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Abstract 22 

Skeletal muscle contraction increases glucose uptake via an insulin-independent 23 

mechanism. Signaling pathways arising from mechanical strain are activated during 24 

muscle contractions, and mechanical strain in the form of passive stretching 25 

stimulates glucose uptake. However, the exact mechanisms regulating stretch-26 

stimulated glucose uptake are not known. Since nitric oxide synthase (NOS) has been 27 

implicated in the regulation of glucose uptake during ex vivo and in situ muscle 28 

contractions and during exercise, and NO is increased with stretch, we examined 29 

whether the increase in muscle glucose uptake during stretching involves NOS. We 30 

passively stretched isolated EDL muscles (15 min at ~100-130 mN) from control 31 

mice and mice lacking either neuronal NOSµ (nNOSµ) or endothelial NOS (eNOS) 32 

isoforms, as well as used pharmacological inhibitors of NOS. Stretch significantly 33 

increased muscle glucose uptake approximately 2-fold (P < 0.05), and this was 34 

unaffected by the presence of the NOS inhibitors N
G
-monomethyl-L-arginine (L-35 

NMMA; 100 µM) or N
G
-nitro-L-arginine methyl ester (L-NAME; 100 µM). 36 

Similarly, stretch-stimulated glucose uptake was not attenuated by deletion of either 37 

eNOS or nNOSµ isoforms. Furthermore, stretching failed to increase skeletal muscle 38 

NOS enzymatic activity above resting levels. These data clearly demonstrate that 39 

stretch-stimulated skeletal muscle glucose uptake is not dependent on NOS. 40 

 41 

Key words: nitric oxide synthase, glucose uptake, stretch, skeletal muscle  42 
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New & Noteworthy 43 

Passive stretching is known to activate muscle glucose uptake through mechanisms 44 

that partially overlap with contraction. We report that genetic knockout of eNOS or 45 

nNOS or pharmacological NOS inhibition does not affect stretch-stimulated glucose 46 

uptake. Passive stretch failed to increase NOS activity above resting levels. This 47 

information is important for the study of signaling pathways that regulate stretch-48 

stimulated glucose uptake and indicate that NOS should be excluded as a potential 49 

signaling factor in this regard. 50 

  51 
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INTRODUCTION 52 

Exercise and ex vivo and in situ muscle contractions potently stimulate the uptake of 53 

glucose into skeletal muscle via a signaling pathway that is, at least proximally, 54 

independent of the canonical insulin signaling pathway (35). Signaling proteins that 55 

mediate glucose uptake during exercise present as an attractive therapeutic target for 56 

the treatment of Type 2 diabetes since glucose uptake and GLUT-4 translocation 57 

during contraction and exercise are mostly normal in insulin resistant muscle (24, 29, 58 

53). However, the exact mechanisms involved remain to be fully clarified. 59 

 60 

The transduction of mechanical stimuli into biochemical signals has long been known 61 

to regulate biological processes in skeletal muscle (9, 16, 50). Several studies have 62 

shown that mechanical loading applied to isolated rodent muscles in the form of 63 

passive stretching increases muscle glucose uptake (5, 18, 20, 23, 45), presumably via 64 

stimulating GLUT4 translocation (45). It is likely that a mechanical signaling 65 

component is essential to fully activate the glucose transport machinery during 66 

contractions, as the prevention of tension development during electrically-induced 67 

skeletal muscle contractions attenuates the increase in glucose uptake (2, 18, 23, 45). 68 

While muscle contractions have been shown to induce metabolic disturbances and 69 

activation of AMP-activated protein kinase (AMPK), this pathway is not activated by 70 

stretch (5, 23, 45). On the other hand, passive stretching activates the cytoskeletal 71 

regulator Rac1, and Rac1 inhibition has been shown to attenuate stretch-stimulated 72 

glucose uptake (44, 45). However, Rac1 inhibition does not affect the increase in 73 

glucose uptake during electrical stimulations when tension development is prevented 74 

(45). This indicates that during muscle contraction mechanical stimuli activates a 75 
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distinct signaling pathway that contributes to glucose uptake. The exact signaling 76 

mechanisms involved in this pathway are not known. 77 

 78 

Nitric oxide synthase (NOS) activity and nitric oxide (NO) production is increased 79 

during electrical stimulations in muscle cells (34, 42), muscle contractions or exercise 80 

in rodents (14, 15, 31, 32, 36, 38), and exercise in humans (28). Several studies have 81 

demonstrated that pharmacological inhibition of NOS attenuates the increase in 82 

skeletal muscle glucose uptake during contractile activity (1, 3, 14, 24, 31, 32, 37, 38), 83 

although this is not a universal finding (7, 10, 12, 13, 39). Neuronal NOSμ (nNOSμ) 84 

is considered the predominant source of NO in contracting skeletal muscle (14, 26) 85 

and is largely targeted to the mechanosensing dystrophin-glycoprotein complex 86 

(DGC) at the sarcolemma (4). Acute passive stretch of both muscle cells and mature 87 

muscle has also been reported to increase NO production (48, 54, 55), and there is 88 

evidence that NOS is involved in the transduction of mechanical signal pathways 89 

regulating the expression of cytoskeletal proteins (49). Given that NO contributes to 90 

the regulation of glucose uptake during muscle contractions, NO production is 91 

increased by stretch and NOS can participate in mechanical signaling, it is tempting to 92 

speculate that mechanical-stress (stretch) regulates glucose uptake via a NOS-93 

dependent mechanism. However, to the best of our knowledge, no previous study has 94 

investigated the role of NO in the regulation of this pathway.  95 

 96 

Therefore, the aim of this study was to determine whether acute passive stretch 97 

regulates glucose uptake via a NOS-dependent pathway. To determine this, we used 98 

two genetically modified mouse models lacking either eNOS or nNOSµ and two 99 

pharmacological NOS inhibitors which target all NOS isoforms. We hypothesized 100 
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that stretch-stimulated glucose uptake in mouse EDL muscle would be attenuated by 101 

NOS inhibition and/or genetic deletion of nNOSµ. 102 

 103 

Materials and Methods 104 

Animals 105 

All animal experimentation was conducted at the Institute of Sport, Exercise & Active 106 

Living (ISEAL), Victoria University, Melbourne with the prior approval of the 107 

Victoria University Animal Ethics Committee. Animal experimentation adhered to the 108 

Australian Code of Practice for the use and care of animals for scientific purposes as 109 

described by the National Health and Medical Research Council (NHMRC) of 110 

Australia. Thirteen- to sixteen-week-old C57BL/6, eNOS knockout (eNOS
-/-

), and 111 

nNOSµ knockout (nNOSµ
-/-

) mice were involved in this study. Six male mice lacking 112 

eNOS (eNOS
-/-

) (Monash Animal Services, Melbourne, Australia) and eight male 113 

C57BL/6 mice (ARC, Perth, Australia) aged 14–16 weeks were used to examine the 114 

role of eNOS. The eNOS
-/-

 group was generated by using eNOS
-/-

 breeding pairs and 115 

therefore wildtype littermates (eNOS
+/+

) were not produced. Since these mice were 116 

generated on a C57BL/6 background we chose to use C57BL/6 mice as controls. 117 

Seven nNOSµ
-/-

 mice and six wildtype littermates (nNOS
+/+

) (male and female) aged 118 

13–15 weeks were used to examine the role of nNOSµ. nNOSµ
-/-

 (B6, 129-119 

NOS1
tm1plh

) mice were originally purchased from Jackson Laboratories (Bar Harbor, 120 

ME, USA, stock no. 002633) (17) and backcrossed onto a C57BL/6 background for at 121 

least six generations to obtain a colony of nNOS
−/−

 and wild type littermate controls. 122 

Male C57BL/6 mice aged 13–15 weeks (ARC, Perth, Australia) were used for NOS 123 

inhibitor and NOS activity experiments. Mice were housed in standard cages and 124 
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maintained at 21°C on a 12-hour dark/light cycle with access to water and standard 125 

rodent chow ad libitum. Mice were not fasted prior to sacrifice. 126 

 127 

Muscle incubations 128 

NOS inhibition in mice has previously been shown to attenuate the increase in 129 

contraction-stimulated glucose uptake in extensor digitorum longus (EDL) muscles, 130 

but not soleus muscles (32). In addition, electrical stimulations have been shown to 131 

elevate levels of the NO downstream intermediate cGMP in EDL but not soleus 132 

muscles (26). Therefore, only EDL muscles were examined in the present study. EDL 133 

muscles were excised from anaesthetized mice (sodium pentobarbitone 70 mg/kg IP) 134 

and suspended at resting length (~2–4 mN) (45) in organ baths (MultiMyograph 135 

System; Danish Myotechnology, Aarhus, Denmark). All chemicals used were 136 

purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise stated. 137 

Muscles were pre-incubated for 30 min in Krebs-Ringer-Henseleit buffer consisting 138 

of (mM): NaCl 118.5, NaHCO3 24.7, KCl 4.74, MgSO4 1.18, KH2PO4 1.18, CaCl2 139 

2.5, (pH 7.4) supplemented with 0.01% BSA (Cat. # A2153), 8 mM mannitol and 2 140 

mM sodium pyruvate. Incubation media was maintained at 30°C and continuously 141 

oxygenated with gas containing 95% O2 and 5% CO2. Following the 30 min pre-142 

incubation period, muscles either remained at rest or were stretched to a tension of 143 

100–130 mN for 15 minutes (44, 45). When the effects of the NOS inhibitors N
G
-144 

monomethyl-L-arginine (L-NMMA, 100 μM) (12, 40), and N
G
-nitro-L-arginine 145 

methyl ester (L-NAME, 100 μM) (40) were examined, these inhibitors were present 146 

during the entire 45 min incubation time. L-NMMA at this concentration has 147 

previously been shown to attenuate the increase in NOS activity by ~90% (12, 31, 40) 148 

and contraction-stimulated glucose uptake during contraction ex vivo in mouse EDL 149 
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by ~20-50% (14, 31, 32). L-NAME has previously been shown to exert a similar 150 

dose-dependent inhibitory effect as L-NMMA on NOS activity in skeletal muscle 151 

(40). Immediately following the 45-min experimental period, muscles were quickly 152 

removed from the organ baths, washed in ice-cold Kreb’s buffer, blotted dry on filter 153 

paper, snap frozen in liquid nitrogen, and stored at -80°C for future analysis. 154 

 155 

Muscle processing 156 

To generate lysates for immunoblotting and NOS activity measurement, whole frozen 157 

EDL muscles were homogenized in ice-cold buffer [50 mM Tris-HCl (pH 7.5), 1 mM 158 

EDTA, 1 mM EGTA, 10% glycerol, 1% Triton X-100, 1 mM DTT, 1 mM 159 

phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin, 5 μl/ml protease inhibitor mixture, 160 

50 mM sodium fluoride, and 5 mM sodium pyrophosphate] by steel beads for 2 x 30 s 161 

30 Hz (TissueLyser, Qiagen, Valencia, CA), followed by end-over-end rotation for 30 162 

min at 4°C. Homogenates were centrifuged at 10,000 g for 20 min at 4°C, and the 163 

supernatant collected for NOS activity measurement. For immunoblotting, an aliquot 164 

was collected prior to the centrifugation step and diluted in sample buffer (0.125 M 165 

Tris-HCl [pH 6.8], 4% SDS, 10% glycerol, 10 mM EGTA, 0.1 M DTT and 0.01% 166 

bromophenol blue) and heated at 95°C for 10 min before being subjected to SDS-167 

PAGE. Protein concentration was determined by the Red660 protein assay kit (G 168 

Biosciences, St Louis, MO). 169 

 170 

Immunoblotting 171 

Total protein (5 µg) was separated by SDS-PAGE using stain-free gels (Bio-Rad, 172 

Hercules, CA) and semi-dry transferred (TransBlot Turbo system, Bio-Rad) to PVDF 173 

membranes. Prior to transfer, a stain-free image of the gel was collected to quantify 174 
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total protein loading. Stain-free gel analysis indicated that no differences in protein 175 

loading were observed. Membranes were blocked for one hour at room temperature 176 

(5% skim milk in TBST), before being probed overnight at 4°C with the following 177 

primary antibodies: p-PAK1/2
Thr423/Thr402

 (1:500), p-P38 MAPK
Thr180/Tyr182 

(1:1000), p-178 

AMPK
Thr172

 (1:1000), and p-CaMKII
Thr286

 (1:1000) (Cell Signaling Technology). The 179 

following day, membranes were incubated with HRP-secondary antibody for 1 hour at 180 

room temperature. Protein bands were visualized using Bio-Rad ChemiDoc imaging 181 

system and enhanced chemiluminescence substrate (SuperSignal West Femto, Pierce, 182 

MA), and quantified using ImageLab software (Bio-Rad). Analysis of protein bands 183 

were normalized to stain-free quantification of protein loading. 184 

 185 

NOS activity and glucose uptake measurements 186 

NOS activity was determined on muscle lysates in duplicate by measuring the 187 

conversion of L-[
14

C] arginine to L-[
14

C] citrulline (14, 27). Muscle glucose uptake 188 

was calculated during the final 10 minutes of stretch or basal conditions by 189 

exchanging the incubation buffer with buffer containing 1 mM 2-deoxy-D-[1,2-
3
H] 190 

glucose (0.128 µCi/mL) and 8 mM D-[
14

C] mannitol (0.083 µCi/mL) (Perkin Elmer, 191 

Boston, MA) as described previously (14). 192 

 193 

Statistical analysis 194 

All data are expressed as mean ± SEM. Statistical analyses were performed using 195 

GraphPad Prism 6.0 software. Glucose uptake was analyzed using one (treatment)- 196 

and two (treatment and genotype)-factor ANOVA. Fisher’s least significance 197 

difference test was performed if the ANOVA revealed a significant difference. 198 

Students t-test was used to compare morphological characteristics between each 199 
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genotype and its relevant control, NOS activity and protein phosphorylation. The 200 

significance level was set at P < 0.05. 201 

 202 

RESULTS 203 

Morphology characteristics of NOS knockout mice 204 

Body mass was not different between C57BL/6 control mice and eNOS
-/-

  mice (28.1 205 

± 0.8 vs. 27.4 ± 1.3 g; P = 0.65; n = 6-8) or between nNOSµ
+/+ 

and nNOSµ
-/- 

mice 206 

(24.1 ± 1.1 vs. 22.4 ± 0.6 g; P = 0.17 n = 6-7). EDL muscle mass was significantly 207 

lower in nNOSµ
-/-

 compared with nNOSµ
+/+

 mice (7.1 ± 0.2 vs. 8.6 ± 0.3 mg; P < 208 

0.001; n = 12-14), whereas EDL mass was similar between C57BL/6 control mice and 209 

eNOS
-/-

 mice (10.5 ± 0.4 vs. 10.1 ± 0.4 mg; P = 0.49 n = 11-15).   210 

 211 

Stretch-stimulated glucose uptake 212 

To investigate the involvement of NOS in the regulation of glucose uptake in 213 

response to mechanical loading, we examined the effects on stretch-stimulated 214 

glucose uptake in EDL muscle of 1) pharmacological NOS inhibition, and 2) deletion 215 

of either eNOS or nNOSµ. In muscles from C57BL/6 mice, passive stretch 216 

significantly increased glucose uptake approximately 2-fold compared with basal 217 

levels (P < 0.001) (Figure 1). Stretch-stimulated glucose uptake was unaffected by the 218 

presence of either of the NOS inhibitors L-NMMA or L-NAME (Figure 1). In 219 

muscles from eNOS
-/-

 mice, stretch increased glucose uptake approximately 2-fold 220 

from basal levels (P < 0.001) with a similar increase observed in C57BL/6 control 221 

mice (Figure 2A). Stretch also increased glucose uptake approximately 2-fold in 222 

muscles from nNOSµ
-/-

 and nNOSµ
+/+

 mice (P < 0.001).  There was a main effect for 223 

nNOSµ
-/-

 indicating that muscles from these mice had elevated basal and stretch-224 
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activated glucose uptake compared with controls (P = 0.02) (Figure 2B). The delta 225 

stretch-stimulated glucose uptake (the difference between basal and stretch values) 226 

was similar between nNOSµ
-/-

 and nNOSµ
+/+

. These results indicate that NOS is not 227 

necessary for normal increases in stretch-stimulated muscle glucose uptake. 228 

 229 

Effect of stretch on NOS activity and protein signaling 230 

Stretch did not increase skeletal muscle NOS activity above basal levels (measure of 231 

contribution from both eNOS and nNOS) in EDL muscles from C57BL/6 mice 232 

(Figure 3A). This was consistent with the lack of effect of deletion of nNOSµ or 233 

eNOS, and the lack of effect of NOS inhibition on stretch-stimulated skeletal muscle 234 

glucose uptake. To confirm that our stretch protocol did actually activate pathways 235 

previously shown to be activated by stretch (5, 23, 45), we examined the 236 

phosphorylation status of p38 MAPK as well as the activation of the cytoskeletal 237 

regulator Rac1 (22) by examining phosphorylation  of the Rac1 downstream kinase 238 

PAK1/2 (44, 45, 51). Consistent with previous studies, stretch significantly increased 239 

the phosphorylation status of PAK1/2
Thr423/402 

and p38 MAPK
Thr180/Tyr182

 (~2-fold) (P 240 

< 0.05) (Figure 3B and C) (5, 23, 44, 45). Skeletal muscle p-AMPK
Thr172

 did not 241 

increase with stretch which was also consistent with previous research (5, 23, 45)  242 

(Figure 3D). Likewise, stretch also failed to increase p-CaMKII
Thr286

 (Figure 3E). 243 

 244 

DISCUSSION 245 

The major finding of this study was that skeletal muscle stretch-induced increases in 246 

glucose uptake are independent of NOS. Given that stretch activated Rac1 (as shown 247 

by increased PAK1/2 phosphorylation) but did not activate NOS, it appears that 248 

although nNOSµ is part of the dystrophin glycoprotein complex and linked to the 249 
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cytoskeleton, stretch induces glucose uptake via the cytoskeleton independently of 250 

nNOSµ. In addition, eNOS is also not required for this process.   251 

 252 

The lack of NOS activation in EDL muscles following stretch is in contrast with other 253 

muscle models whereby stretch increased NO production (43, 47, 48, 54, 55). A key 254 

difference is that most of these studies were conducted in cultured muscle cells where 255 

a much longer stretching/loading protocol (1 – 48 hours) was applied.  Therefore, the 256 

increased NO production reported in these chronic stretch studies may have reflected 257 

an increased NOS protein content (55) rather than activation of the existing NOS. To 258 

our knowledge, only one previous study examined whether acute stretching was 259 

sufficient to stimulate NO production in mature intact muscle (48). Tidball and 260 

colleagues (48) reported a significant increase (~20%) in NO production from isolated 261 

rat soleus muscles following a brief stretch (2 min). In the present study, NO 262 

production probably did not increase with stretch-stimulation given that NOS activity 263 

was not enhanced above resting levels. This inference is in agreement with a previous 264 

study where stretched single mature muscle fibers (10 min) loaded with a NO-265 

sensitive fluorescent probe (DAF-FM), which allowed for a more direct NO 266 

estimation, did not have an increase in NO production (33). It is possible, however, 267 

that static stretching stimulates an initial burst of NOS activity/NO production that 268 

diminishes rapidly over time and was therefore not detected at the time of muscle 269 

harvest in our study (15 min). Indeed, it has been shown that shear stress applied to 270 

endothelial cells resulted in a marked increase in NO production within 5 minutes 271 

followed by little additional NO production thereafter (6). In another study, muscle 272 

NOS activity was significantly elevated 3 minutes following the induction of 273 

increased load applied to plantaris muscles in mice, and despite the continued load, 274 
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NOS activity returned to baseline levels within 1 hour (19). That study is difficult to 275 

interpret, however, given that tendons of synergist muscles were ablated resulting in 276 

“functional overload” of plantaris muscle and the time of overload was defined as 3 277 

minutes after mice started walking post-surgery (19). In our study, it should also be 278 

noted that we did not measure the muscle length required to achieve the passive 279 

tension of 100-130 mN. It is possible that loss of NOS isoforms, or the presence of 280 

NOS inhibitors could have affected the amount of stretch that was required to be 281 

applied to the muscle to achieve the desired passive tension. Nevertheless, the lack of 282 

increase in NOS activity with stretch fits with the observation that stretch-stimulated 283 

glucose uptake was not attenuated by NOS inhibitors or a lack of nNOSµ or eNOS.  284 

 285 

The mechanism(s) by which NOS regulates contraction-stimulated glucose uptake 286 

remains to be determined. Since there is emerging evidence glucose uptake is largely 287 

regulated by distinct metabolic (AMPK)- and mechanical-dependent (Rac1) signaling 288 

arms during muscle contraction (23, 46), in this study we examined the potential 289 

involvement of NOS in a mechanical-dependent signaling pathway. The lack of 290 

involvement of NOS in stretch-stimulated glucose uptake and Rac1 activation 291 

indicates that NOS is not involved in the mechanical signaling arm, and by extension 292 

the possibility that NOS regulates glucose uptake during contraction via a mechanism 293 

coupled with metabolic disturbances. However, this would likely not involve AMPK 294 

(46) given we have previously shown that NOS appears to regulate muscle glucose 295 

uptake during contraction independently of AMPK (30, 32). Nonetheless, it is 296 

important to note that in a recent study (46), although contraction-stimulated glucose 297 

uptake was largely attenuated by blockade of both metabolic (AMPK) and mechanical 298 

(Rac1) signaling, some increase in glucose uptake with contraction was maintained, 299 
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indicating other signaling pathways are likely at play. For example, mTORC2 300 

signaling has been shown to be essential for muscle glucose uptake during exercise in 301 

mice independent of AMPK and Rac1 signaling (25). Therefore, further work is 302 

required to examine the potential involvement of NOS in other signaling pathways 303 

during contraction. 304 

 305 

The activation of Rac1 by contraction and stretch is associated with an increase in 306 

glucose transport in muscle (44, 45), however, the upstream signaling events involved 307 

are largely unknown. Rac1 contains a redox-sensitive motif and it has been reported 308 

that activation of Rac1 is favored in the presence of reactive nitrogen species (11). 309 

Exposure of C2C12 cells to a NO donor has previously been shown to induce the 310 

rapid activation of Rac1 and phosphorylation of its downstream kinase PAK1 (8), 311 

indicating that NO is sufficient to stimulate Rac1 activation. Conversely, nNOS and 312 

eNOS have been reported to be activated by Rac1 in human aortic endothelial cells 313 

(41). These results suggest that NO/NOS could be upstream and/or downstream of 314 

Rac1. We measured PAK1 phosphorylation as a surrogate for Rac1 activity and to 315 

investigate possible associations between NO and Rac1/PAK1 pathway. Our data 316 

indicate that NO is not necessary for Rac1 activation during stretching and vice versa, 317 

given that we observed an increase in stretch-stimulated phosphorylation of PAK1 318 

(and presumably Rac1 activity) without changes in NOS activation. Nonetheless, 319 

future work is required to clarify whether a NO-Rac1 interaction exists in skeletal 320 

muscle under situations where NO bioavailability is increased, such as during muscle 321 

contractions (14). 322 

 323 
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Ca
2+

/Calmodulin-dependent kinase II (CaMKII) has also been implicated in the 324 

regulation of muscle glucose uptake during contractions in mature muscle in situ (52), 325 

however, the inability of stretch to enhance the levels of phosphorylated CaMKII
Thr286

 326 

in our study suggest that CaMKII is not coupled with mechanical signaling 327 

mechanisms. This contrasts with a study where stretch-stimulated glucose uptake in 328 

C2C12 myotubes was blocked by a CaMK inhibitor (21). However, as discussed 329 

above, the pathways regulating stretch-stimulated glucose uptake potentially differ 330 

between in vitro and ex vivo models. 331 

 332 

In conclusion, we have shown that passive stretching does not increase NOS activity 333 

in skeletal muscle and stretch-stimulated glucose uptake is not attenuated by either 334 

pharmacological inhibition of NOS or by deletion of eNOS or nNOSµ isoforms. 335 

Therefore, our results indicate that NOS signaling is not required for stretch-induced 336 

increases in skeletal muscle glucose uptake. 337 

 338 
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FIGURE LEGENDS 531 

 532 

Figure 1. NOS inhibition does not attenuate stretch-stimulated skeletal muscle 533 

glucose uptake. Stretch-stimulated 2-deoxyglucose uptake in EDL muscles from 534 

C57BL/6 mice incubated for 30 min with or without the NOS inhibitors L-NMMA 535 

(100 μM) or L-NAME (100 μM) (n = 4-10 per group). Data are means ± SEM. *** P 536 

< 0.001 vs. Basal.  537 

 538 

Figure 2. Deletion of eNOS or nNOSµ does not affect stretch-stimulated skeletal 539 

muscle glucose uptake. 2-deoxyglucose uptake at rest (basal) and during stretch in 540 

EDL muscles of A) C57BL/6 and eNOS
-/-

 mice (n = 5-9 per group) and B) nNOSµ
+/+

 541 

and nNOSµ
-/-

 mice (n = 6-7 per group). Data are means ± SEM. *** P < 0.001 542 

compared to basal. § P < 0.05 main effect for genotype.  543 

 544 

Figure 3. Passive stretch increases phosphorylation of skeletal muscle PAK1/2 545 

and p38 MAPK independently of NOS activation. A) NOS activity of EDL 546 

muscles at rest (basal) or following passive stretch (n = 4 per group). Immunoblot 547 

quantifications for B) p-PAK1/2
Thr423/402

, C) p-p38 MAPK
Thr180/Tyr182

,
 

D) p-548 

AMPK
Thr172

, E) p-CaMKII
Thr286

, and E) representative immunoblots of EDL muscles 549 

at rest (basal) or following passive stretch (n = 4 per group). Data are means ± 550 

S.E.M.* P < 0.05 vs. Basal. 551 

 552 
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