VICTORIA UNIVERSITY

MELBOURNE AUSTRALIA

Improving Progression and Satisfaction Rates of
Novice Computer Programming Students Through
ACME - Analogy, Collaboration, Mentoring and
Electronic Support

This is the Published version of the following publication

Miliszewska, lwona, Venables, Anne and Tan, Grace (2008) Improving
Progression and Satisfaction Rates of Novice Computer Programming
Students Through ACME - Analogy, Collaboration, Mentoring and Electronic
Support. Issues in Informing Science and Information Technology, 5. pp. 311-
323. ISSN 1547-5840

The publisher’s official version can be found at
http://proceedings.informingscience.org/InSITE2008/1ISITv5p311-323Milis436.pdf

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/3842/

Issues in Informing Science and Information Technol ogy Volume 5, 2008

Improving Progression and Satisfaction Rates of
Novice Computer Programming Students
through ACME — Analogy, Collaboration,

Mentoring, and Electronic Support

Iwona Miliszewska, Anne Venables, and Grace Tan
Victoria University, Melbourne, Australia

Iwona.Miliszewska@vu.edu.au
Anne.Venables@vu.edu.au Grace.Tan@vu.edu.au

Abstract

The problems encountered by students in first geaputer programming units are a common
concern in many universitiemcluding Victoria University. As a fundamentalngponent of a
computer science curriculum computer programmirggngandatory unt. It is also one of the
most challenging units for many commencing studate often drop out from a computing
course as a consequence of having failed, or peefldipoorly, in an introductory programming
unit. This paper reports on aresearch projectniakien to develop and implement a strategy to
improvethe learning outcomes of novice programnstigents. Aimed at ‘befriending’ com-
puter programmingto help promote success amongmegramming students, the strategy in-
corporates the use of analogy, collaboration, margcsessions, and electronic support. The pa-
per describes the elements ofthe strategy andsdiss the results of its implementation in se-
mester 1, 2007.

Keywords: analogy, auomated assessment, collaboratiooguttory computer programming,
programming suppor, student mentors.

Introduction

Computer programming is an integral part of a cdmpscience curriculum and a major stum-
bling block for many students, particularly in fiirst year of study. Many of those students find
programming difficult to grasp, let alone masteufizan, 2002; Jenkins, 2002; McCracken et

al., 2001; Proulx, 2000). Difficult to learn, pragnming skills are also difficult to teach (Allison,
Orton, & Powell, 2002), not least because “tradititeaching methods do not adapt well to the
domains of coding and problem solving, as it i&ill best leamed through experience” (T raynor

& Gibson, 2004, p. 2). Lister et al. (2004) empbasithe need for novices to be able to read code
first before attempting to write pro-

Material published as part ofthis publicationheitondine or ~ grams. According to Kélling and

ilg print, is Copyfiglilteg_ byalme Informing SCi?”“-";lﬂitt)Utfeh Rosenberg (2001), the situation is even
ermission to make digital or paper copy of parlbofthese . .
wolks for personal or classroomuse is grantedomitfee more challenging when it comes to

provided thatthe copies are not made or distribicteprofit teaChing ijed'oriented programming
or commercial advantage AND that copies 1) bearriotice to beginning students as “software tools,

missi!ale to abstract these works SO long as dediven. To experience all are less mature than the
copy in dl other cases orto republish or to pwsa serveror

to redistribute to lists requires spedific permiasand payment €quivalent for structured programming”
ofa fee. Contadtublisher@ Informing Sdence.otg request (p-1).
redistribution permission.

Improving Progression and Satisfaction Rates

The issue of computer programming is no differénvietoria University where, since 1999, ob-
ject-oriented programming using Java has been taaghe introductory programming students.
Here too, students struggle with programming, alegi@mming has continuedto be a major fac-
tor contributing to the attrition of first year dants from the computing courses. Various restruc-
turings of the programming unit and changes toltie@cmethods implemented over the years,
such as the use of different textbooks orthe dguepion of an electronic assignment assessment
system, have done little to improvethe situatibhliszewska & Tan, 2007). A new approach

was needed. A research project, supported by ailregpand Leaming Support grant, was
launched in July 2006. T he project investigatedtsterre of the difficulties encountered by pro-
gramming students and developed a friendly’ framdwfor teaching programmingto novices;
the framework aimed at making computer programmielgoming and more accessible to nov-
ice programmers and, at the same time, achievidggoajical objectives.

The first stage of the study examined the reasdrysfinst year students find programming such a
daunting prospect, and identified the various weations reported in the literaturethat had been
created over the yearsto alleviatethe programminglem. The outcomes of the first stage of
the research study were reported in 2007 (Miliskev& T an, 2007). The next stage of the re-
search focused on the development of a new strabeagidress the introductory programming
problem. This paper presents in detail the featofésis new strategy to teaching introductory

programming and discusses the oucomes followiegiiployment ofthe strategy in semester 1,
2007.

Introductory Programming —
Overview of Problems and Strategies

Introductory programming has been widely recogniaed major stumbling block for many
computing students. Although computer literacyighramong some of the commencing comput-
ing students, most ofthem tendto lack programneiygerience. And it is the students’ lack of
problem-solving skills rather than the lack of prammputing experience that appearsto be a
problem (Dunican, 2002). In addition to the absesfgeroblem-solving modules from Australian
secondary school curricula, the lack of continligyween secondary and first year university
studies exacerbates the problem; computer progragiimiparticular appears to be “beyondthe
students’ previous experience” (Stamouli, DoyleH&ggard, 2004).

Lack of prior experience with programming includiesk of familiarity with complex tasks such
as program design and construction, but also rewitisks such as compiling or running a pro-
gram; sometimes, students even lack a basic uradelisg of a computer model with its hard-
ware and software components. This lack of undedstg of a mental model of a computer often
results in much frustration among novice prograngrsiudents (Ben-Ari, 1998; Dunican, 2002).
The complexity of the relationship between the rakentodels held by students and their overall
programming aptitude is under investigation by Bborehnadi, and Simon (2008).

In addition, many students have problems in raigfiire use of abstract terminologies in pro-
grammingto real life objects. Consequently, thetsdents claim to ‘hate programming’ as they
struggle to comprehend even the most basic of progring concepts (Stamouli et al., 2004;
Thomas, Ratcliffe, Woodbury, & Jarman, 2002). LUagdt not least, meetingthe requirements of
programming syntax may prove a challenge evenugedts equipped with adequate problem-
solving skills (Dunican, 2002; Kolling & Rosenbe#f)01; Sheard & Hagan, 1998).

The problems encountered by students in first geamputer programming units are a common
concern in many universities. Various interventibage been introduced over the yearsto ad-
dress this concern; they included changestothrecalum, pedagogy, and assessment, andthe
provision of additional support to new programmatgdents. Different arguments have been put

312

Miliszewska, Venables, & Tan

forward on what should be included in the currinulaf an introductory programming unit. Van
Roy, Armstrong, Flatt, and Magnusson (2003) suggkthe teaching of programming concepts
ratherthan paradigms. Others advocated the tegdiijprogramming based on a single para-
digm, such as the object-oriented paradigm for gx{en roponents of the object-oriented ap-
proach were divided intotwo “camps” that favouegglarticular way of how object orientation
should be introducedibjects-first(Blumenstein, 2004; Lister & Leaney, 2003),structured
programming- firs{Sheard & Hagan, 1998): both these approachesltemmereported as suc-
cessful.

Various pedagogical techniques have beentrialled the yearsto help students develop pro-
gramming skills. For instance, analogy has beed tsbelp students leamn programming funda-
mentals including input/output, data types, sortangd searching; this approach relies on illustra-
tive examples of concepts that students have sefenebandrelates the familiar conceptsto new
ones (Blanchette & Dunbar, 2000; Dunican, 2002)eRance is another important pedagogical
facet: students should see a purpose to what ttedganing. Sheard and Hagan (1998) reported
on the successful use of gamesto illustrate tinefide of the object-oriented paradigm. They also
successfully employed an iterative approach taniegrand continuous reinforcement of con-
cepts. Finally, another approach relied on theofisgechnology for teaching. Clancy, Titteron,
Ryan, Slotta, & Linn (2003) described howthe usa @boratory-based model for computer sci-
ence instruction improved student performance atigfaction with the programming unit.

Frequent assessment is favoured in an introduptargramming unit (Blumenstein, 2004) and
the two types of assessment most commonly useddedbjective testing and performance-
based assessment. Objective testing provides seuddh useful instant feedback and helpstheir
understanding of language syntax or program belhevierformance-based assessment helpsto
test students’ ahility to write working computeograms (McCracken et al., 2001). As well, cri
terion-referenced grading has been recommendetieabiaique likely to maximise the potential
of every student in a disparate class of diffexaptabilities (Lister & Leaney, 2003).

In addition to various pedagogical and assessneehnigues, a range of supplementary support
measures have been used to assist novice progranstuigents. Successful forms of auxiliary
support included: discussion classes, as repoptedhbard & Hagan (1998); Web pages for pro-
gramming units (Sheard & Hagan, 1998); and, prowisif structured one-to-one support to stu-
dents with programming difficuties (Stamouli et, 2004).

The ACME Strategy: Analogy, Collaboration,

Mentoring & Electronic Support

The strategy developed at Victoria University tadie introductory programming aimed to create
a climate where students embrace programmingilttdou a variety of approaches that had been
reported as ‘successful’ in the literature (as dbed in the previous section of this paper). The
strategy incorporated four individual approacheh aiview to achieving a better overall out-
come; the key elements included: analogy, collatmramentoring, and electronic support.
Analogy was used extensively in the teaching examphd tutorial discussions; collaboration
amongst students was encouraged in laboratorysessand required in the major assignment
task; mentoring assistance was provided to studerdaghout the semester; and, an electronic
assignment submission system provided studentsanitihstant automatic feedback to submitted
programming tasks. The details ofthe key elemeftise ACME strategy are described below.

Analogy

Undergraduate students enrolling in computing ceslese not expectedto have prior program-
ming experience. Thus, it comes as no surprise higst experience difficulties when facing pro-

313

Improving Progression and Satisfaction Rates

grammingtasks forthe first time (Dunican, 20Q&)gram design and construction, compiling
and running a program, as well as intricacies ofilware components might be difficult to under-
stand. Further difficulties arise whenthere isieedto imagine and comprehend many abstract
termsthat do not have equivalents in real lifevidoes a variable, a data type, or a memory ad-
dress relate to areal life object?

The ACME strategy incorporatedthe use of analdgmzdels to bridge some ofthese difficul-
ties. These models are said to help “people visedhie objects and processes which they are try-
ing to understand” (Harrison, 2001); they use ‘faifear object or experience to inform the
learner about new and poorly understood objectggsses or concepts” (Harrison, 2001). For
instance, an analogy involving a classic childresnapetoy was used by Dunican (2002) to teach
the concept of data types, assignment statemedttypa mismatches.

Analogies were used deliberately and extensivatyugjhout the programming unit. Wherever
possible, illustrative examples of familiar consepiere used to introduce studentsto new ones;
an analogy was made between the familiar concepir¢s) and the new concept (target) by
mapping the source onto thetarget (Blanchette &law, 2000). For instance, the concept of
memory allocation (target) was illustrated with @oglen box divided into small pigeonholes
(source), as depicted in Figure 1. Individual pigeales were identified by their own unique la-
bels (memory addresses), and the labels referén@essign, store and retrieve content. Here, two
objects ofclass PhonenamelynyPhoneandyourPhonehave been instantiated and stored. A
method to set the price of each object has bededcaind the objects have been individually re-
trieved, manipulated and then stored again.

[

NEC | E338 8 24953

Figure 1: Analogy example- wooden box illustratingnemory allocation.

To explain the need of atemporary variable in smeghods, another analogy was used. Students
were presented with two wine glasses, one fillath wiater and the other with coffee. They were
toldthat each wine glass represented a memoryidocand its content. Students were askedto
move the contents of the first wine glass intos@éeond and vice versa without mixing any of the
contents. This analogy provedto be particulargfuis students immediately instructed the lec-
turer to supply another glass, a temporary holdessel, to solve the problem.

In a discussion on graphical user interfaces (Glis)analogy was used to introduce diRanel
component;JPanelneeds to be displayed by another component, sueliFzameor JApplet As

314

Miliszewska, Venables, & Tan

My JFrame EER

JPanel

Figure 2: Analogy example- paper models alFrameandJPanel

students were already familiar with the Windows iesryment, a piece of white paper with a blue
border and header was used to represent the disglajndow (such as a Windows screen), or
JFrame a discussion about the mechanics of making aspdadiing the window on a computer
followed. Then, a separate piece of yellow papes waoduced to representtBane] it was

easy to seethat thiPanelneeded to be placed upon tliigamebefore it could be displayed.
This analogy is shown in Figure 2.

Analogy was also used to introduce the conceptteodtiors, such asthe Java classemgToken-
izerandScannerand their methods. In this instance, a ‘pacMaiaracter was used to represent
the iterator class, and iterator methtdsNext(andnext()were illustrated. T heasNext()
method, which returns either the value of ‘true*fatse’ was likenedto the ‘pacMan’ finding
food or not. If the ‘pacMan’ found food, then thext()method was called; the ‘pacMan’ used
the next()methodto chewthrough the foodsing breaking on the white space. Inthe exam-
ple illustrated in Figure 3, the ‘pacManéxt()method would eat, or retumn, the word ‘text’, fol-
lowed by ‘to’, then ‘be’ and, finally ‘eaten’.

"text to be eaten”

Figure 3: Analogy example- pacMan model of iteratog and their methods.

315

Improving Progression and Satisfaction Rates

Collaboration

To further reduce the fear of programming amongsidents, particularly in regard to their as-
sessment tasks, students were encouragedto workgtiout the semester, summative assess-
ment was used in the laboratory exercisesto agsidents in developing their programming
skills. The set exercises were short and simpk tlaay were designed primarily as learning ex-
periences; for instance, students were requiredaioe minor modifications to existing code. This
approach served to address concems raised by 8&tkcki (2001) who found that students
who were required to write a complete program airtbwn often did not know how to begin,
and instead of thinking a problem through expertérby randomly throwing statements to-
gether hoping to achieve a desired outcome.

Students were instructed to work in pairs on agogning assignment; the pairs were self-
selected but, as all students in the cohort wewestedents, the self-selection was not much dif-
ferent from a random assignment of students inis.pBhe specification of the assignment was
based on a popular television game named ‘DeaboDéhl. The topic ofthe assignment was
chosen deliberately, as game playing problems bega reported to motivate students, espe-
cially when there is the opportunity to produceattive graphical interfaces (Lorenzen & Heil-
man, 2002). The assignment was divided into twoszand scaffolded to encourage the devel-

Part 1

Create a COMMAND LINE based application that prists ont 2 welrome messaze and then asks the nser
toselect 2 smtcase, Afler the user types a mmber, the game rans as shown in the fallowing screen
prionts. Several more examplss of the DOS based apphication aw showmn halowr,

=0 CAWINDOWS s tmen) Pemid g

b deloone to the Suitcases and Player Game wesssss
FPlease select & suitcase?-

Flayer has chosen suitcase 1 with walue 168 =
The hank has:

puitcase 2 haz valun 5
I puitease 3 has valun 58

Flayer wing the game
=

4 |

=
mmpnunn Heleone to the Switcases and Flayer Game ssmmnns =
_Pllunr gnlEct a Enitcapei—

316

Each time the game is run, 3 instarces
of class Suitcase nmstbe made. Cne
istance has the label 1 with avahe of
%5 or $50 or $100 randomly placed m
it. dAmnother mstance has the label 2,
with a differert valie placed in t and
the third instance has the label 3 and
the final vahie placed init.

A& basic TML diagram for a class
Suitcaze repmsenting a mitoase is
showm.

After the 3 imstamces of class
Suibcase are created, an mstance
of class Player is needed. 4

Flayer has chosen suitcase 2 with value 5

The hank has:

multcase 1 has value S8
ouitcase 3 has valoe 188
The hanker wing the game

W IND O WSyt e 3 2 e o e

memanns Weloome to the Sultcases and Plajer Gomng sesssss

FPloaze znlect a zuikrazmi— 3

¥1nwr hax chosen suitcaze 3 with value 58

The bank has
muiteaze 1 haz palis 160
suitcase I has valus 5

The banker winz the game

{1

player krows which instance of Suitcase Player
tlass suitcase they have chosen, - label ; int - pickedCase: Suitcase
value ¢ int

A basic TML diagram for a class
Player repimsemting a plarer is
showm. Then, a calmilaton s done
to decide if' the player or the
banker wins the game.

- any other variables

+ Suitcase {(int)
+ teString() : String

+ any other methods
wou think necessary

. "

+ Player { Suitcase)

+ getsuitcaseValue()
Lint
+ toSting() : String

Figure 4: Partial specification of the ‘Deal or No Deal’ assionment

Miliszewska, Venables, & Tan

opment of problem solving skills and collaboratliearning. The first part of the specification
gave a detailed description along with a suggeapgatoach to solving the problem. Relevant
UML class diagrams for the design of a typical Sofluwere provided, together with screen
dumps of typical outputs, as illustrated in Figdr& he second part of the assignment was more
open-ended and it required students to designysisend enhance their game programs by creat-
ing suitable GUIs for their solutions. This gavedsints the opportunity to extend the basic solu-
tion and explore creative ways of designing the $5tHe assignment marking scheme provided
rewards for inttiative and effort. As well, by wadng in pairs it was expectedthat individual stu-
dents would contribute roughly equal effort sinothlpartners would be fully aware of the
amount of work done by any one partner. In fa,gpecification instructed groups that both
students were expectedto contribute equally.

Mentoring

A mentoring program was introduced to further suppiudents who faced programming diffi-
culties. Throughou the semester, mentoring sessbane-hour duration were offeredthree
days a week in a dedicated computing laboratono Swdent mentors (second year students)
provided assistance during each session. The nsentwe volunteers selected on the basis of
their programming skills and communication skillsey underwent training priorto the com-
mencement oftheir mentoring duties; and, they jgiedithe mentoring assistance for free.

Participation inthe mentoring sessions was enteluntary, with some students availing them-
selves of the service more than others. While Hily dttendance numbers varied throughout the
semester (often determined by assessment taskroes)dthere were a number of ‘regulars’ who
relied heavily upon the service. The problems teabby those students, and conveyedthrough
the mentors, served as an invaluable source ofnEbfeedback for lecturer in charge of the
unit; the reported problems usually reflected thcdlties experienced by the wider student co-
hort. Thus, the particular problems that had ariséhe mentor sessions were subsequently ad-
dressed in the classroom, improving learning ouesfor all students.

Feedback from the mentors was actively sought giirout the program. Each week, the mentors
submitted individual written reports detailing thefforts, experiences and reflections. In addi-
tion, weekly meetings were held between the mergackthe lecturer;the mentors reported back
tothe group upon their experiences; and the lectaosllected feedback on past week’s activities,
informed the mentors ofthe current academic psyod the programming class, and briefed the
mentors on the upcoming laboratory work and assegs

Electronic Support

An on-line assignment submission system was usedhance the provision of feedback, andto
boost students’ confidence intheir programmingdjskAs the service was web-based, students
were able to uploadtheir programs from a compet@ratory at the University, or from home,
and receive feedback. First, the feedback statethenh a program compiled or not; if it did, the
program was run against several sets oftest @htm, the students received a screen printout of
how their program performed against the test ddbag with a copy ofthe expected result for a
correct ideal solution, as shown in Figure 5. A endetailed description of the development and
the inttial implementation ofthe automated feedtbagstem has been reported by Venables and
Haywood (2003).

It often happened that a student’s program worlerbctly for most inputs, but the student failed
to consider allthe boundary cases or specificlprolinputs; the use of test runs against sample
data helpedto highlight such anomalies. Imporyabble student was then able to modify and
correctthe submission as necessary, before deadllimough this mechanism students were able

317

Improving Progression and Satisfaction Rates

Automatic Feedback

Running Yomw Program
Test No. 1: Test 1

Tmprut

15
5

Example Resuhis

Enter numerator: 15
Enter denominator: 5
Pivision i3 3

Your Results

Enter pumerator: 15

Enter dencminator: 5

Division is 3

Student program ended normally

Test Na. 2: Test 2

Trput

15

Example Resuhis

Enter pnumerator: 15
Encer dencminacor: O
Tou CANNOT divide by 0O

Yiour Results

Enter numerator: 15

Enter denominator: O

You CANNOT divide by 0.
Student program ended normally

Figure 5: An electronic assignment submission syste

to learn by their mistakes and correct them witlpmumalty. Finally, afterthe submission dead-
line, tutors entered additional descriptive fee#bato the submission program; this feedback
was provided to students in addition to grades.

Outcomes and Discussion

The application ofthe ACME approach to an intrddug programming unit in semester 1, 2007
resulted in an improvement of student progressmhsatisfaction rates. It should be noted, that
the unit was delivered in 2007 by the same lecaumad in the same learning environment as in
2006 and, while it would have been ideal to evathe leaming outcomes of two parallel co-
horts — one with, and one without the applicatibthe ACME approach, it was not possible to
implement it in 2007. Comparedto 2006, the passinproved by 8% (from 56% to 64%) and
the percentage of credits grew by 3%, as depict&igures 6 and 7 (Victoria University, Course
Analysis Report, 2007). Athough the improvemenstindent pass rate depended also on the
characteristics of the 2007 student cohort, it ea®rded across all the six undergraduate com-
puting courses at Victoria University. While theprovement in progression rates was moderate,
it seems to have particularly benefitedthe weakaents. On the other hand, the percentage of
Distinctions and High Distinctions was slightly lemcompared with the previous year. Further
investigation is needed with future cohorts to deire if this pattern continues, indicating that
the ACME approach might impact negatively on steangudents.

318

Miliszewska, Venables, & Tan

RCM1311 Programming 1
Pass rates (% of students)

2006

2007

66%
64%

62%

60%

58%
56% 1
54% 1
52% -

Figure 6: Pass rates of students in RCM1311 Programing 1 (% of students).

35%

RCM1311 Programming 1
Progression rates (% of students)

2006

2007

30%

25%

20%

15%

10% 4

5% 1

0%
HighDistinction

Distinction

Credit

Figure 7: Progression rates of students in RCM131Programming 1 (% of students).

The approach had a bigger impact on student setisferates with the unit. Data was collected
through formal University surveys — Student Evabuabf Unit (SEU) — where a 5-point Likert
scale (from 1 — least satisfied, to 5 — most datd$fwas appliedto a set of ten questions relaied
student satisfaction with various aspects of thie Bhcomparison between satisfaction rates in
2006 and 2007 shows a considerable improvementiderst satisfaction in 2007, as illustrated in

Figure 8.

319

Improving Progression and Satisfaction Rates

RCM1311 Programming 1
Satisfaction rates - SEU (% of students)

02006 ®2007

50.0%
45.0%
40.0%
350%
30.0%
250%
20.0%
150%
100%
9
50% | —— .:
T T T

0.0%
1 2 3

Figure 8: Satisfaction rates of studentsin RCM131Programming 1 (% of students).

Of the ten questions comprisingthe SEU surveylesits gave their highest scoresto two ofthe
guestions®l understand most of the content of the subjeantdl find the subject interesting”
In addition, students provided written commentsuboe aspects of the unit that they found par-
ticularly helpful or stimulating:

“Detailed explanations and group discussions.”

“Lab questions were helpful as they enabled uspphyawhat we had learnt”

“The online submit.”

“l find an example, like calling a variable a pigetole, much easier to under-

stand.”
These comments seemto indicate that the varieusesits of the ACME approach appealedto
various students. It must be noted that the usengdle analogies has met with wide student ap-
proval. In particular, they found very helpful tbge of a wooden boxthat was used to illustrate
the concept of memory allocation (as describedegan the paper). It should be noted, that the
SEU survey was used as evaluation tool in thisystad it isthe mandatory evaluationtool pro-
vided by the Universityto measure student sattigfacates. While it would have been useful to
examine the satisfaction rates in relation the ggsgjon rates, the SEU tool does not have provi-
sions for extraction of individual student respmise

The mentoring sessions, aimed at accommodatingpbafic needs of individual students and
enabling early identification of students with pragnming difficulties, also produced the desired
outcomes. The lecturer in charge of the unit conteteon how at least five students would not
have passed the untit if it had not been for thétiadal help that they received from the mentors.
The mentors helped develop and boost the studeort§idence in their programming skills and,
the increased interaction between students andonsemssisted in early identification of students
‘at risk’. Those students were subse quently offerdditional support in tutorial and laboratory
classes. Commenting on the usefulness of the nirgteessions in the SEU surveys, the stu-
dents wrote:

“Without the mentors, my labs would have beendliffito understand. They ex-

plained every possible outcome and helped me exthi@rmeaning and use of the

subject or the application of the subject; it wasywgood and clear. | wish we had

mentors for other subjects.”

“Mentoring sessions were helpful because the merttad faced the same problems

we are facing now.”

“The mentors helped me leam things that the teaditbnot have time to answer.”

320

Miliszewska, Venables, & Tan

In addition to the immediate benefits describedvahthe application ofthe approach produced
several long-lasting benefits including a collectad teaching resources and an improved Web-
based assignment submission system. T he resoordesathing first year computer program-
ming unit that have been compiled during the ptdjeciuding a databank of analogy examples
and assessment tasks) will continue to be a safireference for academic staff. In addition, the
improved Web-based assignment submission and miogesy/stem will continue to benefit fu-
ture programming students.

Conclusions

This paper reports on the outcome of a researdghgiriat aimedto lift the “image” of computer
programming among novice programming studentgjoid was to improvethe negative percep-
tion that computer programming is difficult and iiefdly. A multi-pronged approach to teach-
ing introductory programming was developedto aohide goal; the key ingredients ofthe ap-
proach included the use of analogy, collaboratioentoring, and automated assessment.

Analogy, used extensively in the teaching examphestutorial discussions, helped students
comprehend some of the fundamental programmingeqisc Collaborative assignments, and
collaborative efforts in laboratory sessions furthéeviated students’ apprehension towards pro-
gramming. The mentoring classes enhanced the apyies for interaction, provision of feed-
back and friendly peer support even further. Initéait, the Web-based assignment submission
system enabled studentsto develop and test trogrgamming skills intheir own time.

The deployed approach provided posttive suppodtmeosphere in which students could learn
the intricacies of object-oriented programmingsuiccessfully triggered the students’ interest, and
showed them the magic of programming. While ther@pgh aimed to befriend programming, it
also aimedto realise the educational objectivesnoiftroductory programming unit — it seemsto
have achieved some improvement in both respects.

References

Allison, I., Orton, P., & Powell, H. (2002). A viral learning environment for introductory programmi
Proceedings of the®3Annual Conference of the LTSN Centre for Inforovatind Computer Scienges
48-52.

Ben-Ari, M. (1998). Constructivism in computer swe educationProceedings of the PBIGCSE Tech-
nical Symposium on Computer Science Educa?ai-261.

Blanchette, I., & Dunbar, K. (2000). How analogée generated: The roles of structural and susfic
similarity. Memory and Cognitiqr28, 108-124.

Blumenstein, M. (2004). Experience in teaching dbjgi ented concepts to first year students witherdie
backgroundsProceedings of the International Conference onrmiation Technology: Coding and
Computing (ITCC’04]electronic proceedings].

Bornat, R., Dehnadi, S., & Simon. (2008). Mentald®ls, consistency and programming aptitirte-
ceedings of the Australasian Computing Educationf@ance (ACE 2008), Wadlongong, N.S.W, Aus-
tralia, 53-62.

Buck, D., & Stucki, D. (2001). JkarelRobot: A cagady in supporting levels of cognitive developmient
the computer science curriculufroceedings of the SIGSCE Technical Symposium opGter Sci-
ence Education]6-20.

Clancy, M., Titteron, N., Ryan, C., Slotta, J., &h, M. (2003). New roles for students, instruct@sd
computers in a lab-based introductory programmingse.Proceedings of the 34th SIGCSE Techni-
cal Symposium on Computer Science Educatl32-136.

321

Improving Progression and Satisfaction Rates

Dunican, E. (2002). Making the analogy: Alteratdativery techniques for first year programming
courses. In J. Kuljis, L. Baldwin, & R. Scoble (EdRroceedings from the T&Workshop of the Psy-
chology of Programming Interest Group, Brunel Unéig, June 200289-99.

Harrison, A.G. (2001). Thinking and working scidnglly: The role of analogical and mental modeisis-
tralian Association for Research in Educatiéiremantle, W.A, 2-6 December 2001. Retrieved Au-
gust 2006 fromhttp://www.aare.edu.au/01pap/har01126.htm

Jenkins, T. (2002). On the difficulty of learning program.Proceedings of the 3rd Annual Conference of
the LTSN Centre for Information and Computer Se@gng3-58. Retrieved November, 2006 from
http://www. psy.gla.ac. uk/~steve/localed/jenkins.htm

Kolling, M., & Rosenberg, J. (2001). Guidelinestieaching object orientation with JasCM SIGCSE
Bulletin, Proceedings of the 6th Annual Conferemednnovation and Technology in Computer Sci-
ence Education33(3), 33-36.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, Mamer, J., Lindholm, M., McCartney, R., Mostrom, E
Sanders, K., Seppdla, O., Simon, B., & Thomas2004). A mutltinational study of reading and trac-
ing skills in novice programmerSIGCSE Bulletin, 3@), 119-150.

Lister, R., & Leaney, J. (2003). First year prognaimg: Let all the fowers bloomProceedings of thé™s
Australasian Computer Education Conference (ACE20A8elaide, Australia221-230.

Lorenzen, T., & Heilman, W. (2002). CS1 and CS2ité&/computer games in Ja@IGCSE Bulletin
34(4), 99-100.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, Mdagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas,
L., Utting, I., & Wilusz, T. (2001). A multi-naticad, multi-institutional study of assessment of pro-
gramming skills of first-year CS student&CM SIGCSE Bulletjr33(4), 125-140.

Miliszewska, 1., & Tan, G. (2007). Befriending couatpr programming: A proposed approach to teaching
introductory programmingThe Journal of Issues in Informing Science andrinfdion Technology,,4
277-289. Retrieved frorhttp://proceedings.informingscience.org/InSITE2WSIT v4p277-

289Mili310.pdf

Proulx, V., (2000). Programming patterns and depigterns in the introductory computer science seur
SIGCSE Bulletin32(1), 80-84.

Sheard, J., & Hagan, D. (1998). Experiences widlshimg object-oriented concepts to introductory pro
gramming students using C+¥echnology of Object-Oriented Languages and Systéd@LS 24,
IEEE Technology310-319.

Stamouli, I., Doyle, E., & Huggard, M. (2004). Bsishing structured support for programming student
Proceedings of the $4ASEE/IEEE Frontiers in Education Conference, Sawmn GA, October 2004,
[electronic proceedings].

Thomas, L., Ratcliffe, M., Woodbury, J., & Jarm#n,(2002). Learning styles and performance in the i
troductory programming sequend&oceedings of 3% SIGCSE Technical Symposiusd, 33-37.

Traynor, D., & Gibson, P. (2004). Towards the depehent of a cognitive model of programming; A sot-
ware engineering approa " PPIG Workshop, Carlow, Ireland, April 200Retrieved November,
2006 fromhttp://www.cs.nuim.ie/~pgibson/Research/P ublicati&Copies/PP1G04. pdf

Van Roy, P., Armstrong, J., Flatt, M., & MagnhussdBn(2003). The role of language paradigms in tieach
programming.Proceedings of the 34th SIGCSE Technical Symposiu@omputer Science Educa-
tion, 269-270.

Venables, A. & Haywood, e. (2003). Programming stus NEED instant feedbadkifth Australasian
Computing Education Conference (ACE2003) 4 - 7 katy 2003, Adelaide, Australi20, 267-272

Victoria University, Course Analysis Report. (2008%)udent: VUSIS enrolment data univerkelbourne,
Australia; Victoria University

322

Miliszewska, Venables, & Tan

Biographies
Dr lwona Miliszewska is a senior lecturer in computer science at Vietor
University, Melboumne, Australia. She has led aadipipated in research
projects involving transnational education, effeetieaching methods, life-
long leaming and women in computer science, asdgtubdlished in these
areas. Recently, Iwona lead a grant-funded resgainjbct aimed at ad-
dressing the difficulties faced by first year comipg students in a core in-
troductory programmingntit.

Anne Venableslectures in Computer Science at Victoria Univgrdiel-
bourne, Australia. She has research and teactiegests in artificial intelli-
gence and intelligence systems. Anne spent seyeaas as a secondary Sci-
ence and Mathematics teacher before migrating ént@ry education. Anne
is interested in innovations in education and hagipusly published in this
field.

Grace Tanis a senior lecturer in Computer Science at Viet@&hiversity,
Melbourne, Australia. Her research interests inelmestigations of inno-
vative teaching methods, the development of gradetitibutes, and issues
related to female students in computing coursesc&has experience in
teaching programming to first year computing studeamd, recently, she
was part of aresearch team investigating problemesuntered by novice
programmers.

323

