are typically 

quantified via the infusion of stable isotope-labelled amino acid tracers. However, while this technique 

has enabled researchers to unravel the complexities of protein synthesis, there are limitations to this 

approach (for a comprehensive critique, see (17, 83, 134)). These limitations include that measurements 

of protein synthesis are restricted to short durations, in laboratory-controlled settings, and often with 

feeding strategies that don’t reflect real-world practices. An alternative technique, involving the oral 

administration of the stable isotope deuterium oxide (D2O, “heavy water”) (6, 17, 83, 134, 135), has been 

validated for assessing protein synthesis over extended time-frames and in free-living conditions; more 

research investigating exercise-induced changes in mitoPS with this method are warranted. Although 

methodologically challenging, exercise-induced changes in mitochondrial protein breakdown also 

contribute to the regulation of mitochondria and warrant further research.  



 d) Other methodological considerations 

 

i. Biopsy timing 

 

High-intensity exercise is a powerful stimulus affecting the content, location and/or activity of nuclear 

proteins, and genes encoding mitochondrial proteins, leading to an increase in mitoPS (5, 30, 44, 49, 54). 

However, these changes are transient and research has shown that the timing of muscle sampling is a 

critical methodological issue contributing to current controversies regarding the molecular response to 

exercise (8, 44, 45, 69, 73, 74, 82) (Figure 5). Despite this, most studies continue to assess changes in 

proteins, genes, and mitoPS, only at convenient, and often arbitrary, time points. This has limited our 

current “understanding” of the molecular response to high-intensity exercise and, consequently, much of 

the knowledge in this area remains incomplete (and some is likely to be incorrect) (59, 60). Further 

research is required to establish a comprehensive time course for changes in the content, location and/or 

activity of proteins and genes, and mitoPS, in response to high-intensity exercise (and other types of 

exercise); this time course should also be investigated in different human populations (e.g., men, women, 

young, elderly). This fundamental issue needs to be resolved before addressing some of the more 

complex issues concerning the effects of high-intensity exercise on mitochondrial biogenesis. 

 

Figure 5. Schematic representation of the time course and magnitude of changes in the abundance of 

nuclear proteins (blue bars), the expression of different genes associated with mitochondrial biogenesis 

(colored lines), and mitochondrial protein synthesis (dotted black line) following high-intensity exercise.  



ii. Fiber-specific effects 

 

Most research has investigated exercise-induced changes in factors associated with mitochondrial 

biogenesis in whole-muscle samples. However, mammalian skeletal muscle is comprised of different 

fiber types (for a comprehensive review, please see (109)) and fiber-specific changes may contribute to 

some of the controversies concerning the effects of high-intensity exercise on mitochondrial biogenesis. 

The widely-known size principle states that slow-twitch fibers (type I) have a lower threshold of activation 

and will be utilized at lower exercise intensities, while fast-twitch fibers (type IIa and IIx) have a higher 

threshold and will be increasingly activated as exercise intensity increases (26, 50) (Figure 6). Based 

on the size principle, it has been hypothesized that different exercise intensities may induce fiber-specific 

changes (68). This hypothesis is supported by the observation that most measured proteins were equally 

affected in type I and II fibers following moderate-intensity exercise (70% Ẇmax for 30 min), while there 

was a fiber-specific regulation of some proteins (e.g., AMPK phosphorylation) following high-intensity 

exercise (6 x 1.5 min at ~ 100% Ẇmax with 2.5 min of active rest between bouts) (68).  However, two 

other studies were not able to detect any significant difference in exercise-induced glycogen utilization  

or cell signaling (PGC-1α and PDK4 gene expression) between muscle fiber types after moderate-

intensity (30 to 90 min at 60 to 65% Ẇmax) and high-intensity exercise (8 x [20 s at 170% of Ẇmax:10 s of 

rest] or 180 x [12 s at 150% of Ẇmax:18 s at 40% of Ẇmax]) (110, 130). In one of these studies, this was 

attributed to the absence of fiber-specific changes in muscle glycogen content between the two exercise 

conditions (110). Further research is required to clarify the role of relative exercise intensity on fiber 

recruitment and fiber-specific muscle glycogen depletion, and to investigate if fiber-specific changes in 

mitochondrial biogenesis contribute to some of the purported benefits of high-intensity exercise compared 

with other types of exercise. 



 

 

Figure 6. Illustration of the size principle and how it may influence fiber-type-specific glycogen depletion 

(37-39, 68, 121) and cell signaling (68) in response to different exercise intensities.   



iii. Influence of sex  

 

Even though there are roughly as many women in the world as men, women are notably under-represented 

as participants in the exercise-science literature (women represent less than 40% of the participants in 

published studies (23)). Most of our understanding of mitochondrial biogenesis in response to high-

intensity exercise has consequently been gained using men, with the ensuing results assumed to be similar 

for women. However, women have been reported to have fiber-type differences to men, with a greater 

type I and a lower type II cross-sectional area (78). Additionally, women oxidize more lipids, and less 

carbohydrates and proteins, compared with men during endurance exercise (123). While these differences 

are unlikely to be due to differences in testosterone levels (132), 17-β estradiol potentially plays a role 

and may also influence the function of mitochondria (32, 77, 88). It has therefore been hypothesized that 

there may be sex differences associated with exercise-induced mitochondrial biogenesis (92, 105), 

although few studies have directly assessed this. 

 

At rest men and women have a similar abundance of mitochondrial proteins, including those involved in 

the transcriptional regulation of mitochondrial biogenesis (88). It has also been reported that exercise-

induced phosphorylation of AMPK, ERK1/2, and p38 MAPK was not different between men and women 

(33). Consistent with this, a similar expression of genes associated with mitochondrial biogenesis has 

been observed following a single session of high-intensity exercise (three 30-s “all-out” cycling bouts) in 

men and women (118). However, one study has reported that sex differences for exercise-induced changes 

in PGC-1α gene expression depended on the menstrual cycle phase (32). The question of whether there 

are sex differences for changes in protein abundance, gene expression, and mitoPS, in response to high-

intensity exercise (and other types of exercise) warrants further research.  

 

An unresolved methodological issue that may be contributing to existing conflicts, is how best to match 

men and women. It has been suggested that matching on the basis of �̇�O2max per kilogram of fat-free mass 

is the most appropriate way to match men and women (118, 123). However, women typically have lower 

aerobic power, less muscular strength, lighter body mass (116), lower power output during “all-out” 

(sprint) exercise (35, 108), and greater fat metabolism during sub-maximal exercise (123). Thus, more 

research is also required to establish how best to match the metabolic and mechanical stress of exercise 

between men and women. This issue is discussed further in the next section.  



iv. Relative exercise intensity and the ‘first bout’ effect  

 

When investigating the effects of high-intensity exercise on mitochondrial biogenesis, an important 

methodological issue to considere is the reference point used to calculate relative exercise intensity 

(Figure 7a). We have previously observed that the same relative exercise intensity (expressed as a percent 

of Ẇmax or Ẇpeak) can differ by more than 150 W depending on the stage duration of the GXT (41). 

Thus, caution is required when comparing the exercise-induced changes in protein abundance, gene 

expression, or mitoPS, reported in different studies when exercise intensities are based on values 

determined from different GXT protocols. It has been suggested that if the aim is to compare exercise-

induced changes in individuals under similar physiological conditions, then exercise intensity should not 

be determined relative to Ẇpeak (or Ẇmax) but should be calculated relative to the LT (4). These authors 

observed that markers of metabolic stress were greater in untrained compared with trained participants 

when exercise was performed at 70% Ẇpeak, but were similar during exercise performed at 95% LT. 

Consistent with this, when cycling at the same percentage of Ẇpeak glycogen utilization is greater in 

trained individuals with a similar Ẇpeak but a lower LT (25). Exercise-induced changes in mitochondrial 

biogenesis in response to high-intensity exercise may therefore be more strongly associated with exercise 

intensity expressed relative to the LT than relative to Ẇpeak or Ẇmax. The observation that the LT is 

dependent on both the GXT protocol and the calculation method further complicates this issue (10, 11, 

66). How the determination of relative intensity influences factors associated with exercise-induced 

mitochondrial biogenesis has not been adequately studied; this issue needs to be addressed to resolve 

existing conflicts about the effects of different exercise intensities, in different populations, on 

mitochondrial biogenesis. 

 



 

Figure 7a. Schematic representation of a typical lactate curve from an untrained individual (red), and 

trained individuals with either a low (green) or a high (purple) lactate threshold (LT), respectively. 

Exercise intensity can be determined relative to the LT (dashed arrows), the maximal power (Ẇmax) 

achieved during a graded exercise test (GXT) that consists of short (e.g., 1-minute) stages of progressive 

increases in power (or velocity for running and swimming protocols), or peak power (Ẇpeak) achieved 

during a GXT that consists of longer (e.g., 4-minute) stages of progressive increases in power or velocity 

(22, 97, 139). This schematic highlights how the relative exercise intensity depends on the GXT design, 

the anchor point chosen, and the training status. Note that in this example, the lactate threshold could 

range from a value of 50 to 90% depending on whether it is expressed relative to Ẇmax or Ẇpeak and 

depending on training status. 



A second important methodological issue is the impact of recruiting individuals who are naïve to 

performing high-intensity exercise (Figure 7b). It has been reported that the transcriptional response after 

the first session of resistance exercise is reflective of muscle damage and differs substantially from a 

second resistance exercise session performed 48 h later (95). Research has also shown that increases in 

PGC-1α mRNA in response to high-intensity exercise are reduced with every subsequent session, even 

when the exercise intensity is maintained (100). Similarly, rates of MPS have been reported to decrease 

by ~ 40% in response to the same resistance session performed every second day during an eight-day 

resistance training period (135). While it has not been investigated, exercise-induced changes in mitoPS 

are probably also similarly decreased when high-intensity exercise is repeated. These observations 

suggest that changes in proteins, genes, and mitoPS, in individuals who are naïve to performing high-

intensity exercise may represent an atypical response. Familiarizing participants to the high-intensity 

exercise to be performed, before conducting the experimental (i.e., biopsy) trials, may help to resolve 

some of the conflicting findings reported in the literature. 

 

 

 

Figure 7b. Schematic representation depicting how the changes in gene expression (curved lines) and 

protein synthesis (hatched boxes) following an initial bout of high-intensity exercise diminish in response 

to subsequent sessions of the relative same stimulus.  

  



4. Outcomes of mitochondrial biogenesis  

 

a) Mitochondrial content versus respiratory function  
 

If mitochondrial biogenesis is defined as “the making of new components of the mitochondrial reticulum”, 

it follows that repeated exercise sessions (i.e., exercise training) should lead to increases in mitochondrial 

content and/or respiratory function (and possibly other changes, such as increased cristae density (96) or 

supercomplex assembly (46)). However, although it is sometimes assumed that mitochondrial content and 

respiratory function increase in parallel (62), it is clear that this is not always the case (42, 43). Training-

induced changes in mitochondrial respiratory function have been reported without concomitant changes 

in mitochondrial content (45, 63) and changes in mitochondrial content are not always accompanied by 

an increase in mitochondrial respiratory function (90, 139). It has subsequently been suggested that 

training-induced changes in mitochondrial content and respiratory function may be regulated by different 

types of exercise, which highlights the need to assess both when conducting training studies (42).   

 

b) Mitochondrial Content  

Since the pioneering work of John Holloszy in the 1960’s, it has been known that exercise training can 

increase mitochondrial content (as assessed by total protein content of the mitochondria) (84). Subsequent 

research using transmission electron microscopy (TEM), considered the ‘gold standard’ for the 

measurement of mitochondrial content (102), has confirmed these results in humans (40, 52, 57, 81, 90, 

91, 106, 113, 124, 126). However, while TEM can provide measures of mitochondrial content, and also 

size and shape, it requires specialized equipment and expertise not available in all laboratories. Therefore, 

biochemical measurements are often used as an indirect measure of mitochondrial content. The most 

widely-used biomarker for mitochondrial content in skeletal muscle is citrate synthase (CS) activity, and 

a strong correlation has been reported between resting CS activity and resting mitochondrial content - as 

measured by TEM (70). Given that many studies have assessed training-induced changes in CS activity, 

we recently pooled the results of the published research and concluded that training volume is an 

important determinant of changes in mitochondrial content (42). However, others have reported that high-

intensity training (i.e., sprint interval training) increases mitochondrial content to a similar extent to MICT 

(76), despite a reduced exercise volume, and further research is required to resolve these conflicting 

conclusions.  



Despite the wide-spread use of CS activity as an indirect biomarker for changes in mitochondrial content, 

there are some limitations with this approach. One limitation is that it is difficult to compare values 

between studies, as different laboratories use different methods and different units of measurement (e.g., 

μmol · min−1 (13, 125), μmol·min−1·g of tissue−1 (70), μmol·min−1·g protein−1  (137), μmol·min−1·μg 

protein−1 (31), or mIU· mg protein−1 (85)). Even when reported in the same units, CS activity values can 

be very different between studies (sometimes by a factor of 103 (128)). Another unresolved issue is how 

well training-induced changes in CS activity correlate with training-induced changes in mitochondrial 

content (85). The field would benefit from the adoption of a standard analysis method and reporting unit 

for CS activity, as well as studies to determine whether training-induced changes in CS activity provide 

a valid estimate of changes in mitochondrial content. 

 

c) Mitochondrial Respiratory Function 

 

Exercise training can be a potent stimulus to improve mitochondrial respiratory function (76). In a recent 

review, it was reported that exercising at higher intensities provides a greater stimulus to increase 

mitochondrial respiratory function (42). However, few studies have directly compared the effects of 

training at different exercise intensities and more research is required. 

 

The assessment of skeletal muscle mitochondrial respiratory function is typically conducted on either 

isolated mitochondria or permeabilized muscle fibers obtained from muscle biopsy samples. The use of 

permeabilized muscle fibers is considered to be the ‘gold standard’, as it allows for the evaluation of 

individual complexes of the electron transport system in response to the addition of different metabolic 

substrates ex vivo (101). However, mitochondrial respiration measured with this technique is quite 

variable (coefficient of variation [CV] of 15.2% (20), a value consistent with our unpublished CV of 

13%), which raises questions about the ability of this technique to detect meaningful differences in 

response to different types of training (85). It is likely that this variability has contributed to some of the 

conflicting findings reported in the literature, and more attention needs to be directed towards ways to 

improving the reliability of this technique.   

 



Further research is also required to establish the physiological relevance of training-induced changes in 

mitochondrial respiratory function. Supra-physiological substrate concentrations are often used with this 

technique, and it is not clear how representative these are of changes to in vivo mitochondrial respiration. 

It has also been reported that mitochondrial respiratory function exceeds oxygen delivery during maximal 

exercise (15), which raises further questions about the physiological relevance of training-induced 

changes in maximal, ADP-stimulated mitochondrial respiration. The use of sub-maximal substrate 

concentrations and substrate titrations, as is sometimes carried out with ADP, may provide more 

physiologically-relevant results. An increase in ADP-sensitivity, as opposed to an increase in maximal 

oxidative capacity, is thought to provide a more relevant indicator of training-induced improvements in 

the mitochondria (88, 119). Further research is required to establish which, if any, measurements of 

mitochondrial respiratory function are most important for human health and/or performance. 

 

d) Other considerations  

 

i. How best to organize training to promote mitochondrial adaptations?  

 

Most of the research to date on mitochondrial adaptations to training has assigned groups to one type of 

training – either MICT, HIIT, or SIT. However, this mode of training contrasts with that of endurance 

athletes who typically distribute their training across various training zones (112). Some of the largest 

increases in aerobic fitness (53) and mitochondrial respiration (for review see (42)) have been reported 

following a combination of moderate-intensity and high-intensity exercise training. There is also evidence 

that training twice every day (24) or twice every second day (47, 138) may be superior to daily training 

to increase CS activity. There is, therefore, a need to move beyond studies that investigate the effects of 

just one type of training (typically repeated 3 times/week) and to investigate how best to distribute 

different types of training across days, weeks, and months, to optimize mitochondrial adaptations to 

training. 

 

 

 



ii. Longer-duration and time-course studies  

 

The results of short-duration (< 10 weeks) training studies suggest that high-intensity exercise training is 

more effective to increase mitochondrial respiratory function than moderate-intensity training (even when 

training volume is matched) (42). However, the duration of most of these studies was only 4 to 6 weeks 

and the maximum duration of any published study is only 10 weeks. There is a need to investigate the 

effects of longer periods of high-intensity training on mitochondrial adaptations, and to also determine if 

the greater increases in mitochondrial respiration in response to high-intensity compared with moderate-

intensity exercise training are maintained when training is continued beyond 10 weeks. It is also important 

to better understand the time course of mitochondrial adaptations to exercise training. Only two weeks of 

high-intensity training has been reported to increase mitochondrial respiration by 22% in healthy, 

untrained males (76); if this rate of change was to continue, only three to four months would be required 

to achieve values recorded by well-trained to elite athletes (63, 86). It seems more likely the rate of 

increase in mitochondrial respiratory function slows as training duration lengthens, but time-course 

studies (i.e., multiple biopsies at different times during a training program) are required to confirm this 

hypothesis. 

 

iii. Influence of fiber type?  

Research investigating the effects of training on fiber-specific mitochondrial adaptations is scarce. 

Henriksson and Reitman (51) first explored this issue, reporting that 7 to 8 weeks of high-intensity training 

(5 x 4 min at 100% Ẇmax with 2 min rest between bouts) increased succinate dehydrogenase activity 

(SDH) in type II fibers, whereas there was an increase in SDH activity in type I fibers following 7 to 8 

weeks of continuous training (27 min at 80% of Ẇmax). In another study, 6 weeks of moderate-intensity 

training (30 min at 72% Ẇmax) resulted in a similar increase in mitochondrial volume density in both type 

I and II fibers (57). Two of the participants from this study continued training for 24 weeks and showed 

further increases of mitochondrial volume density in type I but not type II fibers. More recent studies have 

not observed fiber-type-specific mitochondrial adaptations following either moderate- or high-intensity 

endurance training (76, 110, 122). The differences between exercise volume and intensity among studies 

make it difficult to rule out differences in fiber-type adaptations following endurance training. More 



research is needed to determine the effects of training, and the role of relative exercise intensity, on fiber-

specific, training-induced, mitochondrial adaptations. It is also important to move beyond the 

measurement of just a few targeted proteins and to take advantage of recent advances in single muscle 

fiber proteomics techniques (93, 94) to measure training-induced changes in hundreds to thousands of 

proteins in single muscle fibers.  

 

iv. Sex differences  

Few studies have investigated possible sex-specific mitochondrial adaptations to training and the studies 

published to date have produced conflicting results. Men and women have been reported to have similar 

increases in mitochondrial area and CS activity in response to moderate-intensity training (124), and in 

CS activity (35, 108, 124) following high-intensity exercise training. However, increases in β-hydroxy 

acyl CoA dehydrogenase (β-HAD) activity were only observed in men after training, although the higher 

basal levels of women in this study may have contributed to this finding (35). Another study reported that 

women had greater COX IV protein content at both baseline and after three weeks of SIT, while muscle 

protein synthesis was higher in men in comparison to women (108). More research is clearly required to 

clarify if there are sex differences for training-induced mitochondrial adaptations.  

 

v. Mitochondrial Memory?  

There is emerging evidence of what has been termed “skeletal muscle memory” – i.e., the ability of 

skeletal muscle to respond differently to an environmental stimulus (e.g., exercise) if the stimulus has 

previously been encountered (115). For example, healthy men had a significantly greater increase in 

lower-limb lean mass following seven weeks of resistance training (3 d/wk) if they had previously (7 

weeks earlier) completed a similar resistance training program (111). It was further suggested the 

mechanistic underpinnings of this muscle memory could be related to epigenetics – modifications of gene 

expression as a result of structural modifications of DNA, without altering the underlying DNA sequence 

(for an extensive review of epigenetic mechanisms in muscle, please refer to (81)). One important 

example of an epigenetic modification is DNA methylation, which usually leads to the suppression of 

gene expression (48). Conversely, hypomethylation (reduced DNA methylation) generally leads to 

enhanced gene expression (14). Both a single session of aerobic exercise and regular aerobic exercise 

training have been reported to decrease the DNA methylation of genes associated with mitochondrial 



biogenesis (e.g., PGC-1α) (129). This suggests there might be an epigenetic memory of previous exercise-

induced mitochondrial biogenesis, and that training-induced mitochondrial adaptations may be enhanced 

in individuals who have previously performed aerobic exercise training. However, in the only study to 

date, increases in CS activity after three months of moderate-intensity endurance training (45 min, 4d/wk) 

were similar to the changes observed when the same participants previously completed (9 months earlier)  

the same endurance training program (72). Further research is required to investigate if there is a skeletal 

muscle memory for other mitochondrial adaptations and to also determine how long any changes in 

methylation are retained. It is also interesting to note that one study reported that only high-intensity (80% 

Ẇpeak), and not low-intensity (40% Ẇpeak), was able to alter the methylation of some of the investigated 

genes (5). Further research is therefore required to investigate the effects of different types of exercise 

on epigenetic modifications and whether high-intensity exercise is associated with a greater or longer 

epigenetic memory of training-induced mitochondrial adaptations than lower-intensity exercise. 

 

 

5. Conclusions  
 

In the last 50 years, there has been much research, and improved understanding, of mitochondrial 

adaptations to training. Despite this, there are many conflicting findings in the literature and a consensus 

has not been reached regarding the role of high-intensity exercise to promote mitochondrial biogenesis. 

This often leads to calls for more research and the use of more advanced methodologies (as we have done). 

However, in this review we have also highlighted that many fundamental questions require attention 

before we can inch closer to solving some of the more complex issues. For example, how should we 

define mitochondrial biogenesis, when should we take muscle biopsies to best capture the molecular 

events associated with mitochondrial biogenesis, and which mitochondrial characteristics are most 

important for human health and/or performance? There is also a pressing need for a consensus on how to 

define high-intensity exercise (especially in terms of the most physiologically-relevant anchor points). 

Finally, although space restrictions did not allow us to discuss the influence of nutrition (e.g., 

carbohydrate and protein ingestion) (2) and training manipulations (e.g., hypoxia, blood-flow restriction 

etc.) (16, 21, 65) on mitochondrial adaptations to high-intensity exercise, more research is also required 

on these aspects. 
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