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Abstract 

Despite substantial progress made towards a better understanding of the importance of skeletal 

muscle K+ regulation for human physical function and its association with several disease states 

(e.g. type-II diabetes and hypertension), the molecular basis underpinning adaptations in K+ 

regulation to various stimuli, including exercise training, remains inadequately explored in humans. 

In this review, the molecular mechanisms essential for enhancing skeletal muscle K+ regulation and 

its key determinants, including Na+,K+-ATPase function and expression, are examined. Special 

attention is paid to the following molecular stressors and signaling proteins: oxygenation, redox 

balance, hypoxia, reactive oxygen species, antioxidant function, Na+, K+, and Ca2+ concentrations, 

anaerobic ATP turnover, AMPK, lactate, and mRNA expression. On this basis, an update on the 

effects of different types of exercise training on K+ regulation in humans is provided, focusing on 

recent discoveries about the muscle fibre-type-dependent regulation of Na+,K+-ATPase-isoform 

expression. Further, with special emphasis on blood-flow-restricted exercise as an exemplary model 

to modulate the key molecular mechanisms identified, it is discussed how training prescription may 

be optimised to maximise improvements in K+ regulation in humans. The novel insights gained from 

this review may help us to better understand how exercise training and other strategies, such as 

pharmacological interventions, may be best designed to enhance K+ regulation and thus the physical 

function in humans. 

Keywords 

Ion transport, molecular mechanisms, Na+-K+-ATPase, reactive oxygen species, training 
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Introduction 

Many important scientific contributions to the topic of potassium ion (K+) regulation by skeletal muscle 

have emerged since the discovery in 1938 that the loss of K+ from excited myocytes is related to 

altered electrical activity 1. Many experiments using animals 2-5, and a substantial number of human 

studies over the years 6-9, have consistently shown that the ability to maintain K+ homeostasis in 

skeletal muscle is essential for physical function. This is underpinned by observations in both animals 

and humans that the muscle’s capacity for K+ regulation can be improved by exercise training 7,9 and 

is reduced in various disease states, including diabetes 10-15, heart failure 16, hypertension 17,18, 

McArdle disease 19, and osteoarthritis 20, as well as with age 21-23, inactivity 24,25, obesity 13, and caloric 

restriction 26. Despite this evidence, the molecular mechanisms by which enhancements in skeletal 

muscle K+ regulation are mediated have been inadequately addressed in the literature. Identifying 

these mechanisms is essential, because as the above evidence suggests they could serve as targets 

for potential disease-preventive interventions, including pharmacological manipulation, but this 

information may also be of potential ergogenic value to athletes and their coaches. 

Over the past three decades, several excellent reviews have been published highlighting the 

involvement of K+ regulation in regulating muscle contractile function, intense exercise performance, 

as well as its coupling to various disease states 2,4,14,16,22,27-38. However, most of these reviews go 

>15 years back and thus lack essential novel inputs, specifically about how different types of exercise 

training (e.g. interval-endurance, sprint-interval and resistance training regimens), may affect K+ 

regulation and its key determinants, including Na+,K+-ATPase function, content, and isoform 

expression, in humans. In line with findings in animals 5,39, a number of recent discoveries point to a 

different regulation of Na+,K+-ATPase function and expression by exercise training between different 

human skeletal muscle fibre types 24,40-44. However, the potential implications of this fibre type-

dependent regulation have been scarcely examined. Further, a number of recent improvements in 

methodology for muscle protein analysis have been used to investigate changes in Na+,K+-ATPase-

isoform abundance; experiments that have provided important new insights about the relationship 

between adaptations in Na+,K+-ATPase expression and K+ regulation in humans that need to be 

considered. 

In this review, I discuss the key molecular mechanisms underpinning improvements in the capacity 

for K+ regulation in humans, focusing on skeletal muscle. Then, I provide an update on the effects of 

different types of exercise training on the skeletal muscle capacity for K+ regulation and its key 

determinants, including Na+,K+-ATPase function, content, and isoform expression, in humans, with 

emphasis on fibre-type-dependent adaptations. This is followed by a discussion of how changes in 

these variables with different types of training may associate with exercise-induced adaptations in 
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mRNA content. On this basis, I examine how to maximise training-induced adaptations in key 

determinants of K+ regulation, focusing on blood-flow-restricted exercise as an exemplary model to 

manipulate the molecular stressors likely required to enhance this capacity in humans. 

The synthesis of literature for this review was based on searches in several databases, including 

PubMed, Web of Science, SportDiscus®, MEDLINE, and Google Scholar. Key search terms used 

were K+ regulation, Na+,K+-ATPase, FXYD, phospholemman, training adaptation, skeletal muscle, 

cell culture, myocytes, reactive oxygen species, ion homeostasis, ionic mechanisms, redox state, 

antioxidant, metabolic stress, mRNA expression, calcium signaling, AMP-activated protein kinase 

(AMPK). In addition, manual searches were performed using reference lists from retrieved original 

studies and review papers. 

 

Sites in skeletal muscle affected by perturbed K+ homeostasis 

At the onset of muscle contraction, rapid and marked perturbations in muscle intracellular and 

interstitial concentrations of ions (K+, Na+, Ca2+, Cl-, H+, lac-) occur, which can both augment and 

restrict muscle contractile activity 32,45-49. Strenuous physical exertion raises muscle interstitial K+ 

concentration ([K+]int) by up to 2.5 to 3 fold in humans, which has been linked with impaired muscle 

force development 6,7,9,46,50,51. This may be caused in part by depolarisation of the cell membrane 

30,51-53 and altered sarcoplasmic reticulum (SR) Ca2+ kinetics (i.e. decline in rate of SR Ca2+ uptake 

and increased SR Ca2+ release) 54, but may also be caused by increased activation of group III/IV 

afferent nerve fibres by K+ in the interstitial space, resulting in diminished central motor drive to 

contracting muscle fibres 55,56 (Fig. 1). K+ efflux from exercising muscles to the bloodstream may also 

impair myocardial excitation 57. On the other hand, K+ acts as an arteriolar vasodilator e.g. via insulin 

action 15,58, which may elevate blood perfusion of muscle fibres under certain conditions (in vitro) 59. 

Increased [K+]int has also been shown to activate the exercise pressor reflex by stimulating afferent 

nerve fibres, resulting in an elevated heart rate and rate of ventilation 32,60. These actions can both 

aid the delivery of substrate for metabolism and the removal of metabolic by-products from exercising 

or recovering muscle fibres. Altered cytosolic K+ concentration has also been shown to contribute to 

the control of mitochondrial ATP synthesis, acting through K+-selective channels localized in the 

outer and inner mitochondrial membranes, although the exact role of K+ in the control of 

mitochondrial oxidative phosphorylation remains debatable 61. Further, the electrogenic movement 

of K+ from the intracellular space to extracellular compartments (interstitium and bloodstream) via 

voltage-gated K+ channels likely impacts the transmembrane movement of other ions, including Ca2+, 

H+, Na+, and Cl-  62. For example, membrane depolarization invoked by elevated [K+]int inactivates 
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Na+-channels, resulting in lowered action potential amplitude 30. On this basis, proper regulation of 

K+ concentrations is essential for maintenance of metabolic homeostasis and contractile function of 

skeletal muscle and thus physical performance. An overview of the described myocellular sites 

affected by perturbed K+ homeostasis and the associated implications for muscle contractile function 

is provided in Fig. 1. 

 

Role of Na+,K+-ATPase isoforms in regulating muscle contractile 

function and adaptation 

Intense exercise elicits marked increases (up to ~12 mmol∙L-1) in muscle [K+]int 6,8 and 

intramyocellular Na+ concentration 3, both of which have been linked to muscle fatigue, both directly 

or indirectly through interactions with other ionic processes 33. These ionic (Na+ and K+) perturbations 

are primarily counteracted by increasing the activity of the Na+,K+-ATPase, which actively transports 

three Na+ out and two K+ into the muscle fibres for each ATP molecule hydrolysed 3,63 (Fig. 1). The 

Na+,K+-ATPase is thus critical for maintenance of muscle Na+ and K+ homeostasis, excitability, and 

contractile function 30. The Na+,K+-ATPase consists of a catalytic α subunit, a structural and 

regulatory β subunit, and an accessory γ subunit, named phospholemman (FXYD), which is 

coexpressed with the α subunit and is required for basal Na+,K+-ATPase function 64-66. In human 

skeletal muscle, each of the α and β subunits exists as three different isoforms (α1-3 and β1-3) 40, 

whereas FXYD1 is the only isoform of the γ subunit expressed in this tissue 67. The total capacity for 

Na+ and K+ transport by the Na+,K+-ATPase is in part determined by the number of active αβ-

heterodimer complexes at the cell surface 68. But the relative recruitment of different α isoforms may 

also be influential, because of the distinct ion transport properties of these isoforms 69,70. Over the 

past decades, it has been recognized that FXYD also participates in the complex regulation of 

Na+,K+-ATPase function by protecting this system against oxidative damage 71 and by modulating 

Na+,K+-ATPase Na+ affinity 65,72. Thus, each of these subunits appears to be functionally relevant 

and their recruitment important for the net transport of K+ and Na+ across the plasma and T-tubular 

membranes. In addition, the functional Na+,K+-ATPase protein complex and its specific isoforms play 

essential roles in regulating cell volume 73,74  and signaling transduction underlying hypertrophy 75-77, 

gene transcription, and protein synthesis 78, making the Na+,K+-ATPase an interesting molecular 

target in disease therapy, as well as in the context of performance optimization. 
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Molecular stressors underlying improvements in the skeletal muscle 

capacity for K+ regulation 

Exercise demands muscle fibres to contract in a coordinated fashion. This process is mediated by 

action potential (AP) propagation along sarcolemma and down transverse tubules, where activation 

of voltage-sensors enables release of Ca2+ from the sarcoplasmic reticulum (SR) and resultant 

initialisation of the excitation-contraction coupling. AP propagation is mediated by Na+ influx, which 

causes membrane depolarisation and K+ efflux. During the repolarisation phase, K+ is taken up by 

the fibres, while influx of chloride ions (Cl-) may also participate in this phase 30,79. Thus, contracting 

muscle fibres are exposed to constant perturbations in ion homeostasis. In addition to these 

perturbations, contracting fibres are under a constant redox disequilibrium due to contraction-

induced changes in transmural pressure, resulting in episodes of ischaemia (or anoxia) separated 

by periods with reoxygenation. These oscillations in redox homeostasis create a favourable 

environment for the production of free radicals 80,81, classified as molecules that contain one or more 

unpaired electrons 82. While an imbalance in both ion and redox homeostasis and free radical 

production have been implicated in the aetiology of muscle fatigue 79,83, involvement of these 

processes in training adaptation is an emerging area of research in humans. In this section, the role 

of these processes in muscle adaptation specific to K+ regulation, including alterations in expression 

of Na+,K+-ATPase isoforms, will be discussed. Most of our current knowledge on this topic stems 

from experiments in vitro using cell cultures and animal tissue. These experiments will thus be the 

center of the following discussion. However, human studies will be included where possible. 

Oxygenation and redox balance 

The severity of fluctuations in local oxygen levels in contracting muscle fibres varies with exercise 

duration and intensity and partly determine the amount of free radicals that are formed in exercising 

muscles 80,84. These redox fluctuations may also exacerbate perturbations in ion homeostasis 85. 

Both free radicals 86,87 and disturbance of ion (e.g. Ca2+ and K+) homeostasis 88,89 have been 

associated with upregulation of Na+,K+-ATPase-isoform expression in vitro. Redox fluctuations could 

thus be a central determinant of exercise training-induced increases in Na+,K+-ATPase abundance 

and thus K+ regulation. In rabbit kidney cells, selectively increasing the oxygen level of the cell 

bathing solution caused an increase in α1 90 and β1 90-92 mRNA expression independent of ROS. In 

another experiment using lung tissue of piglets, increases in both global Na+,K+-ATPase mRNA and 

protein content were evident after breathing hyperoxic gas (inspired oxygen fraction = 0.96) 93. 

Consistent with the observations in vitro, we have shown that exercise training with reduced muscle 

blood flow, which substantially raise muscle oxygen perfusion (>3 fold) in the recovery from each 

exercise bout (as assessed in vivo by ultrasound Doppler), augmented training-induced increases 
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in muscle Na+,K+-ATPase-isoform abundance (β1 in type I, α1 in type II, and FXYD1 in both fibre 

types) concomitant with a reduced net thigh K+ release during near-maximal exercise in humans 44. 

Together, this evidence suggests that increased oxygen perfusion of contracting muscle fibres may 

be a key stimulus underlying increases in Na+,K+-ATPase expression and the capacity for K+ 

regulation in human skeletal muscle. In support, an increased oxygen level facilitates transcription 

of Na+,K+-ATPase isoforms in cell culture 90-92 by activating binding of oxygen-sensing transcription 

factors (specificity protein 1 and 3; Sp1 and Sp3), to promoter regions on Na+,K+-ATPase mRNA 

transcripts 94,95. However, it should be noted that upregulation of mRNA may be one amongst several 

factors that may enhance the potential for an increased net protein turnover of Na+,K+-ATPase 

isoforms in human skeletal muscle, as highlighted later in this review. 

Hypoxia 

Because oxygen deficiency (hypoxia) in recruited muscle fibres is an inevitable consequence of 

changes in transmural pressure occurring secondary to muscle contractions, it is also relevant to 

consider hypoxia as a possible contributory signal to enhancement of K+ regulation in skeletal 

muscle. It is well-known that periods with lowered tissue oxygenation can promote ROS production 

80,96-98, whereas facilitated ROS formation has been linked to increased Na+,K+-ATPase expression 

86 and K+ regulation in humans 99,100. Further, hypoxia enhances anaerobic ATP turnover during 

exercise 85, and thereby could facilitate perturbations in ion homeostasis, which may favor Na+,K+-

ATPase-isoform synthesis 85,88. Given these observations, It may seem surprising that different types 

of hypoxic training concepts, including exercising in normobaric, systemic hypoxia 101,102 and living 

at high and training at low altitude (LHTL) 103-105, either decreased or had no effect on, respectively, 

muscle Na+,K+-ATPase-isoform abundance or plasma K+ concentration during exercise in humans. 

We recently assessed in humans the role of muscle hypoxic level per se on the molecular signaling 

events thought to be involved in improving muscle K+ regulation by exercise 85. In this study, we 

compared changes in mRNA and activation of signaling proteins (i.e. AMPK and CaMKII) to exercise 

sessions performed with reduced muscle blood flow (blood flow restriction; BFR) and in systemic 

hypoxia (~3250 m altitude). Key observations were that BFR augmented exercise-induced increases 

in FXYD1 mRNA content, type-I fibre AMPK downstream signaling (increased ACC 

phosphorylation), and in markers of oxidative stress 85, consistent with an elevated FXYD1 protein 

abundance and a reduced net thigh K+ release (i.e. improved K+ regulation) during exercise following 

six weeks of blood-flow-restricted training 44. In contrast, the session in systemic hypoxia did not 

result in selective changes in levels of Na+,K+-ATPase-isoform mRNA transcripts, AMPK or CaMKII 

downstream signaling, or oxidative stress, despite a similar level of muscle hypoxia (as assessed in 

vivo by near-infrared spectroscopy; NIRS) compared to the session with BFR 85. Importantly, the 
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measurement of muscle oxygen level in the latter study likely accounted for a possible compensatory 

rise in muscle oxygen perfusion that is likely to occur during exercise at the chosen intensity in 

systemic hypoxia (i.e. arterial hypoxaemia) 106, but not to the same extent by exercising with BFR, 

where blood flow is mechanically restricted by a cuff. Together, these findings suggest that hypoxia 

per se is not an essential signal for increasing Na+,K+-ATPase expression and K+ regulation in human 

skeletal muscle. Nevertheless, it should be noted that local spatial and temporal oscillations in 

oxygen perfusion that are likely to take place in exercising muscles are not considered by measuring 

muscle deoxygenation by NIRS 107.  

Reactive oxygen species 

Reactive oxygen species (ROS) is a broad term used to classify oxygen-centered molecules that 

contain one or more unpaired electrons, but also includes reactive derivates of oxygen such as 

hydrogenperoxide (H2O2). ROS is one of two subcategories of free radicals. The other subcategory 

is reactive nitrogen species (RNS), which refers to free radicals for which nitrogen is the reactive 

center 82. For a thorough inspection of the different types and sources of ROS in skeletal muscle, 

the reader is referred to the reviews by Powers, Ji, Kavazis, Jackson 82 and Jackson, Pye, Palomero 

108. It is now well-established that chronic increases in ROS levels are involved in the aetiology of 

many pathological conditions, including type-II diabetes 109 and peripheral artery disease 110,111. 

Conversely, transient increases in ROS levels that are rapidly reversible are central to the regulation 

of normal contractile function 112, as well as signaling transduction underlying training adaptation 

113,114. The latter roles of ROS in relation to K+ regulation will be the focus of the following discussion. 

Exercise elicits marked increases in ROS concentrations in skeletal muscle, which can modulate 

muscle force development in both a time- and dose-dependent manner 115. High doses of ROS have 

been shown to impair myocytic force development by perturbing ion (e.g. Ca2+ and K+) homeostasis 

112,116. Accordingly, antioxidant treatment in humans attenuated exercise-induced increases in 

arterialised-venous K+ concentration 99,100, and thigh K+ release 44, indicating ROS may affect plasma 

and muscle K+ homeostasis in exercising humans. Disturbance of K+ homeostasis due to ROS 

accumulation is likely mediated via oxidative modifications to, and thereby dysfunction, of K+ 

channels and transport systems, including the Na+,K+-ATPase 84,112,117-119. One type of modification 

is the formation of disulphide bonds between glutathione and reactive cysteine thiols on amino acid 

structures (S-glutathionylation), i.e. oxidative damage 120,121. Na+,K+-ATPase dysfunction induced by 

severe ROS formation has been demonstrated in cell culture preparations 122-125, and this has been 

confirmed by observations of an inverse relationship between the degree of glutathionylation of 

Na+,K+-ATPase subunits and Na+,K+-ATPase activity in rat skeletal muscles 120 and findings of 

increased β-subunit glutathionylation coinciding with fatigue during intense exercise in humans 121. 
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However, the observation that Na+,K+-ATPase is under redox control is not new. The first evidence 

for such regulation was published in the sixties, where hydrogen peroxide (H2O2) treatment markedly 

depressed Na+,K+-ATPase activity in electrical eels 126. Later, this was confirmed in several other 

tissues, including the brain 127, kidney 128,129, and myocardium 130,131 by actions of the hypochlorous 

and hyperchlorite anions, hydroxyl radicals, superoxide, and singlet oxygen. Around the same time, 

it was shown that Na+,K+-ATPase activity is inhibited by tert-butyl hydroperoxide at high, but not at 

low concentrations 132, and a dose-dependent (inverse U-shaped) effect of ROS on Na+,K+-ATPase 

function was documented in rat cerebellar granule cells a decade later 119. This relationship is 

strikingly similar to that reported for muscle contractile function by Lamb, Westerblad 112. Thus, tight 

control of ROS levels seems necessary to preserve K+ homeostasis and contractile performance of 

skeletal muscle. But equally important, this evidence underscores that the degree and pattern of 

ROS accumulation in contracting fibres could play a central role in regulating adaptations specific to 

K+ regulation in part by affecting ion homeostasis. 

In addition to their acute impact on ion (e.g. K+, Na+ and Ca2+) handling systems, ROS may be 

involved in the long-term (chronic) regulation of muscle Na+,K+-ATPase expression by exercise 

training via actions as signalling transducers for mRNA transcription and protein synthesis 86,113,133. 

In humans, involvement of ROS in regulating the turnover of mRNAs of importance to ion transport 

function has, to my knowledge, only been investigated (indirectly) in a single study. In this study, 

Murphy, Medved, Brown, Cameron-Smith, McKenna 86 found that intravenous infusion with the 

multiple ROS scavenger, N-acetylcysteine, blunted the rise in Na+-K+-ATPase α2-isoform mRNA 

during the recovery from 45 min of cycling at 71% VO2max. Further, they observed that pre-incubation 

of rat EDL muscle with N-acetylcysteine abolished the increase in Na+-K+-ATPase α1, α2 and α3 

mRNA induced by electrical stimulations in vitro. Although the impact of N-acetylcysteine on muscle 

antioxidant status was not determined in that study, it demonstrates that ROS accumulation may be 

a critical determinant of exercise-induced increases in mRNA content of catalytic Na+-K+-ATPase 

isoforms in mammalian muscles. In agreement, long-term treatment of kidney cells with H2O2 

resulted in upregulation of Na+-K+-ATPase expression and activity, whereas adding a bolus of the 

antioxidant apocynin abolished these effects in vitro 87. In extension of these results, blood flow 

restriction has been shown to augment increases in oxidative damage to a single exercise session 

85, as well as facilitate training-induced improvements in Na+-K+-ATPase-isoform protein abundance 

and K+ regulation  in human skeletal muscle 44. Adding to this point, rapid and marked perturbations 

in redox homeostasis effectively increases ROS levels 134-139, whereas a single bout of post-exercise 

cold-water immersion, which is likely to temporarily perturb muscle redox state, caused a selective 

increase in Na+-K+-ATPase α2 isoform mRNA expression in skeletal muscle of recreationally-active 

men 43. 
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Thus, increased muscle ROS production and resultant oxidative stress during training sessions may 

be an important stimulus for training-induced enhancements in skeletal muscle Na+,K+-ATPase-

isoform content and its capacity for K+ regulation in humans. This conclusion is underlined by 

observations that oxidative damage to ion channels and transport systems, such as the Na+,K+-

ATPase, exacerbates disturbances in ion homeostasis 71,117,125, which has been coupled to elevated 

expression of Na+,K+-ATPase isoforms 88,89. Accordingly, in humans, greater exercise-induced 

changes in venous plasma K+ concentration were associated with a more pronounced mRNA and 

signaling response underlying adaptations specific to K+ regulation 85. 

Antioxidant function 

To counteract oxidative damage during periods of elevated ROS exposure, muscle fibres contain a 

network of strategically-located ROS scavenging systems, including enzymatic and non-enzymatic 

antioxidants, defined as substances that either delay or hinder oxidation of a substrate 82. The 

primary antioxidant enzymes are superoxide dismutase (SOD), catalase, and glutathione peroxidase 

(GPx). These enzymes catalyse the degradation of highly-reactive ROS into less-reactive molecules. 

Non-enzymatic antioxidants also provide a significant reservoir for ROS scavenging and this term 

covers substances such as glutathione, uric acid, bilirubin, biliverdin, and carnosine, among others 

140-143. The content and function of these scavengers are typically altered by exercise training. In 

humans, for example, exercise training regardless of the type being performed (e.g. endurance, 

resistance, or a combination) has been reported to increase the activity and/or expression of SOD, 

GPx, glutathione:glutathione disulphide ratio, total antioxidant capacity, and/or decrease oxidative 

damage in blood, erythrocytes, or skeletal muscles 144-147. Antioxidant treatment acutely reversed 

ROS-induced oxidative inhibition of ion channels and transport systems in vitro 117, whereas an 

improved K+ regulation after a period of blood-flow-restricted training was temporally linked with 

altered muscle antioxidant capacity in humans 44. Further, expression of the cytosolic (copper/zinc) 

isoform of the antioxidant enzyme succinate dehydrogenase (SOD1) increased, concomitant with 

increases in Na+,K+-ATPase α1, β1, and FXYD1 abundance, in the vastus lateralis muscle of humans 

after 15 weeks of swimming 148. These findings support that antioxidant function could serve as a 

fine-tuning system in the regulation of K+ homeostasis in skeletal muscle by controlling levels of ROS 

and this possible interaction may be altered by exercise training. More research in humans is 

required to shed more light on this topic. Given ROS have been linked with the aetiology of several 

diseases, including diabetes 109 and peripheral artery disease 111, an essential question that remains 

to be answered in this regard is whether an impaired capacity for K+ regulation associated with such 

diseases 12,149  may be circumvented by modulating antioxidant function. 
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In summary of the last two sections, the level of ROS appears to be a critical factor in both the acute 

and long-term regulation of K+ transport function and Na+,K+-ATPase expression in skeletal muscle. 

As only few studies have been undertaking using human subjects and these did not directly assess 

ROS levels, present conclusions concerning a role of ROS in regulating adaptations specific to K+ 

regulation in humans are currently restricted to indirect measurements. Further, enhancements in 

antioxidant function may be a contributory explanation for exercise training-induced enhancement 

(or fine-tuning) of K+ regulation in humans. Future human studies are warranted to elucidate the 

extend to which different sources of ROS and antioxidants may play a role in the adaptive response 

related to altered K+ regulation by exercise training (and other interventions) in human skeletal 

muscle. 

Intracellular Na+ 

The first evidence to support a role of intracellular Na+ ([Na+]i) in mediating increases in the 

abundance of Na+-K+-ATPase subunits stems from studies using cultured rat cardiac and vascular 

smooth muscle cells published in the early nineties. In these reports, a rise in [Na+]i facilitated by 

culture incubation with aldosterone 150, thyroid hormone 151, ouabain 152 and veratridine 153 induced 

a 2 to 7-fold increase in the mRNA expression of the Na+-K+-ATPase isoforms. A potent role of [Na+]i 

was later confirmed by findings of increased α1 and β1 mRNA in rat kidney epithelial cells and 

astrocytes incubated with ouabain 154,155. At this time, it therefore seemed plausible that [Na+]i could 

be a key initiator of Na+-K+-ATPase gene transcription. But Murphy, Macdonald, McKenna, Clausen 

88 later observed that incubation with ouabain (2 h), veratridine (30 min), or monensin, a Na+ 

ionophore (30 min), abolished the increase in Na+-K+-ATPase α1, α3, β1 and β3 mRNA in rat EDL 

muscle after intermittent electrical stimulations in vitro. They also observed a decline in α1 and β2 

mRNA content with ouabain and veratridine, whilst all incubations caused a downregulation of β3. 

Thus, a chronic high [Na+]i might not be beneficial, and could even be detrimental, to the adaptability 

of the Na+-K+-ATPase genes in mammalian skeletal muscle. In contrast, the intermittent electrical 

stimulations increased the catalytic isoforms (α1, α2 and α3) 88. This suggests that an oscillatory 

nature of [Na+]i could be a potent stimulus for elevating Na+-K+-ATPase mRNA expression. This is 

in agreement with a 1.4 to 3.4-fold increase in the α1-, α2- and α3-isoform expression in human muscle 

in recovery from repeated intense contractions 156,157, which is known to induce drastic fluctuations 

in [Na+]i. In addition, Na+-induced Na+-K+-ATPase signal transduction is linked to elevated ROS 

production 78, which could facilitate Na+-K+-ATPase-isoform mRNA transcription86, highlighting a 

possible mechanistic link between increased [Na+]i and Na+-K+-ATPase expression. More research 

into the possible role of [Na+]I in regulating adaptations in Na+-K+-ATPase expression and K+ 

transport function in human muscle is clearly required. 
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Extracellular K+ and membrane depolarisation 

In isolated rat EDL muscle, increasing [K+] (13 mM) of the muscle bathing solution invoked an 

increase (160%) in Na+-K+-ATPase α1 mRNA content 88. This suggests that membrane 

depolarization, as a result of the increased extracellular [K+], may be a potent stimulus for increasing 

muscle α1 mRNA content. In agreement, inhibition of Na+-K+-ATPase activity by adding 0.5 to 1.0 

mM ouabain, which increases extracellular [K+] 3, raised α1 and β1 mRNA content in astrocytes in 

vitro. Similar effects of depressed Na+-K+-ATPase activity have been observed in humans, where 

increases in α1 (1.5 fold) and α2 mRNA (2.5 fold) after fatiguing knee-extensor exercise were 

inversely correlated with the change in 3-O-MFPase activity from rest to exhaustion (r = -0.60 in both 

cases; p < 0.05) 158. Consistent with this, more pronounced changes in venous plasma K+ 

concentration during training sessions caused by blood flow restriction were associated with greater 

training-induced improvements in skeletal muscle K+ regulation and exercise performance in humans 

44,85. Taken together, these observations indicate that extracellular K+ accumulation and resultant 

membrane depolarisation positively regulates Na+-K+-ATPase-isoform expression and K+ regulation 

in the musculature, although more studies are necessary to confirm the scarce number of 

observations in human skeletal muscle. 

Cytosolic Ca2+ 

In mouse muscle, it has been shown that Ca2+ is released from SR in an exercise-intensity dependent 

manner, which appears to be tightly coupled to activation of the Ca2+/calmodulin-dependent protein 

kinase II (CaMKII) in intact muscle fibres 159. Exercise-induced induction of some Na+-K+-ATPase 

mRNA transcripts is positively associated with exercise intensity (e.g. isoform α1, Fig. 2). Thus, it is 

possible that fluctuations in cytosolic Ca2+ concentration ([Ca2+]cyt) and altered activation of CaMKII 

could play a role in exercise-induced changes in Na+-K+-ATPase-isoform mRNA content in skeletal 

muscle fibres. This was investigated by Nordsborg, Kusuhara, Hellsten, Lyngby, Lundby, Madsen, 

Pilegaard 160. Based on rat muscle incubations in vitro, they found the Na+-K+-ATPase α1-isoform to 

be regulated by Ca2+ signalling pathways (CaMK and calcineurin). In another in vitro rat experiment, 

a rise in [Ca2+]cyt induced by incubation with the Ca2+ ionophore A-23187 elevated the Na+-K+-

ATPase α3 mRNA (1.2 fold), but reduced β1 (0.8 fold). Thus, despite a scarcity of published research, 

it appears likely that increases in [Ca2+]cyt and resultant signalling transduction through either CaMKII, 

calcineurin, or both, may be involved in exercise-induced regulation of Na+-K+-ATPase-isoform 

mRNA levels in skeletal muscle. However, exercise-induced modulation of the degree of 

phosphorylation at Thr287, and thus autonomous activity 161-163, of CaMKII was dissociated from 

increases in Na+-K+-ATPase α2 and FXYD1 mRNA in human skeletal muscle 85, indicating signaling 

via CaMKII is not required for exercise-induced increases in the levels of some Na+,K+-ATPase 
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mRNA transcripts in human skeletal muscle. Nevertheless, CaMKII activity has been shown to be 

upregulated at the onset of exercise, from where it may gradually decrease towards resting level 

during sustained moderate-intensity exercise 162. As such, the timing of the muscle biopsy after the 

end of the exercise session in the latter study may not have been optimal for detecting changes in 

CaMKII phosphorylation (and activity). Thus, further experiments in humans are warranted to clarify 

the involvement of altered [Ca2+]cyt and activation of Ca2+ signaling proteins in mediating Na+-K+-

ATPase  adaptation. 

Anaerobic ATP turnover and the 5’AMP-activated protein kinase (AMPK) 

Amongst the few published human studies, there is consensus that exercising with a high, compared 

to a lower, relative intensity yields a more powerful stimulus for induction of ion transport genes 

156,160,164. This is supported by the positive relationship (r = 0.85) between exercise intensity and fold-

increases in muscle Na+-K+-ATPase α1-isoform mRNA in trained humans (Fig. 2). Sustained 

exercise at a high intensity requires a high anaerobic energy turnover, which results in accumulation 

of H+ (i.e. decline in pH) in exercising muscles. In turn, this has been shown to impair the function of 

K+ and Ca2+ transport systems, including the Na+-K+-ATPase and SR Ca2+-ATPase (SERCA) 165,166, 

thereby exacerbating perturbations in ion homeostasis in the exercising musculature. However, this 

pH dependency remains to be shown in human skeletal muscle within the physiological range of 

fluctuations in muscle (or intracellular) pH. Furthermore, a marked increase in anaerobic glycolytic 

flux raises the availability of NAD(P)H for ROS production and exacerbate fluctuations in redox 

homeostasis 167. On this basis, the degree of anaerobic energy turnover appears to be an important 

determinant of the effects of a given exercise intervention on the expression of, at least some, Na+-

K+-ATPase isoforms. Accordingly, decreasing the relative exercise intensity by performing the same 

exercise session after compared to before a period of intense training attenuated the exercise-

induced increase (3 fold) in α1 mRNA observed before training 156. However, several other factors 

might be involved in this regulation. For example, exercise has been shown to activate AMPK in an 

intensity-dependent manner 168, whereas increased activity of AMPK has been linked with 

transcription of both the Na+-K+-ATPase β1 isoform and FXYD1 in vitro 169. In support of these results, 

the degree of AMPK downstream signaling (i.e. phosphorylation of the Acetyl-CoA carboxylase, 

ACC) was positively associated with upregulation of FXYD1 mRNA in human skeletal muscle 85. This 

provides an indication of involvement of AMPK in mediating adaptations in expression of FXYD1 in 

human muscle. However, although phosphorylation of ACC strongly reflects AMPK activity 170, it may 

be elevated by factors other than AMPK. Thus, at present, it cannot be unequivocally stated that 

AMPK is involved in regulating FXYD1 expression in human muscle. Further studies are warranted 
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to determine the relationship between exercise-stimulated changes in muscle AMPK activity and 

FXYD1 abundance in humans.  

Lactate 

The concentration of lactate, a surrogate marker of anaerobic ATP consumption, has been shown 

to regulate the expression of several mRNA transcripts involved in various cellular functions, 

including PGC-1α, a regulator of mitochondrial content 171. We recently examined whether lactate 

accumulation could be a regulator of the acute molecular response underpinning adaptations in K+ 

regulation to exercise in humans 85. This was done by modulating muscle lactate concentration 

during exercise using blood flow restriction and systemic hypoxia, both types of exercise shown to 

invoke drastic increases in muscle lactate concentration 172,173. Despite similar muscle lactate 

concentration, the exercise sessions differed with respect to alterations in expression of Na+-K+-

ATPase mRNA transcripts 85, indicating elevated muscle lactate does not play a direct role in 

regulating exercise-induced adaptations in mRNA expression of Na+-K+-ATPase isoforms in human 

skeletal muscle. This finding is limited to the mRNA level, thus further research is required to clarify 

if lactate accumulation during training sessions is an important determinant of (long-term) 

adaptations in the function and content of the Na+-K+-ATPase, and ultimately of improvements in 

muscle K+ regulation, in humans, although this would seem unlikely based on the existing evidence. 

Summary 

In Table 1, an overview of the molecular stressors potentially involved in mediating adaptations 

specific to K+ regulation in skeletal muscle is provided, along with an indication of the empirical 

support from animal/cell culture (in vitro) and human experiments provided to each of these stressors 

about their involvement in mediating these adaptations. In summary, improvements in K+ regulation 

and increases in expression of Na+-K+-ATPase isoforms in human skeletal muscle are likely initiated 

by transient perturbations in redox, ionic, and metabolic state, whilst increased oxygenation, ROS 

levels, extracellular [K+], and anaerobic ATP turnover may be of particular importance to this 

regulation. In contrast, the level of muscle hypoxia and lactate concentration per se do not appear 

to be essential to these adaptations in humans. At present, the involvement of alterations in [Na+]I 

and [Ca2+]cyt is unclear, although evidence in vitro point to a role of transient shifts in the 

concentrations of these ions in increasing Na+-K+-ATPase expression. Little is currently understood 

about how the identified key molecular stressors may be conveying the signal(s) for adaptation in 

the capacity for K+ regulation in human skeletal muscle, although some evidence points to a 

contributory role of AMPK and oxygen-sensing transcription factors.  
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An update on the effects of exercise training on K+ regulation, and 

Na+,K+-ATPase function, content, and isoform abundance, in human 

skeletal muscle 

In the previous section, the key molecular stressors underpinning improvements in the capacity for 

K+ regulation in humans were reviewed. It is obvious to speculate that strategies, such as exercise 

training, that have the potential to substantially promote these stressors could be useful to enhance 

K+ regulation and physical function in humans. In the next sections, an update on the effects of 

different types of exercise training on key determinants of K+ regulation in humans, including plasma 

K+ concentration, thigh K+ release, and skeletal muscle Na+,K+-ATPase activity, content, and isoform 

abundance, is provided, and findings on the fibre-type-dependent regulation of Na+,K+-ATPase-

isoform abundance will be discussed. Then, it is examined how changes in these variables with 

different types of training may relate to exercise-induced adaptations in mRNA expression. 

From the cross-sectional data in Table 2 and the visual summary provided in Fig. 3, it is clear that 

exercise training, regardless of whether it is performed at/below (primarily aerobic; AEH) or above 

(primarily anaerobic; ANH) the intensity eliciting VO2max, is an effective stimulus to increase both 

Na+,K+-ATPase content (11–15%; as determined by [3H]-ouabain binding) and isoform abundance 

(5–44%; as quantified using western blotting) in humans. Training with a high aerobic energy 

component (AEH) has also been shown to increase Na+,K+-ATPase maximal in vitro activity (4%; as 

assessed by the 3-O-MFPase method), whereas the effects of ANH training modalities on this 

variable remain to be examined. The functional relevance of increases in Na+,K+-ATPase content, 

isoform abundance, and/or activity is evidenced by findings of concomitant  reductions (5–8 %) in K+ 

concentration in the bloodstream or in the muscle interstitial space during exercise, and 

simultaneous improvements (14–16%) in physical performance in many studies (Table 2). These 

adaptations may occur rapidly, with decreases in venous blood [K+] (5%) and increases in Na+,K+-

ATPase activity (41%), content (9–14 %), and isoform abundance (27–113%, α1, α2 and β1), reported 

after only six to ten days of training 174-176. However, changes in functional variables, such as thigh 

K+ release, venous [K+], and Na+,K+-ATPase activity, with both one type or different types of training 

appear to be dissociated from those of Na+,K+-ATPase content or isoform abundance measured in 

whole-muscle (fibre-type-heterogeneous) samples in a substantial number of studies 7,157,177-179. For 

example, three consecutive days of continuous training (2 hour cycling at 60% VO2max) increased 

(12%) [3H]-ouabain binding site content, but decreased (34%) 3-O-MFPase activity in recreationally-

active subjects 177. In similarly trained men, muscle abundance of Na+,K+-ATPase α1 (29%) and α2 

(15%) increased and [K+]int decreased (-27%), whereas K+ release from exercising muscles 

remained unaltered after seven weeks of intense interval training (15 x 1 min at 150% of leg VO2max) 
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7. Further, six to eleven weeks of anaerobic training resulted in an increased β1 abundance (39 to 

58%), despite a higher (14%) venous blood [K+] during exercise in highly-trained runners 179. 

Thus, amongst the published human studies to date, there is a consensus that exercise training, 

regardless of whether it is performed below/at or above the intensity eliciting VO2max, is a powerful 

stimulus to enhance K+ regulation, as well as Na+,K+-ATPase function, content, and isoform 

abundance. Further, increases in these variables are often temporally associated with improvements 

in one or more aspects of physical performance following a period of intense training. However, 

training-induced alterations in blood [K+] or Na+,K+-ATPase activity were dissociated from those of 

Na+,K+-ATPase (isoform) expression in a substantial number of studies. Based on the above 

evidence, it remains unclear what is the optimal training stimulus for improving skeletal muscle K+ 

regulation in humans. 

Fibre-type-dependent regulation of muscle Na+,K+-ATPase-isoform 

abundance by different types of exercise training in humans 

Human skeletal muscle is a heterogeneous tissue consisting of fibres with distinct metabolic and 

ionic properties. Due to these differences, fibres can be defined according to their content of proteins 

with different functions. For example, fibres may be characterised by their content of myosin heavy 

chain (MHC) isoforms as type I, IIa, IIx, or hybrid if containing multiple MHC isoforms (e.g. I/IIa or 

IIa/IIx). In comparison to type II (fast-twitch) fibres, type I (slow-twitch) fibres have a slower rate of 

force development and SR Ca2+ release and uptake kinetics, altered glycogen utilisation, possess 

more mitochondria, and are more fatigue resistant 180-185. In animals, differences in the capacity for 

Na+/K+ handling among different skeletal muscles have also been observed, and this has been 

associated with a different expression of Na+,K+-ATPase isoforms between different fibre types 

39,186,187. In humans, α2 abundance was found to be higher in type II compared to type I skeletal 

muscle fibres in recreationally-active men 188. Furthermore, FXYD1 was more highly expressed in 

type I compared to type II muscle fibres in sedentary rats 65,187, and in humans its phosphorylation 

state was rapidly increased in type II but not in type I muscle fibres after a single session of intense 

exercise 188. Collectively, these studies suggest that expression of Na+,K+-ATPase isoforms and 

FXYD1 activation (by phosphorylation) may be altered by exercise in a fibre-type-dependent manner, 

which may significantly impact K+ regulation in the musculature. Nevertheless, in most human 

training studies, Na+,K+-ATPase-isoform abundance was quantified in fibre-type heterogeneous 

(whole-muscle) samples (Table 2), indicating that important changes in isoform levels could have 

been overlooked. Another concern is that protein abundance was quantified using fractionated 

samples in many previous studies 7,176,189-192. This is an issue, because a proportion of the protein 

being analysed may be inadvertently lost by fractionation 193. In addition, some of the studies did not 
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take into consideration blot linearity, making it impossible to know if protein bands were saturated 

and thus should be excluded from analysis 194. Moreover, few studies validated their antibodies, for 

example by loading positive and/or negative control tissues. Limitations in methodology for protein 

quantification could thus be, at least, a contributory explanation for the dissociation between changes 

in expression of Na+,K+-ATPase isoforms in whole muscle samples and those of the capacity for K+ 

regulation observed in the literature (Table 2), as highlighted in the previous section. With the use of 

improved methodology (i.e. no fractionation, normalization to a standard curve, and for some 

antibody validation), a number of recent human studies have investigated the effects of different 

types of exercise training on the expression of Na+,K+-ATPase isoforms in type I and II skeletal 

muscle fibres. The results from these studies are summarised in Table 3 and will be discussed in 

the following. 

α-isoform abundance 

In one of our recent studies, six weeks of sprint-interval training increased (210 to 330%) α1 

abundance in both type I and II fibres in the skeletal muscle of recreationally-active men 43. In 

agreement, four weeks of sprint-interval training resulted in an elevated (29%) α1 abundance in 

whole-muscle samples from similarly trained subjects 189. In contrast, in two other studies, interval-

endurance training, characterized by a high rate of aerobic energy consumption, was without effect 

on α1 abundance in type I and II fibres 41,44. However, performing the same type of training with 

reduced muscle blood flow, thereby increasing rate of anaerobic ATP production, caused a ~50% 

higher abundance of α1 in both fibre types 44. Furthermore, resistance training, characterised by 

repeated, near-maximal efforts interspersed by several minutes of rest, was found to increase (79%) 

α1 abundance in type II fibres 24 and in whole-muscle samples 195 in sedentary individuals. 

Collectively, these results support that training above the intensity eliciting VO2max, and thus the 

degree of metabolic and ionic stress in exercising muscles 85, is important for training-induced 

increases in α1-isoform abundance in both human muscle fibre types. This is consistent with the 

observation made in the first part of this review that drastic perturbations in both metabolic and ionic 

homeostasis are likely essential signals underlying elevated Na+,K+-ATPase expression. Moreover, 

the duration of intense exercise bouts, and thus the time spent with perturbed ion homeostasis, could 

also be decisive. For example, 4 to 8 weeks of sprint-interval training with a shorter sprint duration 

(4 to 6 seconds) compared to the above studies (30 seconds) had no effect on α1 abundance in 

either type I or II fibres 40 or in whole-muscle homogenates 178 in recreationally-active humans. 

Together, this evidence supports that repeated, near-maximal exercise bouts of substantial duration 

(at least 30 seconds) punctuated by several minutes of rest is an effective training approach to 

increase α1 abundance in both muscle fibre types in humans. 
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Exercise training comprising a high exercise volume has been demonstrated in several studies to 

be an effective stimulus to increase α2 abundance in the skeletal muscle of both untrained 7,174,176 

and recreationally active humans 177,178. Accordingly, a large training volume appears to be required 

to elicit changes in muscle α2 abundance at the fibre-type level. For example, an increase in α2 

abundance in type II fibres (30%) was observed after 576 minutes of moderate-intensity interval 

training performed over twelve weeks 41, whereas 324 minutes of similar training over six weeks was 

insufficient to alter α2 abundance in type I and II fibres 44. Further, no significant change in α2 

abundance was detected in both fibre types after a period of sprint-interval training with a low (45 

min) exercise volume 43. In addition, whole-muscle α2 abundance was elevated after six 195, but not 

four weeks 24 of resistance training in untrained subjects. However, a training-induced increase 

(76%) in α2 abundance was evident in type I fibres in the latter study 24, indicating six weeks of sprint-

interval training is sufficient to invoke fibre type-specific changes in α2 abundance. In contrast, in 

another study, six weeks of sprint-interval training did not result in significant increases in α2 

abundance in any fibre type. However, in the latter study, a quantitatively higher α2 abundance was 

observed in around three quarters of type I and II fibres, indicating a small sample size and great 

inter-subject variability prevented a statistically significant result (i.e. a statistical type-II error). 

Moreover, a non-significant increase (30%) in α2 abundance was evident in type-II fibres after 

training with reduced muscle blood flow 44. This is in line with the concept that a greater proportion 

of type-II fibres must be recruited to sustain power output during continuous exercise  when oxygen 

supply to skeletal muscle is compromised 196. Together, above findings indicate that training volume 

and relative exercise intensity are important determinants of the fibre type-dependent regulation of 

α2 abundance in human skeletal muscle. In keeping with this, the demand for Na+/K+ transport 

invoked by training on each fibre type could be influential, consistent with the finding in vitro that the 

major role of α2 in skeletal muscle is to assure that contraction-stimulated increases in demand for 

Na+/K+ transport are met 70. 

The abundance of the α3 isoform remained unchanged with both interval-endurance 44 and sprint-

interval training 43 in both muscle fibre types in humans. This is consistent with observations in whole-

muscle samples of unchanged α3 abundance after three weeks of interval cycling with a high aerobic 

component (8 ᵡ 5-min at 85% VO2max) in well-trained men 157. Although only semi-quantitative, 

western blots for α3 indicate that this isoform may be lowly expressed at the protein level in human 

skeletal muscle, which is in accordance with the low α3 mRNA expression detected previously in the 

same tissue 157. These observations downplay the functional importance of α3 for the muscle’s 

contractile function in humans, which could be one explanation for the lack of change in α3 

abundance in both fibre types with the different types of training studied. In contrast to these 

observations, α3 abundance increased (31%) in whole-muscle samples after three consecutive days 
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with 2 hours of cycling at 60% VO2max per day 177, indicating exercise training, in some cases, can 

increase α3 abundance in human muscle, although the physiological reason(s) for the latter finding 

is unclear. 

β-isoform abundance 

In one human study, four weeks of sprint-interval training increased the abundance of β1 in type II, 

but not in type I fibres (identified in individual fibre segments) 40. In agreement, we have recently 

found that β1 abundance was selectively increased (44%) in type II fibres after six weeks of sprint-

interval training in humans 43. The α-isoform abundance was also raised in the same fibre type in the 

latter study, suggesting that intense training requires a high functional capacity of the Na+,K+-ATPase 

in type II fibres. In support, in rat gastrocnemius muscle, higher Na+,K+-ATPase hydrolytic activity 

was reported in membrane vesicles with a reduced (50 %) molar α2/β1 ratio caused by higher β1 

content, relative to vesicles with a greater ratio (1.0) 63. In contrast to the selective increase in type-

II fibre β1 abundance by sprint-interval training, β1 abundance was reported to decrease by 18% in 

type I fibres after six weeks of interval-endurance training 44. Whilst the decrease is likely unrelated 

to method variation, because technical variability in measurement was low (<12%), it might be 

explained by a possible detraining effect given that the subjects in the latter study was used to train 

at a substantially higher intensity. Accordingly, increasing relative intensity by reducing muscle blood 

flow during training attenuated the decline in type-I fibre β1 abundance with the training period 44. 

Collectively, these results suggest that β1 is regulated in a fibre type-specific manner to some types 

of exercise training (and detraining) in human skeletal muscle. This regulation appears to be 

dependent on relative training intensity and thus the demands imposed by training on 

transmembrane Na+/K+ transport in the different muscle fibre types. 

Findings from our lab indicate that β2 is lowly expressed in human vastus lateralis muscle 43, 

suggesting even large changes in β2 abundance in one type or both fibre types with training may be 

of small relevance for the skeletal muscle ion transport function in humans. Accordingly, neither 

sprint-interval 40 nor resistance training 24 resulted in altered β2 abundance in type I or II fibres in 

humans. However, a higher (27%) β2 abundance has been observed in type II compared to type I 

fibres identified in individual fibre segments from human skeletal muscle 40; a finding we have 

recently confirmed in separate pools of type I and II fibres using a modified method for fibre-type-

specific protein analysis 43. These results highlight that β2, although not altered in any fibre type by 

several types of intense training (Table 3), is expressed in a fibre type-specific manner in human 

skeletal muscle. Whilst it might be suggested that this pattern of expression might be functionally 

relevant, supported by the observation in rat skeletal muscle that the Km for Na+ of α/β2 heterodimers 
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(7.5-13 mM) is higher than the corresponding Km for α/β1 complexes (4-5.5 mM) 186, this remains to 

be elucidated in humans. 

Na+,K+-ATPase β3 abundance has been shown to be elevated in type I (1 fold) and II (3 fold) muscle 

fibres, and in whole-muscle homogenates (2.5 fold), with age in humans 21,197. In rat skeletal muscles, 

a similar age-associated increase in β3 abundance was reversed by fourteen weeks of endurance 

training 198. Thus, regular continuous muscle activity potently attenuates age-induced increases in 

β3 abundance in human muscle. In contrast, sprint-interval training increased β3 abundance by more 

than two fold in both human muscle fibre types 43. Together, these findings underline that β3 

abundance is similarly regulated in type I and II muscle fibres in humans and that this regulation 

appears to be dependent on the type of muscle activity (or lack thereof) regularly undertaken. In one 

of the human studies, the increase in β3 abundance with sprint-interval training occurred concomitant 

with an increase in α1 abundance 43, suggesting an enhanced potential for α1/β3 complex assembly 

in both fibre types after the training period. This supports that the β3 isoform could take part in 

maintenance of resting membrane potential in both fibre types, in line with the ion transport function 

of the α1 isoform 70. However, this warrants further investigation. 

FXYD1 abundance 

Previous human studies using whole-muscle samples reported no alterations in FXYD1 protein 

abundance following 10 days to 8 weeks of intense training 104,174,190,199. In contrast, we have recently 

shown that six weeks of sprint-interval training decreased FXYD1 abundance by 33 % in type I fibres 

43. FXYD1 abundance remained unchanged in type II fibres in the same study, highlighting FXYD1 

abundance is regulated in a fibre type-dependent manner by intense training in human skeletal 

muscle. As FXYD1 may regulate Na+,K+-ATPase function in multiple ways (e.g. by control of 

oxidation 71 and Na+ affinity 200), this indicates that physiologically relevant adaptations could be 

overlooked by the use of whole-muscle homogenate for protein analyses. Other methodological 

steps should also be avoided, including sample fractionation, i.e. removal of an indefinite amount of 

protein 193. In another human study, FXYD1 abundance was higher in both type I and II fibres after 

interval-endurance training with compared to without reduced muscle blood flow 44, indicating relative 

exercise intensity is important for alterations in FXYD1 abundance at the fibre-type level with training 

in humans. The different regulation of FXYD1 abundance in type I fibres with training in the latter 

two studies is likely explained by differences in work-to-rest ratio, and/or training duration 

(approximately 45 vs. 324 minutes). 
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Summary 

In summary of the scarce number of published human studies on this topic, the abundance of Na+,K+-

ATPase α1 and β3 appears to be similarly altered in type I and II muscle fibres by different types of 

training in humans. Furthermore, increases in both α1, α2, and β1 abundance by exercise training are 

likely training-intensity-dependent, consistent with the role of both metabolic, ion and redox 

perturbations in regulating Na+,K+-ATPase expression. The abundance of α2 may also be regulated 

according to training volume. The regulation of the α2 isoform to different types of training appears 

to occur in a fibre-type dependent manner and this may be a result of the extent to which the different 

fibre types are recruited while training. Both the isoforms α3 and β2 may be lowly expressed in human 

skeletal muscle and the expression of α3 hardly altered at the fibre type level by training in humans. 

The existing evidence suggests that changes in the abundance of α3 and β2 may be of little functional 

importance for the ion transport capacity of human skeletal muscle. Moreover, FXYD1 is upregulated 

in both muscle fibre types to certain types of intense training (i.e. blood-flow-restricted training), but 

not in response to other types (e.g. sprint-interval) in human skeletal muscle. The regulation of 

FXYD1 likely depends on training intensity, work:rest ratio, exercise duration, or a combination of 

these factors. 

 

Implications of fibre type-specific adaptations in Na+,K+-ATPase-isoform 

expression for K+ regulation in humans: Novel insights from blood flow-

restricted training 

In most published studies that have examined training-induced effects on Na+,K+-ATPase 

abundance in type I and II muscle fibres in humans, measurement of K+ regulation was either not 

included 40 or K+ concentration was measured in venous plasma 24,41, which poorly reflects K+ 

homeostasis at the muscle level 7,9. In a recent experiment, we assessed the effects of exercise 

training with and without blood flow restriction (BFR) on Na+,K+-ATPase-isoform abundance at the 

fibre-type level, together with measurement of net thigh K+ release during isolated work with the 

quadriceps muscle 44. A novel observation was that higher abundance of β1 (33%) and FXYD1 

(108%) in type I, and α1 (51%) and FXYD1 (60%) in type II fibres occurred concomitant with a 

reduced net rate of thigh K+ release during intense exercise after training with BFR. Furthermore, in 

the three subjects where α2 abundance was determined, a large effect for an increase in α2 was 

evident in both type I (38%, d = 0.8) and type II fibres (38%, d = 0.7) after the training period with 

BFR. In contrast, simultaneous training of the contralateral leg without BFR neither increased isoform 

levels nor altered thigh K+ release 44. Thus, adaptations in the expression of Na+,K+-ATPase isoforms 

at the fibre-type level appear to be important for muscle K+ regulation during exercise in humans. In 
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support, an increased expression of these isoforms would inevitably improve the potential for 

assembly of more Na+,K+-ATPase complexes at the cell surface, thereby increasing the capacity for 

K+ re-uptake 33. Moreover, consistent with previous observations in humans 6,8, enhancement of 

muscle K+ regulation in the study highlighted above was temporally associated with an improved 

exercise tolerance after training with BFR (11% greater vs. control leg) 44, providing support for a 

positive association between locomotor muscle K+ regulation and exercise performance. 

Regulation of Na+,K+-ATPase-isoform mRNA in human skeletal muscle 

by a single exercise session 

Changes in steady-state protein abundance may often be partly determined by variance in mRNA 

levels 201. A single exercise session increases the mRNA of a growing number of genes 202-204, and 

these increases may often occur prior to upregulation of protein content in human skeletal muscle 

205. Thus, measurement of mRNA responses to a single exercise session can often provide valuable 

insights into the potential of a given training strategy to modulate abundance of proteins and 

ultimately their function. However, this assumption should be carefully regarded, because of the 

complex process that underpins upregulation of protein levels. Increases in protein are not 

exclusively a result of elevated mRNA availability, but also depends on efficient mRNA translation 

and protein stabilisation (synthesis relative to degradation). Further complicating interpretation, 

mRNA availability is rapidly altered according to mRNA transcription, alternative splicing, synthesis, 

decay, and translation 206. 

 

The cross-sectional data summarised in Table 4 indicate that Na+,K+-ATPase isoforms (α1-3 and β1-

3) may be partly regulated at the mRNA level by exercise in humans. By comparing the responses 

in mRNA expression to a single exercise session (Table 4) with corresponding changes in protein 

content to a period of exercise training (Table 2), it could be argued that effects of an exercise 

session on Na+,K+-ATPase mRNA transcript levels reflect changes in corresponding isoform protein 

abundance after a period of the same type of training. For example, an increase (3 fold) in muscle 

α1 mRNA was observed in recovery from a single session consisting of fifteen 1-min exercise bouts 

at 150% of leg VO2max separated by 3 min of rest 156, whereas the same training protocol performed 

3 to 5 times per week for seven weeks resulted in an elevated (29%) α1 protein abundance in what 

appears to be the same individuals 7. Further, increases in α1 (2 fold) 207, α2 (1.8 fold), and α3 mRNA 

(3.3 fold) 86 have been reported after a session of continuous aerobic exercise (45 to 55 minutes at 

71 to 75% of VO2max). In comparison, 6 days to 11 weeks of regularly performing continuous aerobic 

training (2 hours at 60 to 65% VO2max) resulted in elevated α1 (16%) and α2 (9%) protein abundance 

and [3H]-ouabain binding site content (9 to 14%) 175,176,208. Further, an increase in [3H]-ouabain 
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binding (14%) was reported after several weeks of intense aerobic interval training with one leg (5 x 

3-min of unilateral cycling at 100% of pre-train aerobic peak power), whereas one session with the 

same type of exercise (5 x 2-5 min at 56 ± 5 W and 60 kick/min separated by 3 min of rest) elevated 

the mRNA levels of α1 (3.8 fold) and α2 (2.4 fold) in recreationally-active subjects. In another study, 

a session of sprint-interval exercise increased both α1 and β3 mRNA content, whereas six weeks of 

performing the same type of training caused an elevated protein abundance of these isoforms in 

muscle of recreationally-active men 43. In addition, six weeks of interval-endurance training with BFR 

resulted in elevated FXYD1 protein abundance in both muscle fibre types. Accordingly, a single 

session comprising of the same type of training increased FXYD1 mRNA content in human skeletal 

muscle 85. However, an association between mRNA and protein adaptations is not a universal 

finding. For example, no change in α2 mRNA was observed after a session of intense interval 

exercise 156, despite an increase in α2 protein (15%) after seven weeks of regularly performing the 

same type of exercise 7. Similarly, a selective increase in α2 mRNA after a single session of post-

exercise cold-water immersion was observed, despite no change at the protein level with six weeks 

of training, where each training session were concluded with cold-water immersion 43. These 

observations in human muscle are supported by a similar dissociation between responses of α2 

mRNA and protein to thyroid hormone in cultured skeletal muscle cells 209 and to sprint-interval 

training in rat EDL and soleus muscles 164. 

 

In summary, there are some indications that the accumulative effects of repeated exercise-induced 

changes in mRNA is an important determinant of net protein turnover of most Na+,K+-ATPase 

isoforms after several weeks of training. However, it is clear from the current evidence that variance 

in mRNA is likely one of several factors that control protein levels of these isoforms in human skeletal 

muscle following a period of exercise training; indicating altered mRNA to a single training session 

is not a solid marker of potential protein outcomes for these isoforms after several weeks of training. 

An alternative approach to designing exercise training interventions to 

maximise improvements in K+ regulation 

Based on the previous sections of this review, a key question that remains to be answered is what 

strategy should be chosen to most effectively enhance (i.e. within shortest time with maximal benefit) 

K+ regulation and thus fatigue tolerance during intense exercise in humans. In recent years, we in 

our lab have focused on developing a training strategy to maximally stimulate the molecular stressors 

identified in cell culture and animal models (in vitro) to be prerequisite to beneficial adaptations 

specific to K+ regulation, with the aim to maximise training adaptation. This alternative approach to 

optimising training has with success been centered on the use of blood flow restriction (BFR) to 
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manipulate blood perfusion of exercising muscles 44,85. With emphasis on this training strategy, the 

aim of this section is to provide the reader with an alternative view on how training interventions may 

be designed to maximise skeletal muscle adaptation in humans. 

Blood flow restriction (BFR) typically involves inflation of a pneumatic tourniquet (or cuff) around the 

most proximal portion of the limbs, thereby reducing muscle blood perfusion (Fig. 4). This strategy 

has been applied during various types of exercise, including walking, cycling, running, and resistance 

training 85,210-212. Superimposition of BFR during exercise leads to premature fatigue 213. Although 

evidence in humans is lacking, this appears to relate, at least partly, to malfunction of ion channels 

and transport systems 33,80,117. For example, inactivation of the Na+-K+-ATPase may occur earlier 

during exercise with than without BFR due, in part, to inhibition of its primary energy pathway 

(anaerobic glycolysis), promoted by intramuscular acidification 33. BFR exercise may also inactivate 

the Na+-K+-ATPase by increasing the formation of ROS and oxidative damage 80,85,99. Inhibition of 

the Na+-K+-ATPase leads to an increase in [Na+]i and a concomitant rise in [Ca2+]i via excitation of 

the Na+/Ca2+ exchanger 214. Accumulation of [Ca2+]i may also be augmented by ROS formation due, 

in part, to their capability to inhibit the sarcoplasmic reticulum calcium ATPase (SERCA) 117. Thus, 

[Na+]i and [Ca2+]i could both be amplified by exercising with BFR. A rise in the inward osmotic 

pressure gradient accompanying BFR, forcing fluid to accumulate in the intracellular compartment, 

may further magnify the ionic perturbations during exercise, for example, by increasing the 

intracellular dilution space for K+ 52. In humans, post-exercise muscle oxygenation, a key regulator 

of Na+-K+-ATPase expression in vitro 90,92,93, has been shown to be augmented by exercising with 

BFR 215,216. In summary, several key stressors involved in enhancing K+ regulation, which were 

identified earlier in this review, could be augmented by exercising with BFR. Accordingly, we have 

provided evidence that BFR augments the exercise-induced molecular signaling response 

underlying enhancement of K+ regulation in humans 85, and cycling for six weeks with compared to 

without BFR caused superior improvements in performance and K+ regulation during intense 

exercise in recreationally-active men 44.  

Prior to achieving these successful outcomes, it was carefully considered how to best design the 

BFR-training protocol. With primary basis in experiments in vitro, a hypothetical model of fluctuations 

in skeletal muscle oxygen level and ROS production during BFR exercise and subsequent 

reperfusion rest was drawn (Fig. 5). According to this model, the availability of ROS substrate (i.e. 

oxygen and NAD(P)H) mainly dictates the amount of ROS that are formed 80,81. Further, ROS 

production peaks during the reperfusion phase, where the convective oxygen delivery to tissues is 

maximal 80,81,135,137,217. Accordingly, we have shown that the skeletal muscle blood flow reaches its 

maximum within the first minute after the end of BFR-exercise, where the tourniquet is deflated (Fig. 
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4). At this point, it was therefore considered that repeated exercise bouts with BFR separated by few 

minutes with intact blood flow to exercised muscles would be the most effective BFR strategy to 

augment perturbations in muscle oxygenation, ROS accumulation, and ionic stress. In support, 

others have found that BFR applied during exercise amplifies metabolic by-product accumulation 

218,219, leading to a more hypoxic and acidic intramuscular environment 220,221. However, too severe 

an intracellular acidosis may be detrimental to the post-exercise increase in mRNA levels 160 and 

adaptability of the ion transport systems to exercise training 222. Thus, it was considered that exercise 

bouts with BFR preferably should be several minutes in length to markedly, but only transiently 

perturb ion (and redox) homeostasis 223. Nevertheless, existence of a threshold of exercise bout 

duration at which perturbations in redox, ion, and metabolic state may become detrimental to training 

adaptation remains to be elucidated. Moreover, a moderate exercise intensity may preferably be 

chosen to avoid premature fatigue caused by BFR. Given these considerations, the BFR-training 

protocol that we have successfully used in our human experiments consisted of three series of 3 x 

2-min exercise bouts performed at ~60 to 80% of maximal aerobic power, with 1 and 5 min of 

recovery between bouts and series, respectively. The tourniquet was inflated 10 s prior to and 

deflated immediately after each exercise bout. The pressure of the tourniquet was determined in a 

pilot study, where several exercise sessions were completed with varying degree of BFR (pressure 

range: 100 to 250 mmHg; n=2 subjects), whereby the highest tolerable pressure, by which the 

exercise protocol could be completed, was chosen for our experiments (~175 mmHg) 85. 

In summary, exercising with BFR is a potent training concept to promote the molecular mechanisms 

underlying adaptations in the capacity for K+ regulation in humans. On this basis, it is proposed that 

optimising exercise training prescription, in part, by studying outcomes from animal and cell culture 

research about key mechanisms involved in cell adaptation is a successful approach to increase the 

outcome of exercise training on human physical function. In addition, BFR-exercise is an excellent 

research model to evaluate what molecular signals may drive skeletal muscle adaptation to various 

stimuli, including physical activity and disease, in humans. 
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Conclusion and perspectives 

In humans, improvements in the capacity for K+ regulation likely result from transient perturbations 

in both redox, ion, and metabolic homeostasis. Specifically, increases in local oxygen level, ROS 

production, extracellular [K+], rate of anaerobic ATP generation, and mRNA expression appear to be 

key stressors underlying adaptations specific to K+ regulation, including increases in expression of 

different Na+,K+-ATPase isoforms. In contrast, the level of muscle hypoxia and lactate accumulation 

per se do not seem essential to these adaptations in humans. The involvement of alterations in [Na+]i 

and [Ca2+]cyt in mediating these adaptations is presently unclear, although evidence in vitro points to 

a role of transient oscillations in the concentrations of these ions in regulating Na+-K+-ATPase 

expression. Little is currently understood about how the identified key molecular stressors may be 

transducing the signal(s) for adaptation in the capacity for K+ regulation in human skeletal muscle, 

although a contributory role of AMPK and oxygen-sensing transcription factors has been suggested. 

Furthermore, enhancement of K+ regulation by exercise training in humans probably takes place as 

a result of coordinated increases in expression of catalytic Na+,K+-ATPase isoforms and FXYD1 

among different fibre types, which appears to be dependent on relative exercise intensity and/or 

volume, as well as the demand for Na+/K+ transport imposed on each fibre type while training. In 

addition, by the use of blood-flow-restricted exercise as a model to manipulate the molecular 

stressors underlying training adaptation, it was highlighted how mechanistic insights from animal and 

cell culture research may be preferably used to make informed decisions about how to optimise 

exercise training prescription to maximise improvements in K+ regulation in humans. The novel 

information provided in this review paves the way for a better understanding of how to develop 

interventions, such as exercise training and pharmacological therapies, to improve physical function 

and potentially hinder the progression of several life-style-related diseases in humans. 
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Figures 

 

Figure 1. Sites in skeletal muscle influenced by elevated interstitial K+ concentration ([K+]int). Accumulation of 

K+ in the interstitial space causes membrane depolarization (1), stimulates group III/IV nerve endings, resulting 

in decreased central motor output and increased heart and ventilation rate (2), facilitates cytosolic Ca2+ 

accumulation by impairing SR Ca2+ re-uptake and enhancing release (3). Increased [K+]int may also affect 

myocardial excitation by increasing plasma K+ concentration (4) and contribute to local vasodilation (5). 

Further, altered K+ concentration is known to inactivate Na+-channels, which is likely to reduce action potential 

amplitude (6) and impact rate of mitochondrial ATP generation (flux) (7), although its exact role in this matter 

remains unknown. RyR = ryanodine receptor; DHPR: dihydropyridine receptor. 
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Figure 2. Effect of exercise intensity on change in Na+-K+-ATPase α1 mRNA in response to a single session 

of exercise in human skeletal muscle. The figure is based on data from Aughey, Murphy, Clark, Garnham, 

Snow, Cameron-Smith, Hawley, McKenna 157 and Nordsborg, Kusuhara, Hellsten, Lyngby, Lundby, Madsen, 

Pilegaard 89 that used similar cohorts (trained humans) and exercise modality (cycling). A single, two-

parameter exponential fit [f=a(exp(bx))] provided the strongest relationship between the two factors (r = 0.85). 
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Figure 3. Effects of different types of exercise training on intense exercise performance, K+ regulation (i.e. 

plasma blood K+ concentration, thigh K+ release, or muscle interstitial K+ accumulation), and skeletal muscle 

Na+,K+-ATPase function, content, and isoform (α1, α2, β1) abundance in humans. AEH = Training at 

intensities ≤ VO2max (n = 13 interventions) 101,157,174-177,208,224-226, ANH = Training at intensities > VO2max (n = 8 

interventions) 7,12,178,189,191,227,228. Note that measurement of Na+,K+-ATPase activity was not included in 

studies on ANH training. Data are expressed as means + 95% confidence intervals. 
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Figure 4. Absolute (A) and relative (B) fluctuations in thigh blood flow during and in recovery from moderate-

intensity (12 W), single-leg, knee-extensor exercise without (CON) or with blood flow restriction (BFR; ~175 

mmHg). Data are expressed as means ± SD. This figure was reproduced from a previous paper with 

permission from the authors. 
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Figure 5. Proposed model for fluctuations in reactive oxygen species (ROS) formation, anaerobic glycolytic 

substrate production for ROS synthesis, and oxygen partial pressure, in skeletal muscle during exercise with 

blood flow restriction and during the subsequent recovery with intact blood circulation (reperfusion). ROS: blue; 

PO2: green; NADPH: hatched red. 
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Tables 
 

Table 1. Summary of the likely involvement of key molecular stressors in mediating adaptations specific 
to K+ regulation in human skeletal muscle 

Molecular signal 
Interaction with other 
key signal 
mechanisms 

Effect on adaptation in 
K+ regulation or 
Na+,K+-ATPase 
expression 

Evidence in 
animals or 
cell culture 

Supported 
by findings 
in humans 

Perturbations in 
redox state 

↑ ROS, altered ion 
homeostasis 

+ Yes Yes 

↑ oxygenation 
↑ Sp1/Sp3 activation; ↑ 
mRNA transcription 

+ Yes (Yes) 

Hypoxia Redox homeostasis – Yes Yes 

↑ ROS levels 
↑AMPK activation, 
perturbed K+, Ca2+, Na+ 
homeostasis 

+ Yes Yes 

↑ Antioxidant 
function 

↓ ROS – Yes Yes 

Intracellular Na+ 
Ion homeostasis, ↑ 
ROS 

? Conflicting n/a 

Interstitial K+ 
accumulation 
(membrane 
depolarization) 

Ion homeostasis, ↑ 
ROS 

+ Yes No 

Cytosolic Ca2+ 
Ion and redox 
homeostasis, CaMKII 
activation 

+ Yes No 

Anaerobic ATP 
turnover 

AMPK, perturbed ion 
and redox homeostasis, 
↑ ROS 

+ No (Yes) 

Lactate Metabolic homeostasis – No Yes 

↑ and ↓ denote potentiation and attenuation, respectively. + and – denote a positive and negative effect, 
respectively. ? denotes unknown and brackets denote weak support. 
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