
Improving Progression and Satisfaction Rates of
Novice Computer Programming Students Through
ACME - Analogy, Collaboration, Mentoring and
Electronic Support

This is the Published version of the following publication

Miliszewska, Iwona, Venables, Anne and Tan, Grace (2008) Improving
Progression and Satisfaction Rates of Novice Computer Programming
Students Through ACME - Analogy, Collaboration, Mentoring and Electronic
Support. Issues in Informing Science and Information Technology, 5. pp. 311-
323. ISSN 1547-5840

The publisher’s official version can be found at
http://proceedings.informingscience.org/InSITE2008/IISITv5p311-323Milis436.pdf
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/3842/

Issues in Informing Science and Information Technol ogy Volume 5, 2008

Improving Progression and Satisfaction Rates of
Novice Computer Programming Students
through ACME – Analogy, Collaboration,

Mentoring, and Electronic Support

Iwona Miliszewska, Anne Venables, and Grace Tan
Victoria University, Melbourne, Australia

Iwona.Miliszewska@vu.edu.au
Anne.Venables@vu.edu.au Grace.Tan@vu.edu.au

Abstract
The problems encountered by students in first year computer programming units are a common
concern in many universit ies, including Victoria University. As a fundamental component of a
computer science curriculum computer programming is a mandatory unit. It is also one of the
most challenging units for many commencing students who often drop out from a computing
course as a consequence of having failed, or performed poorly, in an introductory programming
unit. This paper reports on a research project undertaken to develop and implement a strategy to
improve the learning outcomes of novice programming students. Aimed at ‘befriending’ com-
puter programming to help promote success among new programming students, the strategy in-
corporates the use of analogy, collaboration, mentoring sessions, and electronic support. The pa-
per describes the elements of the strategy and discusses the results of its implementation in se-
mester 1, 2007.

Keywords: analogy, automated assessment, collaboration, introductory computer programming,
programming support, student mentors.

Introduction
Computer programming is an integral part of a computer science curriculum and a major stum-
bling block for many students, part icularly in the first year of study. Many of those students find
programming difficult to grasp, let alone master (Dunican, 2002; Jenkins, 2002; McCracken et
al., 2001; Proulx, 2000). Difficult to learn, programming skills are also difficult to teach (Allison,
Orton, & Powell, 2002), not least because “tradit ional teaching methods do not adapt well to the
domains of coding and problem solving, as it is a skill best learned through experience” (Traynor
& Gibson, 2004, p. 2). Lister et al. (2004) emphasises the need for novices to be able to read code

first before attempting to write pro-
grams. According to Kölling and
Rosenberg (2001), the situation is even
more challenging when it comes to
teaching object-oriented programming
to beginning students as “software tools,
teaching support material and teachers’
experience all are less mature than the
equivalent for structured programming”
(p. 1).

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Improving Progression and Satisfaction Rates

312

The issue of computer programming is no different at Victoria University where, since 1999, ob-
ject-oriented programming using Java has been taught to the introductory programming students.
Here too, students struggle with programming, and programming has continued to be a major fac-
tor contributing to the attrit ion of first year students from the computing courses. Various restruc-
turings of the programming unit and changes to teaching methods implemented over the years,
such as the use of different textbooks or the introduction of an electronic assignment assessment
system, have done litt le to improve the situation (Miliszewska & Tan, 2007). A new approach
was needed. A research project, supported by a Teaching and Learning Support grant, was
launched in July 2006. The project investigated the nature of the difficult ies encountered by pro-
gramming students and developed a ‘friendly’ framework for teaching programming to novices;
the framework aimed at making computer programming welcoming and more accessible to nov-
ice programmers and, at the same time, achieving pedagogical objectives.

The first stage of the study examined the reasons why first year students find programming such a
daunting prospect, and identified the various interventions reported in the literature that had been
created over the years to alleviate the programming problem. The outcomes of the first stage of
the research study were reported in 2007 (Miliszewska & Tan, 2007). The next stage of the re-
search focused on the development of a new strategy to address the introductory programming
problem. This paper presents in detail the features of this new strategy to teaching introductory
programming and discusses the outcomes following the deployment of the strategy in semester 1,
2007.

Introductory Programming –
Overview of Problems and Strategies

Introductory programming has been widely recognized as a major stumbling block for many
computing students. Although computer literacy is high among some of the commencing comput-
ing students, most of them tend to lack programming experience. And it is the students’ lack of
problem-solving skills rather than the lack of prior computing experience that appears to be a
problem (Dunican, 2002). In addit ion to the absence of problem-solving modules from Australian
secondary school curricula, the lack of continuity between secondary and first year university
studies exacerbates the problem; computer programming in part icular appears to be “beyond the
students’ previous experience” (Stamouli, Doyle, & Huggard, 2004).

Lack of prior experience with programming includes lack of familiarity with complex tasks such
as program design and construction, but also routine tasks such as compiling or running a pro-
gram; sometimes, students even lack a basic understanding of a computer model with its hard-
ware and software components. This lack of understanding of a mental model of a computer often
results in much frustration among novice programming students (Ben-Ari, 1998; Dunican, 2002).
The complexity of the relationship between the mental models held by students and their overall
programming aptitude is under investigation by Bornat, Dehnadi, and Simon (2008).

In addit ion, many students have problems in relating the use of abstract terminologies in pro-
gramming to real life objects. Consequently, these students claim to ‘hate programming’ as they
struggle to comprehend even the most basic of programming concepts (Stamouli et al., 2004;
Thomas, Ratcliffe, Woodbury, & Jarman, 2002). Last but not least, meeting the requirements of
programming syntax may prove a challenge even to students equipped with adequate problem-
solving skills (Dunican, 2002; Kölling & Rosenberg, 2001; Sheard & Hagan, 1998).

The problems encountered by students in first year computer programming units are a common
concern in many universit ies. Various interventions have been introduced over the years to ad-
dress this concern; they included changes to the curriculum, pedagogy, and assessment, and the
provision of addit ional support to new programming students. Different arguments have been put

Miliszewska, Venables, & Tan

313

forward on what should be included in the curriculum of an introductory programming unit. Van
Roy, Armstrong, Flatt, and Magnusson (2003) suggested the teaching of programming concepts
rather than paradigms. Others advocated the teaching of programming based on a single para-
digm, such as the object-oriented paradigm for example. Proponents of the object-oriented ap-
proach were divided into two “camps” that favoured a part icular way of how object orientation
should be introduced: objects-first (Blumenstein, 2004; Lister & Leaney, 2003), or structured
programming- first (Sheard & Hagan, 1998): both these approaches have been reported as suc-
cessful.

Various pedagogical techniques have been trialled over the years to help students develop pro-
gramming skills. For instance, analogy has been used to help students learn programming funda-
mentals including input/output, data types, sort ing, and searching; this approach relies on illustra-
t ive examples of concepts that students have seen before, and relates the familiar concepts to new
ones (Blanchette & Dunbar, 2000; Dunican, 2002). Relevance is another important pedagogical
facet: students should see a purpose to what they are learning. Sheard and Hagan (1998) reported
on the successful use of games to illustrate the benefits of the object-oriented paradigm. They also
successfully employed an iterative approach to learning and continuous reinforcement of con-
cepts. Finally, another approach relied on the use of technology for teaching. Clancy, T itteron,
Ryan, Slotta, & Linn (2003) described how the use of a laboratory-based model for computer sci-
ence instruction improved student performance and satisfaction with the programming unit.

Frequent assessment is favoured in an introductory programming unit (Blumenstein, 2004) and
the two types of assessment most commonly used include objective testing and performance-
based assessment. Objective testing provides students with useful instant feedback and helps their
understanding of language syntax or program behaviour; performance-based assessment helps to
test students’ ability to write working computer programs (McCracken et al., 2001). As well, cri-
terion-referenced grading has been recommended as a technique likely to maximise the potential
of every student in a disparate class of different capabilit ies (Lister & Leaney, 2003).

In addit ion to various pedagogical and assessment techniques, a range of supplementary support
measures have been used to assist novice programming students. Successful forms of auxiliary
support included: discussion classes, as reported by Sheard & Hagan (1998); Web pages for pro-
gramming units (Sheard & Hagan, 1998); and, provision of structured one-to-one support to stu-
dents with programming difficult ies (Stamouli et al., 2004).

The ACME Strategy: Analogy, Collaboration,
Mentoring & Electronic Support

The strategy developed at Victoria University to teach introductory programming aimed to create
a climate where students embrace programming. It built on a variety of approaches that had been
reported as ‘successful’ in the literature (as described in the previous section of this paper). The
strategy incorporated four individual approaches with a view to achieving a better overall out-
come; the key elements included: analogy, collaboration, mentoring, and electronic support.
Analogy was used extensively in the teaching examples and tutorial discussions; collaboration
amongst students was encouraged in laboratory sessions and required in the major assignment
task; mentoring assistance was provided to students throughout the semester; and, an electronic
assignment submission system provided students with an instant automatic feedback to submitted
programming tasks. The details of the key elements of the ACME strategy are described below.

Analogy
Undergraduate students enrolling in computing courses are not expected to have prior program-
ming experience. Thus, it comes as no surprise that they experience difficult ies when facing pro-

Improving Progression and Satisfaction Rates

314

gramming tasks for the first t ime (Dunican, 2002); program design and construction, compiling
and running a program, as well as intricacies of hardware components might be difficult to under-
stand. Further difficult ies arise when there is the need to imagine and comprehend many abstract
terms that do not have equivalents in real life: how does a variable, a data type, or a memory ad-
dress relate to a real life object?

The ACME strategy incorporated the use of analogical models to bridge some of these difficul-
t ies. These models are said to help “people visualize the objects and processes which they are try-
ing to understand” (Harrison, 2001); they use “a familiar object or experience to inform the
learner about new and poorly understood objects, processes or concepts” (Harrison, 2001). For
instance, an analogy involving a classic children’s shape toy was used by Dunican (2002) to teach
the concept of data types, assignment statements and type mismatches.

Analogies were used deliberately and extensively throughout the programming unit. Wherever
possible, illustrative examples of familiar concepts were used to introduce students to new ones;
an analogy was made between the familiar concept (source) and the new concept (target) by
mapping the source onto the target (Blanchette & Dunbar, 2000). For instance, the concept of
memory allocation (target) was illustrated with a wooden box divided into small pigeonholes
(source), as depicted in Figure 1. Individual pigeonholes were identified by their own unique la-
bels (memory addresses), and the labels referenced to assign, store and retrieve content. Here, two
objects of class Phone, namely myPhone and yourPhone, have been instantiated and stored. A
method to set the price of each object has been called, and the objects have been individually re-
trieved, manipulated and then stored again.

To explain the need of a temporary variable in swap methods, another analogy was used. Students
were presented with two wine glasses, one filled with water and the other with coffee. They were
told that each wine glass represented a memory location and its content. Students were asked to
move the contents of the first wine glass into the second and vice versa without mixing any of the
contents. This analogy proved to be part icularly useful; students immediately instructed the lec-
turer to supply another glass, a temporary holding vessel, to solve the problem.

In a discussion on graphical user interfaces (GUIs), an analogy was used to introduce the JPanel
component; JPanel needs to be displayed by another component, such as a JFrame or JApplet. As

Motorola C975 0.0 199.05

NEC E338 0.0 249.55

Figure 1: Analogy example- wooden box illustrating memory allocation.

Miliszewska, Venables, & Tan

315

students were already familiar with the Windows environment, a piece of white paper with a blue
border and header was used to represent the displaying window (such as a Windows screen), or
JFrame; a discussion about the mechanics of making and displaying the window on a computer
followed. Then, a separate piece of yellow paper was introduced to represent a JPanel; it was
easy to see that the JPanel needed to be placed upon the JFrame before it could be displayed.
This analogy is shown in Figure 2.

Analogy was also used to introduce the concept of iterators, such as the Java classes StringToken-
izer and Scanner, and their methods. In this instance, a ‘pacMan’ character was used to represent
the iterator class, and iterator methods hasNext() and next() were illustrated. The hasNext()
method, which returns either the value of ‘true’ or ‘false’ was likened to the ‘pacMan’ finding
food or not. If the ‘pacMan’ found food, then the next() method was called; the ‘pacMan’ used
the next() method to chew through the food, a String, breaking on the white space. In the exam-
ple illustrated in Figure 3, the ‘pacMan’ next() method would eat, or return, the word ‘text’, fol-
lowed by ‘to’, then ‘be’ and, finally ‘eaten’.

Figure 3: Analogy example- pacMan model of i terators and their methods.

JPanelJPanel

Figure 2: Analogy example- paper models of JFrame and JPanel

Improving Progression and Satisfaction Rates

316

Collaboration
To further reduce the ‘fear’ of programming amongst students, part icularly in regard to their as-
sessment tasks, students were encouraged to work throughout the semester, summative assess-
ment was used in the laboratory exercises to assist students in developing their programming
skills. The set exercises were short and simple, and they were designed primarily as learning ex-
periences; for instance, students were required to make minor modifications to exist ing code. This
approach served to address concerns raised by Buck & Stucki (2001) who found that students
who were required to write a complete program on their own often did not know how to begin,
and instead of thinking a problem through experimented by randomly throwing statements to-
gether hoping to achieve a desired outcome.

Students were instructed to work in pairs on a programming assignment; the pairs were self-
selected but, as all students in the cohort were new students, the self-selection was not much dif-
ferent from a random assignment of students into pairs. The specification of the assignment was
based on a popular television game named ‘Deal or No Deal’. The topic of the assignment was
chosen deliberately, as game playing problems have been reported to motivate students, espe-
cially when there is the opportunity to produce attractive graphical interfaces (Lorenzen & Heil-
man, 2002). The assignment was divided into two parts and scaffolded to encourage the devel-

Figure 4: Partial specification of the ‘Deal or No Deal’ assignment.

Miliszewska, Venables, & Tan

317

opment of problem solving skills and collaborative learning. The first part of the specification
gave a detailed description along with a suggested approach to solving the problem. Relevant
UML class diagrams for the design of a typical solution were provided, together with screen
dumps of typical outputs, as illustrated in Figure 4. The second part of the assignment was more
open-ended and it required students to design, discuss and enhance their game programs by creat-
ing suitable GUIs for their solutions. This gave students the opportunity to extend the basic solu-
t ion and explore creative ways of designing the GUIs; the assignment marking scheme provided
rewards for init iat ive and effort. As well, by working in pairs it was expected that individual stu-
dents would contribute roughly equal effort since both partners would be fully aware of the
amount of work done by any one partner. In fact, the specification instructed groups that both
students were expected to contribute equally.

Mentoring
A mentoring program was introduced to further support students who faced programming diffi-
cult ies. Throughout the semester, mentoring sessions of one-hour duration were offered three
days a week in a dedicated computing laboratory. Two student mentors (second year students)
provided assistance during each session. The mentors were volunteers selected on the basis of
their programming skills and communication skills; they underwent training prior to the com-
mencement of their mentoring duties; and, they provided the mentoring assistance for free.

Part icipation in the mentoring sessions was entirely voluntary, with some students availing them-
selves of the service more than others. While the daily attendance numbers varied throughout the
semester (often determined by assessment task deadlines), there were a number of ‘regulars’ who
relied heavily upon the service. The problems reported by those students, and conveyed through
the mentors, served as an invaluable source of informal feedback for lecturer in charge of the
unit; the reported problems usually reflected the difficult ies experienced by the wider student co-
hort. Thus, the part icular problems that had arisen in the mentor sessions were subsequently ad-
dressed in the classroom, improving learning outcomes for all students.

Feedback from the mentors was actively sought throughout the program. Each week, the mentors
submitted individual written reports detailing their efforts, experiences and reflections. In addi-
t ion, weekly meetings were held between the mentors and the lecturer; the mentors reported back
to the group upon their experiences; and the lecturer collected feedback on past week’s activit ies,
informed the mentors of the current academic progress of the programming class, and briefed the
mentors on the upcoming laboratory work and assignments.

Electronic Support
An on-line assignment submission system was used to enhance the provision of feedback, and to
boost students’ confidence in their programming skills. As the service was web-based, students
were able to upload their programs from a computer laboratory at the University, or from home,
and receive feedback. First, the feedback stated whether a program compiled or not; if it did, the
program was run against several sets of test data. Then, the students received a screen printout of
how their program performed against the test data, along with a copy of the expected result for a
correct ideal solution, as shown in Figure 5. A more detailed description of the development and
the init ial implementation of the automated feedback system has been reported by Venables and
Haywood (2003).

It often happened that a student’s program worked correctly for most inputs, but the student failed
to consider all the boundary cases or specific problem inputs; the use of test runs against sample
data helped to highlight such anomalies. Importantly, the student was then able to modify and
correct the submission as necessary, before deadline. Through this mechanism students were able

Improving Progression and Satisfaction Rates

318

to learn by their mistakes and correct them without penalty. Finally, after the submission dead-
line, tutors entered addit ional descriptive feedback into the submission program; this feedback
was provided to students in addit ion to grades.

Outcomes and Discussion
The application of the ACME approach to an introductory programming unit in semester 1, 2007
resulted in an improvement of student progression and satisfaction rates. It should be noted, that
the unit was delivered in 2007 by the same lecturers and in the same learning environment as in
2006 and, while it would have been ideal to evaluate the learning outcomes of two parallel co-
horts – one with, and one without the application of the ACME approach, it was not possible to
implement it in 2007. Compared to 2006, the pass rate improved by 8% (from 56% to 64%) and
the percentage of credits grew by 3%, as depicted in Figures 6 and 7 (Victoria University, Course
Analysis Report, 2007). Although the improvement in student pass rate depended also on the
characterist ics of the 2007 student cohort, it was recorded across all the six undergraduate com-
puting courses at Victoria University. While the improvement in progression rates was moderate,
it seems to have part icularly benefited the weaker students. On the other hand, the percentage of
Distinctions and High Distinctions was slightly lower compared with the previous year. Further
investigation is needed with future cohorts to determine if this pattern continues, indicating that
the ACME approach might impact negatively on stronger students.

Figure 5: An electronic assignment submission system.

Miliszewska, Venables, & Tan

319

RCM1311 Programming 1
Pass rates (% of students)

52%

54%

56%

58%

60%

62%

64%

66%

2006 2007

Figure 6: Pass rates of students in RCM1311 Programming 1 (% of students).

RCM1311 Programming 1
Progression rates (% of students)

0%

5%

1 0%

1 5%

2 0%

2 5%

3 0%

3 5%

Hig h D istinctio n Distinction Cre dit Pa ss

2006 2007

Figure 7: Progression rates of students in RCM1311 Programming 1 (% of students).

The approach had a bigger impact on student satisfaction rates with the unit. Data was collected
through formal University surveys – Student Evaluation of Unit (SEU) – where a 5-point Likert
scale (from 1 – least satisfied, to 5 – most satisfied) was applied to a set of ten questions related to
student satisfaction with various aspects of the unit. A comparison between satisfaction rates in
2006 and 2007 shows a considerable improvement in student satisfaction in 2007, as illustrated in
Figure 8.

Improving Progression and Satisfaction Rates

320

RCM1311 Programming 1
Satisfaction rates - SEU (% of students)

0.0%

5.0%
10.0%
15.0%
20.0%

25.0%
30.0%
35.0%
40.0%

45.0%
50.0%

1 2 3 4 5

2006 2007

Figure 8: Satisfaction rates of students in RCM1311 Programming 1 (% of students).

Of the ten questions comprising the SEU survey, students gave their highest scores to two of the
questions: “I understand most of the content of the subject” and “I find the subject interesting”.
In addit ion, students provided written comments about the aspects of the unit that they found par-
t icularly helpful or st imulating:

“Detailed explanations and group discussions.”
“Lab questions were helpful as they enabled us to apply what we had learnt.”
“The online submit.”
“I find an example, like calling a variable a pigeon hole, much easier to under-
stand.”

These comments seem to indicate that the various elements of the ACME approach appealed to
various students. It must be noted that the use of simple analogies has met with wide student ap-
proval. In part icular, they found very helpful the use of a wooden box that was used to illustrate
the concept of memory allocation (as described earlier in the paper). It should be noted, that the
SEU survey was used as evaluation tool in this study, as it is the mandatory evaluation tool pro-
vided by the University to measure student satisfaction rates. While it would have been useful to
examine the satisfaction rates in relation the progression rates, the SEU tool does not have provi-
sions for extraction of individual student responses.

The mentoring sessions, aimed at accommodating the specific needs of individual students and
enabling early identification of students with programming difficult ies, also produced the desired
outcomes. The lecturer in charge of the unit commented on how at least five students would not
have passed the unit if it had not been for the addit ional help that they received from the mentors.
The mentors helped develop and boost the students’ confidence in their programming skills and,
the increased interaction between students and mentors assisted in early identification of students
‘at risk’. Those students were subsequently offered addit ional support in tutorial and laboratory
classes. Commenting on the usefulness of the mentoring sessions in the SEU surveys, the stu-
dents wrote:

“Without the mentors, my labs would have been difficult to understand. They ex-
plained every possible outcome and helped me explore the meaning and use of the
subject or the application of the subject; it was very good and clear. I wish we had
mentors for other subjects.”
“Mentoring sessions were helpful because the mentors had faced the same problems
we are facing now.”
“The mentors helped me learn things that the teacher did not have time to answer.”

Miliszewska, Venables, & Tan

321

In addit ion to the immediate benefits described above, the application of the approach produced
several long-lasting benefits including a collection of teaching resources and an improved Web-
based assignment submission system. The resources for teaching first year computer program-
ming unit that have been compiled during the project (including a databank of analogy examples
and assessment tasks) will continue to be a source of reference for academic staff. In addit ion, the
improved Web-based assignment submission and processing system will continue to benefit fu-
ture programming students.

Conclusions
This paper reports on the outcome of a research project that aimed to lift the “image” of computer
programming among novice programming students; its goal was to improve the negative percep-
tion that computer programming is difficult and unfriendly. A mult i-pronged approach to teach-
ing introductory programming was developed to achieve the goal; the key ingredients of the ap-
proach included the use of analogy, collaboration, mentoring, and automated assessment.

Analogy, used extensively in the teaching examples and tutorial discussions, helped students
comprehend some of the fundamental programming concepts. Collaborative assignments, and
collaborative efforts in laboratory sessions further alleviated students’ apprehension towards pro-
gramming. The mentoring classes enhanced the opportunit ies for interaction, provision of feed-
back and friendly peer support even further. In addit ion, the Web-based assignment submission
system enabled students to develop and test their programming skills in their own t ime.

The deployed approach provided posit ive supportive atmosphere in which students could learn
the intricacies of object-oriented programming; it successfully triggered the students’ interest, and
showed them the magic of programming. While the approach aimed to befriend programming, it
also aimed to realise the educational objectives of an introductory programming unit – it seems to
have achieved some improvement in both respects.

References
Allison, I., Orton, P., & Powell, H. (2002). A virtual learning environment for introductory programming.

Proceedings of the 3rd Annual Conference of the LTSN Centre for Information and Computer Sciences,
48-52.

Ben-Ari, M. (1998). Constructivism in computer science education. Proceedings of the 29th SIGCSE Tech-
nical Symposium on Computer Science Education, 257-261.

Blanchette, I., & Dunbar, K. (2000). How analogies are generated: The roles of structural and superficial-
similarity. Memory and Cognition, 28, 108-124.

Blumenstein, M. (2004). Experience in teaching object-oriented concepts to first year students with diverse
backgrounds. Proceedings of the International Conference on Information Technology: Coding and
Computing (ITCC’04) [electronic proceedings].

Bornat, R., Dehnadi, S., & Simon. (2008). Mental models, consistency and programming aptitude. Pro-
ceedings of the Australasian Computing Education Conference (ACE 2008), Wollongong, N.S.W, Aus-
tralia, 53-62.

Buck, D., & Stucki, D. (2001). JkarelRobot: A case study in supporting levels of cognitive development in
the computer science curriculum. Proceedings of the SIGSCE Technical Symposium on Computer Sci-
ence Education, 16-20.

Clancy, M., Titteron, N., Ryan, C., Slotta, J., & Linn, M. (2003). New roles for students, instructors, and
computers in a lab-based introductory programming course. Proceedings of the 34th SIGCSE Techni-
cal Symposium on Computer Science Education, 132-136.

Improving Progression and Satisfaction Rates

322

Dunican, E. (2002). Making the analogy: Alternative delivery techniques for fi rst year programming
courses. In J. Kuljis, L. Baldwin, & R. Scoble (Eds), Proceedings from the 14th Workshop of the Psy-
chology of Programming Interest Group, Brunel University, June 2002, 89-99.

Harrison, A.G. (2001). Thinking and working scientifically: The role of analogical and mental models. Aus-
tralian Association for Research in Education, Fremantle, W.A., 2-6 December 2001. Retrieved Au-
gust 2006 from http://www.aare.edu.au/01pap/har01126.htm

Jenkins, T. (2002). On the difficulty of learning to program. Proceedings of the 3rd Annual Conference of
the LTSN Centre for Information and Computer Sciences, 53-58. Retrieved November, 2006 from
http://www.psy.gla.ac.uk/~steve/localed/jenkins.html

Kölling, M., & Rosenberg, J. (2001). Guidelines for teaching object orientation with Java. ACM SIGCSE
Bulletin, Proceedings of the 6th Annual Conference on Innovation and Technology in Computer Sci-
ence Education, 33(3), 33-36.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, E.,
Sanders, K., Seppälä, O., Simon, B., & Thomas, L. (2004). A multinational study of reading and trac-
ing skills in novice programmers. SIGCSE Bulletin, 36(4), 119-150.

Lister, R., & Leaney, J. (2003). First year programming: Let all the flowers bloom. Proceedings of the 5th
Australasian Computer Education Conference (ACE2003), Adelaide, Australia, 221-230.

Lorenzen, T., & Heilman, W. (2002). CS1 and CS2: Write computer games in Java! SIGCSE Bulletin,
34(4), 99-100.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas,
L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of pro-
gramming skills of first-year CS students. ACM SIGCSE Bulletin, 33(4), 125-140.

Miliszewska, I., & Tan, G. (2007). Befriending computer programming: A proposed approach to teaching
introductory programming. The Journal of Issues in Informing Science and Information Technology, 4,
277-289. Retrieved from http://proceedings.informingscience.org/InSITE2007/IISITv4p277-
289Mili310.pdf

Proulx, V., (2000). Programming patterns and design patterns in the introductory computer science course.
SIGCSE Bulletin, 32(1), 80-84.

Sheard, J., & Hagan, D. (1998). Experiences with teaching object-oriented concepts to introductory pro-
gramming students using C++. Technology of Object-Oriented Languages and Systems-TOOLS 24,
IEEE Technology, 310-319.

Stamouli, I., Doyle, E., & Huggard, M. (2004). Establishing structured support for programming students.
Proceedings of the 34th ASEE/IEEE Frontiers in Education Conference, Savannah, GA, October 2004,
[elect ronic proceedings].

Thomas, L., Ratcliffe, M., Woodbury, J., & Jarman, E. (2002). Learning styles and performance in the in-
troductory programming sequence. Proceedings of 33rd SIGCSE Technical Symposium, 34, 33-37.

Traynor, D., & Gibson, P. (2004). Towards the development of a cognitive model of programming; A soft-
ware engineering approach. 16th PPIG Workshop, Carlow, Ireland, April 2004. Retrieved November,
2006 from http://www.cs.nuim.ie/~pgibson/Research/Publications/E-Copies/PPIG04.pdf

Van Roy, P., Armstrong, J., Flatt, M., & Magnusson, B. (2003). The role of language paradigms in teaching
programming. Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Educa-
tion, 269-270.

Venables, A. & Haywood, e. (2003). Programming students NEED instant feedback! Fifth Australasian
Computing Education Conference (ACE2003) 4 - 7 February 2003, Adelaide, Australia, 20, 267–272.

Victoria University, Course Analysis Report. (2007). Student: VUSIS enrolment data universe. Melbourne,
Australia: Victoria University

Miliszewska, Venables, & Tan

323

Biographies
Dr Iwona Miliszewska is a senior lecturer in computer science at Victoria
University, Melbourne, Australia. She has led and part icipated in research
projects involving transnational education, effective teaching methods, life-
long learning and women in computer science, and has published in these
areas. Recently, Iwona lead a grant-funded research project aimed at ad-
dressing the difficult ies faced by first year computing students in a core in-
troductory programming unit.

Anne Venables lectures in Computer Science at Victoria University, Mel-
bourne, Australia. She has research and teaching interests in art ificial intelli-
gence and intelligence systems. Anne spent several years as a secondary Sci-
ence and Mathematics teacher before migrating into tert iary education. Anne
is interested in innovations in education and has previously published in this
field.

Grace Tan is a senior lecturer in Computer Science at Victoria University,
Melbourne, Australia. Her research interests include investigations of inno-
vative teaching methods, the development of graduate attributes, and issues
related to female students in computing courses. Grace has experience in
teaching programming to first year computing students and, recently, she
was part of a research team investigating problems encountered by novice
programmers.

