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Abstract. In this paper, the inequalities for the weighted mean of weakly r -preinvex functions
on an invex set are established. As applications, inequalities between the two-parameter mean of
weakly r -preinvex functions and extended mean values are given.

1. Introduction

The concepts of means are very important notions in mathematics. For example,
some definitions of norms are often special means and have explicit geometric mean-
ings [17], and have been applied in fields of heat conduction, chemistry [20], electro-
statics [14] and medicine [4].

Recall the power mean Mr(x,y;λ ) of order r of positive numbers x,y which is
defined by

Mr(x,y;λ ) =

{
(λxr +(1−λ )yr)

1
r , if r �= 0,

xλ y1−λ , if r = 0,

see [7].
In [15, 16], Qi gave the following weighted mean values of a positive function f

defined on the interval between x and y with two parameters p,q ∈ R and nonnegative
weight w , which is not equivalent 0, by

Mw, f (p,q;x,y)

=

⎧⎪⎨
⎪⎩

(∫ y
x w(t) f p(t)dt

/∫ y
x w(t) f q(t)dt

) 1
(p−q)

, if (p−q)(x− y) �= 0,

exp
(∫ y

x w(t) f q(t) ln f (t)dt
/∫ y

x w(t) f q(t)dt
)
, if p = q,x �= y.

and Mw, f (p,q;x,x) = f (x) . Let x,y,s ∈ R , and w and f be positive and integrable
functions on the closed interval [x,y] . The weighted mean of order s of the function f
on [x,y] with the weight w is defined in [8] as

M[s]( f ,w;x,y) =

⎧⎪⎨
⎪⎩

(∫ y
x w(t) f s(t)dt

/∫ y
x w(t)dt

) 1
s
, if s �= 0,

exp
(∫ y

x w(t) ln f (t)dt
/∫ y

x w(t)dt
)
, if s = 0.
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In addition, M[s]( f ,w;x,x) = f (x) . By taking s = p− q, p,q ∈ R , and replacing
w(t) by w(t) f q(t) in M[s]( f ,w;x,y) , we have that M[p−q]( f ,wf q;x,y)= Mw, f (p,q;x,y) .
It is obvious that the weighted mean M[s]( f ,w;x,y) is equivalent to the generalized
weighted mean values Mw, f (p,q;x,y) . Taking w(t) ≡ 1, the mean Mw, f (p,q;x,y) re-
duces to the two-parameter mean Mp,q( f ;a,b) of a positive function f on [a,b] which
is given in [18].

The classical Hermite-Hadamard inequality for convex functions states that if f :
[a,b]→ R is convex, then

f
(a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2
.

In [19], Sun and Yang extend the following right hand side of Hermite-Hadamard in-
equality to the weighted mean of order s of a positive r -convex function on an interval
[a,b] . They obtain more extensive results than the main results in [5, 12, 13, 18].

THEOREM 1. Let f (t) be a positive and continuous function on the interval [x,y]
with continuous derivative f ′(t) on [x,y] , let w(t) be a positive and continuous func-
tion on the range J of the function f (t) , and let h(t) = t . Then if f is r -convex,

M[s]( f ,w◦ f ;x,y) � M[s](h,whr−1; f (x), f (y)) (1.1)

for any real number s, and if f is r -concave, the inequality is reversed.

In [9], Mohan et al. introduced the definitions of invex sets and preinvex functions.
In [1, 2], Antczak investigated some interesting concept of r -invex and r -preinvex
functions on an invex set and gave a new method to solve nonlinear mathematical pro-
gramming problems. In [10], Noor gave some Hermite-Hadamard inequality for the
preinvex and log-preinvex functions. Moreover, in [21], Wasim Ui-Haq and Javed Iqbal
introduced the Hermite-Hadamard inequality for r -preinvex functions. Quite recently,
in [6], Hwang and Dragomir investigated weakly r -preinvex functions on an invex set
and established some Hermite-Hadamard’s inequalities for a relation of two extended
means.

Recall the following definitions of η -path on an invex set that were introduced by
Antczak in [3]. Let K ⊂ Rn be a nonempty set, η : K×K → Rn and u ∈ K . Then the
set K is said to be invex at u with respect to η , if

u+ λ η(v,u) ∈ K

for every v ∈ K and λ ∈ [0,1] . K is said to be an invex set with respect to η , if K is
invex at each u ∈ K with respect to the same function η . For x ∈ K , a closed and an
open η -paths joining the points u and x = u+ η(v,u) are defined by the notation:

Pux := {u+ λ η(v,u) : λ ∈ [0,1]}
and

P0
ux := {u+ λ η(v,u) : λ ∈ (0,1)},
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respectively. We note that if η(v,u) = v−u , then the set Pux = Puv = {λv+(1−λ )u :
λ ∈ [0,1]} is the line segment with the end points u and v .

Let K ⊂ Rn be a nonempty invex set with respect to η . The class of r -preinvex
functions with respect to η is introduced via power means given by Antczak in [1]. A
function f : K → R+ is said to be r -preinvex with respect to η , if there is a vector-
valued function η : K×K → Rn such that

f (u+ λ η(v,u)) �
{

(λ f (v)r +(1−λ ) f (u)r)
1
r , if r �= 0,

f (v)λ f (u)1−λ , if r = 0.

for every v,u ∈ K and λ ∈ [0,1] . We note that 0-preinvex functions are logarithmic
preinvex and 1-preinvex functions are preinvex functions. It is obvious that if f is
r -preinvex, then f r is a preinvex function for positive r .

A more natural idea of weakly r -preinvex with respect to η is investigated via
power means given by Hwang and Dragomir, see [6]. Let K ⊂ Rn be a nonempty invex
set with respect to η . A function f : K → R+ is said to be weakly r -preinvex with
respect to η , if there is a vector-valued function η : K×K → Rn such that

f (u+ λ η(v,u)) � Mr( f (u+ η(v,u)), f (u);λ )

for every v,u ∈ K and λ ∈ [0,1] . It is clear that if f is weakly r -preinvex, then f r

is weakly preinvex for positive r , if f is weakly 0-preinvex, then log ◦ f is weakly
preinvex, and if f is weakly 1-preinvex, then f is weakly preinvex.

Let K ⊂ Rn be a nonempty invex set with respect to η : K×K → Rn . A function
f : K → R is invex with respect to the same η . If the inequality

f (u+ η(v,u)) � f (v)

holds for any u,v ∈ K , we say that the function f satisfies the Condition D, see [22].
We note that, if f satisfies the Condition D, f is also an r -preinvex function. In [6],
applying the definition of weakly r -preinvex function, Hwang and Dragomire extend
the Hermite-Hadamard inequality that involves a mean of two-parameters for weakly
r -preinvex functions on an invex set.

In this paper, we shall establish the Hermite-Hadamard inequality for the weighted
mean of weakly r -preinvex functions on an invex set. As applications, some inequal-
ities between the two-parameter mean of weakly r -preinvex functions and extended
mean values are given. The results are not only to generalize the Hermite-Hadamard
inequality given in [10, 21], but also to establish the weighted type inequality, given in
[15, 19], for weakly r -preinvex functions on an invex set.
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2. Preliminary definition and lemma

In order to obtain our results, we shall introduce the following new definition re-
lated to a weighted mean for two-parameters on an invex set.

DEFINITION 1. Let K ⊂ Rn be a nonempty invex set with respect to a vector-
valued function η : K×K → Rn and let f ,w : K → R+ be integrable on the η -path Pux

for x = u+ η(v,u) where v,u ∈ K , λ ∈ [0,1] . Set y(λ ) = u+ λ η(v,u) . We define the
weighted mean of the function f (u+ λ η(v,u)) on [0,1] with respect to λ by

Mp,q( f ,w;u,u+ η(v,u)) =

⎧⎪⎪⎨
⎪⎪⎩

(∫ 1
0 w(y(λ )) f p(y(λ ))dλ∫ 1
0 w(y(λ )) f q(y(λ ))dλ

) 1
(p−q)

, if p �= q,

exp
(∫ 1

0 w(y(λ )) f q(y(λ )) ln f (y(λ ))dλ∫ 1
0 w(y(λ )) f q(y(λ ))dλ

)
, if p = q.

In the special case, q = 0, Mp,0( f ,w;u,u+ η(v,u)) = M[p]( f ,w;u,u+ η(v,u)) is
the weighted mean of order p of the function f on [u,u+ η(v,u)] with the weight w .

Let K ⊂ Rn be a nonempty invex set with respect to η : K×K → Rn and v,u∈ K ,
λ ∈ [0,1] . We say that the function η satisfies the Condition C, see [9, 11], if the
following two identities

(i) η(u,u+ λ η(v,u)) = −λ η(v,u)
and

(ii) η(v,u+ λ η(v,u)) = (1−λ )η(v,u)
hold.

In [6], Hwang and Dragomir have given the following lemma for weakly r -preinvex
functions.

LEMMA 1. Let K ⊂ Rn be a nonempty invex set with respect to η : K ×K → Rn

and suppose that η satisfies Condition C. Let u ∈ K and let f : Pux → R for every
v ∈ K , λ ∈ [0,1] and x = u+ η(v,u) ∈ K . Suppose that f is continuous on Pux and
is twice-differentiable on P0

ux and r � 0 . Then f is a weakly r -preinvex function with
respect to η if and only if

r f r−2(u){(r−1)[η(v,u)T ∇ f (u)]2 + f (u)η(v,u)T ∇2 f (u)η(v,u)} � 0

for r > 0 ,

{η(v,u)T ∇2 f (u)η(v,u) f (u)− [η(v,u)T ∇ f (u)]2}/ f 2(u) � 0

for r = 0 .
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3. Main results

In this section, we assume that K ⊂ Rn be a nonempty invex set with respect to a
vector-valued function η : K×K → Rn . Applying the definition and lemma in section
2, we have the following theorem which is our main result.

THEOREM 2. Let f be a weakly r -preinvex function on an invex set K with r � 0 .
Assume that f be a positive and continuous function on Pax and twice-differentiable on
P0

ax for every a,b ∈ K , λ ∈ [0,1] and a < x = a+η(b,a) , and let η satisfy Condition
C. Let m and M be the minimum and maximum of f on Pax , respectively. Further, let
w,h be positive and continuous on [m,M] with h(x) = x , and let g1,g2 : (0,∞)→R and
suppose that g2 is positive and integrable on [m,M] and the ratio g1/g2 is integrable
on [m,M] . If g1/g2 is increasing on [m,M] , then∫ 1

0 w( f (a+ λ η(b,a)))g1( f (a+ λ η(b,a)))dλ∫ 1
0 w( f (a+ λ η(b,a)))g2( f (a+ λ η(b,a)))dλ

(3.1)

�
∫ f (a+η(b,a))

f (a) w(x)hr−1(x)g1(h(x))dx∫ f (a+η(b,a))
f (a) w(x)hr−1(x)g2(h(x))dx

for f (a) �= f (a+η(b,a)); the right-hand side of (3.1) is defined by g1( f (a))/g2( f (a))
for f (a) = f (a+η(b,a)) . If g1/g2 is decreasing, then the inequality (3.1) is reversed.

Proof. Let φ(λ ) = f r(a+λ η(b,a)) for r �= 0 and φ(λ ) = ln f (a+λ η(b,a)) for
r = 0. We give only the proof in the case of r > 0 and g1/g2 increasing. The proof in
the other case is analogous. For convenience, let ψ(λ ) = f (a+ λ η(b,a)) . Since f is
weakly r -preinvex with respect to η , Lemma 1 gives that

φ ′′(λ ) = r f (r−2)(a){(r−1)[η(b,a)T ∇ f (a)]2 + f (a)η(b,a)T ∇2 f (a)η(b,a)}
is positive.

When f (a) �= f (a+η(b,a)) , it is easy to see that inequality (3.1) is equivalent to∫ 1
0 w(ψ(λ ))g1(ψ(λ ))dλ∫ 1
0 w(ψ(λ ))g2(ψ(λ ))dλ

�
∫ 1
0 w(ψ(λ ))ψr−1(λ )g1(ψ(λ ))ψ ′(λ )dλ∫ 1
0 w(ψ(λ ))ψr−1(λ )g2(ψ(λ ))ψ ′(λ )dλ

. (3.2)

Consider

I =
∫ 1

0
w(ψ(λ ))g1(ψ(λ ))dλ

∫ 1

0
w(ψ(μ))ψr−1(μ)g2(ψ(μ))ψ ′(μ)dμ (3.3)

−
∫ 1

0
w(ψ(λ ))g2(ψ(λ ))dλ

∫ 1

0
w(ψ(μ))ψr−1(μ)g1(ψ(μ))ψ ′(μ)dμ

=
∫ 1

0

∫ 1

0
w(ψ(λ ))w(ψ(μ))g2(ψ(λ ))g2(ψ(μ))ψr−1(μ)ψ ′(μ)

×
[g1(ψ(λ ))
g2(ψ(λ ))

− g1(ψ(μ))
g2(ψ(μ))

]
dλdμ .
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Replacing λ and μ by each other in (3.3) and adding the resulting equations we get

I =
1
2r

∫ 1

0

∫ 1

0
w(ψ(λ ))w(ψ(μ))g2(ψ(λ ))g2(ψ(μ))

[
(ψr(μ))′ − (ψr(λ ))′

]
(3.4)

×
[g1(ψ(λ ))
g2(ψ(λ ))

− g1(ψ(μ))
g2(ψ(μ))

]
dλdμ .

If the derivative φ ′(λ ) = (ψr(λ ))′ � 0 for all λ ∈ (0,1) , from φ ′′(λ ) = (ψr(λ ))′′ � 0,
we always have

1
r

[
(ψr(μ))′ − (ψr(λ ))′)

][g1(ψ(λ ))
g2(ψ(λ ))

− g1(ψ(μ))
g2(ψ(μ))

]
� 0.

From (3.4), we get I � 0. This implies that the inequality (3.2) holds and then (3.1)
holds. If the derivative φ ′(λ ) = (ψr(λ ))′ � 0 for all λ ∈ (0,1) , a similar argument
gives I � 0 and again the inequality (3.1) holds.

Now suppose that φ ′(λ )= (ψr(λ ))′ changes sign and φ(0)< φ(1) . Then ψr(0)�
ψr(1) and there exists a point α ∈ (0,1) such that φ ′(α) = (ψr(α))′ = 0 and (ψr(λ ))′
� 0 for all λ ∈ [0,α] and (ψr(λ ))′ � 0 for all λ ∈ [α,1] . Therefore, there exists a
point β ∈ (α,1) such that ψ(0) = ψ(β ) . Thus

∫ β

0
w(ψ(λ ))ψr−1(λ )g1(ψ(λ ))ψ ′(λ )dλ

=
∫ ψ(α)

ψ(0)
w(ψ(λ ))xr−1g1(x)dx+

∫ ψ(β )

ψ(α)
w(ψ(λ ))xr−1g1(x)dx = 0,

and, similarly, ∫ β

0
w(ψ(λ ))ψr−1(λ )g2(ψ(λ ))ψ ′(λ )dλ = 0.

Consequently, the inequality (3.1) is equivalent to

∫ 1
0 w(ψ(λ ))g1(ψ(λ ))dλ∫ 1
0 w(ψ(λ ))g2(ψ(λ ))dλ

�
∫ 1

β w(ψ(λ ))ψr−1(λ )g1(ψ(λ ))ψ ′(λ )dλ∫ 1
β w(ψ(λ ))ψr−1(λ )g2(ψ(λ ))ψ ′(λ )dλ

. (3.5)

Consider

I2 =
∫ 1

0
w(ψ(λ ))g1(ψ(λ ))dλ

∫ 1

β
w(ψ(μ))ψr−1(μ)g2(ψ(μ))ψ ′(μ)dμ

−
∫ 1

0
w(ψ(λ ))g2(ψ(λ ))dλ

∫ 1

β
w(ψ(μ))ψr−1(μ)g1(ψ(μ))ψ ′(μ)dμ

=
1
r

∫ 1

0

∫ 1

β
w(ψ(λ ))w(ψ(μ))g2(ψ(λ ))g2(ψ(μ))ψr−1(μ)ψ ′(μ)

×
[g1(ψ(λ ))
g2(ψ(λ ))

− g1(ψ(μ))
g2(ψ(μ))

]
dλdμ .
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Split the double integral I2 into two parts

I21 =
1
r

∫ β

0

∫ 1

β
w(ψ(λ ))w(ψ(μ))g2(ψ(λ ))g2(ψ(μ))ψr−1(μ)ψ ′(μ)

×
[g1(ψ(λ ))
g2(ψ(λ ))

− g1(ψ(μ))
g2(ψ(μ))

]
dλdμ ,

and

I22 =
1
r

∫ 1

β

∫ 1

β
w(ψ(λ ))w(ψ(μ))g2(ψ(λ ))g2(ψ(μ))ψr−1(μ)ψ ′(μ)

×
[g1(ψ(λ ))
g2(ψ(λ ))

− g1(ψ(μ))
g2(ψ(μ))

]
dλdμ .

When (λ ,μ) ∈ [0,β ]× [β ,1] , we have λ � μ and (ψr(μ))′ = rψr−1(μ)ψ ′(μ) �
0 for all μ ∈ (β ,1) . Thus ψ ′(μ) � 0 for all μ ∈ (β ,1) and

g1(ψ(λ ))
g2(ψ(λ ))

� g1(ψ(β ))
g2(ψ(β ))

� g1(ψ(μ))
g2(ψ(μ))

.

Therefore we have that I21 � 0. By the result proved in case of φ ′(λ ) = (ψr(λ ))′ � 0,
we can get I22 � 0. Therefore, I2 = I21 + I22 � 0. It follows that (3.5) and also (3.1)
holds. Finally, if the sign of the derivative φ ′(λ ) = (ψr(λ ))′ changes and ψ(0) � ψ(1)
a similar proof again shows that (3.1) holds.

When f (a) = f (a + η(b,a)) , ψ(0) = ψ(1) , and so φ(0) = φ(1) . Since φ ′′ =
(ψr(λ ))′′ � 0, we see that φ ′ = (ψr(λ ))′ is continuous and increasing for λ ∈ (0,1) .
There exists a point α ∈ (0,1) such that (ψr(α))′ = 0 and (ψr(λ ))′ � 0 for all λ ∈
(0,α) , and (ψr(λ ))′ � 0 for all λ ∈ (α,1). Hence

g1(ψ(λ ))
g2(ψ(λ ))

� g1(ψ(1))
g2(ψ(1))

,

for all λ ∈ (0,1). It follows that

∫ 1

0
w(ψ(λ ))g1(ψ(λ ))dλ � g1(ψ(1))

g2(ψ(1))

∫ 1

0
w(ψ(λ ))g2(ψ(λ ))dλ .

Therefore, the inequality (3.1) is valid. This completes the proof of Theorem 2. �
If we take g1(x) = xp , g2(x) = xq for real numbers p,q in Theorem 2, we get the

following weighted type of the Hermite-Hadamard inequality for weakly r -preinvex
functions on an invex set.

COROLLARY 1. Let f be a weakly r -preinvex function on an invex set K with r �
0 . Assume that f be a positive and continuous function on Pax and twice-differentiable
on P0

ax for every a,b ∈ K , λ ∈ [0,1] and a < x = a+η(b,a) , and let η satisfy Condi-
tion C. Let m and M be the minimum and maximum of f on Pax , respectively. Further,
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let w,h be positive and continuous on [m,M] with h(x) = x , and let p and q be real
number. If p−q � 0 , then

Mp,q( f ,w◦ f ;a,a+ η(b,a)) � Mp,q(h,whr−1; f (a), f (a+ η(b,a))) (3.6)

for f (a) �= f (a+η(b,a)); the right-hand side of (3.6) is defined by f (a)p−q for f (a) =
f (a+ η(b,a)) . If p−q � 0 , then the inequality (3.6) is reversed.

Obviously, the following corollary holds if we take q = 0 in corollary 1.

COROLLARY 2. Suppose that the assumptions in corollary 1 hold. If the real
number p � 0 , then

M[p]( f ,w◦ f ;a,a+ η(b,a)) � M[p](h,whr−1; f (a), f (a+ η(b,a))) (3.7)

for f (a) �= f (a+ η(b,a)); the right-hand side of (3.7) is defined by f (a)p for f (a) =
f (a+ η(b,a)) . If p � 0 , then the inequality (3.7) is reversed.

REMARK 1. Taking p = 1 in (3.7), gives

∫ a+η(b,a)
a w( f (x)) f (x)dx∫ a+η(b,a)

a w( f (x))dx
�

∫ f (a+η(b,a))
f (a) w(x)xrdx∫ f (a+η(b,a))

f (a) w(x)xr−1dx
. (3.8)

Taking w ≡ 1, the inequality (3.8) reduces to the inequality given by Ui-Haq and Iqbal
in [21]. Further, taking r = 1 or r = 0, the inequality (3.8) reduces to the inequality
given by Noor in [10]. So the inequality (3.1) is a greater generalization of the Hermite-
Hadamard inequality for weakly r -preinvex functions on an invex set.

REMARK 2. When η(b,a) = b− a in Corollary 1, it is clear that the set K is
convex, Condition C is satisfied and the function f is r -convex. If p−q � 0, we have

Mp,q( f ,w◦ f ;a,b)) � Mp,q(h,whr−1; f (a), f (b)) (3.9)

for f (a) �= f (b) ; the right-hand side of (3.9) is defined by f (a)p for f (a) = f (b) ,
while if p−q � 0 the inequality (3.9) is reversed. We note that the (3.9) is equivalent
to the following inequality

Mw◦ f , f (p,q;a,b)) � Mwhr−1,h(p,q; f (a), f (b)).

Taking q = 0 in (3.9), the inequality (3.9) reduces to (1.1) in Theorem 1. So inequality
(3.1) is also more extensive than the results in [5, 12, 13, 18]

The following corollary holds if we take w ≡ 1 in Theorem 2.

COROLLARY 3. Suppose that the assumptions in theorem 2 hold and w ≡ 1 . If
g1/g2 is increasing on [m,M] , then

∫ 1
0 g1( f (a+ λ η(b,a)))dλ∫ 1
0 g2( f (a+ λ η(b,a)))dλ

�
∫ f (a+η(b,a))

f (a) xr−1g1(x)dx∫ f (a+η(b,a))
f (a) xr−1g2(x)dx

(3.10)
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for f (a) �= f (a+η(b,a)) , the right-hand side of (3.10) is defined by g1( f (a))/g2( f (a))
for f (a) = f (a + η(b,a)) , while if g1/g2 is decreasing, the inequality (3.10) is re-
versed.

REMARK 3. The inequality (3.10) has been given in [6]. It is clear that inequality
(3.1) is a weighted type of inequality (3.10).
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cher funktionen durch algebraische funktionen, Period. Polytech. Chem. Engrg. 14 (1970), 99–111.

[21] W. UI-HAQ AND J. IQBAL, Hermite-Hadamard-type inequalities for r-Preinvex functions, Journal of
Applied Mathematics 2013, 2013, Article ID 126457, 5 pages, http://dx.doi.org/10.1155/
2013/126457.

[22] X. M. YANG, X. Q. YANG AND K. L. TEO, Characterizations and Applications of Prequasi-Invex
Functions, Journal of Optimization Theory and Applications 110 (3) (2001), 645–668.

(Received November 19, 2017) Dah-Yan Hwang
Department of Information and Management

Taipei City University of Science and Technology
No. 2, Xueyuan Rd., Beitou, 112, Taipei, Taiwan

e-mail: dyhuang@tpcu.edu.tw

Silvestru Sever Dragomir
Mathematics, School of Engineering & Science

Victoria University
P. O. Box 14428, Melbourne City, MC 8001, Australia

and
School of Computational & Applied Mathematics

University of the Witwatersrand
Private Bag 3, Johannesburg 2050, South Africa

e-mail: sever.dragomir@vu.edu.au

http: // rgmia. org/ dragomir

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com

http://rgmia.org/dragomir

