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Abstract
In contrast to the genetic component in mammary carcinogenesis, epigenetic alterations are particularly important for the
development of sporadic breast cancer (BC) comprising over 90% of all BC cases worldwide. Most of the DNA methylation
processes are physiological and essential for human cellular and tissue homeostasis, playing an important role in a number of key
mechanisms. However, if dysregulated, DNAmethylation contributes to pathological processes such as cancer development and
progression. A global hypomethylation of oncogenes and hypermethylation of tumor-suppressor genes are characteristic of most
cancer types. Moreover, histone chemical modifications and non-coding RNA-associated multi-gene controls are considered as
the key epigenetic mechanisms governing the cellular homeostasis and differentiation states. A number of studies demonstrate
dietary plant products as actively affecting the development and progression of cancer. BNutri-epigenetics^ focuses on the
influence of dietary agents on epigenetic mechanisms. This approach has gained considerable attention; since in contrast to
genetic alterations, epigenetic modifications are reversible affect early carcinogenesis. Currently, there is an evident lack of
papers dedicated to the phytochemicals/plant extracts as complex epigenetic modulators, specifically in BC. Our paper highlights
the role of plant natural compounds in targeting epigenetic alterations associated with BC development, progression, as well as its
potential chemoprevention in the context of preventive medicine. Comprehensive measures are stated with a great potential to
advance the overall BC management in favor of predictive, preventive, and personalized medical services and can be considered
as Bproof-of principle^ model, for their potential application to other multifactorial diseases.
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Introduction

Approximately two million new cases and a half of million
deaths registered annually; breast cancer (BC) has reached an
epidemic scale in the early twenty-first century [1]. Poor sur-
vival rates in young asymptomatic patient cohorts such as the
premenopausal triple-negative breast cancer (TNBC) require
new strategies in the overall BC management, focused on
innovative screening programs in young subpopulations, pre-
dictive diagnosis, effective targeted prevention, and custom-
ized treatments [2–5]. Due to the high incidence of BC world-
wide, there is an urgency in oncology research to better un-
derstand the causes of this disease with the aim to improve
clinical strategies and allow the progress in the predictive,
preventive, and personalized medicine.

Mammary carcinogenesis and metastatic disease comprise
both genetic and epigenetic components. In contrast to the ge-
netic (inborn, non-modifiable) component, epigenetic alter-
ations occur permanently being linked with environmental
and lifestyle (modifiable) risk factors which are particularly
important for the development of sporadic BC comprising over
90% of all BC cases worldwide [1]. DNA methylation, histone
chemical modifications, and non-coding RNA (ncRNA)-asso-
ciated multi-gene silencing are considered as key epigenetic
mechanisms governing the cellular homeostasis and differenti-
ation states (Fig. 1). Most of DNA methylation processes are
physiological and essential for human cellular and tissue ho-
meostasis, playing an important role in many key mechanisms.
However, being dysregulated, DNA methylation contributes to
pathologic process such as cancer development and progres-
sion. A global hypomethylation of oncogenes is characteristic
for most of cancer types contributing to the genomic instability
by activating retrotransposons and otherwise silent genomic
regions [6]. On the other hand, hypermethylation of tumor-
suppressor gene promoters plays a specific role in carcinogen-
esis [7, 8]. The overall impact of the epigenetic regulation on
the human body is multifactorial being piloted by several en-
dogenous and exogenous factors such as age, gender, environ-
mental stress factors, lifestyle, diet, and stage of cancer.

A number of studies demonstrated that dietary natural plant
products (both whole products and their compounds) affect the
development and progression of cancer disease including breast
cancer [9–13]. Phytochemicals, as widely available bioactive
substances, have demonstrated apparent anticancer potential
specifically by targeting aberrant epigenetic changes [14, 15].
Cancer risk prediction is rapidly continuing to evolve in medic-
inal practice. In this regard, clinical research can define specific
epigenetic modulations related to the identification of high-risk
individuals [6–8]. Consequently, epigenetic profiling of indi-
viduals can serve in the development of modern clinical strat-
egies with crucial interventions in the primary, secondary, and
tertiary prevention of BC. Furthermore, the integration of rele-
vant epigenetic data associated with complex medical

informatics and personalized medicine is highly recommended
in the BC treatment and management. Medicinal approaches
fall into the progressive concept of advanced health care tai-
lored to the person [1]. BNutri-epigenetics^ focuses on the in-
fluence of dietary agents on epigenetic mechanisms [16]. This
approach has gained considerable attention; since in contrast to
genetic alterations, epigenetic modifications are reversible and
affect early carcinogenesis. Currently, there is an evident lack of
papers dedicated to the phytochemicals/plant extracts as com-
plex epigenetic modulators specifically in BC. Our paper high-
lights the role of plant natural compounds in targeting epige-
netic alterations associated with BC development, progression,
as well as its potential chemoprevention.

Source of data

Data from the available biomedical literature were collected
and analyzed. Relevant studies published in the English-
language literature were retrieved by the use of epigenetics
or breast cancer or predictive preventive and personalised
medicine or DNA methylation or histone chemical modifica-
tions or siRNA or miRNA or lncRNA or phytochemicals or
plant natural substances or plant food or diet as either a key-
word or MeSH (medical subject heading) term in searches of
the PubMed bibliographic database. We focused primarily on
the most recent scientific papers from the years 2013–2018.

1. Aberrant DNA methylation is a hallmark
of cancer

The comparison of DNA methylation levels in cancer tissue
with the DNA methylation in an analogous normal tissue or
DNA methylation in a variety of normal tissues revealed that
cancer cells are very often associated with a global DNA hy-
pomethylation [17, 18]. It is well described that aberrant DNA
methylation affects a plethora of signaling pathways within
transcription of relevant genes, and it leads to abnormalities
in the differentiation of cells [18–20]. The prevailing epige-
netic modification in the eukaryotic nucleus of mammals is
the methylation of DNA at the 5-position of cytosine. This
process is catalyzed by DNA methyltransferases (DNMTs)
using S-adenosyl methionine as a universal donor of methyl
group. Several types of DNMTs were described in eukaryotic
cells. DNMT1 is responsible for maintaining DNA methyla-
tion status in the cell. DNMT2 plays a crucial role in the
process, typically the recognition of DNA damage, DNA re-
pair, or DNA recombination. DNMT3B, DNMT3A, and
DNMT3L are usually upregulated in in malignant cells; these
are responsible for the hypermethylation of tumor-suppressor
genes’ promoters [21]. Sequences of DNA rich on CG repeats,
known as CpG islands, are heavily methylated and act to
maintain chromosomal stability. CpG islands within the
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promoter regions of a gene are generally unmethylated.
Global DNA hypomethylation in CpG islands can lead to
the genomic instability commonly observed in malignant
cells; on the other hand, increased methylation of CpG islands
within the gene promoters can lead to transcriptional silencing
of tumor suppressors [15, 22–25].

Phytochemicals with demethylation activity
in preclinical cancer research

Decrease in the total promoter methylation status of tumor-
suppressor genes has a great potential as molecular target for
cancer therapy. Aberrant DNA methylation patterns that are
frequently observed in sporadic BC represent reversible chang-
es, which are responsive to environmental factors, including
dietary habits [26]. Plant compounds such as phenolics that
can act as hypomethylating agents [25] can reverse epigenetic
silencing of tumor-suppressor genes. For instance, the epige-
netic silencing of glutathione S-transferase P1 is linked to the
pathogenesis of BC and other cancer types. In this regard,
Kumar et al. [25] assessed the epigenetic potential of curcumin
on the methylation pattern of this tumor-suppressor gene in
MCF-7 breast cancer cells. They demonstrated that curcumin
completely reversed the glutathione S-transferase P1 promoter
hypermethylation, and moreover, this modification led to re-
expression of glutathione S-transferase P1. In another in vitro
study, curcumin decreased the promoter methylation of Ras-
association domain family protein 1A (RASSF1A) (TSG) and
increased its mRNA and protein levels in breast cancer MCF-7
cells [27]. Moreover, curcumin decreased DNA methylation
activity of nuclear extract through the downregulation of the
mRNA and protein levels of DNMT1, which may be linked
with curcumin-induced disruption of NF-κB/Sp1 complex
bound to the promoter region of DNMT1. Taken together,
curcumin seems to be an excellent nontoxic hypomethylating
agent with a possible potential against BC. Mirza et al. [28]
hypothesized that epigallocatechin gallate (EGCG), genistein,
withaferin A, curcumin, resveratrol, and guggulsterone are

potential demethylators. Therefore, the effect of these plant
compounds on DNMTs expressions and methylation status of
the panel of genes in MCF-7 and MDA-MB 231 cells was
evaluated. The treatment with various polyphenols showed an
apparent decrease in the transcript levels of DNMT1,
DNMT3A, and DNMT3B in both cell lines. Moreover, these
plant compounds lowered the protein levels of epigenetic reg-
ulators histone deacetylase 1 andMeCP2. Several in vitro stud-
ies showed the epigenetic modulator potential of sulforaphane
in BC. Lewinska et al. [29] evaluated sulforaphane as an epi-
genetic modulator in BC cells (MCF-7, MDA-MB-231, and
SK-BR-3). Sulforaphane caused cell cycle arrest and senes-
cence of cancer cells. Oncostatic characteristics of sulforaphane
were accompanied by global DNAhypomethylation, decreased
levels of DNA methyltransferases (DNMT1, DNMT3B), and
diminished pools of N6-methyladenosine (m6A) RNA methyl-
ation. In another study, combination of sulforaphane with (−)-
epigallocatechin gallate as a demethylating agent was identified
as an effective approach for re-expression of estrogen receptor
in hormone negative BC [30]. Moreover, in the study of diet by
Lubecka-Pietruszewska et al. [31], sulforaphane caused hypo-
methylation of PTEN and RARbeta2 promoters with subse-
quent gene upregulation in MCF-7 and MDA-MB-231 cells.
TNBC is characterized by poor prognosis and a DNA hypome-
thylation profile. An in vitro study by Kala et al. [32] demon-
strated that resveratrol and pterostilbene administered at a dose
(close to physiologically relevance) shows synergistic growth
inhibition on HCC1806 andMDA-MB-157 cells, a TNBC cell
lines [32]. Authors concluded that this result provided a novel
nutrient control strategy that may contribute to future clinical
strategies against relapsed/refractory metastatic TNBC. Szarc
Vel Szic et al. [33] reported that DNA hypermethylation of
corresponding CpG sites in PLAU, ADAM8, TNSF12,
GSTM1, and ME3 genes is linked with receptor tyrosine-
protein kinase erbB-2 amplification (HER2)/estrogen receptor
(ER)/progesterone receptor (PR) status in TNBC.Withaferin A
(WA), a plant-derived steroidal lactone, induced DNA hyper-
methylation of multiple CpG sites which may contribute to

Fig. 1 The relevance of epigenetics in the carcinogenesis. Epigenetic
mechanisms of carcinogenesis consist of three distinct processes: DNA
methylations, histone protein methylations, and acetylations and RNA

mechanisms including aberrant activity of siRNA, miRNA, and
lncRNA. Ac, acetylation; DNMTs, methyltransferases; Me, methylation
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epigenetic reprogramming of genes involved in aggressiveness
of TNBC towards less aggressive luminal-like BC hallmarks.
Verification of gene expression alterations caused by WAwas
performed in MDA-MB-231 and MCF-7 cells. There are sev-
eral other recent papers describing plant extracts or isolated
phytochemicals, such as green tea polyphenols, wild yam root
extract, kazinol Q, genistein, and wild thyme, as demethylating
agents in vitro [34–38].

Several papers reported the analyses of DNA methylation
changes in BC animal models. Rodriguez-Miquel et al. [39]
evaluated the role of nutritional factors, especially dietary
lipids, in the etiology of rat mammary carcinogenesis.
Authors analyzed the global and gene specific (RASSF1A,
TIMP3) DNA methylation levels in mammary glands and
mammary tumors after the administration of olive oil– or corn
oil–enriched diet, respectively. Olive oil, rich in a plethora of
beneficial bioactive compounds and a monounsaturated fats,
elevated the levels of global DNAmethylation in rat mammary
gland and cancer tissue. Corn oil, rich in sterols, polyunsaturat-
ed and monounsaturated fatty acids, increased DNA methyl-
transferase activity in both tissues; moreover, it increased the
promoter methylation of the tumor-suppressor genes
RASSF1A and TIMP3. These results demonstrated differential
effects of the high-fat diets on epigenetic changes in
carcinogen-induced rat mammary carcinogenesis. In this re-
gard, our recent chemoprevention study [40] analyzed the effect
of clove buds on the methylation status in the promoter regions
of RASSF1A (three CpG islands) and TIMP3 (six CpG islands)
genes in rat breast carcinoma cells in vivo. Strong chemopre-
ventive effects of cloves in rats were accompanied with signif-
icant effects on the methylation levels of RASSF1A and
TIMP3 promoters in different CpG islands. However, epigenet-
ic mechanisms of cloves in our study could represent only one
of the plethora mechanisms by which this spice prevented
NMU-induced rat mammary gland carcinogenesis in our study.
Moreover, this result requires more complex experimental val-
idation (e.g., the use of wider spectrum of promoters assessed).
In another study, Wang et al. [41] described new epigenetic
function of isoliquiritigenin, a chalcone-type molecule derived
from licorice root. This natural compound lowered the methyl-
ation levels of WIF1 promoter as the consequence of decreased
DNMT1 activity and thus prevented mouse mammary
cancerogenesis. Epigenetically silenced functions of WIF1
tumor-suppressor gene have been also described in other cancer
types [41]. The role of phytochemicals or plant foods in the
influencing of methylation status of genes’ promotors is sum-
marized in Fig. 2.

Clinical research: dietary intervention and DNA
methylation patterns in breast cancer

Despite preclinical research, only limited clinical data evalu-
ating the effects of phytochemicals on DNA methylation

patterns in BC disease are available. It is well described that
global DNA hypomethylation in the tissue and blood has
been associated with increased cancer risk; on the other
hand, healthier lifestyle patterns have been linked with in-
creased levels of global DNA methylation. Recently,
Greenlee et al. [42] assessed the long-term effects of a
short-term culturally based dietary intervention on increas-
ing fruits/vegetables, decreasing fat, and changing bio-
markers associated with BC recurrence risk among
Hispanic BC survivors. Investigators enrolled 70 women
with a history of stage 0–III BC. After 12 months, the inter-
vention group demonstrated increase in plasma lutein (+
20.4% vs. − 11.5%; P < 0.01) and borderline significant in-
crease in global DNA methylation (+ 0.8% vs. − 0.5%; P =
0.06). Authors concluded that dietary intervention positive-
ly altered the biomarkers linked with BC recurrence risk.
Another clinical study examined the linkage between
changes in lifestyle modifications (diet, weight loss, includ-
ing eating ≥ 2 servings of fruit and ≥ 3 servings of vegeta-
bles), metabolic markers, and global epigenetic biomarkers
using white blood cells [43]. Study participants were
Hispanic, African American, and Afro-Caribbean over-
weight and sedentary female BC survivors (n = 24). Data
were measured at baseline and after 6 and 12 months of
intervention. Investigators evaluated DNA methylation of
long interspersed nucleotide element 1 (LINE-1) and satel-
lite 2 by pyrosequencing and MethyLight, respectively, and
global DNA methylation by the luminometric methylation
assay (LUMA). DNAmethylation of LINE-1 was increased
after 6 months (75.5% vs. 78.5% [P < 0.0001]) and
12 months (75.5% vs. 77.7% [P < 0.0001]) in comparison
with baseline. Importantly, 12-month changes in dietary
measures such as vegetable intake were positively associat-
ed with changes in LUMA DNA methylation, as was intake
of fruit positively associated with changes in LINE-1 DNA
methylation [43]. Hypermethylation of RARB (retinoic ac-
id receptor-beta), BRCA1, and RASSF1A promoters was
linked with the downregulation of transcript levels in the
relevant gene in primary BC. In this regard, Pirouzpanah
et al. [44] assessed the hypermethylation status in 146 dis-
sected BC tissue samples in Iranian women using
methylation-specific PCR. A validated 136-item food fre-
quency questionnaire was used as a method for the estima-
tion of dietary nutrients. The intake of folate and cobalamin
was inversely associated with methylated RARB and
BRCA1. On the other hand, higher dietary intake of ribo-
flavin and pyridoxine was linked with increased methyla-
tion in the RARB promoter. Moreover, authors concluded
with evidence for age-dependent effects of nutrients on pro-
moter methylation status.

Table 1 summarizes the role of phytochemicals targeting
epigenetic changes linked with DNA methylation patterns in
breast carcinogenesis.
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2. Chemoprevention by histone chemical
modifications

Histones are proteins that order and package DNA into nucle-
osomes. Tightly packedDNA regions called heterochromatins
are less accessible for transcription factors and are thus inac-
tive in the term of gene expression, whereas lightly packed
euchromatin regions are active. Modifications of histones are
covalent post-translational changes of histone amino acid res-
idues located in their N- and C-terminal tails [45, 46]. They
include acetylation, methylation, phosphorylation,
ubiquitylation, sumoylation, and ADP ribosylation and are
achieved by diverse histone-modifying enzymes (HATs,
HDACs, HMTs, HDMs, and others) grouped in several clas-
ses. Elevated levels of global histone acetylation and methyl-
ation have been found in majority of luminal-like breast tu-
mors and have been associated with a favorable prognosis.
Moderate and low levels of lysine acetylation (H3K9ac,
H3K18ac, H4K12ac) and lysine and arginine di-/three-meth-
ylations (H3K4me2, H4K20me3, H4R3me2) were found in
BC subtypes with poorer prognosis, including basal carcino-
mas and HER2-positive tumors [47, 48]. Study ofMüller et al.

[49] revealed significantly different expression of class I his-
tone deacetylases (HDAC) in human BC. HDAC1 expression
was elevated in hormone receptor–positive tumors, while
HDAC2 and HDAC3 were expressed significantly higher in
low differentiated tumors and correlated with negative hor-
mone receptor status. Moreover, high HDAC2 expression
was associated with an overexpression of HER2 and nodal
metastasis.

Aberrant histone modifications and changed expression of
histone-modifying enzymes are caused by genetic mutations
in chromatin regulators enzymes and by epigenetic changes.
Dietary phytochemicals, like epigallocatechin-3-gallate
(EGCG), curcumin, garcinol, antioxidant vitamins, and fla-
vones, are able to modulate epigenetic modifications and thus
are actively involved in chemoprevention [50–54]. The mech-
anisms of the chemical modifications of histones caused by
phytochemicals are shown in Fig. 3.

Histone acetylation

Histone chemical modifications including acetylations are
commonly analyzed in BC. Clinical analyses of Elsheikh

Fig. 2 Mechanism of enhanced tumor-suppressor gene expression
through increased promoter demethylation using isolated plant-derived
compounds or plant foods. DNMTs, DNA methyltransferases; TET,

ten-eleven translocation protein; 5mC, 5-methylcytosine; 5hmC, 5-
hydroxymethylcytosine
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et al. [48] discovered low or absent H4K16ac in the majority
of BC cases in humans (78.9%), proposing that this change
may denote an early sign of breast carcinoma. Histone acety-
lation is enzymatic addition of an acetyl group (COCH3) from
acetyl coenzyme A. This process is involved in the regulation
of many cellular processes such gene silencing, cell cycle
progression, apoptosis, differentiation, and DNA repair
[55–57]. The modifying enzymes are called histone acetyl-
transferases (HATs) and histone deacetylaces (HDACs).

Epigallocatechin-3-gallate (EGCG) is a major component of
green tea polyphenols. It has important anticancer activity via
epigenetic mechanisms and play important role in induction of
apoptosis, anti-oxidation and inhibition of proliferation, angio-
genesis, andmetastasis [58–60]. Li et al. [61] studied the role of
EGCG treatment in ERα-negative MDA-MB-231 breast

cancer cells. ERα-negative BC is clinically aggressive and
has a poor prognosis because it normally does not respond to
conventional anti-hormone therapies. They proved that EGCG
can induce re-expression of endogenous estrogen receptor α
(ERα). The reactivation is regulated via chromatin remodeling
of the ERα promoter by altering histone acetylation and meth-
ylation status. EGCG was found to decrease binding of the
transcription repressor complex in the promoter region of
ERα Rb/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 contrib-
uting to ERα transcriptional activation. The effect was even
enhanced when EGCG was combined with the histone
deacetylase (HDAC) inhibitor, trichostatin A (TSA). Meeran
et al. [62] analyzed epigenetic impact of EGCG on the
hTERT expression in human breast cancer cells MCF-7 (ER+)
and MDA-MB-231 (ER−). EGCG treatment of these cell lines

Table 1 Natural substances targeting DNA methylations associated with breast cancer

Phytochemicals/plant foods Mechanism of intervention Type of BC research References

Curcumin Decrease in promoter methylation status (RASSF1A,
glutathione S-transferase P1) or DNA methylation
activity

MCF-7 cells [25, 27]

EGCG, genistein, withaferin
A, curcumin, resveratrol,
guggulsterone

Decrease in DNMT1, DNMT3a, and DNMT3b
expressions

MCF-7 and MDA-MB 231 cells [28]

Sulforaphane Global DNA hypomethylation, decrease in DNMT1
and DNMT3 activity, and m6A RNA methylation

MCF-7 MDA-MB 231, and SK-BR-3
cells

[29]

Sulforaphane + EGCG ERα promoter hypomethylation and hyperacetylation MDA-MB 231 cells [30]

Sulforaphane PTEN and RARbeta2 promoter hypomethylation MCF-7 and MDA-MB 231 cells [31]

Resveratrol + pterostilbene Decrease in DNMTs activity HCC1806 and MDA-MB-157 breast
cancer cells

[32]

Withaferin A Epigenetic reprogramming through DNA
hypermethylation

MDA-MB-231, MCF-7 cells [33]

Green tea polyphenols
+5-aza-2′-deoxycytidine

Decrease in HDAC1, DNMT1, DNMT3b, and
MBD4 activity

MDA-MB-231, MCF-7 cells [34]

Kazinol Q Inhibition of DNMT1 activity MDA-MB-231 cells [36]

Genistein Decrease in global DNA methylation, DNMT activity,
and DNA methylation of several promoters (ATM,
APC, PTEN, SERPINB5)

MCF-7 and MDA-MB-231 cells [37]

Wild yam root extract Activation of GATA3 gene in ER- cells MCF-7 and MDA-MB-231 cells [35]

Wild thyme Inhibition of DNMT and HDAC activities MDA-MB-231 cells [38]

Isoliquiritigenin Demethylation of WIF1 promoter, decrease in
DNMT1 activity

Mouse BC model [41]

Olive oil Increase in global DNA methylation Rat BC model [39]

Corn oil Increase in DNMT methylation and promoter
methylation of RASSF1A and TIMP3

Rat BC model [39]

Clove buds (mixture of phenolic
acids, flavonol glucosides,
tannins and phenolic volatile
oils – eugenol, acetyl eugenol)

Increase in total RASSF1A promoter methylation Rat BC model [40]

Fruits/vegetables Increase in global DNA methylation Hispanic BC survivors [42]

Vegetables Increase in DNA methylation of LINE-1 after 6
and 12 months

Hispanic, African American, and
Afro-Caribbean overweight and
sedentary BC survivors

[43]

Folate + cobalamin Hypomethylation of RARB and BRCA1 promoters BC tissue samples of Iranian women [44]

Riboflavin + pyridoxine Hypermethylation of RARB promoter BC tissue samples of Iranian women [44]

EGCG, epigallocatechin gallate; DNMT, DNA methyltransferase; ER, estrogen receptor; HDAC, histone deacetylase; MBD, methyl-CpG-binding
domain
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significantly inhibited HATs activities, but not HDACs activi-
ties. They found an EGCG-induced time dependent decrease of
transcriptional active chromatin markers such as H3ac,
H3K9ac, and H4ac. Deacetylation induced by EGCG further
recruits hTERT transcriptional repressors such as E2F-1 and
MAD1, contributing to inhibition of hTERT expression; what
resulted in cellular apoptosis induction is similar in both ER (+)
and ER (−) human breast cancer cells but not in normal cells
[62]. Besides the described impact of EGCG on the histone
acetylation status, this metabolite exerted its anticancer effect
also by correcting other epigenetic alterations in cancer cells
such as polycomb-group (PcG) protein–dependent histone
methylation, DNA methylation, class-I HDACs-dependent
deacetylation of histones, and some non-histone proteins and
ubiquitination [63].

A similar histone acetylation level reduction was reported
in the case of curcumin and garcinol in human breast prolif-
erating MCF7 cells. H3 and H4 acetylation was reduced after
exposure to curcumin, garcinol, or garcinol derivate LTK 14,
although pan-acetylation of H4 indicated differential and
dose-dependent effects of these compounds on histone modi-
fications in MCF7 cells [64]. Increased H3 acetylation was
found in the study of Weng et al. [50] who analyzed newly
identified flavone, 3,4′-dimethoxy-3′,5,7-trihydroxyflavone
from the plantMyoporum bontioides in human MCF-7 breast
cancer cells. This phytochemical downregulates the expres-
sion of histone deacetylase 2 (HDAC2) and HDAC4, leading

to increased histone H3 acetylation and p21 upregulation. It is
involved in the cell cycle regulation and growth inhibition of
MCF-7 cells and 3,4′-dimethoxy-3′,5,7-trihydroxyflavone
thus possess the similar antiproliferative activity as the
EGCG and genistein [50]. Secoiridoids, a family of complex
polyphenols found in extra virgin olive oil also appear to in-
fluence the histone acetylation. Study of the unique BC cell
line JIMT-1, specific for inherently exhibition of cross-
resistance to multiple HER1/2-targeted drugs, showed histone
hyperacetylation. As these phenols should efficiently circum-
vent de novo resistance to HER1/2 inhibitors, they could rep-
resent novel anti-breast cancer molecules [65].

Several other studies were conducted in the term of histone
acetylation modulation by phytochemical compounds. The
analyses revealed their antitumor activity as they act as
HDAC inhibitors. Among them, the attention has been paid
to diallyl disulphide (DADS), the major organosulfur com-
pound found in garlic oil [66]; isothiocyanates, found in crucif-
erous vegetables [67]; luteolin (3′,4′,5,7-tetrahydroxyflavone),
a member of the flavonoid family found in various fruits and
vegetables [68] and to triterpenoid 5β,19-epoxy-19-
methoxycucurbita-6,23-dien-3β,25-diol [69].

Histone methylation

Histone methylation is defined as the transfer of one, two, or
three methyl groups (me1, me2, or me3) to histone proteins,

Fig. 3 The role of plant
compounds in the chemical
modification of histones.
Phytochemicals affect the
functions of KMTs, KDMs,
HDACs, HATs, and DNMTs and
thus regulate genes’ transcription
activity. SWI/SNF (SWItch/
Sucrose Non-Fermentable), is
ATP-dependent nucleosome
remodeling protein complex. It is
able to restructure the nucleosome
to make its DNA accessible
during transcription, replication,
and DNA repair. DNMTs, DNA
methyltransferases; HATs,
histone acetyltransferases;
HDACs, histone deacetylases;
KDMs, lysine demethylases;
KMTs, lysine methyltransferases
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which can be methylated on lysine (K) and arginine (R) resi-
dues [70]. The most commonly observed methylation is on
lysine residues of histone tails H3 and H4. The transfer of S-
adenosyl-L-methionine is catalyzed by histone methyltransfer-
ases (HMTs) which are specific for lysine and arginine resi-
dues [71]. Methylation of histones can either increase or de-
crease transcription of genes, depending onwhich amino acids
in the histones are methylated and how many methyl groups
are attached. It seems that histone methylation marks are
coupled with the pathology of BC, as Rivenbark et al. [70]
showed differential levels of histone methylation in several of
the cancer cell lines when compared to a normal mammary
epithelial cell line. BT549 and SUM102 cells exhibited low
levels of H3K4me3 and increased levels of H3K36me3. In
addition, alterations in methylation of histone lysines such as
H3K4m3, H3K9m3, and H4K20m3 have been frequently as-
sociated with breast carcinoma [71]. Moreover, the loss of
histone H4K20 trimethylation has been documented as a
marker of poor prognosis in breast carcinoma patients and is
linked with the invasiveness of breast carcinoma cells in a
HER2-independent manner [72].

The role of plant natural substances on the histone methyl-
ation patterns has been documented in several in vitro and
in vivo studies [10, 73, 74]. For example, garcinol also affects
the processes of histone methylation and the trimethylation of
H4K20 (H4K20me3) in MCF7 breast cancer cells. Authors
found that this is due to the induced expression of
SUV420H2, an enzyme that specifically trimethylate H4K20
[64]. Dagdemir et al. [75] showed that soy phytoestrogens
(da idze in , gen is te in , equol , 17β -es t rad io l , and
suberoylanilide hydroxamic acid) are able to modulate gene
transcription via the acetylation and demethylation of histones
in six genes (BRCA1, EZH2, ERα, ERβ, P300, and SRC3) in
MCF-7 and MDA-MB 231 cancer cells. Genistein represents
natural compound with a multi-targeted biological/molecular
activities, including epigenetic histone chemical modifications
in carcinoma cells. In another experimental study, genistein
reactivated expression of ERα through the histone modifica-
tion in the ERα promoter and the inhibition of histone
deacetylase inhibitors in MDA-MB-231 and MDA-MB-157
cells [74]. Results of Li et al. [76] demonstrated that genistein
suppressed cell proliferation in human breast precancerous
and cancer cells; on the other hand, it showed only slight effect
on normal breast epithelial cells. Moreover, genistein admin-
istration upregulated the expression of p21(WAF1) (p21) and
p16(INK4a) (p16) tumor-suppressor genes and downregulat-
ed the expression of BMI1 and c-MYC tumor promoting
genes. Genistein induced histone chemical modifications in
p21 and p16 promoters and affected the binding of the c-
MYC-BMI1 complex to the p16 promoter resulting in the
stimulation of such tumor-suppressor genes. As well, the au-
thors administered genistein (250 mg/kg of diet) to mice, and
these doses corresponded to daily consumption of soybean

products in humans. The results confirmed significant impact
of genistein on the tumor growth from the very early stages.

There are only few experimental BC studies describing the
role of whole plant-based foods in the chemical modulations
of histones. We have found only two papers assessing the
effect of dietary factors on histone chemical modifications in
rat mammary carcinogenesis. The results of our group showed
that dietary administered clove buds significantly and dose-
dependently increased the levels of H4K20m3 (and also
H4K16ac) in chemically induced cancers [40]. We did not
find the changes in chemical modifications of three methyla-
tions of H3K4 and H3K9. Our results could be considered as a
one of plethora mechanisms by which phytochemicals from
cloves may prevent nitrosomethylurea-induced mammary
gland carcinogenesis in female rats, however, our results await
further experimental validation (e.g., with wider spectrum of
histone chemical modifications or gene promoters analyzed).
Results from similar rat model also pointed to significant ef-
fect of extra virgin olive oil on H4K20m3 levels in mammary
tumors or glands [39].

As indicated above (summarization in Table 2), histone-
modifying methods and enzymes interact with each other as
well as with other chromatin related proteins and other epige-
netic mechanisms, which makes the issue of histone modifi-
cations complex and extensive. Therefore, more research is
needed to find out exact pathways of phytochemical impact
and to find out proper benefits in utilizing in the cancer risk
reduction.

3. Plant-derived compounds in breast cancer
prevention and therapy: RNA level
of intervention

Recent experimental and clinical BC studies focused on
influencing the epigenome have provided convincing evi-
dence that plant-derived compounds participate in regulation
of genes through affecting non-coding RNAs (ncRNAs), es-
pecially microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs) [77–84]. miRNAs together with short (or small)-
interfering RNAs (siRNAs) are two main types of small
ncRNAs, which regulate gene expression through the RNA
interference (RNAi) mechanism [85]. Currently, it is well
known that RNAi plays important regulatory role in the pro-
cess of normal cell development and differentiation, as well as
in the process of carcinogenesis. RNAi may also be potential
therapeutic device to shut down upregulated oncogenes, mu-
tated tumor-suppressor (TS) genes, and other genes involved
in tumor progression within targeted gene therapy in cancer
patients [86, 87]. Recent studies suggest that synthetic
siRNAs and endogenous miRNAs may influence transcrip-
tional gene silencing by promoting histone deacetylation,
DNA, and histone methylation [88, 89]. However, CpG
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methylation of selected miRNAs and inhibition of histone
deacetylases may lead to changes in miRNA expression in
cancer cells [90]. As well, phytochemicals may act as inhibitors
of DNA methyltransferases and histone deacetylases, and in
this way, they can reactivate for example methylation-silenced
TS genes or miRNAs controlling TS genes [89, 91, 92].

RNA interference is a natural mechanism of RNA-
dependent gene silencing in which small RNA molecules in-
hibit expression and translation of protein-coding genes bear-
ing either fully or partially complementary sequence [93, 94].
The classical RNAi pathway is triggered by long double-
stranded RNA (dsRNAs) precursors such as long dsRNA or
short hairpin RNA (shRNA). These precursors are processed
into siRNAs by the RNase III enzyme termed Dicer [86, 95,
96]. The siRNAs then bind to an enzyme-containing molecule
known as RNA-induced silencing complex (RISC). The
siRNA-RISC or miRNA-RISC complex leads to the recogni-
tion and ultimately the cleavage or translational repression of
complementary single-stranded RNAs (mRNAs or viral
genomic/antigenomic RNAs) [86, 95, 96]. Taken together,
siRNAs as well as miRNAs are able degrade mRNA and
inhibit its expression by very similar mechanisms. Plethora

preclinical studies showed that plant-derived compounds
modulating the RNA-based epigenetic mechanisms may have
considerable importance in BC prevention and therapy.

Short-interfering RNAs

Despite the fact that RNAi seems to be promising in in vitro
cancer research, it presents some limitations in vivo. Short
RNAs have low stability due to RNase degradation; therefore,
their nontoxic delivery into deep tissues is still problematic.
Other limitations are also low potential to overpass the mem-
branes, stimulation of innate immune response, or the error
rate of Boff-target^ interactions [97, 98]. The first study, which
overcame these limitations and brought good evidence for
clinical utility of RNAi-based therapeutics in patients with
advanced cancer disease, used lipid nanoparticle approach
[99]. To date, siRNA nanoparticles were used in some preclin-
ical studies of various types of BC [100–104] and have paved
the way for clinical trials [105].

Regarding the plant-based compounds, siRNA mecha-
nisms and BC, there are only limited data available in data-
bases. Physapubenolide (PB) is a cytotoxic withanolide

Table 2 Natural substances inducing histone chemical modifications associated with breast cancer

Phytochemicals/plant foods Mechanism of intervention Type of BC research References

EGCG Alteration of histone acetylation and methylation
status, ERα reactivation

MDA-MB-231 cells [61]

EGCG Inhibition of HATs activities, hTERT promoter
hypomethylation and histone deacetylations
(acetyl-H3, acetyl-H3K9, and acetyl-H4)

MCF-7, MDA-MB-231 cells [62]

Curcumin and garcinol, Reduction in H3K18ac (garcinol), elevated global
levels of H4K16ac and H4K20m3 (garcinol),
increased global levels of H3K18ac and H4K16ac
(curcumin)

MCF-7 cells [64]

3,4′-dimethoxy-3′,5,7-trihydroxyflavone
from Myoporum bontioides L.

Downregulation of HDAC2 and HDAC4 expression,
increase of H3ac

MCF-7 cells [50]

Secoiridoids Histone hyperacetylation JIMT-1 cells [65]

Diallyl disulphide/garlic oil HDAC inhibition MCF-7 cells [66]

Luteolin (flavonoid) HDAC inhibition MCF-7/6 and MDA-
MB231–1833 cells

[68]

Triterpenoid 5β,19-epoxy-19-
methoxycucurbita-6,23-dien-3β,25-diol
from Momordica charantia L.

Downregulation of HDAC1, increase in H3ac MCF-7 [69]

Soy phytoestrogens (isoflavones) Histones demethylation and acetylation (H3K27me3,
H3K9me3, H3K4me3, H4K8ac, and H3K4ac)

MCF-7 and MDA-MB 231 cells [75]

Genistein Histones modification in theERα promoter,
reactivation of ERα expression

Mouse BC model using
MDA-MB-231 cells

[74]

Genistein Histone modifications in the promoters of p21 and
p16 genes

HMECs, SH, SHR, MDA-MB-231 [76]

Clove buds (mixture of phenolic acids,
flavonol glucosides, tannins and phenolic
volatile oils – eugenol, acetyl eugenol)

Increase in lysine trimethylations and acetylations
(H4K20me3, H4K16ac)

Rat BC model [40]

Extra virgin olive oil Decrease in H4K20m3 levels in mammary tumors
or glands

Rat BC model [39]

EGCG, epigallocatechin gallate; ER, estrogen receptor; HDAC, histone deacetylase; HAT, histone acetyltransferase
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present in Physalis angulata that is used as a traditional
Chinese medicine. Ma et al. [106] evaluated the role of
TIGAR (TP53-inducible glycolysis and apoptosis regulator)
and ROS in PB-induced apoptosis and autophagosome forma-
tion in MDA-MB-231 and MCF-7 cancer cells. Investigators
described that the downregulation of TIGAR by siRNA was
augmented with low concentrations of PB. These effects were
associated with induced apoptosis and autophagosome forma-
tion, which led to the anti-tumor effect of PB in vitro [106].
Another study showed that phosphatase and tensin homolog
(PTEN) is a key target of bergapten (psoralen derivative pres-
ent in many fruits and vegetables) action against BC cells for
the induction of autophagy. The mechanism of action in-
volved the p38MAPK/NF-Ypathway, site-direct mutagenesis
of NF-Y element, and NF-Y siRNA regulation [107].
Anticancer effects were also exhibited by honokiol, a phyto-
chemical from Magnolia spp., which caused a reduction in
cell migration of murine BC cells through the COX-2
siRNA mechanism [108]. There are also other in vitro studies
using plant-derived compounds pointing to siRNA mecha-
nism influencing mammary carcinogenesis [109–111].

MicroRNAs

Several recent preclinical and clinical BC studies demon-
strated that isolated phytochemicals or their mixture influ-
ence the expression of oncogenic or tumor-suppressive
miRNAs, which, in turn, modulate the important signaling
pathways in cancer cells and in this way affect the patho-
genic properties of cancer cells and their sensitivity towards
anticancer drugs. Stilbenoid resveratrol belongs among in-
tensively evaluated molecules in BC research [112]. In the
study of Hagiwara et al. [78], resveratrol upregulated sev-
eral tumor-suppressive miRNAs (miR-16, miR-141, miR-
143, and others) in MDA-MB-231 breast cancer cell line
resulting in the induction of an anti-tumor effect against
the cancer stem-like cells phenotype in cancer cells. In
other experimental study, resveratrol inhibited DNA-
methyltransferase DNMT3b in rat mammary tumors by up-
regulation of miR-129, miR-204, and miR-489 [113]. Other
in vitro studies showed that tumor-suppressive miR-34a is
an essential component of the antiproliferative activities of
phytochemicals such as I3C and artemisinin [82]. Curcumin
regulated the expression of several miRNAs in MCF-7
(miR-19a, miR-19b, miR-181b), MDA-MB-231, and
MDA-MB-435 breast cancer cells (miR-34a) [114–116].
Currently, drug resistance is considered a main factor
influencing BC clinical outcome. Dysregulated miRNAs
contribute significantly to autophagy and chemoresistance.
Therefore, targeting autophagy-related miRNAs is a novel
strategy to reverse drug resistance. In the study of Wang
et al. [117], natural compound isoliquiritigenin induced
the chemosensitization drug-resistant BC cells through

inhibition of the novel autophagy-related miR-25 in both
in vitro and in vivo assays. Isolated phytochemicals were
able to affect the levels of miRNAs in other experimental
in vitro studies as well [79, 80, 83].

In addition, the experimental approach using mixtures of
phytochemicals seems to be very promising in the positive
modulation of miRNAs expression regarding the BC cells.
Rhodes et al. [77] evaluated the anticancer activity of
glyceollin mixture using theMDA-MB-231 xenograft mod-
el. Glyceollins significantly increased the expression of se-
lected tumor-suppressive miRNAs (miR-22, miR-29b,
miR-29c, miR-30d, miR-34a, miR-181c, miR-181d, and
miR-195) and significantly decreased the expression of sev-
eral oncogenic miRNAs (miR-21, miR-185, and miR-224).
Banerjee et al. [118] showed in their experimental study in
BC that the anticancer effects of pomegranate polyphenol
extract were partially the result of downregulation of two
miRNAs, miR-155 and miR-27a, using MDA-MB-231 and
BT-474 cell lines, and BT474 xenografts in nude mice. In
the recent study, blueberry delayed the tumor latency and
reduced tumor volume and multiplicity in 17β-estradiol-
mediated mammary carcinogenesis in female ACI rats par-
tially through modulation of miR-18a and miR-34c levels
[119]. In the study of Su et al. [119], the Chinese traditional
medicine Antrodia cinnamomea showed significant anti-
CSCs effects in several cancer cell lines, including MDA-
MB-231 cells, through significant downregulation of select-
ed oncogenic miRNAs in BC stem cells [120]. The clinical
study of Guo et al. [84] assessed the linkage of soy intake
with the expression of microRNAs (miRNAs) and genes in
the tumor tissue of 272 women with TNBC. Thirteen of the
14 miRNAs, including tumor-suppressive miR-29a-3p,
manifested overexpression in women with high soy intake.
Authors concluded that long-term soy food intake is asso-
ciated with the specific expression of selected miRNAs and
has protective effect against BC risk in TNBC patients.

Long non-coding RNAs

Comprehensive research has shown that lncRNAs demon-
strate crucial role in the modulation of gene expression at
the level of chromatin, transcriptional, and posttranscriptional
modifications [121, 122]. In the case of epigenetic modifica-
tions, previous experimental and clinical evaluations have
showed that DNA methylation and modifications of histone
result in deregulation of lncRNA expression in mammary tu-
mors [123–127]. Regarding transcriptional modulation,
lncRNAs interfere with the expression of high number of gene
via interacting with chromatin at numerous different locations
across multiple chromosomes [128]. Posttranscriptional regu-
lation through lncRNAs includes modulation of mRNA sta-
bility, cell cycle distribution, and cell differentiation [127,
129]. To date, several recent preclinical and clinical
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oncological studies have shown that specific lncRNAs have a
significant association with mammary carcinogenesis [124,
126, 130–143]. Some lncRNAs have great potential to be
reliable biomarkers in the diagnosis, prognosis, and prediction
of BC, or could be effectively used within anticancer therapy
of this disease.

So far, few BC studies have dealt with the influence of
plant natural substances on expression and/or function of
lncRNAs. Chen et al. [81] demonstrated that genistein and
calycosin were able to inhibit the expression of the onco-
genic HOTAIR lncRNA in ER+ breast cancer cell line
MCF-7. In other study using the xenograft BC model
(MDA-MB-231-Luc-GFP breast cancer cells in athymic
mice), the levels of HOTAIR lncRNAs were downregulated
by using of anthocyanin delphinidin-3-glucoside [144].
Further studies in this field of research are necessary.
Results of these studies may provide important information
regarding the influence of phytochemicals on lncRNAs,

which are significantly associated with BC and thus may
help to improve prevention and therapeutic strategies in this
disease. Qu et al. [145] described that compound Kushen
injection (CKI), a complex mixture of plant secondary me-
tabolites present in traditional Chinese medicine, shows sig-
nificant anticancer effects in MCF-7 lines. Authors found
that many lncRNAs were expressed as a response to CKI
treatment.

The mechanism of action of plant-derived compounds or
plant foods involving siRNA, miRNA, and lncRNA regula-
tion in breast carcinogenesis is summarized in Fig. 4.

4. Concluding remarks and outlook

Dietary habits and phytochemicals are of particular interest in
terms of effective cancer prevention and targeted therapy
[146, 147]. Many of plant-derived natural compounds

Fig. 4 Mechanism of action of phytochemicals involving non-coding
RNA regulations within breast carcinogenesis. See text for indicated
changes as each displayed axis represents the findings of presented
studies. Arrows demonstrate specific effect of phytochemicals in female
breast cancer model; ↑induction/upregulation, ↓inhibition/reduction.

DNMT3b, DNA(cytosine-5-)-methyltransferase 3 beta; Mcl-1, induced
myeloid leukemia cell differentiation protein; PTEN, phosphatase and
tensin homolog; TIGAR, TP53-inducible glycolysis and apoptosis
regulator; T-S, tumor-suppressive
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demonstrated significant anticancer properties through multi-
ple cell signaling pathways and mechanisms. Regarding BC,
its chemoprevention and targeted therapies, an application of
the dietary phytochemicals, is demonstrated as cost-effective
and readily applicable clinical approach. The pivotal role of
epigenetic mechanisms (DNAmethylations, histone chemical
modifications, and non-coding RNAs) has been demonstrat-
ed: epigenetic modifications by phytochemicals may play an
important role in the targeted cancer chemoprevention. The
demonstrated low toxicity of phytochemicals is crucial for
their broad application. Noteworthy, most of the bioactive
plant compounds demonstrate more than one epigenetic tar-
get. Consequently, a dual beneficial effect can be expected by
upregulating tumor-suppressor genes and downregulating on-
cogenes. Further, a multidrug administration (combination of
several plant compounds) may be more effective compared to
the application of individual phytochemicals. This approach
might lead to substantial progress made in the development of
effective chemopreventive and therapeutic modalities. In this
regard, Tables 1 and 2, and Fig. 4 summarize currently avail-
able information within BC research.

Despite the extensive research focused on human epige-
nome, there is still insufficient experimental data published
on the epigenetic alterations induced by plant compounds.
Moreover, most of the data in this topic are of preclinical
nature, which are linked with several limitations within
clinical practice. The future research focused on phyto-
chemicals influencing the human epigenome should be di-
rected within the several issues: (a) Novel data demand
more detailed insight on the molecular mechanisms re-
sponsible for these effects. (b) The next essential step is
to determine an effective (individual) dose of dietary phy-
tochemicals. The doses used in preclinical research in vitro
and in vivo is to be taken with caution, because such high
concentrations of phytochemicals might not be achievable
in humans, and consequently might lack clinical benefits.
In this respect, the synthesis of chemical analogues of ac-
tive substances could be very helpful. (c) It might be useful
to extend the spectrum of relevant phytochemicals by cur-
rently untested isolated molecules, extracts, and/or whole
plant products. (d) Assessing the combined effects of sev-
eral plant compounds targeting several relevant epigenetic
pathways could be a promising strategy for future epige-
netic experiments. (e) Modifying sub-optimal epigenomes
by phytochemicals in order to regulate the expression of
key inflammatory genes may be an effective approach by
immunotherapy. (f) Investigating epigenetic mechanisms
induced by plant compounds linked with the cancer stem
cells survival could provide important tool for oncologist
in the management of cancer disease, regarding the relapse
or multidrug resistance. Moreover, Bepigenetic therapy^
might have a great potential to overcome drug resistance
and/or to re-sensitize cancer cells towards chemotherapy.

(g) An improved bioavailability of phytochemicals (for
example, by utilizing nanomaterial complexes) should be
furtherly considered. (h) An administration of plant com-
pounds either for chemoprevention or treatment of the clin-
ically manifested BC represents an attractive approach en-
hancing the efficacy of conventional therapies. (i) The
plant compounds demonstrate cel l - , organ- , and
organism-specific effects; therefore, better understanding
of the target mechanisms and individual characteristics is
a big challenge for scientists to develop personalized sup-
plements. Currently preferred diagnostic approaches are in
many cases unable to identify early stages of cancer
initiation/promotion that impairs clinical outcomes [148].
Innovative screening programs, multiomic diagnostics in-
cluding evaluation of epigenetic changes (such as global
DNA and gene promoters methylation status, histone
chemical modifications, and miRNAs expressions), and
individualized patient profiling and stratification are cru-
cial clinical approaches to target and start personalized
preventive programs in high-risk individuals [149, 150].
Each epigenetic mechanism is predicted to have many mo-
lecular targets [151] and therefore may be regulated by
plethora of specific phytochemicals or plant foods. The
applicability of major phytochemicals/foods as an Bepi-
drugs^ against cancer disease is already experimentally
established and has great potential to open a new area of
individualized healthcare in the clinical medicine [152].
The above stated measures have a great potential to ad-
vance the overall BC management in favor of predictive,
preventive, and personalized medical services and can be
considered as the Bproof-of principle^ model for their po-
tential application to other multifactorial diseases.
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