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ABSTRACT Software Defined Networking (SDN) offers a novel paradigm for effective network manage-
ment by decoupling the control plane from the data plane thereby allowing a high level of manageability
and programmability. However, the notion of a centralized controller becomes a bottleneck by opening
up a host of vulnerabilities to various types of attacks. One of the most harmful, stealthy, and easy to
launch attacks against networked systems is the Link Flooding Attack (LFA). In this paper, we demonstrate
the vulnerability of the SDN control layer to LFA and how the attack strategy differs when targeting
traditional networks which primarily involves attacking the links directly. In LFA, the attacker employs
bots to surreptitiously send low rate legitimate traffic on the control channel which ultimately results in
disconnecting control plane from the data plane. Mitigating LFA on the control channel remains a challenge
in the network security paradigm with the use of network traffic filtering only. To address this challenge, we
propose CyberPulse, a novel effective countermeasure, underpinning a machine learning based classifier to
alleviate LFA in SDN. CyberPulse performs network surveillance by classifying network traffic using deep
learning techniques and is implemented as an extension module in the Floodlight controller. CyberPulse
was evaluated for its accuracy, false positive rate, and effectiveness as compared to competing approaches
on realistic networks generated using Mininet. The results show that CyberPulse can classify malicious
flows with high accuracy and mitigate them effectively.

INDEX TERMS Link flooding attacks, SDN security, OpenFlow, Deep learning.

I. INTRODUCTION

Software Defined Networking has been proposed in the wake
of increasing network scale and management complexities
due to the continuous development in current networks. SDN
reduces network complexities by providing a simplified, flex-
ible, dynamic, and centralized network management using
the concept of separate layering for data and control planes
[1]–[3]. In SDN environment, the data plane is responsi-
ble for providing traffic forwarding functionality while a
centralized controller maintains a global view of the entire
network and can be easily programmed for the desired traffic
forwarding [4], [5]. SDN utilizes the OpenFlow (OF) pro-
tocol for communication between controller and data plane
infrastructure [6]. Every OF-enabled device in the data plane

has flow tables that are managed by the controller which
contain the entries called flow rules to route the traffic to
its destined path. All incoming packets are compared with
the entries in flow table, if, flow entries are not found for
a specific flow, a control packet is sent to the controller to
request further action [7]. The controller then updates the
flow rules after the packet inspection and traffic is forwarded
towards the destination. There is a continuous interaction be-
tween the controller and the data plane for traffic forwarding.
However, this continuous communication can also lead to
serious security issues if disrupted. A skilled adversary can
exploit this security challenge by causing DoS and disrupt
this communication [8], [9]. A more serious threat is when
the control channel is attacked by creating congestion on the

VOLUME 4, 2016 1



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2904236, IEEE Access

Raihan et al.: CyberPulse: A Machine Learning based Link Flooding Attack Mitigation System for Software Defined Networks

link with anomalous traffic using a Link Flooding Attack
(LFA) [10].

As the name implies, LFA is a link-based attack, where the
link connecting to a target server is flooded to cause traffic
congestion which ultimately disrupts the legitimate traffic
to the target server. Initially, the attacker identifies a target
server and creates a link map around it by sending traceroute
commands [11]. Subsequently, specific hosts called decoy
servers are selected that are placed around the path of the tar-
get link. After identifying the server, a set of bots is selected
which can generate sufficient traffic to flood the link. Finally,
the decoy servers are manipulated by these bots to send low
rate traffic to each other in order to cause congestion on the
target link which can ultimately disrupt communication of
the target server with the rest of the network.

Some studies have been performed recently that attempt
to mitigate LFA in SDN. A few of the available studies
focus on exposing a fake network topology map to the
adversaries [12]–[14]. Some other techniques are based on
link inspection which performs a similar operation but on
the basis of critical links supervision [10], [12], [15]. Most
of the available literature does not clearly distinguish the
attack behavior on SDN versus traditional networks [15],
[16], [17], [18], [19]. While some authors have used SDN
test beds to perform the experiments [20], [21] or SDN
based mitigation techniques there remains a lack of literature
available that mitigates LFA on SDN, specifically control
channel attacks. The critical reason behind the failure of
traditional techniques in SDN context is that SDN employs
centralized control strategy to handle the network traffic. The
challenge is that the control channel is not directly accessible
to the normal traffic. Therefore, a attacker needs to perform
specially crafted packet misses to attack this channel. For the
same reason, mitigating LFA on control channel is a complex
task.

CyberPulse is a novel solution because it taps into machine
learning and artificial neural networks, a type of artificial
intelligence to select appropriate traffic features for accurate
classification in a large volume of traffic data. Machine
Learning (ML) allows machines to learn about the features
of a problem using statistical techniques and automate the
solution for an arbitrary dataset. ML algorithms today are
being used to predict stock prices, weather patterns, highway
traffic, and have been successfully used for intrusion detec-
tion systems as well. This motivated us to employ machine
learning for the LFA problem. Our results show that it is
effective into addressing the challenge of mitigating control
channel LFA.

In this research, we start by highlighting the problem and
use extensive experimentation to show how LFA poses a
threat to modern SDNs. Our goal is to formulate the LFA
problem as a machine learning problem and tap into existing
knowledge base of state-of-the art algorithms developed by
this community to develop a classifier that allows us to
achieve high accuracy. We therefore detail how we sought
machine learning algorithms and performed feature selection

for a deep-learning solution suitable to our problem. We then
outline the design of our testbed using the Mininet network
emulator [21] and Floodlight [22] web-based controller ver-
sion 1.2. We chose to use Mininet for our evaluation testbed
because it is widely recognized as realistic emulator for
deploying large networks particularly SDN. It provides per-
formance accuracy and scalability and is a preferred option
as opposed to simulators and shared hardware testbeds. We
achieve flooding on the network with a variable number of
attackers and show the effect of attacks on SDN. CyberPulse
is implemented as an application at the application layer of
the SDN controller. We propose the following contributions:

• The challenge of LFA on SDN control channel is high-
lighted with the help of extensive experiments. We show
how LFAs can degrade the performance of SDN and
if no precautionary measures are performed, how these
attacks can bring down the entire network.

• CyberPulse, a novel solution for detecting and mitigat-
ing LFA on the SDN control channel is proposed by
leveraging the application layer of the SDN controller.

• Flood traffic classification is performed using deep
learning-based techniques on state of the art real world
cyber risk research and decision support dataset from
the UCI machine learning repository.

• A comprehensive evaluation has been conducted to
assess the performance of deep learning classification
and a side-by-side comparison has been made with
competing techniques.

The rest of the paper is organized as follows, Section II
discusses system adversary model whereas Section III illus-
trates the machine learning approach and algorithm selection
strategy. Section IV describes the detailed architecture of
CyberPulse, in the same way, Section V illustrates multilayer
perception in classifying LFA traffic. Section VI provides the
implementation details of CyberPulse, Section VII presents
the related work, and finally, Section VIII concludes the
paper.

II. SYSTEM AND ADVERSARY MODEL
In this section, we present LFA adversary model used in this
research, we first describe the list of acronyms used in this
research in Table 1. Initially, we discuss about SDN flow rule
installation, a flow rule instructs the switch on how to handle
an incoming traffic packet, an OF switch contains flow en-
tries that consists of priority, match, timeout, and instruction
fields. Flow entries in an incoming packet at the OF switch
are matched with the flow table in order to forward the traffic.
When a corresponding flow rule for the incoming packets is
found, the received and byte counters are incremented and
the flow is handled according to the entries in the flow table.
In case a flow rule is not found for an incoming packet, a
PACKET_IN message containing header information of the
packet is forwarded to the controller for further instructions
on how to handle the packet. The controller parses the header
fields of the packet and sends a PACKET_OUT message
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TABLE 1: List of Acronyms.

Symbol Description Symbol Description
LFA Link Flooding Attack ANN Artificial Neural Networks

SDN Software Defined Network ML Machine Learning

IP Internet Protocol TCP Transmission Control Protocol

ISP Internet Service Provider MLP Multi-Layer Perception

DoS Denial of Service ML Machine Learning

LAN Local Area Network TCP Transmission Control Protocol

VM Virtual Machine REST Representational State Transfer

API Application Programming Interface D4J Deep Learning4J

ASes Autonomous Systems VN Virtual Networks

IDS Intrusion Detection system CoDef Collaborative Defense

OF OpenFlow VPN Virtual Private Network

DNS Domain Name System IPS Intrusion Prevention System

BHP Burst Header Packet

FIGURE 1: Normal SDN operation.

containing flow rule to the OF switch which subsequently,
forwards the packet and update the flow table.

A. TAXONOMY OF LFA
In LFA, adversaries send low rate legitimate flows to pre-
cisely selected servers around the target link called decoy
servers. This results in an increase in traffic on the target
link, as the number of flows increases. Initially, the network
traffic tends to slow down and with the passage of time
when the link is severely flooded, the target server becomes
irresponsive. In Fig. 1 normal SDN traffic flow is shown,
it can be observed that when a packet arrives on a switch,
a request is generated to the controller for path selection
by inspecting the packet header. Subsequently, the relevant
rules are forwarded to the switch and corresponding packet
is transferred towards the destination. LFA mimics the same
normal activity of the network and utilizes its low rate nature
to avoid detection and flood the entire network.

Attackers use low rate traffic which is hard to detect. They
keep on sending traffic to the decoy servers until the link is
congested with the attack traffic. Fig. 2 shows an example of
LFA on a selected link, it can be observed that three bots are

sending traffic to 4 decoy servers which is passing through
the target link. A server is attached to the target link, so the
low rate traffic will occupy the link bandwidth and ultimately,
obstruct the legitimate traffic towards the target server. To
increase the effectiveness of the attack, a high number of bots
are manipulated to send traffic to the decoy servers.

FIGURE 2: LFA model where bots send traffic to decoy
servers and congest target link. (Redrawn and extended the
figure at [19]).

VOLUME 4, 2016 3
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TABLE 2: Comparison of machine learning algorithms for
classification.

Algorithm Training
Time

Classification
Accuracy

Multiclass logistic regression Fast Low

Multiclass neural networks Slow High

Multiclass decision forest Fast Low

Multiclass decision jungle Slow High

Two class decision forest Fast Low

Two class boosted decision tree Fast Low

Two class decision jungle Slow Low

Two class SVM Slow High

B. LFA ADVERSARY MODEL
The adversary seeks to disconnect the data plane from the
control plane by employing the link flooding technique. The
attacker first constructs a link map of the network by utilizing
layer 3 diagnosis tools such as traceroute commands target-
ing different points in the network [23]. The information
gathering host is called a link prober and the identified link
map describes the routing policy towards the target area in the
SDN. The adversary figures out the best attack-cost strategy
and selects the links which can be occupied by as many
bots as possible to send increasing amount of attack traffic.
Afterwards, it utilizes bots to sends TCP like traffic to the
decoy servers. It is also pertinent to note that the adversary
tries to send traffic at a low rate scale to avoid being detected
by the rate limit detection mechanisms. Subsequently, the
link capacity is fully utilized by the attack traffic, which will
impede the legitimate traffic to flow through the link and
ultimately, connection to the victim server will be subverted.

In SDN the control channel can be attacked by flooding
data plane switches with flood packets which trigger new
flow rule installation. The buffer memory of the switch
will be full and it will encapsulate the whole packet in
the PACKET_IN message which will result in flooding on
the control channel and increasing the latency of flow rule
installation. Furthermore, in extreme conditions, the control
channel can be disrupted from the rest of the network. This
attack approach is applicable to backbone SDN networks that
are increasingly being employed to ISPs across the world
who want to benefit from the performance gains as well as
ease of maintenance compared to traditional networks. Some
previous studies have also explored the vulnerable nature of
SDN under attacks [24], [25], [26].

III. MACHINE LEARNING APPROACH AND ALGORITHM
SELECTION
There are several well-established ML techniques, algo-
rithms, and tools available and there is no distinct best
candidate for a specific task. The particular selection how-
ever, affects and usually involves a trade-off between sev-
eral factors including but not limited to prediction accuracy,
performance, and the training dataset size depending on the

nature of the problem. In this section, we discuss how we
gave considerable thought to this decision by sharing our
comparative review of the state-of-the-art machine learning
tools currently available and how they apply to our problem.
Table 2 contains the comparison of different machine learn-
ing algorithms based on training time and accuracy.

A. DRAWING INSPIRATION FROM MACHINE LEARNING
FOR SDN SECURITY ANALYSIS
We draw CyberPulse inspiration by observing that in SDN
the controller has access to a large volume of important
traffic statistics that may be collected at specific time inter-
vals. Specifically, statistics regarding the individual flows are
made available by OF switches. The precise time interval for
statistics collection is an important determining factor where
a small interval increases overhead, similarly, a large interval
increases the detection time. A machine learning classifier
can then be utilized to help the classifier identify the flood
traffic source. As a first step, a classifier is developed where
an algorithm is used to build the classifier model using the
provided training dataset. The model is then employed for
the classification where the accuracy is determined by the
percentage of test data records that are correctly classified.

B. MACHINE LEARNING TOOL SELECTION
For our research, we preferred having several key features in
our ML tool of choice. These features in decreasing order of
priority are as follows: (1) freely available, (2) classification
accuracy, (3) better performance for medium-sized datasets,
availability of documentation, and portability. In this regard,
we conducted a comprehensive survey of the ML tools avail-
able in the market and examined the pros and cons. In Table
3, we have compared WEKA, D4J (Deep Learning4J), Ten-
sor Flows, and Encog3 based on the following parameters:
source code, help and support, license type, programming
language support, compatibility, documentation, and perfor-
mance. Details description of comparison parameters is given
below:

1) Source Code: It corresponds to the underlying lan-
guage used for the development of the machine learn-
ing tool.

2) Help & Support: Help correspond to the publicly
available assistance online and support refers to the
help provided by the machine learning tool provider
himself.

3) Performance: We have compared performance of the
tools based on the training time taken to perform the
classification task, on a scale of 0 through 10 with 10
being the maximum.

4) Documentation: Availability of documentation,
guides developers to use the tool in the required cir-
cumstances, it has been rated in a range from 0 to 10
with 10 corresponds to a maximum score.

5) Programming Language: Over the period of time,
new programming languages are developed hence, sup-
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ported programming languages play an important role
in the selection of a machine learning tool.

6) Compatibility: Sometimes models developed using
an older version of a programming language, are not
supported by the newer version of the available tool. A
good tool supports backward compatibility.

7) Dataset Size: Certain ML tools tend to support big
data processing at reasonable performance depending
on the design and the models used.

8) Development Mode: Some ML tools tend to have
a steeper learning curve and experience required for
model development as compared to the others.

Encog3 is a CSharp based framework that can accommo-
date a range of ML techniques for medium sized datasets.
Support is however limited and the learning curve is steep.
TensorFlow is based on Python and also supports a range of
ML techniques. In addition, it is suitable for large datasets
and the computational accuracy is also very high. The model
development process involves handling graph data structures
which can be time-consuming. The learning curve is also
comparatively high. D4j is a java-based machine learning
tool which requires high-performance computing machines
for a successful operation. It supports all the available ma-
chine learning tasks and is suitable for medium and large
sized datasets. PyTorch is a lua-based deep learning frame-
work, it works on the basis of tensor which considers ev-
ery model as a directed acyclic graph. In TensorFlow the
graph is statically defined before a model can run and the
input is extracted from the outer world by tf.Session and
tf.P laceholder interfaces. On the other hand, PyTorch is
more dynamic where nodes of the directed acyclic graph
can be defined, changed, and executed dynamically. No ses-
sion and placeholder interfaces are explicitly required. This
framework is tightly coupled with python. WEKA is based
on Java and supports classification and clustering. It works
efficiently for small to medium sized datasets and includes
a rich set of ML algorithms. WEKA has extensive help and
support available and supports models developed using older
versions of the tool.

In summary, WEKA is suitable for small datasets classifi-
cation and clustering tasks. Encog3 can be utilized machine
learning tasks on medium sized datasets. D4j and TensorFlow
can be deployed for big datasets and complex machine learn-
ing tasks. WEKA seemed to be the closest to our require-
ments and therefore we chose it for our implementation.

C. MACHINE LEARNING ALGORITHM SELECTION
Numerous algorithms are available to choose from when we
come across a ML classification problem. The selection of
an algorithm depends on the type of problem we are dealing
with, however, the algorithmic performance depends on the
size and the structure of data. Fig. 3 shows the classification
algorithm selection strategy. Initially, when an ML task is
assigned, the first question to ask is that how many numbers
of classes is to be predicted, if there are two classes, then
further decision depends on multiple aspects i.e. accuracy,

training time, and performance. In the next step, the analysis
is performed to assess accuracy and training time. In Cyber-
Pulse, we select the ANN technique as the foremost priority
for flooding attacks classification was accuracy because if the
malicious traffic can be accurately classified, then it can be
easily mitigated.

Table 2 further compares different ML algorithms based
on their training time and classification accuracy. Fig. 3
shows two class and multi-class categories in the start. In the
multi-class, classification categories, both neural networks
and decision forests perform classification tasks with fast
training time and high accuracy. Multi-class and two class
neural networks consume more training time but yield good
classification results. Therefore we select artificial neural
networks for flooding attack traffic classification because
the classification accuracy was of more importance than the
training time. In the Table 2, the performance attributes have
been assigned as either low, high, slow, or fast.

IV. CYBERPULSE ARCHITECTURE AND DESIGN
To address the problem discussed in section III, we propose
CyberPulse an extension application module in the SDN
controller to secure SDN against LFA. While the CyberPulse
design is generic, our prototype implementation resides on
application plane of the Floodlight controller and performs
the LFA mitigation process. We, therefore, refer to Floodlight
when we discuss the design of the controller in the rest of this
document. The prime purpose of CyberPulse is to detect and
eliminate LFA on the control channel. In this section, we,
discuss the detailed architecture of CyberPulse.

A. OVERALL CYBERPULSE ARCHITECTURE
CyberPulse exploits the northbound REST API of the SDN
controller [22] to communicate with the controller and per-
form the operation. As shown in Fig. 4, CyberPulse is an
extension module in the application layer of the SDN con-
troller. It works concurrently with other modules of SDN
in order to provide the required functionality. CyberPulse
incorporates three modules which includes Link Listener,
Flood Detection, and Flood Mitigation. CyberPulse uses the
REST API to connect with the controller and in-turn the
controller uses Southbound OF API to communicate with the
data plane switches [27].

B. CYBERPULSE MODULES
It can be observed from Fig. 4 that there are three modules
in CyberPulse. Each module performs a specific operation in
order to accomplish the cumulative task of LFA mitigation.
CyberPulse only requires modifications in the software and
no hardware is required for its operation. It can, therefore,
be easily integrated with the existing Floodlight controller.
CyberPulse modules are explained here:

1) Link Listener Module
The process starts with the Link Listener module which
continuously inspects the control channel and constantly
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FIGURE 3: Machine learning algorithm selection for LFA classification.

TABLE 3: A comparison of state of the art machine learning tools used in research.

Comparison Parameters Weka D4J TensorFlow Encog3 PyTorch
Source Framework Java Java CPP engine CSharp Lua-based

License Opensource Opensource Opensource Opensource Opensource

Programming Language Java Java Python CSharp Python

Compatibility No issues No issues Less backward compatible Less backward compatible Less backward compatible

Dataset Size Small datasets Larger datasets Big datasets Medium sized datasets Big datasets

Development Mode GUI-based Code-based Code-based Code-based Code-based

Help and Support 9 6 7 5 4

Documentation 9 6 7 5 6

Performance 9 7 6 8 9

FIGURE 4: The overall architecture of CyberPulse showing
CyberPulse modules.

provides traffic flow statistics to the Flood Detection module.
Table 4 shows the traffic statistics that can be extracted by the
Link Listener. Some statistics are directly extracted, however,
some of them are calculated based on other statistics. Flood-
light exposes a Java-based REST API to extract network
statistics, which is employed by this module to retrieve the
required statistics.

2) Flood Detection Module:
Flood Detection module inspects the statistics and performs
flow classification. This module incorporates the statistics

pre-processing component which eliminates the packet head-
ers information such as ack, syn − ack packets from the
statistics and presents only traffic flows to the Flood De-
tection module. These statistics are consumed as features
by a deep learning sub-module that uses Artificial Neural
Networks (ANN) a type of ML algorithm to classify the
network traffic. The steps involved in the Flood Detection
module are given in Algorithm 1.

Algorithm 1 LFA Classification using MLP

Require: Traffic Flow F , packet statistics, dataset T
Ensure: Flow Class: Flooding, Legitimate

1: Get traffic flows
2: for Flow f ∈ F do
3: Get Flow Statistics
4: Extract Features
5: end for
6: Pre-process T
7: Train ANN-MLP model using T
8: Classify flows using ANN-MLP
9: Export classification

10: return Flow Class: Flooding, Legitimate

The ANN classification module builds a training model
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by utilizing flooding attack datasets. Subsequently, based on
this trained model, it performs the classification process. The
classifier outputs the benign and the attack flows.

3) Flood Mitigation Module
Results of the classification are forwarded to the Flood Mit-
igation module which drops the attack flows using the null
routing technique. The operation of CyberPulse is explained
in the Algorithm 1. A Null route creates a block-hole, which
is a kernel routing table entry leading to nowhere. Packets
matching a null route will be dropped.

V. MULTILAYER PERCEPTION IN CLASSIFYING LFA
TRAFFIC
This section delves into the detailed design of the deep learn-
ing based nonlinear Multilayer Perception (MLP) backward
propagation structure used for network traffic classification.
The basic computation units of the MLP are illustrated in Fig.
5. A node calculates the weighted sum of inputs, incorporates
a node threshold and forwards the results to a nonlinear
function. MLP is characterized by an input, an output, and
one or more hidden layers that are interlinked with each
other. Oppositely, there is no connection between the nodes in
the same layer, moreover, there are no bridging connections
either. The role of the backward propagation and the hidden
layers in MLP are discussed next.

1) Backward Propagation: The backward propagation
process in this algorithm is used to continuously adjust
weights of the layers in order to minimize the dif-
ference between actual output and the desired output.
It is used to calculate a gradient descent which is
subsequently used to calculate weights and finally used
to train the MLP model.

2) Hidden Layers: Hidden layers are the neuron nodes
that reside between inputs and the outputs, which cor-
respond to the number of intermediate connections that
are used in the experiment, and by default this number
is selected as 1. The number of hidden layers depends
on the mean value of the input and output layers. When
data is linearly separable, the number of hidden layers
to use is 0. These layers actually transform the single
layer perception into multilayer which is denoted by
h : (h1, h2, ..., hn). Where hidden layer comprised up
of 1 to a maximum number of n layers. Each neuron
has an associated weight, which is its contribution
towards the actual output of the classification.

FIGURE 5: The MLP configuration used in the experiment.

3) Output Layer: Output layer is the number of possible
classes in the dataset that we want to predict and is
denoted by y. In our experiment, this is equal to two for
Legitimate and Flooding. W is the weight learned
from the training set by iteratively minimizing the error
using gradient descent as can be seen in the equation 1.
The gradient used in the equation can be determined by
using the backward propagation algorithm.

Wnext = W + ∆W (1)

∆W = −learning rate× gradient

×momentum×Wprevious

(2)

The change in weight ∆W can be calculated by em-
ploying the equation 2 which multiplies gradient decent by
the learning rate and adds the previous change in weight
Wprevious. The input layer is associated with the number
of attributes in the dataset and it is denoted with x. Input
dataset is designated as the (x1, x2, ..., xm) features having
influence on the final output of the flood traffic classification
where subscripts 1 to m denotes the number of features of the
input layer. The reason behind using notation of n for hidden
layers and m for input layers was that, the number of hidden
layers neurons may differ from the number of input data. If
we have m input data features, we multiply it with weights
(w1, w2, ..., wm) we get the equation 3.

W.X = w1x1 + w2x2 + ... + wmxm (3)

.
Subsequently, the input dataset is multiplied with the hid-

den layer neurons weights to get the result z(w1
1, w

1
2, ..., w

1
m),

z =
∑m

i=1 wixi + bias adding this value to the activation
function f(z) to get the output of the first hidden neuron
for the whole dataset. The superscript 1 denotes the current
hidden layer, if there are multiple hidden layers then the
superscript is used to identify the hidden layer number. In
this example, all the weights have superscript 1 which shows
that they are weights of the hidden layer 1. This process is
applied to all the features of the training dataset. For the
final output, a dot product of hidden layer output and hidden
layer weights wh is performed. The set of weights consist of
w1h : (wh1

1 , wh1
2 , ..., wh1

n ), with n weights as n corresponds
to n hidden layer inputs. Finally, a bias value is added to
obtain the result and is given in the equation 4 similarly
equation 5 contains the final output of the MLP algorithm.
The value of z is fed to an activation function to get the output
for the output layer.

z =
n∑

i=1

wh1
i=1 × h1

i + bias (4)

rŷ = f(z) (5)
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FIGURE 6: An example of adversaries sending attack traffic.

TABLE 4: Features used in the research and the statistics
collected.

Sr. No Feature Name Sr. No Feature Name
1 Node 8 Used Bandwidth

2 Utilized Bandwidth 9 Lost Bandwidth

3 Packet Drop Rate 10 Packet Size

4 Full Bandwidth 11 Packets Received

5 Percentage of packet lost Rate 12 Packets Lost

6 Percentage of lost byte rate 13 Transmitted Byte

7 Packets received rate 14 Flooding Status

VI. IMPLEMENTATION DETAILS

In this section, we describe how we conducted simulations
and analysis to evaluate the performance of CyberPulse in
two conditions including flooding attack and in normal net-
work operation scenario. As a way of discussion we build a
case based on our evaluation results that while the traditional
SDN environment offers no flooding attack defense mecha-
nism, CyberPulse bridges that gap and is an effective exten-
sion to the SDN environment. Fig. 6 represents an example
how we use some hosts as adversaries to simulate an actual
LFA environment. This example is based on the adversary
model outlined earlier targeting the control channel. In this
figure, we can observe a small tree topology consisting of 8
hosts where the adversaries are sending traffic towards the
target link to flood it and obstruct the legitimate traffic. By
using this strategy, any link in the network can be congested
which will result in causing legitimate traffic delays. Fig. 7
shows the flow diagram of CyberPulse process, it starts by
setting-up a Mininet network and generating network traffic.
Subsequently, statistics of switches and ports are extracted
using REST API. Data preprocessing is performed to extract
only data packets removing extra header packet information,
then machine learning module performs the traffic classifica-
tion and identifies the malicious flows. Finally, the malicious
flows are mitigated using null routing technique.

FIGURE 7: Flow diagram of CyberPulse operation.

A. EXPERIMENTAL SETUP
As it has been discussed in Section IV that CyberPulse
consists of three modules, we study the working principle
of all of these modules in this section with the help of
experimental analysis. A virtual network is designed using
a single desktop computer to implement CyberPulse in an
emulated network environment. In our case the computer
specifications were as follows: Intel(R) Xeon(R) CPU E3-
1225 v5 @ 3.30GHz and 16 GB RAM. Windows 10 was run-
ning on the host machine and Ubuntu 14.0.4 was running on
an Oracle VM Virtualbox. We used Floodlight open-source
controller, programmed in the Java language. In this section
initially, we present the parameters for network creation and
traffic generation. The Link Listener module consists of a
statistics collector which performs the network surveillance
and collects statistics. In our experiment, we use Wireshark
to get network statistics which are classified by the Flood De-
tector module. Subsequently, we present the deep learning-
based MLP parameters used in the experiment. Algorithm
1 explains the classification procedure, the algorithm takes
input of traffic flows set F and training dataset (T ). The
algorithm gets the traffic flows and for each flow, traffic
statistics are computed, after the extraction of all the features,
the preprocessing is performed. Subsequently, the classifier is
trained using ANN-MLP algorithm, finally, the trained model
is utilized to classify the captured network statistics into final
classes as Flooding or Legitimate.

The dataset used in our research was downloaded from the
UCI machine learning repository for Burst Header Packet
(BHP) flooding attacks which consisted of 22 feature [28].
After careful investigation of the dataset and proposed prob-
lem, we selected 14 features for the training and testing of
the traffic. The features information of the dataset is given
in Table 4. The behavior of each flow is inspected and
a point is identified where it was misbehaving. The MLP
classifier model performs its operation by classifying the
incoming traffic flows into possible classes, i.e. Legitimate
and Flooding. It is worth mentioning here that the training
set consisted of Legitimate and Flooding class flows, 88 %
instances related to Legitimate and 12% to Flooding.

Previous studies [29], [30] suggest that a utilization ratio
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of more than 40% indicates network performance degrada-
tion. In the same way, link utilization percentage is another
indicator of possible threats to the network. Node utilization
is calculated using equation 6.

utilization(%) =
datasetsize

Bandwidth× interval
× 100 (6)

In the experiment, the number of input neurons was 14
and the output neurons were equal to 2 corresponding to
the desired output of the experiment i.e. Flooding and
Legitimate. The model building parameters are given in Ta-
ble 5. The training time was set to 500 secs having a training
and test set size of 60% and 40% respectively which was
later changed in the data split experiment. The experiment
was performed using 10 fold cross-validation. In experiment
8 hidden neurons were used which is the average of the input
and output layers. The learning rate was set to 0.3 as on
this learning rate the algorithm was behaving efficiently in
terms of accuracy and time constraint. The experiment was
performed using one hidden layer and a momentum of 0.2.

The network topology was designed as shown in the Fig.
8. The figure represents a tree topology with three levels
consisting of 16 hosts and 12 OF switches. The reason behind
using this topology is that it is always a cost-security trade-
off when employing a network topology, since installing an
out-of-band channel may constitute significant infrastructure
cost if the SDN controller needs to be connected to every
available switch. SDNs typically used in large scale ISPs may
span few hundreds switches which can pose a significant cost.
This topology is created in Mininet running on the Ubuntu
operating system. The remote controller running on Windows
10 machine is utilized and accessed from the Ubuntu machine
using port 6634. The iperf tool is used to send flood as well
as legitimate traffic to multiple hosts in the network and plot
graphs to show the effect of flood traffic on the links. The
emulated network topology consisted of the parameters given
in Table 6.

1) Flood Traffic Capturing
The test-bed network comprised of 12 OF switches, and
16 hosts, connected with the controller each having a link
capacity of 1000 Mbps as shown in the Fig 8. To present
the LFA attack model in the experiment bots and decoy
servers are deliberately given the roles utilizing the available
16 hosts. Subsequently, low rate traffic is generated towards
target hosts. Iperf is an open source tool to create and
measure network traffic. We use iperf − s command to
start a TCP server connection. Using this command the
server will start listening on TCP port 5001. Subsequently,
any host can connect to the server using the command:
iperf −s −c 10.0.0.1 −t 15, which specifies the IP address
of the server to connect and time duration for which the
connection is requested. At the end of connection a summary
of data transfer and bandwidth is displayed on both client
and server terminals. After a TCP connection completion, the

TABLE 5: Model building parameters and their values.

Model parameters Value
Input Neurons 14

Output Neurons 2

Hidden Neurons 8

Training time 500Sec

Actual time for model building 17.4Sec

Learning Rate 0.3

Validation Cross 10 Fold

Momentum 0.2

server keeps on listening to the port creating an opportunity
for any other host to connect with the server.

Experiments are performed by sending flood traffic to-
wards the target servers and analyzing the link bandwidth.
The following Mininet command is used to create a tree
topology and fixing the bandwidth of the links to 1000 Mbps.
sudomn−−controller = remote,
ip < ip of windows 7 machine : port >
−− topo = tree, 3 link tc, bw = 1000
Traffic is manipulated by opening a separate terminal for

every attack node in the Mininet Ubuntu machine. During the
flows generation, Wireshark [31] network packet statistics
analysis tool has been utilized.

2) Attack Simulation
To simulate a real world LFA scenario, we manipulate dif-
ferent hosts in the network as bots to send low rate traffic to
attack the OF channel. Bandwidth of the links is measured
before and after sending the flood traffic. Hence, for instance
in one experiment H2 was acting as a decoy server and H3,
H4, and H5 were behaving as bots. In each experiment, the
number of decoy-bot pairs have been varied and bandwidth
consumption of the links is measured. The experiment was
performed with one, two, three, and up to 14 attackers and
all the traffic statistics given in Table 4 of the traffic are
measured.

The experiment was run multiple times and each time the
reported bandwidth was extracted using Wireshark. With the
increase in the number of attacking hosts, the bandwidth tend
to decrease. Fig. 9 shows the effect of LFA on available
bandwidth and packet drop rate in the network. Fig. 9a shows
the effect on available bandwidth with the increase in the
number of attackers. It can be observed from Fig. 9a that with
the increase of number of attackers, the bandwidth started
to saturate and when the number of attackers reached 14
the available bandwidth reduced to nearly a mere 50 Mbps,
which demonstrates the devastating effect of LFA on the
SDN control channel. Another phenomena was noted that
with the increase in the number of attackers the packet loss
rate also tends to increase as given in the Fig. 9b. It can
be observed that when the attack traffic was increased the
packets drop rate also increased. There was a rapid vertical
shift in the packet drop rate when the number of attackers
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FIGURE 8: Emulated topology using Mininet and Floodlight controller.

increased to 14, which shows that when the number of
attackers has been increased to a certain level, the packet drop
rate increases exponentially. After running the experiment,
the flows were extracted for every node in the network. After
extracting all the traffic, data preprocessing was performed
and statistics for the individual flows were captured. Sub-
sequently, the training set was used for building the model
and subsequently, the trained model was used to classify the
statistics into benign and malicious flows.

B. RESULTS
In this section, we discuss and analyze the results for the
experiments. The results are based on two scenarios: normal
SDN traffic flow and during the attack. According to previous
studies [29], [30] when the utilization ratio of the network
is increased to more than 40 percent, it indicates that the
network performance has started to degrade. Similarly, an in-
crease in link utilization ratio also indicates that the network
is under LFA. We perform extensive experiments and eval-
uate CyberPulse using three different accuracy evaluation
parameters. Initially, three machine learning performance
evaluation metrics, i.e. precision, recall, and F1 score
were used for evaluation. Subsequently, the evaluation is
performed using data partitioning, attribute selection, and
using different classifiers.

1) CyberPulse Evaluation using Performance Evaluation
Metrics
Three metrics for accuracy evaluation were used, i.e.
precision, recall, and F1 score. Precision is the measure
of how close the predicted values are to the actual values. It is
the value of the number of relevant flows retrieved divided by
the total number of flows. The formula of accuracy is given
in equation 7.

Precision =
TP

TP + FP
(7)

The results of accuracy evaluation metrics is given in Fig.
10. Precision values close to one are considered to be more
accurate. It is pertinent to say that CyberPulse has been
able to classify the traffic correctly into two categories. The
accuracy of the two categories is more than 85%. Recall can
be defined as the total number of relevant flows classified
divided by the total number of retrieved flows. The formula
of recall is given in equation 8.

Recall =
TP

TP + FN
(8)

CyberPulse performed slightly lower in the case of recall
as compared to the precision. The Flooding flows were
more accurately classified as compared to the Legitimate
flows. The overall accuracy of the recall measure was around
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(a) (b)

FIGURE 9: Effect of LFA on the link bandwidth saturation and packet drop rate.

TABLE 6: Parameters for topology creation.

Parameter Value
Virtual Hosts 16

OF Switches 12

Controller Port No 6653

Link Bandwidth 1000Mbps

Mininet OS Ubuntu

Controller OS Windows 10

Packet Capture Wireshark

95%. F1 score is also an important evaluation measure as it
combines both precision and recall values. The formula for
F1 score is given in equation 9.

F1 score = 2× Percision×Recall

Precision + Recall
(9)

It can be observed from precision and recall in Fig.
10 that the F1 score metrics performed slightly better as
compared to precision and recall. The values of flood traffic
detection are higher than that of recall. The overall accuracy
of the F1 score was around 76%. The accuracy of this
metrics for legitimate traffic detection was approximately
the same as the values of precision and recall metrics.
Our results and analysis show that CyberPulse was able to
accurately classify the traffic. Based on the classification
values the Flood Mitigation module was able to eliminate the
flood traffic. Overall it can be concluded that if the attacker
is powerful and able to send high volumes of flood traffic
than the available bandwidth of the system will be dropped
as it can be observed from the Fig. 9a In the same way, if
the flooding attack is increased, the packet drop rate will also
tend to increase, severely affecting the legitimate traffic in
the network. It can also be noted that CyberPulse effectively

FIGURE 10: Evaluation of the ANN classifier using accuracy
metrics.

identifies the flows that are involved in the flooding of the
network.

2) CyberPulse Performance Evaluation using Data
Partitioning and Attribute Selection
Due to the novelty of our solution, we were unable to find
relevant LFA classification techniques to directly compare
with the proposed CyberPulse ML classification algorithm.
In order to achieve a fair comparison of the results of our
work we did however evaluate the accuracy of the system
along several dimensions. We employed different: (1) state-
of-the-art machine learning classification algorithms, (2) data
partitioning strategies and (3) classification features and com-
pared the results. Thereafter, we discuss the features of our
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solution with the most closely related works we could find.
In this section, we first evaluate the CyberPulse using

different data splitting strategies and employing several at-
tributes selection techniques. Initially, the data was split into
multiple chunks and provided as input to the MLP algorithm
to evaluate the effect of data partitioning strategies on the
accuracy. The idea was to implement the best-suited strategy
for the classification of CyberPulse flood traffic. We also
perform evaluation by selecting critical attributes that play
important role in the classification of the network traffic. We
split data into three partitions with reference to training and
testing i.e. 50% each, 70% training, and 90% training. Fig.
11 shows the evaluation results of data split, algorithm, and
feature selection experiments. Similarly, it can be observed
from the Fig. 11a that CyberPulse classifier performed well
when the size of the training set was increased. There was a
significant increase in the accuracy of the evaluation metrics
when the training percentage of data was increased from 50%
to 70%. The precision metrics rapidly increased to over
80% which was around 74% while 50% data was used for
training. This comparison provides an insight for selecting a
fair split of training and testing data to get better results. As
it can be observed from the Fig. 11b that the correct selection
of attributes plays a significant role in the accuracy of the
classifier. We first performed the experiment by employing
all the attributes and subsequently performed analysis by
removing attributes such as node, the percentage of lost
packet rate, lost bandwidth, packet size, and packet received.
It can be clearly observed that the accuracy of the classifier
was increased after removing those attributes.

3) CyberPulse performance evaluation using different
classifiers
In this section, we provide a comparative analysis of our
classification algorithm with respect to competing algorith-
mic approaches. In the MLP deep learning technique, there
are multiple layers including, the input sensory layer, output
layer, and one or more hidden layers that collaborate to
extract salient features of the problem space. MLP has the
ability to model and learn complex non-linear relationships
of the given domain. Therefore, it was best suited in our case
where some attributes of the network traffic were not linearly
dependent on each other such as maximum bandwidth and
packet drop rate. To validate the classifier, the comparison
was performed to analyze the validity of the results using the
MLP classifier with three different classification algorithms
i.e. Random Forest (RF), Simple Logistics Regression (SLR),
and Naïve Bayes (NB). The reason for using the NB algo-
rithm for comparison was that it has been used as a baseline
method for several classification techniques in the past due to
its simplicity and ease of implementation [12].

SLR and RF have also been widely used for classification
of real-time data because of their good predictive perfor-
mance and excellent comprehensibility [32]. It can be ob-
served from Fig. 11c that the values of precision, recall, and
F1 score are approximately the same for all the algorithms.

We observed that the value of recall changed in case of
SLR and NB, where it dropped and increased respectively in
both algorithms. However, there is a big difference in other
performance metrics between the SLR, and NB algorithms. It
is also noted that the value of F1 score dropped in the NB al-
gorithm because the NB classifier considers all the attributes
to be independent and there is a very minor impact on the
value of accuracy when the attributes are dependent on each
other [33]. While NB provides the best Recall, overall MLP
performed better for all the accuracy metrics. As we were
interested in the classification of network traffic, therefore
the overall accuracy of the classification was of foremost
importance. Therefore considering our requirements, MLP
algorithm was the best suited as it performed well and pro-
vided reasonably good cumulative results.

C. EFFECT ON LFA MITIGATION USING CYBERPULSE
After successful classification of the flood traffic, the re-
sponsible flows are identified. This information is sent to
the Flood Mitigation module which terminates the flows
using null routing technique. The flows are dropped and not
forwarded to any further route by configuring the null route
with a route flag. Null routing technique was chosen because
it is a simplified technique and is available on all network
routers with no performance impact on the network.

VII. RELATED WORK
LFA is a dangerous flooding attack that has the ability to
congest SDN interfaces and links connecting to other layers.
It has also gained a lot of attention during recent years
[34]. In SDN, the traffic path is decided by the controller
where the packets are forwarded according to the flow rules
installed on the switches. Hence, traditional LFA mitigation
techniques become invalid in such situations. CyberPulse
intends to provide defense against control channel LFAs.
This section discusses the existing LFA mitigation techniques
and categorises as follows:

A. LFA MITIGATION USING LINK PROBING
TECHNIQUES
Link probing techniques employ surveillance of the target
network links to probe for malicious flows. Wang et al.
propose a link obfuscation mechanism applied at the time
of link creation. LinkScope has been proposed in [9] by Lei
et al. which inspects links that contain flows involved in
network congestion using hop by hop and end to end network
measurement. SPIFFY [11] temporarily increases network
bandwidth and measures the network flows before and after
the bandwidth expansion phase. Only legitimate users adapt
to the bandwidth change, however, the adversaries end up
consuming all their bandwidth during the expansion phase
allowing them to be easily detected. A downside to this
approach is that legitimate traffic that is unable to adapt to
the bandwidth expansion and compression step, will end up
being treated as malicious. The SDN HoneyNet technique
[13] calculates the betweenness centrality of the links in the
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FIGURE 11: CyberPulse classifier evaluation using data split, critical features, and algorithm selection strategies.

network to identify the ones that can become a bottleneck.
Subsequently, it deploys a HoneyNet topology to provide
a fake link map to the adversaries. CoDef is based on the
collaboration among different Autonomous Systems (AS) in
the network where the AS that are not under attack handle
the legitimate traffic from attacked AS by creating a bypass
link around the attacked location [14].

B. LFA MITIGATION USING TRAFFIC ENGINEERING
PRINCIPLES
Traffic engineering is a popular mechanism for mitigating
a wide variety of network attacks. Takayuki et al. [16] pro-
pose increase in traceroute packets volume to detect LFA.
However, it is complex to distinguish between legitimate and
malicious traceroute commands in the network. Christos et
al. [15] propose a traffic engineering mechanism which uses
relational algebra principles for LFA mitigation. When the
attack occurs the defender reroutes the traffic to avoid con-
gestions. The defender keeps on repeating this process until
the attacker’s identity is exposed by knowing the sources
that are participating in network flooding multiple times.
Fida et al. propose dynamic network resource allocation
using virtual networks placement during LFA [35]. Network
resources are constantly migrated to alleviate LFA. Aapo et
al. propose legitimate traffic features learning, elastic capac-
ity invocation, and blacklisting malicious hosts to provide
defense during LFA [36].

C. LFA MITIGATION USING SDN PRINCIPLES-BASED
APPROACHES
Some researchers utilize the benefit of having a central-
ized controller with the ability to observe all the switches
it controls and their corresponding flows to avoid LFA in
SDN. A flow table inspection technique has been proposed
by Peng et al. [37]. Flow table inspection is performed in
order to identify malicious flows where the bloom filtering
technique is utilized by a detector module to detect malicious
adversaries. Adversaries create a link map of the network to
select a specific link. It is difficult for an adversary to locate
target link before the attack if the link information keeps

on changing. Wang et. al. [19] propose Woodpecker which
employs incremental SDN deployment to mitigate LFA. A
network probing technique is employed to locate LFA and
subsequently, routers at that location are upgraded to SDN
switches to increase network connectivity. Finally, by em-
ploying SDN principles of centralized network management,
the traffic is balanced in the network. SDN-based traffic
maneuvering technique has been proposed by Abdullah et al.
[20]. Link obfuscation is performed when a threat has been
identified to make it difficult for the adversary to create a
correct link map of the network. However, link obfuscation
causes legitimate traffic delays because new paths may not
always be optimal.

Recently, an efficient DoS mitigation technique called
FloodDefender has been proposed by [38]. It eliminates
DoS attacks by table miss analysis, flow rule inspection,
and packet filtering techniques. However, such mechanisms
render invalid in case of LFA which uses low rate legitimate
traffic. In the same way, FloodDefender transfers table-miss
packets to neighbor switches in order to protect the commu-
nication link from being jammed. However, our approach
is based on ML whereby the controller employs the ML
strategy to decide whether the flows are malicious or not and
takes subsequent action.

In summary, most of the link probing techniques discussed
above assume traditional networks. Researcher who have
performed experiments on SDN have merely used SDN
testbeds or SDN-based techniques to defend against LFAs
only. From the best of our knowledge there is no prior
technique that specifically addresses LFA on SDN backbone
networks context. We have identified this weakness in the
SDN architecture against LFA and proposed a solution that
can effectively alleviate LFA on control channel of SDN.
Therefore, we present CyberPulse a novel ML-based LFA
mitigation technique which employs link inspection mech-
anism to detect link congestion caused by LFA. CyberPulse
will help in providing efficient network infrastructure secu-
rity and enable virtualization.

The accuracy of our experimental results in terms of eval-
uation metrics is slightly lower because of the limitation of
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the training dataset, it is a challenge to get dataset specially
managed for LFA. So, we modified the dataset for BHP
flooding attacks [28] and utilized it for LFA classification.
We are performing extensive experiments to address this
drawback in order to increase the evaluation accuracy, and
the outcome will be published in the future work. This paper
provides the basis to design and architecture of a solution that
collects network statistics, performs training, and demon-
strates potential to alleviate flood traffic. In this regard, we are
further developing an extended ML-based solution against
LFA on SDN which will work at line speed and perform LFA
defense and mitigation in real-time.

VIII. CONCLUSION
SDN continues to grow in popularity for the complex data-
center, enterprise and more recently WAN environments. The
provision of separate data, control, and application planes as
well a control channel allows flexibility in management and
application development for complex networks. However,
this very strength also doubles as the single greatest security
weakness for this new paradigm in networking. Link flooding
attacks that have previously been identified as dangerous for
traditional networks become crippling if used against the
control channel in SDN. LFA control channel attacks can
be devastating because they are stealthy, are relatively easy
to conduct, and have the ability to completely cripple the
network. Moreover, they are very hard to detect and mitigate
by traditional means. The novel contribution of this work
is that it utilizes the power of machine and deep learning
and its ability to empower machines to automatically learn
about the telltale statistical features of an LFA attack and then
automatically identify the same in a network big data during
an actual attack.

In this paper, we have motivated the need to address SDN-
based LFA with the help of experiments that highlight the im-
pact of a successful attack. Furthermore, we proposed Cyber-
Pulse, a lightweight SDN controller extension for securing
the SDN control channel against LFA that utilizes machine
learning and deep learning techniques. An early prototype
of CyberPulse is implemented on the application plane to
monitor the control channel for keeping track of ongoing
traffic flows. For each flow in the network, CyberPulse ex-
amines the statistics on the control channel and classifies the
network traffic using a deep learning multi-layer perception
technique. Finally, it is demonstrated to be able to effectively
drop the classified flows and facilitate the seamless operation
of the network using null routing. One of the main advantages
of CyberPulse is that it does not sacrifice the legitimate flows
in the network. Based on the evaluation it can be concluded
that CyberPulse accurately identifies traffic flows that exhibit
LFA characteristics and mitigates the attack efficiently. A
limitation, however, is the added complexity of employing
an ML approach. Nevertheless, the cost-benefit trade-off is
worth using this technique to safeguard current Software-
Defined internet infrastructure from LFAs. An extension of
the proposed framework is underway, and the detailed design

and evaluation will be presented in future work.
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