

Some Hermite-Hadamard type inequalities for operator convex functions and positive maps

This is the Published version of the following publication

Dragomir, Sever S (2019) Some Hermite-Hadamard type inequalities for operator convex functions and positive maps. Special Matrices, 7 (1). pp. 38-51. ISSN 2300-7451

The publisher's official version can be found at https://www.degruyter.com/view/j/spma.2019.7.issue-1/spma-2019-0005/spma-2019-0005.xml

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/38729/

Spec. Matrices 2019; 7:38–51 DE GRUYTER

Research Article Open Access

S. S. Dragomir*

Some Hermite-Hadamard type inequalities for operator convex functions and positive maps

https://doi.org/10.1515/spma-2019-0005 Received February 10, 2019; accepted March 27, 2019

Abstract: In this paper we establish some inequalities of Hermite-Hadamard type for operator convex functions and positive maps. Applications for power function and logarithm are also provided.

Keywords: Jensen's inequality, Hermite-Hadamard inequality, Positive maps, Operator convex functions, Arithmetic mean-Geometric mean inequality

MSC: 47A63, 47A30, 15A60

1 Introduction

A real valued continuous function *f* on an interval *I* is said to be *operator convex* (*operator concave*) if

$$f((1-\lambda)A + \lambda B) \le (\ge)(1-\lambda)f(A) + \lambda f(B) \tag{OC}$$

in the operator order, for all $\lambda \in [0, 1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if -f is operator convex.

A real valued continuous function f on an interval I is said to be *operator monotone* if it is monotone with respect to the operator order, i.e., $A \le B$ with Sp(A), $Sp(B) \subset I$ imply $f(A) \le f(B)$.

For some fundamental results on operator convex (operator concave) and operator monotone functions, see for instance [12] and the references therein.

As examples of such functions, we note that $f(t) = t^r$ is operator monotone on $[0, \infty)$ if and only if $0 \le r \le 1$. The function $f(t) = t^r$ is operator convex on $(0, \infty)$ if either $1 \le r \le 2$ or $-1 \le r \le 0$ and is operator concave on $(0, \infty)$ if $0 \le r \le 1$. The logarithmic function $f(t) = \ln t$ is operator monotone and operator concave on $(0, \infty)$. The entropy function $f(t) = -t \ln t$ is operator concave on $(0, \infty)$. The exponential function $f(t) = e^t$ is neither operator convex nor operator monotone.

In [4], see also [5, p. 60], we established the following Hermite-Hadamard type inequality for operator convex functions:

http://rgmia.org/dragomir

^{*}Corresponding Author: S. S. Dragomir: Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia, E-mail: sever.dragomir@vu.edu.au

and School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

Theorem 1. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I. Then for any selfadjoint operators A and B with spectra in I we have the inequality

$$f\left(\frac{A+B}{2}\right) \leq \frac{1}{2} \left[f\left(\frac{3A+B}{4}\right) + f\left(\frac{A+3B}{4}\right) \right]$$

$$\leq \int_{0}^{1} f\left((1-t)A + tB\right) dt$$

$$\leq \frac{1}{2} \left[f\left(\frac{A+B}{2}\right) + \frac{f(A)+f(B)}{2} \right] \leq \frac{f(A)+f(B)}{2}.$$

$$(1.1)$$

For recent related results on operator Hermite-Hadamard type inequalities, see [1]-[2], [5]-[10] and [13].

Let H be a complex Hilbert space and $\mathcal{B}(H)$, the Banach algebra of bounded linear operators acting on H. We denote by $\mathcal{B}^+(H)$ the convex cone of all positive operators on H and by $\mathcal{B}^{++}(H)$ the convex cone of all positive definite operators on H.

Let H, K be complex Hilbert spaces. Following [3] (see also [12, p. 18]) we can introduce the following definition:

Definition 1. A map $\Phi: \mathcal{B}(H) \to \mathcal{B}(K)$ is linear if it is additive and homogeneous, namely

$$\Phi(\lambda A + \mu B) = \lambda \Phi(A) + \mu \Phi(B)$$

for any λ , $\mu \in \mathbb{C}$ and $A, B \in \mathcal{B}(H)$. The linear map $\Phi : \mathcal{B}(H) \to \mathcal{B}(K)$ is positive if it preserves the operator order, i.e. if $A \in \mathbb{B}^+(H)$ then $\Phi(A) \in \mathbb{B}^+(K)$. We write $\Phi \in \mathfrak{P}[\mathbb{B}(H), \mathbb{B}(K)]$. The linear map $\Phi : \mathbb{B}(H) \to \mathbb{B}(K)$ is normalised if it preserves the identity operator, i.e. $\Phi(1_H) = 1_K$. We write $\Phi \in \mathfrak{P}_N[\mathfrak{B}(H), \mathfrak{B}(K)]$.

We observe that a positive linear map Φ preserves the *order relation*, namely

$$A \leq B$$
 implies $\Phi(A) \leq \Phi(B)$

and preserves the adjoint operation $\Phi(A^*) = \Phi(A)^*$. If $\Phi \in \mathfrak{P}_N[\mathfrak{B}(H), \mathfrak{B}(K)]$ and $\alpha 1_H \leq A \leq \beta 1_H$, then $\alpha 1_K \leq \Phi(A) \leq \beta 1_K$.

If the map $\Psi: \mathcal{B}(H) \to \mathcal{B}(K)$ is linear, positive and $\Psi(1_H) \in \mathcal{B}^{++}(K)$ then by putting $\Phi =$ $\Psi^{-1/2}(1_H)\Psi\Psi^{-1/2}(1_H)$ we get that $\Phi\in\mathfrak{P}_N\left[\mathcal{B}\left(H\right),\mathcal{B}\left(K\right)\right]$, namely it is also normalised.

The following Jensen's type result is well known [3]:

Theorem 2 (Davis-Choi-Jensen's Inequality). Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I and $\Phi \in \mathfrak{P}_N[\mathfrak{B}(H),\mathfrak{B}(K)]$, then for any selfadjoint operator A whose spectrum is contained in I we have

$$f\left(\Phi\left(A\right)\right) \le \Phi\left(f\left(A\right)\right). \tag{1.2}$$

We observe that if $\Psi \in \mathfrak{P}[\mathcal{B}(H), \mathcal{B}(K)]$ with $\Psi(1_H) \in \mathcal{B}^{++}(K)$, then by taking $\Phi = \Psi^{-1/2}(1_H)\Psi\Psi^{-1/2}(1_H)$ in (1.2) we get

$$f\left(\Psi^{-1/2}\left(1_{H}\right)\Psi\left(A\right)\Psi^{-1/2}\left(1_{H}\right)\right)\leq\Psi^{-1/2}\left(1_{H}\right)\Psi\left(f\left(A\right)\right)\Psi^{-1/2}\left(1_{H}\right).$$

If we multiply both sides of this inequality by $\Psi^{1/2}$ (1_H) we get the following *Davis-Choi-Jensen's inequality* for general positive linear maps:

$$\Psi^{1/2}(1_H)f\left(\Psi^{-1/2}(1_H)\Psi(A)\Psi^{-1/2}(1_H)\right)\Psi^{1/2}(1_H) \le \Psi(f(A)). \tag{1.3}$$

In this paper, motivated by the above results, we establish some inequalities of Hermite-Hadamard type for operator convex functions and positive maps. Applications for power function and logarithm are also provided.

2 Refinements of HH-Inequality

Let $f:I\to\mathbb{R}$ be an operator convex function on the interval I and two selfadjoint operators A and B with spectra in I and $\Phi\in\mathfrak{P}_N\left[\mathfrak{B}\left(H\right),\mathfrak{B}\left(K\right)\right]$. We know that Φ is continuous, see for instance [11, Proposition 2.8]. By taking the positive map Φ in (1.1) and using the continuity property of Φ , we have

$$\Phi\left(f\left(\frac{A+B}{2}\right)\right) \leq \frac{1}{2} \left[\Phi\left(f\left(\frac{3A+B}{4}\right)\right) + \Phi\left(f\left(\frac{A+3B}{4}\right)\right)\right]$$

$$\leq \int_{0}^{1} \Phi\left(f\left((1-t)A+tB\right)\right) dt$$

$$\leq \frac{1}{2} \left[\Phi\left(f\left(\frac{A+B}{2}\right)\right) + \frac{\Phi\left(f\left(A\right)\right) + \Phi\left(f\left(B\right)\right)}{2}\right]$$

$$\leq \frac{\Phi\left(f\left(A\right)\right) + \Phi\left(f\left(B\right)\right)}{2}.$$
(2.1)

If we write the inequality (2.1) for $\Phi(A)$ and $\Phi(B)$ then we also have

$$f\left(\frac{\Phi(A) + \Phi(B)}{2}\right) \leq \frac{1}{2} \left[f\left(\frac{3\Phi(A) + \Phi(B)}{4}\right) + f\left(\frac{\Phi(A) + 3\Phi(B)}{4}\right) \right]$$

$$\leq \int_{0}^{1} f\left((1 - t)\Phi(A) + t\Phi(B)\right) dt$$

$$\leq \frac{1}{2} \left[f\left(\frac{\Phi(A) + \Phi(B)}{2}\right) + \frac{f\left(\Phi(A)\right) + f\left(\Phi(B)\right)}{2} \right]$$

$$\leq \frac{f\left(\Phi(A)\right) + f\left(\Phi(B)\right)}{2}.$$

$$(2.2)$$

It is then natural to ask how the following integrals

$$\int_{0}^{1} \Phi(f((1-t)A + tB)) dt \text{ and } \int_{0}^{1} f((1-t)\Phi(A) + t\Phi(B)) dt$$

do compare?

The following simple result holds:

Theorem 3. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I. Then for any selfadjoint operators A and B with spectra in I and $\Phi \in \mathfrak{P}_N [\mathfrak{B} (H), \mathfrak{B} (K)]$ we have

$$\int_{0}^{1} f((1-t)\Phi(A) + t\Phi(B)) dt \le \int_{0}^{1} \Phi(f((1-t)A + tB)) dt.$$
 (2.3)

Proof. By (1.2) we have

$$f((1-t)\Phi(A) + t\Phi(B)) = f(\Phi(((1-t)A + tB))) \le \Phi(f((1-t)A + tB))$$

for any $t \in [0, 1]$.

By integrating this inequality on [0, 1] and using the continuity property of Φ we get the desired result (2.3).

We define by $\mathfrak{P}_I[\mathfrak{B}(H),\mathfrak{B}(K)]$ the convex cone of all linear, positive maps Ψ with $\Psi(1_H) \in \mathfrak{B}^{++}(K)$, namely $\Psi(1_H)$ is positive invertible operator in K.

Corollary 1. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I and selfadjoint operators A and B with spectra in I. If $\Psi \in \mathfrak{P}_I [\mathfrak{B} (H), \mathfrak{B} (K)]$, then we have

$$\Psi^{1/2}(1_{H}) \left(\int_{0}^{1} f\left(\Psi^{-1/2}(1_{H})\left((1-t)\Psi(A)+t\Psi(B)\right)\Psi^{-1/2}(1_{H})\right) dt \right) \Psi^{1/2}(1_{H})$$

$$\leq \int_{0}^{1} \Psi\left(f\left((1-t)A+tB\right)\right) dt. \tag{2.4}$$

Proof. If we write the inequality (2.3) for $\Phi = \Psi^{-1/2}(1_H) \Psi \Psi^{-1/2}(1_H)$, then we get

$$\int_{0}^{1} f\left((1-t)\Psi^{-1/2}(1_{H})\Psi(A)\Psi^{-1/2}(1_{H}) + t\Psi^{-1/2}(1_{H})\Psi(B)\Psi^{-1/2}(1_{H})\right) dt$$

$$\leq \int_{0}^{1} \Psi^{-1/2}(1_{H})\Psi(f((1-t)A + tB))\Psi^{-1/2}(1_{H}) dt,$$

that can be written as

$$\int_{0}^{1} f\left(\Psi^{-1/2}(1_{H})\left((1-t)\Psi(A)+t\Psi(B)\right)\Psi^{-1/2}(1_{H})\right) dt$$

$$\leq \Psi^{-1/2}(1_{H}) \left(\int_{0}^{1} \Psi(f((1-t)A+tB)) dt\right) \Psi^{-1/2}(1_{H}).$$

Finally, if we multiply both sides of this inequality by $\Psi^{1/2}(1_H)$, then we get the desired result (2.4). \Box The following representation result holds.

Lemma 1. Let $f: I \to \mathbb{C}$ be a continuous function on the interval I and two selfadjoint operators A and B with spectra in I. Then for any $\lambda \in [0, 1]$ we have the representation

$$\int_{0}^{1} f((1-t)A + tB) dt = (1-\lambda) \int_{0}^{1} f[(1-t)((1-\lambda)A + \lambda B) + tB] dt$$

$$+ \lambda \int_{0}^{1} f[(1-t)A + t((1-\lambda)A + \lambda B)] dt.$$
(2.5)

Proof. For $\lambda = 0$ and $\lambda = 1$ the equality (2.5) is obvious.

Let $\lambda \in (0, 1)$. Observe that

$$\int_{0}^{1} f[(1-t)(\lambda B + (1-\lambda)A) + tB] dt = \int_{0}^{1} f[((1-t)\lambda + t)B + (1-t)(1-\lambda)A] dt$$

and

$$\int_{0}^{1} f\left[t\left(\lambda B + (1-\lambda)A\right) + (1-t)A\right]dt = \int_{0}^{1} f\left[t\lambda B + (1-\lambda t)A\right]dt.$$

If we make the change of variable $u := (1 - t) \lambda + t$ then we have $1 - u = (1 - t) (1 - \lambda)$ and $du = (1 - \lambda) du$. Then

$$\int_{0}^{1} f[((1-t)\lambda+t)B+(1-t)(1-\lambda)A] dt = \frac{1}{1-\lambda}\int_{0}^{1} f[uB+(1-u)A] du.$$

If we make the change of variable $u := \lambda t$ then we have $du = \lambda dt$ and

$$\int_{0}^{1} f[t\lambda B + (1-\lambda t)A] dt = \frac{1}{\lambda} \int_{0}^{\lambda} f[uB + (1-u)A] du.$$

Therefore

$$(1 - \lambda) \int_{0}^{1} f[(1 - t)(\lambda B + (1 - \lambda)A) + tB] dt + \lambda \int_{0}^{1} f[t(\lambda B + (1 - \lambda)A) + (1 - t)A] dt$$

$$= \int_{\lambda}^{1} f[uB + (1 - u)A] du + \int_{0}^{\lambda} f[uB + (1 - u)A] du$$

$$= \int_{0}^{1} f[uB + (1 - u)A] du$$

and the identity (2.5) is proved.

We have now the following generalization of (1.1):

Theorem 4. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I. Then for any selfadjoint operators A and B with spectra in I and for any $\lambda \in [0, 1]$ we have the inequalities

$$f\left(\frac{A+B}{2}\right) \leq (1-\lambda)f\left[\frac{(1-\lambda)A+(1+\lambda)B}{2}\right] + \lambda f\left[\frac{(2-\lambda)A+\lambda B}{2}\right]$$

$$\leq \int_{0}^{1} f((1-t)A+tB) dt$$

$$\leq \frac{1}{2} [f((1-\lambda)A+\lambda B)+(1-\lambda)f(B)+\lambda f(A)]$$

$$\leq \frac{f(A)+f(B)}{2}.$$
(2.6)

Proof. Using the Hermite-Hadamard inequality (1.1) we have

$$f\left[\frac{(1-\lambda)A+(1+\lambda)B}{2}\right] \leq \int_{0}^{1} f\left[(1-t)\left((1-\lambda)A+\lambda B\right)+tB\right]dt$$

$$\leq \frac{f\left((1-\lambda)A+\lambda B\right)+f\left(B\right)}{2}$$
(2.7)

and

$$f\left[\frac{(2-\lambda)A+\lambda B}{2}\right] \le \int_{0}^{1} f\left[(1-t)A+t\left((1-\lambda)A+\lambda B\right)\right] dt$$

$$\le \frac{f(A)+f((1-\lambda)A+\lambda B)}{2}$$
(2.8)

for any $\lambda \in [0, 1]$.

If we multiply inequality (2.7) by $1-\lambda$ and (2.8) by λ , add the obtained inequalities and use representation (2.5), then we get

$$(1-\lambda)f\left[\frac{(1-\lambda)A+(1+\lambda)B}{2}\right]+\lambda f\left[\frac{(2-\lambda)A+\lambda B}{2}\right]$$

$$\leq \int_{0}^{1}f\left((1-t)A+tB\right)dt$$

$$\leq (1-\lambda)\frac{f\left((1-\lambda)A+\lambda B\right)+f\left(B\right)}{2}+\lambda\frac{f\left(A\right)+f\left((1-\lambda)A+\lambda B\right)}{2},$$

which proves the second and third inequalities in (2.6).

By the operator convexity of f we have

$$(1 - \lambda) f\left[\frac{(1 - \lambda)A + (1 + \lambda)B}{2}\right] + \lambda f\left[\frac{(2 - \lambda)A + \lambda B}{2}\right]$$

$$\geq f\left[(1 - \lambda)\frac{(1 - \lambda)A + (1 + \lambda)B}{2} + \lambda\frac{(2 - \lambda)A + \lambda B}{2}\right] = f\left(\frac{A + B}{2}\right)$$

and

$$\begin{split} &\frac{1}{2}\left[f\left((1-\lambda)A+\lambda B\right)+(1-\lambda)f\left(B\right)+\lambda f\left(A\right)\right]\\ &\leq \frac{1}{2}\left[(1-\lambda)f\left(A\right)+\lambda f\left(B\right)+(1-\lambda)f\left(B\right)+\lambda f\left(A\right)\right]=\frac{f\left(A\right)+f\left(B\right)}{2} \end{split}$$

that prove the first and last inequality in (2.6).

We have:

Corollary 2. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I. Then for any selfadjoint operators A and B with spectra in I and $\Phi \in \mathfrak{P}_N[\mathfrak{B}(H), \mathfrak{B}(K)]$ we have

$$\Phi\left(f\left(\frac{A+B}{2}\right)\right) \leq (1-\lambda)\Phi\left(f\left[\frac{(1-\lambda)A+(1+\lambda)B}{2}\right]\right) + \lambda\Phi\left(f\left[\frac{(2-\lambda)A+\lambda B}{2}\right]\right)$$

$$\leq \int_{0}^{1}\Phi\left(f\left((1-t)A+tB\right)\right)dt$$

$$\leq \frac{1}{2}\left[\Phi\left(f\left((1-\lambda)A+\lambda B\right)\right) + (1-\lambda)\Phi\left(f\left(B\right)\right) + \lambda\Phi\left(f\left(A\right)\right)\right]$$

$$\leq \frac{\Phi\left(f\left(A\right)\right) + \Phi\left(f\left(B\right)\right)}{2}$$
(2.9)

for any $\lambda \in [0, 1]$.

3 Bounds for HH-Difference

We consider the difference functional

$$J_{n}(\mathbf{p}; \mathbf{A}, f, I) := \sum_{j=1}^{n} p_{j} f(A_{j}) - P_{n} f\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} A_{j}\right)$$
(3.1)

where $\mathbf{p} = (p_1, ..., p_n)$, $p_j \ge 0$ with $j \in \{1, ..., n\}$ and $P_n > 0$, $\mathbf{A} = (A_1, ..., A_n)$ is an n-tuple of selfadjoint operators with Sp $(A_j) \subseteq I$ for $j \in \{1, ..., n\}$ and $f : I \to \mathbb{R}$ is a operator convex function defined on the interval I.

We denote by \mathcal{P}_n^+ the set of all n-tuples $\mathbf{p} = (p_1, ..., p_n)$, $p_j \ge 0$ with $j \in \{1, ..., n\}$ and $P_n > 0$. For \mathbf{p} , $\mathbf{q} \in \mathcal{P}_n^+$ we denote $\mathbf{p} \ge \mathbf{q}$ if $p_i \ge q_i$ for any $j \in \{1, ..., n\}$.

In [7] we established the following properties of the functional $J_n(\cdot; \mathbf{A}, f, I)$:

44 — S. S. Dragomir DE GRUYTER

Theorem 5. Assume that $f: I \to \mathbb{R}$ is an operator convex function and $\mathbf{A} = (A_1, ..., A_n)$ an n-tuple of selfadjoint operators with Sp $(A_i) \subseteq I$, then for any $\mathbf{p}, \mathbf{q} \in \mathcal{P}_n^+$ we have

$$J_n(\mathbf{p} + \mathbf{q}; \mathbf{A}, f, I) \ge J_n(\mathbf{p}; \mathbf{A}, f, I) + J_n(\mathbf{q}; \mathbf{A}, f, I) \ge 0, \tag{3.2}$$

i.e., $J_n(\cdot; \mathbf{A}, f, I)$ is a super-additive functional in the operator order.

Moreover, if \mathbf{p} , $\mathbf{q} \in \mathcal{P}_n^+$ *with* $\mathbf{p} \geq \mathbf{q}$, *then also*

$$J_n(\mathbf{p}; \mathbf{A}, f, I) \ge J_n(\mathbf{q}; \mathbf{A}, f, I) \ge 0, \tag{3.3}$$

i.e., $J_n(\cdot; \mathbf{A}, f, I)$ is a monotonic functional in the operator order.

The following boundedness property also holds:

Corollary 3. Assume that the function $f: I \to \mathbb{R}$ is operator convex and the n-tuple of selfadjoint operators $(A_1, ..., A_n)$ satisfies the condition $\operatorname{Sp}(A_j) \subseteq I$ for any $j \in \{1, ..., n\}$. If $\mathbf{p}, \mathbf{q} \in \mathcal{P}_n^+$ and there exists the positive constants m, M such that

$$m\mathbf{q} \le \mathbf{p} \le M\mathbf{q},$$
 (3.4)

then

$$mJ_n(\mathbf{q}; \mathbf{A}, f, I) \le J_n(\mathbf{p}; \mathbf{A}, f, I) \le MJ_n(\mathbf{q}; \mathbf{A}, f, I)$$
 (3.5)

in the operator order.

We observe that if all $q_i > 0, j \in \{1, ..., n\}$, then we have the inequality

$$\min_{j \in \{1, \dots, n\}} \left\{ \frac{p_j}{q_j} \right\} J_n(\mathbf{q}; \mathbf{A}, f, I) \le J_n(\mathbf{p}; \mathbf{A}, f, I)$$

$$\le \max_{j \in \{1, \dots, n\}} \left\{ \frac{p_j}{q_j} \right\} J_n(\mathbf{q}; \mathbf{A}, f, I) \tag{3.6}$$

in the operator order.

In particular, by (3.6) for n = 2, $p_1 = 1 - p$, $p_2 = p$, $q_1 = 1 - q$ and $q_2 = q$ with $p \in [0, 1]$ and $q \in (0, 1)$ we get

$$\min \left\{ \frac{p}{q}, \frac{1-p}{1-q} \right\} \left[(1-q)f(A) + qf(B) - f((1-q)A + qB) \right]$$

$$\leq \left[(1-p)f(A) + pf(B) - f((1-p)A + pB) \right]$$

$$\leq \max \left\{ \frac{p}{q}, \frac{1-p}{1-q} \right\} \left[(1-q)f(A) + qf(B) - f((1-q)A + qB) \right]$$
(3.7)

for any selfadjoint operators *A* and *B* with spectra in *I*.

If we take $q = \frac{1}{2}$ in (1.1), then we get

$$2 \min \{t, 1 - t\} \left[\frac{f(A) + f(B)}{2} - f\left(\frac{A + B}{2}\right) \right] \le \left[(1 - t)f(A) + tf(B) - f((1 - t)A + tB) \right]$$

$$\le 2 \max \{t, 1 - t\} \left[\frac{f(A) + f(B)}{2} - f\left(\frac{A + B}{2}\right) \right]$$

$$(3.8)$$

for any selfadjoint operators A and B with spectra in I and $t \in [0, 1]$.

If we take in (3.7) the map Φ , then we have

$$\min \left\{ \frac{p}{q}, \frac{1-p}{1-q} \right\} \left[(1-q) \Phi(f(A)) + q \Phi(f(B)) - \Phi(f((1-q)A+qB)) \right]$$

$$\leq \left[(1-p) \Phi(f(A)) + p \Phi(f(B)) - \Phi(f((1-p)A+pB)) \right]$$

$$\leq \max \left\{ \frac{p}{q}, \frac{1-p}{1-q} \right\} \left[(1-q) \Phi(f(A)) + q \Phi(f(B)) - \Phi(f((1-q)A+qB)) \right]$$
(3.9)

for any $\Phi \in \mathfrak{P}_N [\mathfrak{B}(H), \mathfrak{B}(K)]$.

The following result provides some upper and lower bounds for the HH-difference

$$\frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt.$$

Theorem 6. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I. Then for any selfadjoint operators A and B with spectra in I we have the inequality

$$\frac{1}{2} \left[(1-q)f(A) + qf(B) - f((1-q)A + qB) \right] \le \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt$$

$$\le \frac{1}{2} \frac{q^{2} - q + 1}{q(1-q)} \left[(1-q)f(A) + qf(B) - f((1-q)A + qB) \right]$$
(3.10)

for any q ∈ (0, 1).

Proof. From (3.7) we have

$$\min \left\{ \frac{t}{q}, \frac{1-t}{1-q} \right\} \left[(1-q)f(A) + qf(B) - f((1-q)A + qB) \right]$$

$$\leq \left[(1-t)f(A) + tf(B) - f((1-t)A + tB) \right]$$

$$\leq \max \left\{ \frac{t}{q}, \frac{1-t}{1-q} \right\} \left[(1-q)f(A) + qf(B) - f((1-q)A + qB) \right]$$
(3.11)

with $t \in [0, 1]$ and $q \in (0, 1)$.

If we integrate over $t \in [0, 1]$ the inequality (3.11), then we get

$$[(1-q)f(A) + qf(B) - f((1-q)A + qB)] \int_{0}^{1} \min\left\{\frac{t}{q}, \frac{1-t}{1-q}\right\} dt$$

$$\leq \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt$$

$$\leq [(1-q)f(A) + qf(B) - f((1-q)A + qB)] \int_{0}^{1} \max\left\{\frac{t}{q}, \frac{1-t}{1-q}\right\} dt$$
(3.12)

for any A, B with spectra in I and $q \in (0, 1)$.

Observe that

$$\frac{t}{q} - \frac{1-t}{1-q} = \frac{t-q}{q(1-q)}$$

showing that

$$\min \left\{ \frac{t}{q}, \frac{1-t}{1-q} \right\} = \begin{cases} \frac{t}{q} \text{ if } 0 \le t \le q \le 1\\ \frac{1-t}{1-q} \text{ if } 0 \le q \le t \le 1 \end{cases}$$

and

$$\max \left\{ \frac{t}{q}, \frac{1-t}{1-q} \right\} = \left\{ \begin{array}{l} \frac{1-t}{1-q} \text{ if } 0 \le t \le q \le 1 \\ \\ \frac{t}{q} \text{ if } 0 \le q \le t \le 1. \end{array} \right.$$

Then

$$\int_{0}^{1} \min\left\{\frac{t}{q}, \frac{1-t}{1-q}\right\} dt = \int_{0}^{q} \frac{t}{q} dt + \int_{q}^{1} \frac{1-t}{1-q} dt$$
$$= \frac{q^{2}}{2q} + \frac{1}{1-q} \left(1 - q - \left(\frac{1-q^{2}}{2}\right)\right) = \frac{1}{2}$$

and

$$\int_{0}^{1} \max\left\{\frac{t}{q}, \frac{1-t}{1-q}\right\} dt = \int_{0}^{q} \frac{1-t}{1-q} dt + \int_{q}^{1} \frac{t}{q} dt$$

$$= \frac{1}{1-q} \left(q - \frac{q^{2}}{2}\right) + \frac{1-q^{2}}{2q}$$

$$= \frac{q^{2} - q + 1}{2q(1-q)}$$

and by (3.12) we obtain the desired result (3.10).

Corollary 4. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I. Then for any selfadjoint operators A and B with spectra in I and $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$ we have

$$\frac{1}{2} \left[(1 - q) \Phi(f(A)) + q \Phi(f(B)) - \Phi(f((1 - q) A + qB)) \right] \\
\leq \frac{\Phi(f(A)) + \Phi(f(B))}{2} - \int_{0}^{1} \Phi(f((1 - t) A + tB)) dt \\
\leq \frac{1}{2} \frac{q^{2} - q + 1}{q(1 - q)} \left[(1 - q) \Phi(f(A)) + q \Phi(f(B)) - \Phi(f((1 - q) A + qB)) \right].$$
(3.13)

We also have the following bounds for the other HH-difference

$$\int_{0}^{1} f((1-t)A+tB) dt - f\left(\frac{A+B}{2}\right).$$

Theorem 7. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I. Then for any selfadjoint operators A and B with spectra in I we have the inequality

$$\frac{1}{2q(1-q)} \min \left\{ 1 - q, q \right\} \left[\int_{0}^{1} f((1-t)A + tB) dt - \frac{1}{1-2q} \int_{q}^{1-q} f((1-s)A + sB) ds \right]$$

$$\leq \int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right)$$

$$\leq \frac{1}{2q(1-q)} \max \left\{ 1 - q, q \right\} \left[\int_{0}^{1} f((1-t)A + tB) dt - \frac{1}{1-2q} \int_{q}^{1-q} f((1-s)A + sB) ds \right]$$
(3.14)

or, equivalently

$$\frac{2q(1-q)}{\max\{1-q,q\}} \left[\int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right) \right]$$

$$\leq \int_{0}^{1} f((1-t)A + tB) dt - \frac{1}{1-2q} \int_{q}^{1-q} f((1-s)A + sB) ds$$

$$\leq \frac{2q(1-q)}{\min\{1-q,q\}} \left[\int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right) \right]$$
(3.15)

for any $q \in (0, 1)$, $q \neq \frac{1}{2}$.

Proof. If we take in (3.7) $p = \frac{1}{2}$, then we have

$$\frac{1}{2q(1-q)} \min \{1-q, q\} [(1-q)f(A) + qf(B) - f((1-q)A + qB)]$$

$$\leq \frac{f(A) + f(B)}{2} - f\left(\frac{A+B}{2}\right)$$

$$\leq \frac{1}{2q(1-q)} \max \{1-q, q\} [(1-q)f(A) + qf(B) - f((1-q)A + qB)]$$
(3.16)

for any A, B with spectra in I and $q \in (0, 1)$.

If we replace A by (1 - t)A + tB and B by tA + (1 - t)B in (3.16), then we get

$$\frac{1}{2q(1-q)} \min \{1-q,q\} [(1-q)f((1-t)A+tB)+qf(tA+(1-t)B) \\
-f((1-q)[(1-t)A+Bt]+q[tA+(1-t)B])] \\
\leq \frac{f((1-t)A+tB)+f(tA+(1-t)B)}{2}-f\left(\frac{A+B}{2}\right) \\
\leq \frac{1}{2q(1-q)} \max \{1-q,q\} [(1-q)f((1-t)A+tB)+qf(tA+(1-t)B) \\
-f((1-q)[(1-t)A+Bt]+q[tA+(1-t)B])]$$
(3.17)

for any $A, B \in C, t \in [0, 1]$ and $q \in (0, 1)$.

If we take the integral over $t \in [0, 1]$ in (3.17) and take into account that

$$\int_{0}^{1} f((1-t)A + tB) dt = \int_{0}^{1} f(tA + (1-t)B) dt$$

we get

$$\frac{1}{2q(1-q)} \min \left\{ 1 - q, q \right\} \left[\int_{0}^{1} f((1-t)A + tB) dt - \int_{0}^{1} f((1-q)[(1-t)A + tB] + q[tA + (1-t)B]) dt \right]$$

$$\leq \int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right)$$

$$\leq \frac{1}{2q(1-q)} \max \left\{ 1 - q, q \right\} \left[\int_{0}^{1} f((1-t)A + tB) dt - \int_{0}^{1} f((1-q)[(1-t)A + tB] + q[tA + (1-t)B]) dt \right]$$

or any A, B with spectra in I and $q \in (0, 1)$.

Observe that for any A, B with spectra in I, $t \in [0, 1]$ and $q \in (0, 1)$ we have

$$(1-q)[(1-t)A+tB]+q[tA+(1-t)B]=[(1-q)(1-t)+qt]A+[(1-q)t+(1-t)q]B$$

and by putting s := (1 - q) t + (1 - t) q, for $q \neq \frac{1}{2}$ we have

$$[(1-q)(1-t)+qt]A+[(1-q)t+(1-t)q]B=(1-s)A+sB.$$

If $q \neq \frac{1}{2}$, then s is a change of variable, ds = (1 - 2q) dt and we have for any A, B with spectra in I that

$$\int_{0}^{1} f((1-q)[(1-t)A+tB]+q[tA+(1-t)B]) dt = \frac{1}{1-2q} \int_{q}^{1-q} f((1-s)A+sB) ds.$$

On making use of (3.18) we get the desired result (3.14).

Corollary 5. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I. Then for any selfadjoint operators A and B with spectra in I and $\Phi \in \mathfrak{P}_N [\mathfrak{B}(H), \mathfrak{B}(K)]$ we have

$$\frac{2q(1-q)}{\max\{1-q,q\}} \left[\int_{0}^{1} \Phi(f((1-t)A+tB)) dt - \Phi\left(f\left(\frac{A+B}{2}\right)\right) \right]$$

$$\leq \int_{0}^{1} \Phi(f((1-t)A+tB)) dt - \frac{1}{1-2q} \int_{q}^{1-q} \Phi(f((1-s)A+sB)) ds$$

$$\leq \frac{2q(1-q)}{\min\{1-q,q\}} \left[\int_{0}^{1} \Phi(f((1-t)A+tB)) dt - \Phi\left(f\left(\frac{A+B}{2}\right)\right) \right]$$
(3.19)

for any $q \in (0, 1)$, $q \neq \frac{1}{2}$.

Remark 1. *If we take q* = $\frac{1}{4}$ *in (3.15) and (3.19), then we get*

$$\frac{1}{2} \left[\int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right) \right] \leq \int_{0}^{1} f((1-t)A + tB) dt - 2 \int_{1/4}^{3/4} f((1-s)A + sB) ds \qquad (3.20)$$

$$\leq \frac{3}{2} \left[\int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right) \right]$$

and

$$\frac{1}{2} \left[\int_{0}^{1} \Phi(f((1-t)A+tB)) dt - \Phi\left(f\left(\frac{A+B}{2}\right)\right) \right] \leq \int_{0}^{1} \Phi(f((1-t)A+tB)) dt - 2 \int_{1/4}^{3/4} \Phi(f((1-s)A+sB)) ds \\
\leq \frac{3}{2} \left[\int_{0}^{1} \Phi(f((1-t)A+tB)) dt - \Phi\left(f\left(\frac{A+B}{2}\right)\right) \right] \tag{3.21}$$

for any A, B with spectra in I and $\Phi \in \mathfrak{P}_N [\mathfrak{B}(H), \mathfrak{B}(K)]$.

4 Some Examples

The function $f(t) = t^r$ is operator convex on $(0, \infty)$ if either $1 \le r \le 2$ or $-1 \le r \le 0$ and is operator concave on $(0, \infty)$ if $0 \le r \le 1$.

If we write the inequality (2.3) for the power $1 \le r \le 2$ (or $-1 \le r \le 0$) we have

$$\int_{0}^{1} ((1-t)\Phi(A) + t\Phi(B))^{r} dt \le \int_{0}^{1} \Phi(((1-t)A + tB)^{r}) dt, \tag{4.1}$$

where $\Phi \in \mathfrak{P}_N[\mathcal{B}(H), \mathcal{B}(K)]$ and $A, B \in \mathcal{B}^+(H)$ $(A, B \in \mathcal{B}^{++}(H))$. In the case $0 \le r \le 1$ the inequalities reverse in (4.1).

If we write the inequality (2.9) for the power $1 \le r \le 2$ (or $-1 \le r \le 0$) we have

$$\Phi\left(\left(\frac{A+B}{2}\right)^{r}\right) \leq (1-\lambda)\Phi\left(\left[\frac{(1-\lambda)A+(1+\lambda)B}{2}\right]^{r}\right) + \lambda\Phi\left(\left[\frac{(2-\lambda)A+\lambda B}{2}\right]^{r}\right) \tag{4.2}$$

$$\leq \int_{0}^{1}\Phi\left(\left((1-t)A+tB\right)^{r}\right)dt$$

$$\leq \frac{1}{2}\left[\Phi\left(\left((1-\lambda)A+\lambda B\right)^{r}\right)+(1-\lambda)\Phi\left(B^{r}\right)+\lambda\Phi\left(A^{r}\right)\right]$$

$$\leq \frac{\Phi\left(A^{r}\right)+\Phi\left(B^{r}\right)}{2},$$

where $\lambda \in [0, 1]$, $\Phi \in \mathfrak{P}_N[\mathcal{B}(H), \mathcal{B}(K)]$ and $A, B \in \mathcal{B}^+(H)$ $(A, B \in \mathcal{B}^{++}(H))$. In the case $0 \le r \le 1$ the inequalities reverse in (4.2).

If we write the inequality (3.9) for the power $1 \le r \le 2$ (or $-1 \le r \le 0$) we get for $p \in [0, 1]$, $q \in (0, 1)$ that

$$\min \left\{ \frac{p}{q}, \frac{1-p}{1-q} \right\} \left[(1-q)\Phi\left(A^{r}\right) + q\Phi\left(B^{r}\right) - \Phi\left(((1-q)A + qB)^{r}\right) \right]$$

$$\leq \left[(1-p)\Phi\left(A^{r}\right) + p\Phi\left(B^{r}\right) - \Phi\left(((1-p)A + pB)^{r}\right) \right]$$

$$\leq \max \left\{ \frac{p}{q}, \frac{1-p}{1-q} \right\} \left[(1-q)\Phi\left(A^{r}\right) + q\Phi\left(B^{r}\right) - \Phi\left(((1-q)A + qB)^{r}\right) \right]$$

$$(4.3)$$

where $\Phi \in \mathfrak{P}_N [\mathfrak{B} (H), \mathfrak{B} (K)]$ and $A, B \in \mathfrak{B}^+ (H) (A, B \in \mathfrak{B}^{++} (H))$.

From (3.13) we have for $1 \le r \le 2$ (or $-1 \le r \le 0$) that

$$\frac{1}{2} \left[(1 - q) \Phi (A^{r}) + q \Phi (B^{r}) - \Phi (((1 - q) A + q B)^{r}) \right]$$

$$\leq \frac{\Phi (A^{r}) + \Phi (B^{r})}{2} - \int_{0}^{1} \Phi (((1 - t) A + t B)^{r}) dt$$

$$\leq \frac{1}{2} \frac{q^{2} - q + 1}{q(1 - q)} \left[(1 - q) \Phi (A^{r}) + q \Phi (B^{r}) - \Phi (((1 - q) A + q B)^{r}) \right]$$
(4.4)

while from (3.19) we have that

$$\frac{2q(1-q)}{\max\{1-q,q\}} \left[\int_{0}^{1} \Phi\left(((1-t)A + tB)^{r} \right) dt - \Phi\left(\left(\frac{A+B}{2} \right)^{r} \right) \right] \\
\leq \int_{0}^{1} \Phi\left(((1-t)A + tB)^{r} \right) dt - \frac{1}{1-2q} \int_{q}^{1-q} \Phi\left(((1-s)A + sB)^{r} \right) ds \\
\leq \frac{2q(1-q)}{\min\{1-q,q\}} \left[\int_{0}^{1} \Phi\left(((1-t)A + tB)^{r} \right) dt - \Phi\left(\left(\frac{A+B}{2} \right)^{r} \right) \right], \tag{4.5}$$

where $p \in [0, 1]$, $q \in (0, 1)$, $\Phi \in \mathfrak{P}_N[\mathcal{B}(H), \mathcal{B}(K)]$ and $A, B \in \mathcal{B}^+(H)$ $(A, B \in \mathcal{B}^{++}(H))$. The function $f(t) = -\ln t$ is operator convex on $(0, \infty)$. Then by (2.3) we have

$$\int_{0}^{1} \ln\left((1-t)\Phi(A) + t\Phi(B)\right) dt \ge \int_{0}^{1} \Phi\left(\ln\left((1-t)A + tB\right)\right) dt \tag{4.6}$$

50 — S. S. Dragomir DE GRUYTER

while by (2.9) we have, for $\lambda \in [0, 1]$ that

$$\Phi\left(\ln\left(\frac{A+B}{2}\right)\right) \geq (1-\lambda)\Phi\left(\ln\left[\frac{(1-\lambda)A+(1+\lambda)B}{2}\right]\right) + \lambda\Phi\left(\ln\left[\frac{(2-\lambda)A+\lambda B}{2}\right]\right)
\geq \int_{0}^{1}\Phi\left(\ln\left((1-t)A+tB\right)\right)dt
\geq \frac{1}{2}\left[\Phi\left(\ln\left((1-\lambda)A+\lambda B\right)\right)+(1-\lambda)\Phi\left(\ln\left(B\right)\right)+\lambda\Phi\left(\ln\left(A\right)\right)\right]
\geq \frac{\Phi\left(\ln\left(A\right)\right)+\Phi\left(\ln\left(B\right)\right)}{2},$$
(4.7)

where $\Phi \in \mathfrak{P}_N [\mathfrak{B} (H), \mathfrak{B} (K)]$ and $A, B \in \mathfrak{B}^{++} (H)$.

From (3.9) we have for $p \in [0, 1]$, $q \in (0, 1)$ that

$$\min \left\{ \frac{p}{q}, \frac{1-p}{1-q} \right\} \left[\Phi \left(\ln \left((1-q)A + qB \right) \right) - (1-q)\Phi \left(\ln (A) \right) - q\Phi \left(\ln (B) \right) \right]$$

$$\leq \left[\Phi \left(\ln \left((1-p)A + pB \right) \right) - (1-p)\Phi \left(\ln (A) \right) - p\Phi \left(\ln (B) \right) \right]$$

$$\leq \max \left\{ \frac{p}{q}, \frac{1-p}{1-q} \right\} \left[\Phi \left(\ln \left((1-q)A + qB \right) \right) - (1-q)\Phi \left(\ln (A) \right) - q\Phi \left(\ln (B) \right) \right],$$
(4.8)

from (3.13) we have

$$\frac{1}{2} \left[\Phi \left(\ln \left((1-q) A + qB \right) \right) - (1-q) \Phi \left(\ln (A) \right) - q\Phi \left(\ln (B) \right) \right] \\
\leq \int_{0}^{1} \Phi \left(\ln \left((1-t) A + tB \right) \right) dt - \frac{\Phi \left(\ln (A) \right) + \Phi \left(\ln (B) \right)}{2} \\
\leq \frac{1}{2} \frac{q^{2} - q + 1}{q (1-q)} \left[\Phi \left(\ln \left((1-q) A + qB \right) \right) - (1-q) \Phi \left(\ln (A) \right) - q\Phi \left(\ln (B) \right) \right].$$

while from (3.19)

$$\frac{2q(1-q)}{\max\{1-q,q\}} \left[\Phi\left(\ln\left(\frac{A+B}{2}\right)\right) - \int_{0}^{1} \Phi\left(\ln\left((1-t)A+tB\right)\right) dt \right]$$

$$\leq \frac{1}{1-2q} \int_{q}^{1-q} \Phi\left(\ln\left((1-s)A+sB\right)\right) ds - \int_{0}^{1} \Phi\left(\ln\left((1-t)A+tB\right)\right) dt$$

$$\leq \frac{2q(1-q)}{\min\{1-q,q\}} \left[\Phi\left(\ln\left(\frac{A+B}{2}\right)\right) - \int_{0}^{1} \Phi\left(\ln\left((1-t)A+tB\right)\right) dt \right]$$

where $\Phi \in \mathfrak{P}_N [\mathfrak{B} (H), \mathfrak{B} (K)]$ and $A, B \in \mathfrak{B}^{++} (H)$.

References

- [1] V. Bacak and R. Türkmen, Refinements of Hermite-Hadamard type inequalities for operator convex functions. *J. Inequal. Appl.* 2013; 2013:262, 10 pp.
- [2] B. Li, Refinements of Hermite-Hadamard's type inequalities for operator convex functions. *Int. J. Contemp. Math. Sci.* **8** (2013), no. 9-12, 463–467.
- [3] M. D. Choi, Positive linear maps on C*-algebras. Canad. J. Math. 24 (1972), 520-529.
- [4] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, *Applied Mathematics and Computation*, **218** (2011), Issue 3, pp. 766–772.

- S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
- [6] S. S. Dragomir, Some inequalities of Hermite-Hadamard type for convex functions of commuting selfadjoint operators in Hilbert spaces. Boll. Unione Mat. Ital. (9) 6 (2013), no. 3, 491-511.
- [7] S. S. Dragomir, Some inequalities of Jensen type for operator convex functions in Hilbert spaces, Advances in Inequalities and Applications, Vol 2, No 1 (2013), 105-123. [Online http://scik.org/index.php/aia/article/view/904] Preprint RGMIA Res. Rep. Coll. 15 (2012), Art. 40, [Online http://rgmia.org/papers/v15/v15a40.pdf].
- [8] A. G. Ghazanfari, The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 6 (2014), no. 3, 52-61
- [9] A. G. Ghazanfari and A. Barani, Some Hermite-Hadamard type inequalities for the product of two operator preinvex functions. Banach J. Math. Anal. 9 (2015), no. 2, 9-20.
- [10] M. S. Moslehian, Matrix Hermite-Hadamard type inequalities, Houston J. Math 39 (2013) no 1, 178-189.
- [Online Skoufranis, Completely Positive Maps, http://www.math.tamu.edu/~pskoufra/ OANotes-CompletelyPositiveMaps.pdf].
- [12] J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
- [13] S.-H. Wang and X.-M. Liu, Hermite-Hadamard type inequalities for operator s-preinvex functions. J. Nonlinear Sci. Appl. 8 (2015), no. 6, 1070-1081.