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Abstract

We provide an explicit analytical representation for Euler type sums of
harmonic numbers with multiple arguments. We also explore the represen-
tation of integrals with logarithmic and hypergeometric integrand in terms
of the polygamma function and other special functions. The integrals in
question will be associated with harmonic numbers of positive terms. A
few examples of integrals will be given an identity in terms of some special
functions including the Riemann zeta function.
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1. Introduction

The study of the representation of infinite series in closed form goes back
to antiquity, and it was the genius Euler who put the investigation of the
analysis of series on a firm foundation. The celebrated Basel problem in-
troduced the zeta function and Euler went on to represent binomial and

harmonic number series of the type
∑

n≥1
H

(m)
n
nq in closed form. The famous

Euler recurrence expression states

2
∑
n≥1

Hn

nm
= (m+ 2) ζ (m+ 1)−

m−2∑
j=1

ζ (j + 1) ζ (m− j) ,

see [4]. Euler’s harmonic number series have been extended and variations
have been investigated by [2], [5], [10], [15], [19], [24] and many others.
Binomial, inverse binomial and harmonic number series are of interest to
physics and have been studied in order to perform calculations of higher
order corrections to scattering processes in particle physics, see [9], [22], [28]
and [45]. In [1], the authors explore the algorithmic and analytic properties
of so-called generalized harmonic sums systematically, in order to compute
the massive Feynman integrals which arise in quantum field theories and in
certain combinatorial problems. Hence there is great motivation to study
the representation of Euler series in closed form: a good account on closed
form, what they are and why we care has been eloquently enunciated in
[11]. There exists, in the literature, see [14], [23], [33] results on sums of the
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form
∑

n≥1
H

(m)
n

n

(
n+ k
k

) , but very many fewer results incorporating series of

harmonic numbers with multiple argument H
(m)
pn . A search of the literature

yields no closed form representation of T (k,m, p) =
∑

n≥1
H

(m)
pn

n

(
n+ k
k

) for

p ≥ 3. In this paper we will develop analytical representations for Euler
type series with inverse binomial coefficients and harmonic numbers of the
type T (k,m, p) . The extra parameter p serves to unify a large number of
previously published results, see [34], [46], [47] and references therein. Also,
by association, we are able to demonstrate a representation for integrals of

the type
∫ 1
0

(1−xp)
xp(1−x) lnm−1 x ln (1− xp) dx.

2. Preliminaries

We define a harmonic number with multiple argument as Hpn for p ∈
N\ {1} ; N := {1, 2, 3, · · · }, the set of natural numbers. For p = 1, we write
Hn as the nth harmonic number with unitary argument. In this paper we will
develop analytical representations for Euler type sums with inverse binomial
coefficients of the type

T (k,m, p) =
∑
n≥1

H
(m)
pn

n

(
n+ k
k

) (2.1)

for (m, k, p) ∈ N. Furthermore we discuss analytical representations of the
integral ∫ 1

0

xp lnm−1 x

1− x 2F1

[
1, 1

2 + k

∣∣∣∣∣xp
]
dx (2.2)

for (m, k, p) the set of positive integers and where 2F1

[
·, ·
·

∣∣∣∣∣ z
]

is the

classical Gauss hypergeometric function. Let R and C denote, respectively
the sets of real and complex numbers and let N0 := N ∪ {0} . The Riemann
zeta function is defined, for s ∈ C with < (s) > 1 by ζ (s) =

∑
n≥1

1
ns . For

q ∈ N we define the generalized harmonic number of order m as

H(m)
q = ζq (m) =

q∑
j=1

1

jm
.

Let

Hn =

n∑
r=1

1

r
= γ + ψ (n+ 1) , H0 := 0 (2.3)
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be the nth harmonic number, where γ denotes the Euler-Mascheroni con-
stant and ψ(z) is the Digamma (or Psi) function defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)

Γ(z)
or log Γ(z) =

∫ z

1
ψ(t) dt.

In the case of non-integer values of n such as (for example) a value ρ ∈ R,
the generalized harmonic numbers H

(m+1)
ρ may be defined, in terms of the

polygamma functions

ψ(n)(z) :=
dn

dzn
{ψ(z)} =

dn+1

dzn+1
{log Γ(z)} (n ∈ N0)

by

H(m+1)
ρ = ζ (m+ 1) +

(−1)m

m!
ψ(m) (ρ+ 1) (2.4)

ρ ∈ R\ {−1,−2,−3, ...} ; m ∈ N

where ζ (z) is the Riemann zeta function. Whenever we encounter harmonic

numbers of the form H
(m)
ρ at admissible real values of ρ, they may be evalu-

ated by means of this known relation (2.4). In the exceptional case of (2.4)

when m = 0, we may define H
(1)
ρ by

H(1)
ρ = Hρ = γ + ψ (ρ+ 1) , ρ ∈ R\ {−1,−2,−3, ...}

We assume that H
(m)
0 = 0, m ∈ N. Some results, that are published, on

Euler sums with multiple argument of the type (2.1) are, from [13]

∑
n≥1

(
2n
n

)
H2n

4n (2n+ 1)
= G

where G = 0.91596... is the Catalan constant, and

∑
n≥1

(
2n
n

)
H2n

8n
=

√
2

2
ln

(
3 + 2

√
2

2

)
.

The following identity is obtained in [36],∑
n≥1

H
(2)
2n

(4n+ 1)3 (4n− 1)3
=

35

288
ζ (3) +

5π3

1152
− 259

432
ζ (2) +

7π

27
− 29

54
G+

5

9
ln 2,

and [12] obtained

∑
n≥1


(

2n
n

)
4n (2n− 1)


2

H2n =
1

π
(6− 12 ln 2 + 4G) .
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In the following theorems we encounter harmonic numbers at possible ra-

tional values of the argument, of the form H
(α)
r
q

they maybe evaluated by

an available relation in terms of the polygamma function ψ(α) (z) or, for
rational arguments z = r

q , and we also define

H
(1)
r
q

= γ + ψ

(
r

q
+ 1

)
, and H

(α)
0 = 0.

The evaluation of the polygamma function ψ(α)
(
r
a

)
at rational values of

the argument can be explicitly done via a formula as given by Kölbig [29],
or Choi and Cvijovic [16] in terms of the polylogarithmic or other special
functions. Polygamma functions at negative rational values of the argument
can also be explicitly evaluated, some specific values are listed in the books
[42], and [44]. Some results for sums of harmonic numbers may be seen in
the works of [17], [35], [49] and references therein.

The following lemma is proved in [37].

Lemma 1. Let k and m be positive integers. Then:

B (k,m) =
∑
n≥1

H
(m)
n

n

(
n+ k
k

)

=
1

k
ζ (m) +

(−1)m

(1 + k) (m− 1)!

∫ 1

0

x lnm−1 x

1− x 2F1

[
1, 1

2 + k

∣∣∣∣∣x
]
dx

(2.5)

= ζ (m+ 1) +
k∑
r=1

(−1)r+1

(
k
r

)
∑r−1

j=1
(−1)m+1Hj

jm

+
∑m

s=2 (−1)m−sH
(m+1−s)
r−1 ζ (s)

 .

(2.6)

We now prove the following Lemma which will be required in the proof
of the main Theorem.

Lemma 2. Let (k,m, p) ∈ N and j = 1, 2, 3, ..., p− 1. Then:

W (j, k,m, p) =
(−1)m

(1 + k) (m− 1)!

∫ 1

0

x
1− j

p lnm−1 x

1− x 2F1

[
1, 1

2 + k

∣∣∣∣∣x
]
dx

+
1

k
ζ (m) (2.7)
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=
∑
n≥1

H
(m)

n− j
p

n

(
n+ k
k

)

=

H
(m)

− j
p

k
+ (−1)m

−H− j
p
H

(m)
j
p
−1

+
m−1∑
t=1

ψ(t)
(

1− j
p

)
t!
(
j
p

)m−t
 (2.8)

+ (−1)m
k∑
r=1

(−1)r+1

(
k
r

)
H− j

p
H

(m)
j
p
+r−1

−
∑r−1

µ=1
Hµ(

µ+ j
p

)m

+
∑r−1

µ=1

∑m−1
t=1

ψ(t)
(
1− j

p

)
t!
(
µ+ j

p

)m−t

 .

In the case when j = 0, (2.7) reduces to (2.5).

Proof. Let h
(m)
n = H

(m)
n−a −H

(m)
−a and put a = j

p , now consider the following
expansion:

∞∑
n=1

h
(m)
n

n

(
n+ k
k

) =

∞∑
n=1

k! h
(m)
n

n
k∏
r=1

(n+ r)

=
∞∑
n=1

k! h
(m)
n

n (n+ 1)k+1

.

Now
∞∑
n=1

h
(m)
n

n

(
n+ k
k

) =
∞∑
n=1

k! h
(m)
n

n

k∑
r=1

(
Ar
n+ r

)
(2.9)

where

Ar = lim
n→−r

n+ r
k∏

r=1
n+ r

=
(−1)r+1 r

k!

(
k
r

)
. (2.10)

For an arbitrary positive sequence Xk,p the following identity holds

∞∑
k=0

n∑
p=0

Xp,k =

∞∑
k=0

∞∑
p=0

Xp,k+p
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hence from (2.9)

∞∑
n=1

k! h
(m)
n

n

k∑
r=1

(
Ar
n+ r

)
=

k∑
r=1

(−1)r+1 r

(
k
r

) ∞∑
n=1

1

n (n+ r)

×
n∑

λ=1

1

(λ− a)m

where

h(m)
n = H

(m)
n−a −H

(m)
−a =

n∑
λ=1

1

(λ− a)m
.

∞∑
n=1

h
(m)
n

n

(
n+ k
k

) =
k∑

r=1

(−1)r+1 r

(
k
r

) ∞∑
λ=1

1

(λ− a)m

×
∞∑
n=0

1

(n+ λ) (n+ λ+ r)

=
k∑

r=1

(−1)r+1 r

(
k
r

) ∞∑
λ=1

1

(λ− a)m

[
ψ (λ+ r)− ψ (λ)

r

]
.

Since we notice that

ψ (λ+ r)− ψ (λ) =
r−1∑
µ=0

1

µ+ λ

then

∞∑
n=1

h
(m)
n

n

(
n+ k
k

) =

k∑
r=1

(−1)r+1

(
k
r

) r−1∑
µ=0

∞∑
λ=1

1

(λ− a)m (µ+ λ)

=

k∑
r=1

(−1)r+1

(
k
r

)
∑∞

λ=1
1

λ(λ−a)m

+
∑r−1

µ=1

∑∞
λ=1

1
(λ−a)m(µ+λ)

 .

Simplifying

∞∑
n=1

h
(m)
n

n

(
n+ k
k

) = (−1)m
k∑

r=1

(−1)r+1

(
k
r

)[
H−a
am

+
m−1∑
t=1

ψ(t) (1− a)

t!am−t

]
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+ (−1)m
k∑

r=1

(−1)r+1

(
k
r

)r−1∑
µ=1

(
H−a −H−µ

(µ+ a)m
+

m−1∑
t=1

ψ(t) (1− a)

t! (µ+ a)m−t

)

= (−1)m
(
H−a
am

+

m−1∑
t=1

ψ(t) (1− a)

t!am−t

)

+ (−1)m
k∑

r=1

(−1)r+1

(
k
r

) r−1∑
m=1


H−a

(
H

(m)
a+r−1 −H

(m)
a

)
−
∑r−1

µ=1
Hµ

(µ+a)m

+
∑r−1

µ=1

∑m−1
t=1

ψ(t)(1−a)
t!(µ+a)m−t

 .

Now
∞∑
n=1

h
(m)
n

n

(
n+ k
k

) = (−1)m
(
H−a
am
−H−aH(m)

a +
m−1∑
t=1

ψ(t) (1− a)

t!am−t

)

+ (−1)m
k∑

r=1

(−1)r+1

(
k
r

) r−1∑
m=1

 H−aH
(m)
a+r−1 −

∑r−1
µ=1

Hµ
(µ+a)m

+
∑r−1

µ=1

∑m−1
t=1

ψ(t)(1−a)
t!(µ+a)m−t


and since, from

∞∑
n=1

h
(m)
n

n

(
n+ k
k

) =

∞∑
n=1

H
(m)
n−a −H

(m)
−a

n

(
n+ k
k

) =

∞∑
n=1

H
(m)
n−a

n

(
n+ k
k

) − H
(m)
−a
k

then
∞∑
n=1

H
(m)
n−a

n

(
n+ k
k

) = (−1)m
(
H−a
am
−H−aH(m)

a +
m−1∑
t=1

ψ(t) (1− a)

t!am−t

)
+
H

(m)
−a
k

+ (−1)m
k∑

r=1

(−1)r+1

(
k
r

) r−1∑
m=1

 H−aH
(m)
a+r−1 −

∑r−1
µ=1

Hµ
(µ+a)m

+
∑r−1

µ=1

∑m−1
t=1

ψ(t)(1−a)
t!(µ+a)m−t

 ,

and the identity (2.8) follows. �

The next few theorems relate the main results of this investigation, namely
the closed form representation of the Euler sum (2.1) and integral (2.2).
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3. The main theorem

The following main Theorem is proved

Theorem 1. Let (k,m, p) ∈ N , then

T (k,m, p) =
∞∑
n=1

H
(m)
pn

n

(
n+ k
k

)

=
1

k
ζ (m) +

(−1)m

(m− 1)! (1 + k)

∫ 1

0

xp lnm−1 x

1− x 2F1

[
1, 1

2 + k

∣∣∣∣∣xp
]
dx (3.1)

=

(
pm−1 − 1

kpm−1

)
ζ (m) +

1

pm
B (k,m) +

1

pm

p−1∑
j=1

W (j, k,m, p) (3.2)

where B (k,m) is given by (2.6) and W (j, k,m, p) is given by (2.8).

Proof. For the integral representation (3.1), we recall that for m ∈ N

H(m+1)
n =

(−1)m

m!

∫ 1

0

(1− xpn) lnm x

1− x
dx.

We can now write
∞∑
n=1

H
(m)
pn

n

(
n+ k
k

) =
(−1)m−1

(m− 1)!

∫ 1

0

lnm−1 x

1− x

∞∑
n=1

(1− xpn)

n

(
n+ k
k

)dx

=
(−1)m−1

(m− 1)!

∫ 1

0

lnm−1 x

1− x

(
1

k
− xp

1 + k
2F1

[
1, 1

2 + k

∣∣∣∣∣xp
])

dx

=
1

k
ζ (m) +

(−1)m

(m− 1)! (1 + k)

∫ 1

0

xp lnm−1 x

1− x 2F1

[
1, 1

2 + k

∣∣∣∣∣xp
]
dx,

hence (3.1) follows. Now for p ∈ N and from the properties of the polygamma
function with multiple argument

ψ(n)(pz) = δn,0 ln p+
1

pn+1

p−1∑
r=0

ψ(n)(z +
r

p
),

where δn,0 is the Kronecker delta, we are able to rewrite, in terms of harmonic
numbers, and using the properties of the polygamma function, as

H(m)
pn =

(
pm−1 − 1

pm−1

)
ζ (m) +

1

pm
H(m)
n +

1

pm

p−1∑
j=1

H
(m)

n− j
p

.
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The harmonic numbers H
(m)

n− j
p

may be thought of as shifted harmonic num-

bers, other results on summing shifted harmonic numbers are published in
[38], [39] and [41]. Now summing over the integers n

∞∑
n=1

H
(m)
pn

n

(
n+ k
k

) =

∞∑
n=1

1

n

(
n+ k
k

)

(
pm−1−1
pm−1

)
ζ (m) + 1

pmH
(m)
n

+ 1
pm
∑p−1

j=1H
(m)

n− j
p



=

(
pm−1 − 1

pm−1

)
ζ (m)

∞∑
n=1

1

n

(
n+ k
k

) +
1

pm

∞∑
n=1

H
(m)
n

n

(
n+ k
k

)

+
1

pm

p−1∑
j=1

∞∑
n=1

H
(m)

n− j
p

n

(
n+ k
k

)

=

(
pm−1 − 1

kpm−1

)
ζ (m) +

1

pm
B (k,m) +

1

pm

p−1∑
j=1

W (j, k,m, p)

which is the result (3.2). �

We give an example to demonstrate the power of the above Theorem.

Example 1.

T (2, 4, 4) =

∞∑
n=1

H
(4)
4n

n

(
n+ 2

2

) =
1

256
ζ (5) +

787

256
ζ (4)− 259667

134400
ζ (3) +

599π3

11025

+
53526239

32928000
ζ (2) +

59953072π

121550625
− 2217728

1157625
G

−
ψ(3)

(
1
4

)
630

− 383424682

121550625
ln 2 +

208307761

31116960000
,

T (2, 7, 2) =
∞∑
n=1

H
(7)
2n

n

(
n+ 2

2

) =
1

128
ζ (8) +

505

384
ζ (7)− 223

128
ζ (6) +

6421

3456
ζ (5)

−6373

3456
ζ (4) +

53965

31104
ζ (3)− 46349

31104
ζ (2) +

4372

2187
ln 2− 2315

279936
,
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from which we obtain the integral identity∫ 1

0

x2 ln6 x

1− x 2F1

[
1, 1

4

∣∣∣∣∣x2
]
dx = −45ζ (8)

4
−4695ζ (7)

4
+

10035ζ (6)

4
−32105ζ (5)

12

+
31865ζ (4)

12
− 269825ζ (3)

108
+

231745ζ (2)

108
− 699520 ln 2

243
+

11575

972
.

The following proposition follows directly from Theorem 1 and is a com-
ment on the evaluation of the integral in (3.1).

Proposition 1. For (k,m, p) ∈ N,

I (k,m, p) =
(−1)m

(m− 1)! (1 + k)

∫ 1

0

xp lnm−1 x

1− x 2F1

[
1, 1

2 + k

∣∣∣∣∣xp
]
dx

=
1

pm
B (k,m) +

1

pm

p−1∑
j=1

W (j, k,m, p)− 1

kpm−1
ζ (m)

where B (k,m) is given by (2.6) and W (j, k,m, p) is given by (2.8). An
illustrative examples follows,

I (2, 4, 3) =
1

18

∫ 1

0

x3 ln3 x

1− x 2F1

[
1, 1

4

∣∣∣∣∣x3
]
dx

=
231361

12960000
− 2313

8000
ψ′(

1

3
)− 1

360
ψ(3)(

1

3
)− 507357

320000
ln 3

+
1

81
ζ (5) +

277

162
ζ (4)− 53303

32400
ζ (3) +

97
√

3π3

5400
− 1709

648
ζ (2) +

49877
√

3π

320000
.

The case k = 1 is interesting in its own right and therefore we have the
following result.

Corollary 1. Under the assumptions of Theorem 1, with k = 1, we have,

T (1,m, p) =
∞∑
n=1

H
(m)
pn

n (n+ 1)

=
(−1)m

(m− 1)!

∫ 1

0

(1− xp) lnm−1 x ln (1− xp)
xp (1− x)

dx (3.3)
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=
1

pm
ζ (m+ 1) +

1

pm

m−1∑
t=1

(−1)1+t ptH
(t)
p−1ζ (m+ 1− t) (3.4)

+
1

pm

p−1∑
j=1

m∑
t=1

(−1)t
(
p

j

)t
H

(m+1−t)
− j
p

=
1

pm
ζ (m+ 1) + 3pH

(4)
p−1 −

1

pm

m−1∑
t=1

(−p)tH(t)
p−1ζ (m+ 1− t) (3.5)

+
1

pm

p−1∑
j=1

m∑
t=1

(
p

j

)t
(−1)mH

(m+1−t)
j
p
−1

(
1 + (−1)m+1−t

)
ζ (m+ 1− t)

+ (−1)tπ
(m−t)!

dm−t

dzm−t (cot (πz))

∣∣∣∣z= j
p

 .

Proof. From (3.1)

T (1,m, p) =
∞∑
n=1

H
(m)
pn

n (n+ 1)

= ζ (m) +
(−1)m

2 (m− 1)!

∫ 1

0

xp lnm−1 x

1− x 2F1

[
1, 1

3

∣∣∣∣∣xp
]
dx

= ζ (m) +
(−1)m

(m− 1)!

∫ 1

0

lnm−1 x

1− x

(
1 +

(1− xp)
xp

ln (1− xp)
)
dx,

and since
∫ 1
0

lnm−1 x
1−x dx = (−1)m−1 (m− 1)!ζ (m) then (3.3) follows. From

(3.2)

T (1,m, p) =

(
pm−1 − 1

pm−1

)
ζ (m) +

1

pm
B (1,m) +

1

pm

p−1∑
j=1

W (j, 1,m, p)

=

(
pm−1 − 1

pm−1

)
ζ (m)+

1

pm
ζ (m+ 1)+

(−1)m

pm

p−1∑
j=1

(
H− j

p

(
H

(m)
j
p

−H(m)
j
p
−1

)
+H

(m)

− j
p

)

+
(−1)m

pm

p−1∑
j=1

m−1∑
t=1

(−1)t
(
p

j

)m−t(
H

(1+t)

− j
p

− ζ (1 + t)

)
.

since
p−1∑
j=1

H
(m)

− j
p

= −p
(
pm−1 − 1

)
ζ (m) ,
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then

T (1,m, p) =
1

pm
ζ (m+ 1) + (−1)m

p−1∑
j=1

1

jm
H− j

p

+
(−1)m

pm

m−1∑
t=1

(−1)1+t pm−tH
(m−t)
p−1 ζ (1 + t)

+
(−1)m

pm

p−1∑
j=1

m−1∑
t=1

(−1)t
(
p

j

)m−t
H

(1+t)

− j
p

.

Now by making a change in the summation index t we obtain

T (1,m, p) =
1

pm
ζ (m+ 1) + (−1)m

p−1∑
j=1

1

jm
H− j

p

+
1

pm

m−1∑
t=1

(−1)1+t ptH
(t)
p−1ζ (m+ 1− t)

+
1

pm

p−1∑
j=1

m−1∑
t=1

(−1)t
(
p

j

)t
H

(m+1−t)
− j
p

and hence the result (3.4) follows. From the reflection relation of the
polygamma function, for υ ∈ N

ψ(υ) (1− z) + (−1)υ+1 ψ(υ) (z) = (−1)υ π
dυ

dzυ
(cot (πz))

we have, in terms of harmonic numbers

H
(m+1−t)
− j
p

= (−1)m−tH
(m+1−t)
j
p
−1

+
(

1 + (−1)m+1−t
)
ζ (m+ 1− t)

+
π

(m− t)!
dm−t

dzm−t
(cot (πz))

∣∣∣∣z= j
p

hence

T (1,m, p) =
1

pm
ζ (m+ 1) +

1

pm

m−1∑
t=1

(−1)1+t ptH
(t)
p−1ζ (m+ 1− t)

+
1

pm

p−1∑
j=1

m∑
t=1

(
p

j

)t
(−1)mH

(m+1−t)
j
p
−1

(
1 + (−1)m+1−t

)
ζ (m+ 1− t)

+ (−1)tπ
(m−t)!

dm−t

dzm−t (cot (πz))

∣∣∣∣z= j
p

 ,
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hence (3.5) follows. The identity (3.5) is noteworthy because it introduces
finite cotangent and cosecant sums, which is a separate field of study in
itself. Finite cotangent and cosecant sums of the form

p−1∑
r=1

cotm
(
πr

p

)
and

p−1∑
r=1

cscm
(
πr

p

)
,

and their variations, have been investigated, see [3], [6], [20], [21], [25], [26]
and [27]. Bettin and Conrey [7] prove a certain reciprocity formula for the
cotangent sum

p−1∑
r=1

r

p
cot

(
πrh

p

)
. (3.6)

The sum arises in connection with the Nyman-Beurling approach to the Rie-
mann hypothesis. In another paper Bettin [8] give some simple arguments
that confirm Maier and Rassias’s [32] results on a distribution property and
moments of the cotangent sum (3.6), a follow on paper [31] investigates the
rate of growth of moments. The Rassias paper [30] also has some results
on (3.6) related to the zeros of the Estermann zeta function. Finally, Chu
and Marini [18] give many interesting examples of trigonometric sums. The
author has not seen an investigation of

p−1∑
r=1

rq cotm
(
πr

p

)
and

p−1∑
r=1

rq cscm
(
πr

p

)
,

q ∈ Z\ {0} ,m ∈ N, in the published literature. The general integrals (3.1)
and (3.3) cannot be evaluated with mathematical packages such as Mathe-
matica. �

An example follows.

Example 2. From (3.3) we have

T (1, 5, 4) =
∞∑
n=1

H
(5)
4n

n (n+ 1)
=

1

1024
ζ (6) +

4061

1536
ζ (5)− 975

256
ζ (4)

−2705

1728
ζ (2) +

6461

3456
ζ (3)− 5

1152
π5 − 13

216
π3 − 121

243
π

+
3985

1296
ln 2 +

1

432
ψ(3)

(
1

4

)
+

160

81
G,

and

T (1, 5, 4) = − 1

24

∫ 1

0

(
1− x4

)
ln4 x ln

(
1− x4

)
x4 (1− x)

dx.
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The closed form (3.2) of the integral (3.1) is an exact identity which is
expressed in finite sums of harmonic numbers and special functions. The
following Theorem gives a bound on the integral (3.1).

Theorem 2. Let k, p ∈ N and m integer ≥ 2, then,

H
(m)
p

1 + k
< T (k,m, p) ≤ 1

k
ζ (m) +

β

p (m− 1)!
ψ′ (p+ 1) (3.7)

where

T (k,m, p) =
1

k
ζ (m) +

(−1)m

(m− 1)! (1 + k)

∫ 1

0

xp lnm−1 x

1− x 2F1

[
1, 1

2 + k

∣∣∣∣∣xp
]
dx

=

∞∑
n=1

H
(m)
pn

n

(
n+ k
k

) .
Here β =

∣∣∣α lnm−1 α
1−α

∣∣∣ and α ∈ (0, 1) is the unique zero of the non algebraic

equation lnx+ (1−m)x− (1−m) = 0.

Proof. The infinite sum T (k,m, p) is one of positive terms, monotonic in-

creasing and therefore

T (k,m, p) >
H

(m)
p

1 + k
.

Consider the integral inequality∫ x1

x0

|f (x) g (x)| dx ≤ sup
x∈[x0,x1]

|f (x)|
∫ x1

x0

|g (x)| dx

for integrable functions f (x) and g (x) and 0 ≤ x0 < x1 ∈ R. Now

sup
x∈[x0,x1]

|f (x)| = sup
x∈[0,1]

∣∣∣∣α lnm−1 α

1− α

∣∣∣∣ = β,

α ∈ (0, 1) is the unique zero of the non algebraic equation

lnx+ (1−m)x− (1−m) = 0.

Also

∫ x1

x0

|g (x)| dx =

∫ 1

0

∣∣∣∣∣xp−1 2F1

[
1, 1

2 + k

∣∣∣∣∣xp
]∣∣∣∣∣ dx =

(1 + k)ψ′ (1 + k)

p
,

therefore

H
(m)
p

1 + k
< T (k,m, p) ≤ 1

k
ζ (m) +

(k + 1)β

p (k + 1) (m− 1)!
.ψ′ (1 + k)

and (3.7) follows. �
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Remark 1. We have expressed Euler series of harmonic numbers with mul-
tiple argument and inverse binomial coefficients in closed form. Introducing

the parameter p in the harmonic number H
(m)
pn has allowed for the unifica-

tion of a number of published results. It may be possible to further consider

quadratic harmonic numbers of the form
(
H

(m)
pn

)2
, and obtain some closed

form representations, thereby generalizing the results of [43] and [48].
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[9] Blümlein, J. Structural relations between nested harmonic sums. Nuclear Phys. B

Proc. Suppl. 183 (2008), 232–237.
[10] Borwein, D. Borwein, J. M. and Girgensohn, R. Explicit evaluation of Euler sums.

Proc. Edinburgh Math. Soc. 38 (1995), no. 2, 277–294.
[11] Borwein, J. M. and Crandall, R. E. Closed forms: what they are and why we care.

Notices Amer. Math. Soc. 60 (2013), no. 1, 50–65.
[12] Campbell, J. M. and Sofo, A. An integral transform related to series involving alter-

nating harmonic numbers. Integral Transforms Spec. Funct. 28 (2017), no. 7, 547–559.
[13] Chen, H. Interesting series associated with central binomial coefficients, Catalan num-

bers and harmonic numbers. J. Integer Seq. 19 (2016), no. 1, Article 16.1.5.
[14] Chen, Kwang-Wu. Generalized harmonic numbers and Euler sums. Int. J. Number

Theory 13 (2017), no. 2, 513–528.
[15] Choi, J. Summation formulas involving binomial coefficients, harmonic numbers, and

generalized harmonic numbers. Abstr. Appl. Anal. (2014), Art. ID 501906, 10 pp.
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