VICTORIA UNIVERSITY

MELBOURNE AUSTRALIA

A real-time correlation of host-level events in cyber
range service for smart campus

This is the Published version of the following publication

Tian, Zhihong, Cui, Yu, An, Lun, Su, Shen, Yin, Xiaoxia, Yin, Lihua and Cui,
Xiang (2018) A real-time correlation of host-level events in cyber range service
for smart campus. IEEE Access, 6. pp. 35355-35364. ISSN 2169-3536

The publisher’s official version can be found at
https://ieeexplore.ieee.org/document/8382167
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/38571/

SPECIAL SECTION ON NOVEL LEARNING APPLICATIONS AND SERVICES FOR SMART CAMPUS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 14, 2018, accepted June 2, 2018, date of publication June 12, 2018, date of current version July 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2846590

A Real-Time Correlation of Host-Level Events in
Cyber Range Service for Smart Campus

ZHIHONG TIAN“1, YU CUIZ, LUN AN 3, SHEN SU!, XIAOXIA YIN4,

LIHUA YIN', AND XIANG cul

!Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China

2School of Cyberspace Security, Hunan Heetian Information Technology Co., Ltd., Changsha 410000, China

3Beijing University of Posts and Telecommunications, Beijing 100876, China
4College of Engineering and Science, Victoria University, Melbourne, VIC 3011, Australia

Corresponding authors: Lihua Yin (yinlh@gzhu.edu.cn) and Xiang Cui (cuixiang @gzhu.edu.cn)

This work is supported by the National Natural Science Foundation of China under Grant 61572153. and the National Key Research and

Development Plan (Grant 2018 YFB0803504).

ABSTRACT Smart campus is an exciting, new, and emerging research area that uses technology and
infrastructure to support and improve its processes in campus services, teaching, learning, and research,
especially, the explosive growth in knowledge makes the role of cybersecurity of smart campus become
increasingly important. Cyber range is an adaptable virtualization platform consisting of computers, net-
works, and systems on which various real-world cyber threat scenarios and systems can be evaluated to
provide a comprehensive, unbiased assessment of the security of information and automated control systems.
As an important part of features, cyber range must provide the capability of data collection, aggregation,
correlation, and replay for the scenario owner or any ‘“‘specialized users” to review attacks—defense processes
on known targets and future zero-day research. To this end, based on our previous work, the Heetian
cyber range, we proposed a method named C2RS meaning “a real-time correlation of host-level events in
cyber range service.” C2RS implements out-of-band data capturing for greater attack resistance with virtual
machine introspection technique. This approach allows C2RS to isolate the data captured from monitored
hosts. C2RS leverages these captured data by incorporating them into the volatility framework to aid in
simplifying the analysis of operating system memory structures. Finally, we proposed an object-dependent
method to analyze the evidence of illegal activity. We conduct extensive experiments to evaluate the functions
and performance of C2RS in a dynamic service. Through the test, we confirm that the proposed method is

effective for real-time correlation of host-level events in cyber range service.

INDEX TERMS Security education, cyber range, network security, correlation, smart campus.

I. INTRODUCTION

The Smart Campus will implement appropriate technology
platforms to enhance campus services and facilitate teaching,
learning, and research. Cyber Range can provide advanced
cybersecurity training exercises for college students, revolu-
tionize cybersecurity education. Just as every military and
police force needs a firing range to hone weapons skills and
battle tactics, many new technologies are being developed
and introduced for Internet, home networks and sensor net-
works must be evaluated in a testbed before deployment.
A cyber range is generally defined as a virtual environment
that is used for cyberwarfare training and cyber technology
development. It provides tools to help strengthen the sta-
bility, security and performance of cyberinfrastructures and

IT systems to be used by government and military agen-
cies [1]. Cyber ranges function like shooting or kinetic
ranges, facilitating training in weapons, operations or tactics.
Thus, cyber warriors and IT professionals employed by
various agencies train, develop and test cyber range tech-
nologies to ensure consistent operations and readiness for real
world deployment.

Generic cyber range utilizes platform virtualization to pro-
vide basic functionality for deploying virtual appliances, con-
figuring flexible network topologies and the emulation of
various network characteristics. Cyber range uses cloud con-
trollers such as OpenStack and VM Ware vSphere as network
management configuration tools [2]. These tools are able to
create and manage physical nodes and network experiments

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission. 35355

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9409-5359

IEEE Access

Z.Tian et al.: Real-Time Correlation of Host-Level Events

with multiple virtual machines and network service among
them. They have the functionality to control network topol-
ogy among nodes. When cyber range is used in cybersecurity
training, a collection of hosts are connected to each other
via LAN network that are initialized. Based on the global
information, the corresponding base images are started up to
be ready. Next, it installs security content, creates a number
of virtual machines and the network service. And then ends
the cyber range creation process.

Regular cyber security awareness training is important,
however, accurate network attack and defense assessment,
as a big problem, must first be addressed [3]-[5]. With the
training progresses, cyber range needs monitoring both vir-
tual machines and virtual networks in real-time. Through the
traffic capture, analysis and display, the trainees can clearly
understand the details of training process and the cyber situ-
ational awareness, which can provide support for subsequent
effect evaluations. The current typical approach utilizes host-
based forensics techniques, which consists of some agents
that embed a virtual machine. But this method has the risk
of being attacked, and the ability to resist destruction is poor.

In this paper, based on our previous work of the Heetian
cyber range [6], we present a real-time Correlation of host-
level events in Cyber Range Service (C2RS) method. C2RS
implements an out-of-band data capturing mechanism for
greater attack resistance utilizing virtual machine introspec-
tion technology. This approach allows C2RS to isolate the
data captured from monitored hosts. C2RS leverages these
captured data by incorporating them into the Volatility frame-
work to aid in simplifying the analysis of operating system
memory structures. To aid the trainees aware the cybersecu-
rity situational in cyber range, we proposed an object depen-
dent method to achieve the evidence of illegal activity. The
proposed C2RS method is scalable and robustness, which
makes our method more applicable to other tasks.

The remainder of this paper is organized as follows:
In section 2, we present previous work on event correlation
in virtual machine. In Section 3, we present the proposed
C2RS method and the correlation algorithms. The resultant
experiments conducted to evaluate the method are discussed
in Section 4. Section 5 concludes the paper, discusses and
summarizes future research directions.

Il. RELATED WORK

Many secure machine learning schemes have also been pro-
posed for android malware detection and cloud data [7]-[11].
In our paper, we focus exclusively on the related works used
forensics techniques for monitoring virtual machines in cyber
range.

Most mature forensic investigation tools like EnCase [12]
and Safeback [13] focus on capture and analysis of evi-
dence from storage media on a single host. Mnemosyne is
a dynamically configurable advanced packet capture appli-
cation that supports multistream capturing, sliding-window
based logging to conserve space, and query support on
collected packets [14]. Evidence graph network forensic

35356

analysis mechanism [15] includes effective evidence pre-
sentation, manipulation and automated reasoning, although
it is nice to present evidence correlation in graphic mode,
this system is still a prototype and lacks the effective
capability of inference. Tian et al. [16], [17] developed a
network intrusion forensics system based on transductive
scheme and Dempster-Shafer Theory that can detect and ana-
lyze efficiently computer crime in networked environments,
and extract digital evidence automatically. ForNet [18] is a
novel distributed logging mechanism that focuses on network
forensic evidence collection rather than evidence analysis.

Above forensics systems are based on audit trails. Systems
relying on audit trails try to detect known attack patterns,
deviations from normal behavior, or security policy viola-
tions. One of the main problems with these systems is the
unacceptably high overhead. To analyze logs, the system
must keep information regarding all the actions performed,
which invariably results in huge amounts of data, requir-
ing disk space and CPU resources. Next, the logs must
be processed to convert them into a manageable format,
and then compared with the set of recognized misuse and
attack patterns to identify possible security violations. Fur-
ther, the stored patterns need to be continually updated, which
would normally involve human expertise. An intelligent,
adaptable and cost-effective tool that is capable of this is the
goal of the researchers in network forensics.

Different from the above research, Walls et al. [19] devel-
oped DECODE, a system for recovering information from
phones with unknown storage formats, a critical problem for
forensic triage. Because phones have myriad custom hard-
ware and software, they examine only the stored data. Via
flexible descriptions of typical data structures, and using a
classic dynamic programming algorithm, they are able to
identify call logs and address book entries in phones across
varied models and manufacturers. Li er al. [20] perform
extensive study of existing fuzzy hashing algorithms with the
goal of understanding their applicability in clustering similar
malware. They developed a memory triage tool that uses
fuzzy hashing to intuitively identify malware by detecting
common pieces of malicious code found within a process.
In [21], a host-based intrusion detection system offers a high
degree of visibility as it is integrated into the host it is
monitoring. A new approach, based on the k-Nearest Neigh-
bor (kNN) classifier, is used to classify program behavior as
normal or intrusive. Ko et al. [22] introduced an approach
that integrates intrusion detection techniques with software
wrapping technology to enhance a system’s ability to defend
against intrusions. In particular, they employ the NAI Labs
Generic Software Wrapper Toolkit to implement all or part
of an intrusion detection system as ID wrappers.

Because the above host-based methods operate at user
level, unfortunately, these systems are quite susceptible to
attack once an attacker has gained privileged access to a
host. Besides, an operating system crash will generally cause
the system to fail open. Since the host-based method runs
in the same fault domain as the rest of the kernel, this will

VOLUME 6, 2018

Z.Tian et al.: Real-Time Correlation of Host-Level Events

IEEE Access

N 7

& L) ﬁ{: f) ”ll Display layer

H C2RS C2RS Data acquisition and
Computing memory triage events correlation analysis layer
1
2 Security ‘ . &
N3 strategy) @
Application]] = - N\ &
behavior 20 [N S @
simulation 7, @%
Physical device@
C2RS .
Guest OS ‘ ‘ Guest OS ‘ Guest OS ‘ Virtual network

out-band data |

capturing | r—r—

layer
KVM/QEMU |

Wi

Hardware
resource layer

i

FIGURE 1. The architecture of HTCR.

often cause the entire system to crash or allow the attacker to
compromise the kernel [23]. The C2RS proposed in this paper
has the advantages that the above frameworks do not have:
1. an expandable, modular system architecture; 2. out-of-
band data capturing for greater attack resistance with vir-
tual machine introspection technique; 3. an object dependent
method to analyze the evidence of illegal activity and recon-
struct intrusion scenarios.

lll. THE PROPOSED C2RS METHOD

In our previous work, we designed and developed a large-
scale, realistic and real-time network testbed, named HTCR,
whose architecture is shown in the figure 1. The hardware
resource layer of HTCR contains hundreds of PCs, and
switched networks. The virtual network layer uses platform
virtualization technology to effectively emulate a realistic
network for experimentation. The base images are under the
raw format that is used for KVM virtualization. They contain
apre-installed operating system and several basic system con-
figurations (e.g. host name, IP address, etc.). HTCR is dual
support for physical and virtual nodes. HTCR can accurately
simulate network traffic and attack scenarios, to provide
an immersive experience that prepares trainees for a real-
life attack and accelerates new hire onboarding. In addition,
HTCR includes a rich catalog of training packages and sce-
narios, which can offer to the trainees.

To expand HTCR so as to be suitable for assessment of
the security situation in the cyber range, we are now imple-
menting C2RS. An out-band data capturing module is added
into virtual network layer. The data acquisition and analysis
layer are expended with a Memory triage module and an

VOLUME 6, 2018

event correlation engine. In the following sections, the above
modules will be described in detail.

A. VIRTUAL MACHINE INTROSPECTION BASED
OUT-BAND DATA CAPTURING

The guest’s runtime information that in-VM components
consume to carry out their monitoring functionality either
resides in the VM’s memory or disk. For out-of-band data
capturing, this runtime state needs to be obtained from out-
side the guest’s context. This virtual machine introspec-
tion (VMI) [24] process can be broken down into two steps:
(i) exposing VM runtime state, i.e., getting an out-of-band
handle on the VM’s memory and disk, and (ii) exploiting
VM runtime state, i.e., interpreting the ex-posed memory and
disk images to reconstruct the guest’s runtime information.

LibVMI is a C library with Python bindings that makes
it easy to monitor the low-level details of a running virtual
machine by viewing its memory, trapping on hardware events,
and accessing the vCPU registers.

In our proposal, LibVMI is used as bridge connecting
Qemu-KVM and Volatility [25]. As volatility is related to
specific operating system and all operating system’s logic
are running in Volatility. Volatility will read CR3 register
and request memory blocks starting from specific physical
address most of the time. These requests are converted from
Python to C by PyVMI. Then, PyVMI will call LibVMI
Kernel to connect to QEMU socket created by Qemu-KVM
Patch and return data to Volatility.

To achieve this purpose, Qemu Patch and PyVMI are inte-
grated into the source. Qemu Patch changes the method of
physical memory accessing through UNIX socket which will

35357

IEEE Access

Z.Tian et al.: Real-Time Correlation of Host-Level Events

reduce almost 90% time in accessing Qemu-KVM and need
not to pause Guest operating system. The latest code of the
Patch is for Qemu Ver 2.8 and we modified part of the codes
to adapt Qemu Ver 2.9. After patched, Qemu-KVM should be
reconfigured, make and make install on the physical host.

PyVMI is adapted when programmers want to code
in Python instead of C and is already packaged in ‘lib-
vmi/tools/pyvmi’ directory. As upper-lever of the framework
is volatility written in Python, PyVMI is definitely required.
The older version of PyVMI cannot process well enough
which has many errors that cannot compiled (the latest
version has fixed these errors and supported Python 3).
We modified related codes of PyVMI by merely picking up
volatility-related functions, the most significate functions are
shown in table 1.

TABLE 1. Most Significate Functions for connections to volatility.

Function Name Descriptions

vmi_ins_init Constructor Point operating system type and
sysmap path

Get data of register CR3

Get Allocated Memory size for a VM

Read dedicated length of data in memory
through physical address

Read dedicated length of data in memory
through physical address with zeros in
memory holes instead of failing

vmi_get cr3
vmi_get memsize
vmi_read pa

vmi_zread pa

B. MEMORY TRIAGE USING VOLATILITY

C2RS uses volatility which is designed to work on triage
memory snapshot, to extract operating system memory struc-
ture. Through a triage analyzing on a physical memory image
dumped from a VM, volatility could extract useful informa-
tion from that image. This information contains process list,
library list, process maps, open files, netstats, open ports, etc.
At first, volatility only works on the memory image file to
extract information and could not link to LibVMI to support
real-time triage analyzing. Later, researchers developed an
Address Space Plugin linking to PyVMI making volatility
facilitating analysis on a running virtual machine.

But for a long running service that periodically facilitates
analysis on multiple running virtual machines, this is not
enough and it has several significate obstacles to be over-
stepped. First, volatility is a single time process and acts
with parameters like ‘python vol.py -f XXX.img —profile=
OS-Type Commands’. This will invoke the whole process of
initializing, logical processing and formatting outputs.

In the LibVMI mode, the time of initializing usually costs
more than 10s and consumes most of the analyzing time com-
pares to 100ms-level of commands like pslist. This is unac-
ceptable when performing periodically facilitates analysis
within second-level intervals. What we need is one time ini-
tializing and periodically processing configured commands.
Second, a volatility instance can only perform one command,
if multiple commands are needed one by one, the current

35358

(O
Awareness Volatility
Layer =4 CR3/Memory
Request/Response in Python
PyVMI ¢
Memory ;g W CR3/Memory
Reading Request/Response in C
Layer LibVMI Kernel i
I """""""""""" QEMU Socket
Qemu Patch
Virtualization
Layer Qemu-KVM

FIGURE 2. Workflow of the revised LibvMI.

version fails. Third, we want to monitoring multiple VMs
at the same time, so that, we need a wrapper or a sched-
ule service to receive configurations and dynamically cre-
ate or delete a task which processing on a specific VM.

To achieve these two requirements, we modified part of the
source codes:

1. A schedule service is added to receive triage configura-
tions, manage running tasks of VMs (create or delete), etc.

2. The entry logic of volatility (vol.py) is modified to a
function entry with parameters to support calling from sched-
ule service. For the purpose of running multiple commands
sequent in one task, ‘vol.py’ is modified to have the ability of
changing running parameters between commands.

3. A new address space plugin is added in to the framework
which links to PyVMI to access physical memories.

4. The logic of address space selection for a type
of operating system is modified, two global variables
(‘global_base_as’ and ‘libvmi_base_addr’) are added.
‘global_base_as’ is used to record the top AS on the con-
dition of AS re-selection and ‘libvmi_base_addr’ is used
to record the bottom AS (PyVMI AS) for a specific VM.
‘libvmi_base_addr’ is constructed only once in the process
of ‘Initialize AS’ and will not change any more, while
‘global_base_as’ may change between different commands
in a running task. The modified volatility framework is shown
in figure 3.

C. HOST-LEVEL EVENTS CORRELATION ENGINE
BASED ON OBJECT DEPENDENCE
The output results of volatility are stored in the backend
database in the form of evidence vector EV. Based on the evi-
dence vector, the events correlation engine conducts evidence
analysis and associate operations, reconstructs the invasion
process, and submits the correlation results in the form of
evidence graph. To this end, in the following, we first propose
a few corresponding definitions.

Definition 1 (Object Dependency): We define object
dependency as a binary relationship between 2 objects, i.e.

a 3-tuple OD = < Source, Sink, Operation >, denoted as

Operation

Source " = Sink, which means Source depends on Sink.

VOLUME 6, 2018

Z.Tian et al.: Real-Time Correlation of Host-Level Events

IEEE Access

OS Info. (Windows XP/7/..., Linux...)

v

Command (ps].iét, psscan, ...)

Schedule Service

5

Volatility Process Entry for Specific VM

OS Configuration <> Initialize AS 1A-32 &
intel.IA32PagedMemory g
’¢ Pae (XP 32bits) &
. 1
Load CMD Plugin £
ProVmiAddressSpace g‘
=
{ 3 =
2
VMI Linking LibVMI 3
. . 4 p Request Py 8 g
Procesz:)ngicPlugm Data £
: “ " fromAS &
3 3
DATA 2
— Plugin Output l i l l
LibVMI

FIGURE 3. The modified volatility framework.

Here, Source and Sink are both objects; Source refers to the
principle object; Sink refers to the target object; and Operation
refers to the operation which the principle object acts on the
target object.

Based on the definition of the object dependency, C2RS
describes every evidence vector EV in forms of object depen-
dency. For example, the evidence “‘a parent process creates a

child process” could be denoted as paremﬁ):r;< child. Here the
principle object (Source) is the parent process, and the target
object (Sink) is the child process, and operation is the system
call fork. If a following evidence ‘“‘the child process writes
a file” exists, the following evidence should be denoted as
child "¢ file, the principle object is the child process; the
target object is the file; and the operation is the system call
write.

Based on the classification of the system calls involved in
OD’s operation, we divide C2RS’s OD into 4 types, including
“processiprocess” OD, “processifile” OD, “process/ net-
work™ OD, and “process/signal”’ OD. As a result, Source
generally refers to a process, and Sink could be process,
signal, file, or network. Operation refers to a system call.
As shown in Figure 4 is the dependency relationships among
different objects of C2RS.

Definition 2 (Evidence Graph): Evidence graph is a
directed graph, and defined as a 2-tuple EG = <N, E>. Here
N refers to the node set, a node could be any kind of objects
in OD, and E refers to the edge set. If Iny, no, € N, and

Operation . .
ni P ny, then there exists a directed edge e from n to n,.

The evidence graph provides the most visual representation
of the object dependencies, thus the correlation could be

VOLUME 6, 2018

ar T
connect() \\Sig[{a/l/)

listen() signal()
accept() getmask()
reev) 0\) ...
o send() NS -
O lietwori(\\/ Pro esm/ File)
(Jetwork) \Lroces \%0/\\9///
rea
execve() write()
forky S
clone()

FIGURE 4. Object Dependency relationships transformation.

recognized as the generation of an evidence graph as com-
prehensively as possible. In order to accelerate tche procedure
of key object nodes and key steps searching in the intrusion
process for the forensics analyst, we define the following
3 graph operations.

Definition 3 (Precedent Graph Operation): Given anev-
idence graph EG = <N, E>, and an object node n € N,
the precedent graph operation precedent(n, EG) returns EG’s
maximum subgraph PG=< N’, E' >, which satisfies (1)
n € N', (2) forVn' € N’ and n’ # n, there exists a directed
path from n’ to n, (3) for Ve € E’, e exists on a path directed
to n. We refer PG as node n’s precedent graph in EG.

Definition 4 (Subsequent Graph Operation): Given an evi-
dence graph EG = <N, E> and an object node n € N,
subsequent graph operation subsequent(n, EG) returns EG’s
maximum subgraph SG = <N’, E’>, which satisfies (1)
n e N’, (2) forVn' € N’ and n’ # n, there exists a directed

35359

IEEE Access

Z.Tian et al.: Real-Time Correlation of Host-Level Events

path from n to n’, (3) for Ve € E’, e exists on a path directed
from n. We refer SG as node n’s subsequent graph in EG.

Definition 5 (Key Graph Operation): Given an evidence
graph EG = <N, E> and an object node n € N, key graph
operation key(n, EG) returns EG’s maximum subgraph KG
= <N’, E’>, which satisfies (1) n € N/, (2) for V' € N’ and
n’ # n, there exists a directed path from n to n’ or form n’ to n,
(3) for Ve € E’, e exists on a path directed from n or directed
to n. We refer KG as node n’s key graph in EG.

Process B Process B
O/C\‘b 0 Ab
Process A Process C FileX Process A Process C
(a) (b)
process B
o/Q\sb 0
Process C File X Process A Process C File X

© (d)

FIGURE 5. Schematic of the 3 graph operations. (a) Evidence graph.
(b) PG = precedent(process C, EG). (c) SG = subsequent(process C, EG).
(d) KG = key(process C, EG).

As shown in Figure 5 is the schematic of the above 3 graph
operations. The key object node is process C (marked with
black circle). Obviously, the key graph of an evidence graph is
equivalent to the union of its precedent graph and subsequent
graph, i.e. key(n, EG) = precedent(n, EG) U subsequent
(n, EG).

Based on the object dependencies, the events correlation
engine is able to reconstructs the intrusion process by 2-stage
operations (Focusing and Analyzing), and presents the corre-
lation results in the form of evidence graph.

1) FOCUSING STAGE

Using data queries to retrieve all the evidence vectors EV
satisfying the specified process PID and the specified time
range in the database. We restrict the time range of the PID
because the values of the PID, INODE and some other data
structures in the operating system take loop count. If the time
range is not limited, the process of the evidence vectors with
the same PID values may refer to different processes, and
impact the accuracy of the correlation results.

2) ANALYZING STAGE

According to the definition of object dependency, we transfer
the evidence vectors retrieved in the focusing stage into the
forms of object dependencies, and reasoning the evidence
graph following algorithm 1. Finally, we remove the incorrect
object dependency relationships in the evidence graph with
algorithm 2 to improve the credibility and reliability of the
correlation results.

IV. EXPERIMENTS EVALUATIONS

To test the performance of the new C2RS framework, a time
consumption test on a CentOS 7.3 virtual machine was pro-
cessed on a physical machine with Intel E5-2620 2.10GHz

35360

Algorithm 1 Evidence Graph Reasoning Algorithm
INPUT : The generated evidence vector set (EV) in the
focusing stage.

OUTPUT : Evidence graph EG

1: foreach element v in set(EV) {

2 convert v to object dependency Source
3 flag = 0;

4 foreach object O in graph EG{

5: IF Source == O {flag ++; BREAK; }

6

7

8

Sink;

o)

: IF (flag != 0) add object Source to graph EG;

: flag =0;

: foreach object O in graph EG{

10: IF Sink == O {flag ++; BREAK; }
11: }

12: IF (flag!=0) add object Sink to graph EG;

13: add edge from Source object to Sink object;
14: }

15: RETURN EG;

Ne

Algorithm 2 Evidence Graph Pruning Algorithm
INPUT: The generated set EV and EG to be pruned.
OUTPUT: the pruned evidence graph
1: foreach element v in set(EV) {
2 IF v.revi == 0 or v.mapped == 0;{
3: convert v to object dependency Source Sink;
4 delete the edge from object Source to object Sink in
graph EG;

9,1

}

a

o)
: RETURN EG;

3

CPU and 64GB memories. We choose 6 common used com-
mands which are shown in table 2.

TABLE 2. Commands used in performance test.

Command Type Descriptions

linux_bash Command Recover bash history from bash
process memory

linux_pslist Process Gather active tasks by walking the
task_struct

linux_psenv Process Gathers processes along with their

static environment variables

linux_netstat ~ Network Lists open sockets
linux_netfilter =~ Network Lists Netfilter hooks
linux_dmesg Kernel Gather dmesg buffer

Each command is tested for 20 times in which 10 times is
running on modified codes and the rest are running on the
original codes. Time consumed for each test are recorded.
Attention that in the test of modified codes, time cost in
initialization process is omitted as for a long-term running
process, the initialization is processed only once. The results
of the tests are shown in figure 6.

VOLUME 6, 2018

Z.Tian et al.: Real-Time Correlation of Host-Level Events IEEEACCGSS

unit: s CentOS 7.3 Tests
16.00

14.00
12.00
10.00
8.00
6.00
- -m- - - = = - = meoom
4.00
> - > < D S mmm e m - == mmm < Ximmmmmmee o X
2.00
+: =+
0.00 +» E S5
1 2 3 4 5 6 7 8 9 10
----m---- linux_bash —=—— linux_bash ori ----+---- linux_psenv
—— linux_psenv_ori ----&---- linux_pslist ——— linux_pslist_ori
fffff x---- linux_netstat ——=—— linux_netstat ori ----+---- linux_dmesg
——+—— linux_dmesg_ori ----—--- linux_netfilter linux_netfilter ori

FIGURE 6. Time consumption for C2RS and the original volatility.

bash

uname <]7’2. 16. "‘.D tar useradd rm

wget gzip writev groupadd

/root/.bash_history

admin.vbs mv

passwd
FIGURE 7. Example of intrusion scenario reconstruction.
As shown in figure 6, the modified codes consume little on contrast, the original codes need 11240ms. As shown in
time compared to the original codes. Take pslist for example, the figure, it can be seen that the overhead of time and space

the modified codes only cost about 270ms in average, while are not expensive.

VOLUME 6, 2018 35361

IEEE Access

Z.Tian et al.: Real-Time Correlation of Host-Level Events

Parts of output for modified volatility:
Initializing:
Volatility Foundation Volatility Framework 2.6

['volpy', '--profile’, Linuxcentos7_3_x64x64', -1, 'vmi://instance-00000570", 'linux_bash', --tz=PRC']
'{sysmap="'home/sysmap/System map-3.10.0-514.6.2 el7.x86_04";0stype="Linux";linux_name=0x678linux_tasks=0x430:1

nux_mm=0x468;linux_pid=0x4a4:linux_pgd=0x58:}'

Found CLS:<class 'volatility plugins. addrspaces ProListAddrSpace ProVmiAddressSpace™

Found CLS:<class 'volatility plugins addrspaces. amd64.Linux AMDG4PagedMemory'>

Final Base_as : <volatility plugins addrspaces.amd64 Linux AMD64PagedMemory object at 0xb234dd0>

Return global base_as: <volatility plugins. addrspaces.amd64. Linux AMDG4PagedMemory object at Oxb234dd0=
Return global base_as: <volatility plugins. addrspaces.amd64. Linux AMDG4PagedMemory object at Oxb234dd0=

Processing and Output:

Pid Name Command Time Command

4111 bash 2018-03-2212:01:00 11

4111 bash 2018-03-22 12:01:11 top

4111 bash 2018-03-22 12:17:23 groupadd test

4111 bash 2018-03-22 12:17:35 simple-command

4111 bash 2018-03-22 12:17:35 dB=

4111 bash 2018-03-22 12:17:35 useradd -g test test

4111 bash 2018-03-22 12:17:54 wget fip// 172.16.100.18/SOURCE test.tar

FIGURE 8. Part of the output of ‘linux_bash’ command.

Figure 7 shows an example of the invasion process of
intrusion scenario reconstruction with evidence and corre-
lation operations analysis. The visualization part was per-
formed using the Graphviz tool. We can observe the attacker’s
invasion process in the figure. It first uses the useradd and
groupadd commands to add a system administrator and set
the corresponding authority, then reset the user password
through passwd. In order to further install the attack script, the
attacker uses the command uname to view the kernel version
information, and then download the attack script admin.vbs
via the FTP on a remote host 172.16.100.18 and write two
webshells: cnnsc.asp and ggsm.asp, respectively. The two
webshells are used to manipulate files on the server. Next,
the attacker packages the vbs script and winshell as hk.tgz by
executing the tar and gzip commands, and moves them to the
/ust/local directory for backup so that the back door can be
used later. Finally, the attacker deletes the /root/.bash_history
file and destroys the history command record.

This process is monitored by command of ‘linux_bash’
with 10s intervals and part of the output is shown in figure 8.
From which, we can see that the modified codes load a
‘Linuxcentos7_3_x64x 64" OS type and connected to VM of
instance-00000570 with a sysmap ‘System.map-3.10.0-
514.6.2.el7.x86_64" locating at ‘/home/sysmap’. Moreover,
the address spaces for this VM and ‘linux_bash’ show
that the layer of ‘ProListAddrSpace’ is wrapped by
‘LinuxAMD64PagedMemory’.

V. CONCLUSIONS

In this paper, based on our previous work of the Heetian
Cyber Range, we present a real-time Correlation of host-level
events in Cyber Range Service (C2RS) method. C2RS imple-
ments an out-of-band data capturing mechanism for greater
attack resistance utilizing virtual machine introspection

35362

technology. Using this approach allows C2RS to isolate the
data capturing from the monitored host. C2RS leverages from
these captured data incorporated into the Volatility frame-
work to aid in simplifying the analysis of operating system
memory structures. To aid the trainees aware the cybersecu-
rity situational in cyber range, we proposed an object depen-
dence method to achieve the evidence of illegal activity. The
proposed C2RS method is scalable and robustness, which
makes our method more applicable to other tasks. Corre-
lation of host-level events is just the beginning of a long,
complicated investigative process. There are many directions
to explore in the future. First, we plan to improving per-
formance and reducing memory usage. Second, additional
areas of future work include building a distributed computing
implementation with terabytes of log data.

ACKNOWLEDGMENT

The first four authors (Zhihong Tian, Yu Cui, Lun An, and
Shen Su) contributed equally to this paper. The authors
express their sincere appreciation to the editors and the
anonymous reviewers for their helpful comments.

REFERENCES

[1] S. Chapman, R. Smith, L. Maglaras, and H. Janicke, “Can a network
attack be simulated in an emulated environment for network security
training?” J. Sens. Actuator Netw., vol. 6, no. 3, p. 16, 2017, doi:
10.3390/jsan6030016.

[2] A. Cook, R. Smith, L. Maglaras, and H. Janicke, “Measuring the risk of
cyber attack in industrial control systems,” in Proc. 4th Int. Symp. ICS
SCADA Cyber Secur. Res., Belfast, U.K., Aug. 2016, pp. 23-25.

[3] J.Cheng, R. Xu, X. Tang, V. S. Sheng, and C. Cai, “An abnormal network
flow feature sequence prediction approach for DDoS attacks detection
in big data environment,” Comput., Mater. Continua, vol. 55, no. 1,
pp. 95-119, 2018, doi: 10.3970/cmc.2018.055.095.

[4] Y. Liu, H. Peng, and J. Wang, ““Verifiable diversity ranking search over
encrypted outsourced data,” Comput., Mater. Continua, vol. 55, no. 1,
pp. 37-57, 2018, doi: 10.3970/cmc.2018.055.037.

VOLUME 6, 2018

http://dx.doi.org/10.3390/jsan6030016
http://dx.doi.org/10.3970/cmc.2018.055.095
http://dx.doi.org/10.3970/cmc.2018.055.037

Z.Tian et al.: Real-Time Correlation of Host-Level Events

IEEE Access

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Cui, Y. Zhang, Z. Cai, A. Liu, and Y. Li, “Securing display path
for security-sensitive applications on mobile devices,” Comput., Mater.
Continua, vol. 55, no. 1, pp. 17-35, 2018, doi: 10.3970/cmc.2018.055.017.
F. Binxing, J. Yan, L. Aiping, and Z. Weizhe, “Cyber ranges: State-of-the-
art and research challenges,” J. Cyber Secur., vol. 1, no. 3, pp. 1-9, 2016.
J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine learning based android malware
detection,” IEEE Trans. Ind. Informat., to be published, doi: 10.1109/
TI1.2017.2789219.

J. Li, Y. Zhang, X. Chen, and Y. Xiang, “‘Secure attribute-based data
sharing for resource-limited users in cloud computing,” Comput. Secur.,
vol. 72, pp. 1-12, Jan. 2018, doi: 10.1016/j.cose.2017.08.007.

P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen, “Privacy-
preserving outsourced classification in cloud computing,” in Cluster Com-
puting. Springer, 2017, pp. 1-10, doi: 10.1007/s10586-017-0849-9.

P. Li et al., “Multi-key privacy-preserving deep learning in cloud comput-
ing,” Future Gener. Comput. Syst., vol. 74, pp. 76-85, Sep. 2017.

C.-Z. Gao, Q. Cheng, X. Li, and S.-B. Xia, “Cloud-assisted privacy-
preserving profile-matching scheme under multiple keys in mobile
social network,” in Cluster Computing. Springer, 2018, pp. 1-9, doi:
10.1007/s10586-017-1649-y.

EnCase Forensic Tool. Accessed: Jun. 27, 2018. [Online]. Available:
http://www.guidancesoftware.com

SafeBack Bit Stream Backup Software. Accessed: Jun. 27, 2018. [Online].
Available: http://www.forensics-intl.com/safeback.html

G. Vigna and A. Mitchell, “MNEMOSYNE: Designing and implementing
network short-term memory,” in Proc. IEEE Int. Conf. Eng. Complex
Comput. Syst., Dec. 2002, pp. 91-100.

W. Wang and T. Daniels, “Network forensics analysis with evidence
graph,” in Proc. Digit. Forensic Res. Workshop (DFRWS), New Orleans,
LA, USA, 2005, pp. 1-7.

Z. Tian, W. Jiang, and Y. Li, “A transductive scheme based inference
techniques for network forensic analysis,” China Commun., vol. 12, no. 2,
pp. 167-176, Feb. 2015.

Z.Tian, W. Jiang, Y. Li, and L. Dong, “A digital evidence fusion method in
network forensics systems with dempster-shafer theory,” China Commun.,
vol. 11, no. 5, pp. 91-97, May 2014.

K. Shanmugasundaram, N. Memon, A. Savant, and H. Bronnimann, “‘For-
Net: A distributed forensics network,” in Proc. 2nd Int. Workshop Math.
Methods, Models Architectures Comput. Netw. Secur.,, St. Petersburg,
Russia, 2003, pp. 1-16.

R. J. Walls, E. Learned-Miller, and B. N. Levine, “Forensic triage for
mobile phones with DECODE,” in Proc. 20th USENIX Conf. Secur. Berke-
ley, CA, USA: USENIX Association, 2011, p. 7.

Y. Li et al., “Experimental study of fuzzy hashing in Malware clus-
tering analysis,” in Proc. 8th Workshop Cyber Secur. Experimentation
Test (CSET), 2015, p. 52.

Y. Liao and V. R. Vemuri, “Using text categorization techniques for
intrusion detection,” in Proc. 11th USENIX Secur. Symp., 2002, pp. 1-10.
C. Ko, T. Fraser, L. Badger, and D. Kilpatrick, ‘“Detecting and countering
system intrusions using software wrappers,” in Proc. 9th USENIX Secur.
Symp., 2000, pp. 1-13.

T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in Proc. NDSS, 2003, pp. 1-16.

N. Joseph, S. Sunny, S. Dija, and K. L. Thomas, *“Volatile Internet evidence
extraction from windows systems,” in Proc. IEEE Int. Conf. Comput.
Intell. Comput. Res., Dec. 2014, pp. 1-5.

F. Jiang et al., “Deep learning based multi-channel intelligent attack
detection for data security,” IEEE Trans. Sustain. Comput., to be published,
doi: 10.1109/TSUSC.2018.2793284.

ZHIHONG TIAN received the Ph.D. degree from
the Harbin Institute of Technology. From 2003 to
2016, he was with the Harbin Institute of Tech-
nology. He is currently a Professor, a Ph.D.
Supervisor, and the Dean of the Cyberspace
Institute of Advanced Technology, Guangzhou
University. His current research interests include
computer network and network security. He is
a member of the China Computer Federation.
He is the Standing Director of the Cyber Security
Association of China.

VOLUME 6, 2018

YU CUI was born in Harbin, China, in 1985.
He received the Ph.D. degree from the Harbin
Institute of Technology. He is currently a Senior
Engineer and the Technical Manager with the
Cyber Range Department, Heetian Information.

LUN AN was born in Xi’an, China, in 1985.
He is currently pursuing the Ph.D. degree with
the Harbin Institute of Technology. He is currently
with the Beijing University of Posts and Telecom-
munications. His current research interests include
cyber range and network security.

SHEN SU was born in Harbin, China, in 1985.
He received the Ph.D. degree from the Harbin
Institute of Technology. He is currently an Assis-
tant Professor with Guangzhou University. His
current research interests include inter-domain
routing and security.

XIAOXIA YIN received the Ph.D. degree in elec-
tronics engineering from The University of Ade-
laide, Australia. She was a Visiting Scholar with
the University of Reading, Reading, U.K., under
the supervision of S. Hadjiloucas, and with the
University of Cambridge, Cambridge, U.K., under
the supervision of L. F. Gladden. She involved in
tumor detection via DCE-MRI with The Univer-
sity of Melbourne, Australia, under the supervision
of Prof. Kotagiri. She has an existing collaboration
with Prof. M.-Y. Su with the Center for Functional Onco Imaging, University
of California at Irvine, USA, and with Prof. T. Kron with the Peter MacCal-
lum Cancer Centre, Australia. She is currently a Research Fellow in high-
dimensional medical image analysis with Victoria University, Australia.
Her research interests include multiresolution analysis, segmentation, image
reconstruction and classification, and their applications to high-dimensional
medical imaging. She was a member of the Organizing Committee and
the Publication Chairperson of the 3rd International Conference of Health
Information Science, and a member of the Organizing Committee and the
Program Co-Chairperson of the 4th and 5th International Conference of
Health Information Science. She received the Post-Doctoral Research Fel-
lowship from the Australian Research Council in 2009. She is the Managing
Editor of the Health Information Science and System Journal.

35363

http://dx.doi.org/10.3970/cmc.2018.055.017
http://dx.doi.org/10.1109/TII.2017.2789219
http://dx.doi.org/10.1109/TII.2017.2789219
http://dx.doi.org/10.1016/j.cose.2017.08.007
http://dx.doi.org/10.1007/s10586-017-0849-9
http://dx.doi.org/10.1007/s10586-017-1649-y
http://dx.doi.org/10.1109/TSUSC.2018.2793284

IEEE Access

Z.Tian et al.: Real-Time Correlation of Host-Level Events

35364

LIHUA YIN was born in Harbin, China, in 1973.
She received the Ph.D. degree from the Harbin
Institute of Technology. She is currently a Pro-
fessor and a Ph.D. Supervisor with Guangzhou
University. Her current research interests include
computer network and network security. She is a
member of the China Computer Federation.

XIANG CUI received the master’s degree from
the Harbin Institute of Technology in 2003 and
the Ph.D. degree in information security from
the Institute of Computing Technology, Chinese
Academy of Sciences, in 2012. He focused on
the cybersecurity emergency response. From 2007
to 2017, he was with the CAS Institute of Com-
puting, Chinese Academy of Sciences, where he
focused on the cyber-attack and defense tech-
nologies. He is currently a Guangzhou Univer-
sity Cyberspace Advanced Technology Research Fellow. He participated in
a series of major cyber-security incident handling and 863-917 platform
construction. His research areas include network offensive and defensive
techniques.

VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	THE PROPOSED C2RS METHOD
	VIRTUAL MACHINE INTROSPECTION BASED OUT-BAND DATA CAPTURING
	MEMORY TRIAGE USING VOLATILITY
	HOST-LEVEL EVENTS CORRELATION ENGINE BASED ON OBJECT DEPENDENCE
	FOCUSING STAGE
	ANALYZING STAGE

	EXPERIMENTS EVALUATIONS
	CONCLUSIONS
	REFERENCES
	Biographies
	ZHIHONG TIAN
	YU CUI
	LUN AN
	SHEN SU
	XIAOXIA YIN
	LIHUA YIN
	XIANG CUI

