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Abstract1

This study sought to investigate the research question as to whether the growth and2

nutrient uptake of two invasive vines, Pueraria lobata and Sicyos angulatus, are af-3

fected by the heterogeneity of soil characteristics of two riverbank sites with different4

flooding regimes. Soil, individual ramets of P. lobata and S. angulatus plants were5

sampled monthly from quadrats set on homogenous stands from two riparian sites6

along Tama River, Japan for over a year. Soil nutrients, above- and belowground7

biomass, tissue nutrient and non-structural carbohydrate contents were estimated8

and resource allocations to different organs were calculated. Flooding frequency di-9

rectly affected the substrate characteristics of the sites; the frequently flooded site10

had coarser particle and less nutrient content. There were significant differences11

between the belowground biomass (BGB) and the aboveground biomass (AGB) of12

both P. lobata and S. angulatus between the sites. However, the BGB:AGB ratio of13

these species were statistically similar regardless of the substrate conditions. While14

the biomass of S. angulatus were much reduced in coarse habitat, the total amount15

of nutrient uptake by P. lobata was not affected by habitat the condition. Concen-16

trations of total nitrogen, total phosphorus and starch in root tissues of S. angulatus17

were less in frequently inundated soil. The results of this study suggest that inunda-18

tion frequency directly affects the substrate condition of a riverbank habitat which in19

turn affects plant growth, and invasive plant species growing in such habitat respond20

differently to substrate condition in terms of growth and nutrient uptake.21

keywords Pueraria lobata; Sicyos angulatus; resource allocation; riverbank soil;22

soil characteristics23
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1 Introduction24

The performance of a plant species is governed by various interacting physico-chemical25

factors of the habitat. These factors include the availability of nutrients, moisture,26

light and other resources, physiological capabilities of that species in the given envi-27

ronment, and biotic factors such as herbivory or diseases. Biological diversity faces28

tremendous pressure throughout the world. Vitousek (1990) recognized biological29

invasion as the second most important factor that causes biodiversity loss. In addi-30

tion, much other research (for example, McGeoch et al., 2010; Sala et al., 2000) has31

also agreed with the view of Vitousek (1990). Invasive species are believed to have32

special traits that enable those plants to utilize natural resources more efficiently33

than the native species, and these plants can modify the ecosystem to produce fa-34

vorable conditions for their growth and development (Rao & Sagar, 2012; Vitousek,35

1990).36

Some research has concluded that the management of invasive plants depends on37

the understanding of the processes of their introduction and dispersal, and on other38

environmental factors that govern these processes (for example, Ramula, Knight,39

Burns, & Buckley, 2008; Reid, Morin, Downey, French, & Virtue, 2009). It has been40

established that in habitats with poor nutrients, the input of nutrients increases the41

chance of invasion by one or more species (James, 2012) over the native species.42

For example, it has been reported that the inclusion of nitrogen in slow-growing43

species dominating nutrient-deficit systems results in the colonization of the invasive44

species (Brooks, 2003). Due to the faster growth rates and capabilities of higher N45

use efficiency, fast-growing invasive species are thought to be more competitive than46

their slow-growing native counterparts in N rich soils (Perry, Blumenthal, Monaco,47

Paschke, & Redente, 2010). In contrast, slow-growing native species allocate much48

of their resources to belowground structures due to their ability to recycle and store49

N, and therefore these plants prefer to grow under low N conditions (Fargione &50

Tilman, 2002).51

Although the triggers and underlying mechanisms of plant species invasion are52

not yet been fully understood, it is clear that disturbance of the habitat or fluctuation53

of resources promotes the process (Shackelford, Renton, Perring, & Hobbs, 2013).54

Researchers have noted that some invasive species are highly capable of invading a55

system irrespective of disturbance, and some invasives are able to modify the ecosys-56

tem structure, energy flows, and nutrient pools and fluxes. For example, Meyer-57

son, Saltonstall, Windham, Kiviat, and Findlay (2000) reported that aboveground58

N stocks were found to be higher in plant communities dominated by Phragmites59

australis compared to sites without it.60

Riparian floodplains under a natural flow regime are highly dynamic due to a61

large amount of flooding disturbance (Brunet & Astin, 2000). Therefore, riparian62

landscapes provide corridors for the dispersal of many invasive exotic species (Jo-63

hansson, Nilsson, & Nilsson, 1996; Naiman & Décamps, 1997) invasion, and natu-64

ralization of exotic plants (Pyšek & Prach, 1993). Catford et al. (2012) reported that65

early stages of succession are more prone to exotic invasion due to the abundance of66

resources. However, on a riparian floodplain during a large flood, vegetation is of-67

ten washed away and the succession starts afresh (Asaeda, Baniya, & Rashid, 2011).68

Therefore, the same mechanism of exotic invasion as in terrestrial ecosystem might69
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not be applicable on a riparian floodplain.70

Since the terrestrial ecosystem is more or less stable, an invasive plant species71

adapted to a nutrient-deficit terrestrial habitat will follow a nutrient acquisition or72

habitat modification strategy. The riparian ecosystem, on the other hand, is fre-73

quently disturbed and the nutrient and moisture regimes change abruptly (back and74

forth in positive and negative directions). Therefore, nutrient acquisition of an in-75

vasive plant species adapted to such habitat (frequently flooded) will be governed76

by the level of disturbance unlike to species adapted to a habitat with less disturbed77

(comparatively fertile) soil. To test this hypothesis, we observed the growth and tis-78

sue nutrient contents of two invasive vines, Pueraria lobata and Sicyos angulatus, on79

two sites (in terms of flooding disturbance and soil fertility) along the Tama River in80

Japan.81

2 Materials & methods82

2.1 Site characteristics83

Observations were conducted at two locations along the banks of the Tama River: (1)84

at Fuchu (35°39′46′′N, 139°26′15′′E), 34.6 km upstream, and (2) at Ohguri (35°38′59′′N,85

139°28′32′′E), 33.6 km upstream from the river mouth (Figure 1). The locations have86

difference in elevation (0.3∼0.9 m at Fuchu and 3.0∼3.5 m at Ohguri) from the87

normal water level. The Fuchu site is inundated almost every year, whereas Ohguri88

is inundated if only there is a large flood. The soil of Fuchu is coarse and dry and89

that of Ohguri is finer, contains higher moisture and organic matter than Fuchu soil.90

There was a large flood (20 yr return period) in September 2007 in the Tama River91

system. Both of the study sites were inundated during this flood and all herbaceous92

vine colonies were washed away. Therefore, the colonies of P. lobata and S. angulatus93

colonies were relatively young during this study.94

2.2 Study species95

The study involved two invasive vines, viz. Pueraria lobata (Willd.) Ohwi, and Sicyos96

angulatus. P. lobata is a perennial plant and it has an extensive underground rhizome97

system (Parks, Tanner, & Prokop, 2002). It usually propagates through rhizome and98

flushes new shoots in early spring after overwintering (Bodner & Hymowitz, 2002).99

The growth of the P. lobata can be 30 cm a day and 18 to 30 m a season (van der100

Maesen, 2002). This species has been reported to have alleopathic potential (Rashid,101

Asaeda, & Uddin, 2010a, 2010b). S. angulatus, on the other hand, is an annual102

herbaceous vine. Its seedlings start growing in June, when the spring-flowering103

taxa are dying. It propagates through seeds that germinate sporadically throughout104

the growing season (Pheloung, Swarbrick, & Roberts, 1999). Smeda and Weller105

(2001) have recorded its stem length up to 7 m and growth rate up to 30 cm/day. S.106

angulatus has a very shallow and superficial root system (EPPO, 2010).107
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2.3 Soil and plant material collection108

Homogenous areas of Pueraria lobata and Sicyos angulatus were located and three109

individual ramets or plants of each species were randomly selected from both sites.110

Four quadrats (2 m × 2 m) were randomly selected from each area and marked with111

poles and plastic rope. Soil and plant samples (Pueraria lobata and Sicyos angulatus)112

from these quadrats were collected during every month from April 2008 to April113

2009. Samples were only collected on sunny days when there was no precipitation114

on the study sites. For estimation of the biomass, aboveground parts (stem, leaves115

etc.) of P. lobata and S. angulatus were collected. For the belowground biomass, soil116

was dug out to a depth of at least one meter and all underground tissues were col-117

lected. At the same time, four soil samples were collected from each quadrat (from118

the surface to a depth of 30 cm) with a soil-sampling auger. Before the senescence119

stage, all the pods (fruits) of the sampling plants were also collected separately for120

the purpose of nutrient uptake estimation.121

For the analyses of plant tissue nutrients, carbohydrates, and chlorophyll concen-122

trations, mature leaves (8-10), three stems and roots of both species were collected123

from plants which were close (<50 m) to the selected quadrats. For this, the month124

of peak vegetative growth (September) was chosen for the P. lobata; whereas the125

tissues of the S. angulatus were collected in October. The collected leaves were im-126

mediately put in a portable box and preserved with dry ice. The leaf chlorophyll127

contents from these leaves were measured immediately, on the same day when they128

were returned to the laboratory.129

2.4 Laboratory analyses and estimation130

All plant materials were washed thoroughly with tap water in the laboratory. Leaves,131

stems, and rhizomes or roots were sorted and were dried at 80°C in the oven for more132

than three days to a constant weight. The aboveground biomass (AGB) and below-133

ground biomass (BGB) of each plant were measured. For each plant the leaf, stem,134

root/rhizome, and fruit/pod were oven-dried and ground with a Wiley mill. The135

ground materials were stored in sealed plastic vials until the chemical analyses were136

conducted. The total carbon (TC) and total nitrogen (TN) of the plant tissue was137

determined with a Yanaco MT5 CHN analyzer (Kyoto, Japan). The total phospho-138

rus (TP) was determined by the molybdenum blue colorimetric method (Murphy &139

Riley, 1962) after digestion with H2SO4-HClO4 (APHA, 1998). Sodium, copper and140

zinc were extracted using a Mehlich-3 extractant (Mehlich, 1984) from the ground141

plant tissue and by using the methods stipulated by Ziadi and Tran (2007). Then142

they were measured with an atomic absorption spectrophotometer (AA-6300 Shi-143

madzu, Japan) at the respective wavelengths specified for the metals.144

The total amount of all sugars (total non-structural carbohydrate, water soluble145

carbohydrate and starch) was measured using the phenol sulphuric acid method146

(Kabeya & Sakai, 2005). Acid extraction was carried out with a solution of 0.4147

N H2SO4 for total non-structural carbohydrate (TNC). Each sample (∼6 mg) was148

placed in a 100 mL round-bottom flask with 50 mL of acid and refluxed for 1 h in a149

boiling water bath (Hot water-bath, Yamoto Scientific Co., Ltd., Kyoto, Japan). In the150

case of the water soluble carbohydrate estimation, only 50 mL of distilled water was151
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used. The hot solution was filtered through Whatman No. 42 filter paper (Whatman152

International Ltd., Maistone, U.K). The filtrate was then cooled and diluted to a153

volume of 100 mL with distilled water. The carbohydrate content of the filtrate was154

determined spectrophotometrically (HACH-4800, Hach Company, Loveland, CO.) at155

485 nm wavelength using the phenol-sulphuric acid method. A Glucose solution156

was used as a calibration standard. A correction factor of 0.9 was used to convert157

glucose equivalents to starch (Latt, Nair, & Kang, 2001). The results were expressed158

as a percentage on a dry weight basis.159

Small fragments (5 mg) from the fresh leaves of the Pueraria lobata and Sicyos160

angulatus were taken by using scissors and the fresh weight of these segments was161

measured. Chlorophyll was extracted by 7 mL of N, N-dimethylformamide incubated162

in the dark for 24 h at 4°C (Moran & Porath, 1980). Extracted pigment was measured163

spectrophotometrically (HACH 4800; Hach Company, Loveland, CO, USA), following164

the equation proposed by Moran (1982), and expressing in micro grams chlorophyll165

per gram of the fresh weight (µg g−1 FW) of the leaf.166

The soil pH was measured at a soil:water ratio of 1:2.5 (wt/wt). A 20 g portion167

of soil was extracted with 2 M KCl using a 1:5 soil: extractant ratio and 30 min168

shaking time. The moisture content of the soil samples was determined gravimet-169

rically (Black, 1965). For this, a portion of each soil sample was separated before170

drying. All soil samples were then air-dried and the particle size distribution (in term171

of D25) was determined using the sieve method approved by the American Society172

for Testing and Materials protocol (ASTM, 2002). After the particle size analysis,173

all soils were passed through a sieve to obtain the ≤2 mm fraction. This fraction174

was used for the nutrient analyses. For the TC, TN and TP soil sample concentration175

analyses, the same methods were followed that were adopted for the plant tissue.176

When the soil samples were not used, they were kept in airtight polyethylene bags.177

The annual biomass turnover of Pueraria lobata was calculated using the follow-178

ing equation:179

BTnet = (AGBmax − AGBow) + (BGBmax −BGBow) (1)

where BTnet = Annual biomass turnover (gDW/plant), AGBmax = Aboveground180

biomass in peak vegetative period (the maximum value) (gDW/plant), AGBow =181

Aboveground biomass at the onset of spring flushing (the minimum value) (gDW/plant),182

BGBmax = Belowground biomass at the end of senescence (the maximum value)183

(gDW/plant), BGBow = Belowground biomass at the onset of spring flushing (the184

minimum value) (gDW/plant).185

In a similar way, the net annual production of the leaves, stem and under-186

ground rhizomes were calculated. The net storage of nutrients in the leaves, stem,187

fruits (pods), and underground rhizomes were calculated by multiplying the annual188

biomass of these organs with the respective average nutrient concentrations, and189

then all these components were summed to estimate the annual net nutrient uptake190

of a single P. lobata plant (Equation 2).191

NUx =
∑(

BTnet(i) × ci
)

(2)

where NUx = Net annual uptake of a nutrient x (C, N, P, Cu, Zn and Na), BTnet(i)192

= annual net mass of organ i (leaf, stem, rhizome, reproductive organs, etc.), c =193
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concentration of x in organ i.194

2.5 Statistical analyses195

All data were analyzed using R (R Core Team, 2013). Before conducting an analysis,196

raw data were checked for normal distribution with the one-sample Kolmogorov-197

Smirnov test as well as for homogeneity of the variances with the Levene’s test.198

Arcsin data transformation was performed when the data did not follow normal dis-199

tribution. A t-test was used to compare the means between the different sampling200

times. Two-dimensional Nonmetric Multidimensional Scaling (NMDS) of plant per-201

formance data (TN, TP, TC, Cu, Zn, Na, TNC and total biomass) were conducted202

using the function ‘metaMDS’, which is incorporated in the statistical package ‘ve-203

gan’ (Oksanen et al., 2010). The Bray-Curtis similarity was used as the pair-wise204

distance among samples.205

3 Results206

3.1 Site elevation and soil characteristics207

The soil characteristics of the Ohguri and Fuchu sites were significantly different208

(Figure 2), and the size of D25 fraction of soil differed significantly between the209

sites (p = 0.01). It was found that the Ohguri soil was composed of fine sediments,210

whereas the D25 particle size of the Fuchu soil was more than twice as large as211

that of the Ohguri soil and the substrate was composed of coarse sand and gravels.212

The soil moisture content of the fine sediment (<2 mm) also differed significantly213

between the sites (p = 0.02) (Figure 2). Although the D25 fraction of soil was214

distinctly different between the sites, there was no significant correlation between215

the sediment moisture content and the D25 value (R = -0.238, p = 0.072). The216

Ohguri soil was slightly acidic (pH = 6.29 ± 0.21) while the Fuchu soil was almost217

neural (pH = 6.95 ± 0.35). Figure 2 also shows that the soil organic matter and218

nutrient levels significantly differed between the sites as all values were higher for219

the Ohguri. The N:P and C:N ratios were significantly different between the sites.220

3.2 Biomass production221

The aboveground biomass (AGB) of P. lobata increased sharply over the growing222

season and reached its peak values in September at both sites (Figure 3). It then223

gradually decreased until the beginning of the next growing season. Though the224

patterns of AGB production were similar at both study sites, the values were signifi-225

cantly different (p < 0.05). The maximum AGB values recorded were 750 g and 562226

g of drymass per plant at Ohguri and Fuchu, respectively. There was significant dif-227

ference of belowground biomass (BGB) production by P. lobata between Fuchu and228

Ohguri sites (p < 0.05) (Figure 3). The highest AGB of P. lobata at Fuchu site was229

recored in June, however, the seasonal variation of the same did not follow a conspic-230

uous trend. The seasonal trend of P. lobata BGB was inverse to that of AGB at Ohguri231

site. AGB at Ohguri was recored higher during the early growth stage of P. lobata232
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and then it inclined until August when it started to decline again. The mean ratio233

values of the belowground (BGB) and the aboveground (AGB) biomass (BGB:AGB234

ratio) of the P. lobata was 0.67 ± 0.23 and 0.59 ± 0.14 in Fuchu and Ohguri, re-235

spectively. There was no significant difference between these sites in terms of the236

BGB:AGB ratio (p = 0.30). The values were always <1.0 at Ohguri, but values >1.0237

were sometimes recorded at Fuchu.238

In S. angulatus, the drymass production was higher at Ohguri than at Fuchu239

(Figure 3).The BGB was very small compared to the AGB (Figure 3). The highest240

AGB was attained in August/September. At Fuchu, the S. angulatus density was241

very low and this species was rarely found on the lower riverbank, which contained242

comparatively more nutrients than the upper bank. At Ohguri, on the other hand, S.243

angulatus was evenly distributed on both the upper and lower banks thanks to the244

homogeneous soil moisture content and nutrient concentrations as well as the high245

contents of organic matter in the soil. The BGB:AGB ratio of this species did not246

differ significantly between the sites (p = 0.59). The average values of BGB:AGB in247

S. angulatus were 0.07 ± 0.02 and 0.066 ± 0.02 in Fuchu and Ohguri, respectively.248

3.3 Nutrient uptake and plant tissue concentrations249

There were no significant differences in nutrient (TN, TP and TC) concentrations in250

the Pueraria lobata tissues between the Fuchu and Ohguri sites (all p>0.05, Figure 4,251

Supplementary Table 1). However, TP and TC concentrations in leaf, stem, and root252

of P. lobata were slightly higher in Ohguri than those of Fuchu plants. TN, TP and TC253

concentrations in Sicyos angulatus did not change significantly due to the location,254

except for TN and TP in root tissues. S. angulatus in Ohguri had higher TN concen-255

trations in the leaves and stems but the differences were not statistically significant.256

The phosphorus (TP) concentration of the S. angulatus root was significantly higher257

in Ohguri, whereas there were no differences in leaves and stems between the sites.258

Total carbon (TC) concentrations in the S. angulatus tissue were statistically similar259

at both sites. The dynamics of the TN, TP and TC concentrations in the P. lobata260

and the S. angulatus showed that the highest accumulation of these nutrients were261

in leaves at both sites. The leaf TN:TP value (at the vegetative stage) of the P. lobata262

was ∼20 at both sites, whereas this value for the S. angulatus was recorded ∼10 at263

both study sites (Table 1).264

Copper concentrations in the leaf and root tissues of P. lobata differed signifi-265

cantly due to the locations (Figure 5), Supplementary Table 1). The Ohguri plants266

had a higher concentration of Cu in stem and root tissues. Significant differences of267

Zn between the two locations were found in stem and tissues only whereas Na con-268

centration differed in leaf and stem. In the S. angulatus, no significant differences of269

Zn and Na concentrations in leaf, stem and root tissues were observed between the270

locations. However, significantly higher concentration of Cu were found in leaf and271

root tissues of Ohguri plants (Supplementary Table 1).272

Table 1 presents the total amount of nutrient uptake from the soil by these plants273

from the soils of the study sites. There was not much difference in the amount of274

macro- (TN and TC) and micronutrients (Cu and Zn) absorbed by the P. lobata from275

the nutrient-rich Ohguri and nutrient-poor Fuchu sites. However, the difference was276

striking in the case of S. angulatus. The amount of nutrient (TN, TP, TC, Cu, Zn, and277
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Na) uptake from the Fuchu soil was much smaller than the values of Ohguri (Table278

1).279

3.4 Structural and non-structural carbohydrates280

Non-structural carbohydrates (total non-structural carbohydrate (TNC), water sol-281

uble carbohydrate (WSC), and starch) in the P. lobata leaf, root and stem tissues282

did not differ significantly between the Fuchu and Ohguri sites (all p<0.5, Figure 6,283

Supplementary Table 1). For all non-structural carbohydrates, in the P. lobata, the284

highest concentration was found in the root, followed by the stem and the leaf, re-285

spectively. The same concentrations in the S. angulatus tissue was much lower than286

those in the P. lobata. In the S. angulatus, the order of accumulation in the tissue287

had no specific pattern. However, the concentrations of carbohydrates did not differ288

between the sites.289

3.5 Chlorophyll concentrations in leaves290

No significant difference in the P. lobata leaf chlorophyll concentration was found291

between the study sites (t-test p = 0.054, Supplementary Table 1). However, the292

values were always higher in Ohguri. Figure 7 shows the chlorophyll concentra-293

tion was slightly lower in the early growth stage of the P. lobata; then the values294

increased slightly and remained the same until the senescence (November). In the295

S. angulatus, the leaf chlorophyll concentration was significantly higher in Ohguri296

(t-test p = 0.01, Supplementary Table 1, Figure 7).297

4 Discussion298

4.1 Flooding frequency and soil fertility299

There were distinct differences in the soil particle size and nutrient contents of Fuchu300

and Ohguri. The Fuchu site is frequently inundated, whereas Ohguri is inundated301

only during large floods. The sampling sites of Fuchu were composed of large par-302

ticles. In Ohguri, the undisturbed vegetation contributed to high organic matter303

incorporation into the soil and as a result the particle size became fine, and the nu-304

trient content became higher. In a separate study, Asaeda, Rashid, and Ohta (2016)305

conducted a one-dimensional hydraulic simulation to estimate the frequency of in-306

undation of study quadrats from its elevation and attributed the soil characteristics307

of these sites to the flooding regimes. They recognized that the inundation frequency308

was nearly inversely proportional to the elevation of the site. Since our observations309

were conducted on the same quadrats, we used the elevation to correspond the in-310

undation frequency of the sampling points.311

4.2 Plant performance comparison312

The Sicyos angulatus produced a high dry mass at Ohguri, whereas its growth was313

very limited at Fuchu in comparison to the other site. This difference of biomass314
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production between the sites might be the direct effect of washing away by floods,315

or the scouring of the nutrient-rich top layer sediment (Bayley & Guimond, 2009).316

The Pueraria lobata, although able to grow vigorously in wet areas, also grew in317

relatively dry areas. The total biomass and ratio of belowground biomass (BGB) and318

aboveground biomass (AGB) (BGB:AGB ratio or root:shoot ratio) was often consid-319

ered to be the index of the conditions of the substrate especially on nitrogen and320

moisture content (Bonifas, Walters, Cassman, & Lindquist, 2009; Van Hees & Clerkx,321

2003). Although the ratio depends on the trait, most plant species respond to altered322

substrate conditions by changing their BGB:AGB ratio.323

The biomass partitioning of the P. lobata followed a similar pattern in nutrient-324

rich and nutrient-poor soils. Although the BGB:AGB ratio of the P. lobata was325

recorded >1.0 during the leaf flushing (in early spring) at the nutrient-deficit Fuchu326

site, in Ohguri it was always <1.0. The average value at both sites was also <1.0.327

No statistical significant difference in the values signifies that the P. lobata does not328

partition its resources due to the substrate conditions. Rather it follows the optimal329

partitioning theory (Gedroc, McConnaughay, & Coleman, 1996). Maintaining an330

optimal BGB:AGB ratio of this species can be explained by its nitrogen-fixing capa-331

bility which enables this plant to grow well in nutrient-deficit substrates (Markham332

& Zekveld, 2007). Asaeda et al. (2016) reported that the nitrogen-fixing capacity333

of P. lobata increases when the availability of inorganic nitrogen in soil decreases334

and vice versa. Therefore, it can be assumed that this plant compensated the low335

soil TN by increasing its nitrogen-fixing capability in Fuchu and thus the BGB:AGB336

did not change. P. lobata accumulates its resources in the underground rhizome sys-337

tem before senescence and uses stored resources for flushing shoots in early spring.338

This phenology can explain the higher BGB:AGB ratio at the early and later growth339

stages.340

In comparison to Pueraria lobata, Sicyos angulatus has much less biomass turnover.341

This is an annual vine and propagates though seeds. Therefore, it does not accumu-342

late its resources in underground organs or roots. It has a very shallow and superfi-343

cial root system and cannot move effectively through the Fuchu hard soil to forage344

nutrients and moisture. Therefore, at the Fuchu sites, its biomass drastically reduced345

in comparison to the Ohguri site. Since this species does not adjust the BGB:AGB ra-346

tio depending on the nutrient availability, its biomass production is greatly affected347

by the soil conditions.348

It appeared that P. lobata, due to its nitrogen fixing property and the capabil-349

ity to extend root to the deeper zone of the soil, could grow on soil with varying350

range of D25, moisture and nutrients. The S. angulatus, however, grew only on fine351

soils. Therefore, we are unclear whether it’s similar resource partitioning behavior352

in nutrient-poor and rich soils was due to its trait or succession mechanism, which353

has been studied elsewhere (Asaeda, Rashid, Kotagiri, & Uchida, 2011). Many inva-354

sive plants have increased rates of decomposition and nutrient cycling and thereby355

improve the habitat by incorporating organic matter into the substrate (Allison &356

Vitousek, 2004; Dassonville et al., 2008).357

The nutrients and carbohydrate concentrations in the Pueraria lobata tissues358

(leaf, stem and root) did not vary between the Fuchu and Ohguri sites, except for the359

micronutrients (Cu, Zn and Na). Although the micronutrient concentrations varied360

between Fuchu and Ohguri, the pattern did not match the soil nutrient variations361
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of the sites. This results were also reflected in the NMDS analyses of plant per-362

formance data for two sites (Fuchu and Ohguri) (Figure 8). Pueraria lobata biplot363

(stress=0.13) had much overlapping than that of Sicyos angulatus (stress=0.07).364

Some authors (for example, Dassonville et al., 2008; Vanderhoeven, Dassonville, &365

Meerts, 2005) have reported that many invasive plants grown in nutrient-deficit soil366

uptake higher amount of nutrients than those grown in comparatively more fertile367

soil and thus contribute to enriching the top soil upon degradation, while others368

argue that invasive plants bring about soil improvement by incorporating a large369

amount of organic matter.370

The findings of this study suggest that flooding frequency in a riparian habitat371

governs soil characteristics and affects plant growth. However, all invasive plants372

growing on frequently disturbed riverbanks do not follow the similar pattern of nu-373

trient acquisition and allocation, and growth. Rather their performance in such374

habitat is mostly dependent on their phenological and physiological traits.375
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Figure captions

Figure 1: Location of study area (Fuchu and Ohguri). The rectangle on the inset
map shows the position of the study locations in Japan.
File Name:fig1

Figure 2: Soil characteristics of the study sites. The top, middle and bottom mar-
gins of the box represent third quartile, median and first quartile, respectively
(n=21). The whiskers represent data range while the black dots are data out-
liers. Double asterisk (**) in a plot indicates that the respective soil character-
istic differs significantly (p<0.01) between Fuchu and Ohguri sites. OM, TC,
TP and TN designate organic matter, total carbon, total phosphorus and total
nitrogen, respectively.
File Name:fig2

Figure 3: Seasonal variation of above and below-ground biomass production of
Pueraria lobata and Sicyos angulatus at the study sites. Error bars indicate
standard deviation (n = 3). ‘Pue’, ‘Sic’, AGB and BGB stand for P. lobata,
S. angulatus, above ground biomass, and below ground biomass, respectively.
BGB/AGB designates the ratio of BGB and AGB.
File Name:fig3

Figure 4: Total nitrogen (TN), total phosphorus (TP) and total carbon (TC) con-
centrations of Pueraria lobata and Sicyos angulatus tissues collected from study
sites. Error bars indicate standard deviation (n = 9). Double asterisk (**) in a
plot indicates that the values differ significantly (p<0.01) between Fuchu and
Ohguri sites.
File Name:fig4

Figure 5: Micronutrient (copper (Cu), zinc (Zn) and sodium (Na)) concentrations
of Pueraria lobata and Sicyos angulatus tissues collected from study sites. Error
bars indicate standard deviation (n = 9). Single (*) and double asterisks (**)
in a plot indicate that the values differ significantly at p<0.05 and p<0.01,
respectively between Fuchu and Ohguri sites.
File Name:fig5

Figure 6: Concentrations of carbohydrate fractions (starch, total non-structural car-
bohydrate (TNC) and water soluble carbohydrate (WSC)) in Pueraria lobata
and Sicyos angulatus tissues collected from study sites. Error bars indicate
standard deviation (n = 9). Single asterisk (*) in a plot indicate that the val-
ues differ significantly at p<0.05 between Fuchu and Ohguri sites.
File Name:fig6

Figure 7: Total chlorophyll concentration (chl) in Pueraria lobata and Sicyos angu-
latus leaves collected from study sites. Error bars indicate standard deviation
(n = 9). The bars in April and November are missing because no S. angulatus
plant grew in these months. Single asterisk (*) in a plot indicate that the val-
ues differ significantly at p<0.05 between Fuchu and Ohguri sites.
File Name:fig7



Figure 8: Nonmetric Multidimensional Scaling (NMDS) based on average values of
tissue nutrient and carbohydrate contents, and biomass data of Pueraria lobata
and Sicyos angulatus of two study sites. Bray-Curtis similarity as the pair wise
distances among samples was used for grouping. The label is situated at the
centroid of each convex hull grouping the sites. Study sites are connected to
the cluster centroids by a line using the functions ‘ordispider’ and ‘ordihull’
(statistical package ‘Vegan’).
File Name:fig8

Table 1: Annual total nutrient uptake by individual Pueraria lobata and Sicyos angulatus
plants from soil (n=3).†

TN (g) TP (g) TC (g) Cu (mg) Zn (mg) Na (mg) TN:TP‡

Pueraria Fuchu 23.36±31.9 1.63±0.22 315.6±53.6 0.10±0.02 0.30±0.23 2.76±0.33 18.99±2.92
Ohguri 28.46±4.06 2.09±0.13 378.3±52.1 0.12±0.02 0.44±0.53 4.32±0.69 18.43±8.74

Sig. level p=0.80 p=0.04* p=0.22 p=0.29 p=0.70 p=0.02* p=0.92

Sicyos Fuchu 0.42±0.05 0.05±0.001 6.33±0.93 0.002±0.0 0.004±0.0 0.063±0.0 9.59±1.99
Ohguri 79.77±13.2 8.47±2.32 875.9±209.10.31±0.05 0.71±0.08 9.15±1.73 11.56±1.16

Sig. level p<0.01** p<0.01** p<0.01** p<0.01** p<0.01** p<0.01** p=0.21
† Asterisk (*) and double asterisk (**) associated with p-value of a indicate that the mean difference is

statistically significant at 95% and 99% level of significance, respectively, as per t-test.
‡ TN = total nitrogen, TP = total phosphorus, TC = total carbon, TN:TP= leaf TN:TP ratio
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