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1 Introduction

A real valued continuous function f on an interval I is said to be operator convex (operator concave) if
f(A-NA+AB)<(2)(1-Nf(4)+ )N (B) (00)

in the operator order, for all A € [0, 1] and for every selfadjoint operator A and B on a Hilbert space H whose
spectra are contained in I. Notice that a function f is operator concave if —f is operator convex.

A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with
respect to the operator order, i.e., A < Bwith Sp (4), Sp(B) C Iimply f (A) < f(B).

For some fundamental results on operator convex (operator concave) and operator monotone functions,
see for instance [12] and the references therein.

As examples of such functions, we note that f (t) = t" is operator monotone on [0, o) if and only if 0 < r <
1. The function f (t) = t" is operator convex on (0, oo) if either 1 < r < 2 or -1 < r < 0 and is operator concave
on (0, o0) if 0 < r < 1. The logarithmic function f (t) = Int is operator monotone and operator concave on
(0, o0). The entropy function f (t) = —tIn t is operator concave on (0, o). The exponential functionf (f) = e'
is neither operator convex nor operator monotone.

In [4], see also [5, p. 60], we established the following Hermite-Hadamard type inequality for operator
convex functions:
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DE GRUYTER Some Hermite-Hadamard type inequalities =——— 39

Theorem 1. Let f : I — R be an operator convex function on the interval 1. Then for any selfadjoint operators
A and B with spectra in I we have the inequality

A+B 1 3A+B A+3B
r(437) =2 b () o ()] a
1
s/f((l—t)A+tB)dt
0

1 A+B\  f(A)+f(B)
(7)1

_fA)+f(B)
LA E)

2

For recent related results on operator Hermite-Hadamard type inequalities, see [1]-[2], [5]-[10] and [13].

Let H be a complex Hilbert space and B (H), the Banach algebra of bounded linear operators acting on
H. We denote by B* (H) the convex cone of all positive operators on H and by B** (H) the convex cone of all
positive definite operators on H.

Let H, K be complex Hilbert spaces. Following [3] (see also [12, p. 18]) we can introduce the following
definition:

Definition 1. A map @ : B (H) — B (K) is linear if it is additive and homogeneous, namely
@ (M + pB) = AD (A) + u®@ (B)

forany A\, u € Cand A, B € B (H). The linear map @ : B (H) — B (K) is positive if it preserves the operator
order,i.e.ifA € B (H)then® (A) € B* (K). Wewrite ® € 3 [B (H), B (K)] . Thelinearmap @ : B (H) — B (K)
is normalised if it preserves the identity operator, i.e. @ (1g) = 1. We write @ € By [B (H), B (K)] .

We observe that a positive linear map @ preserves the order relation, namely
A < Bimplies @ (A) < @ (B)

and preserves the adjoint operation @ (A*) =®A) . IfD e Py[B(H),BK)] and aly < A < 1y, then
alg < @ (A) < flg.

If the map ¥ : B(H) — B(K) is linear, positive and ¥ (1) € B**(K) then by putting @ =
Y12 (1) P12 (1) we get that @ € By [B (H), B (K)] , namely it is also normalised.

The following Jensen’s type result is well known [3]:

Theorem 2 (Davis-Choi-Jensen’s Inequality). Let f : I — R be an operator convex function on the interval I
and @ € By [B (H), B (K)], then for any selfadjoint operator A whose spectrum is contained in I we have

f(@(A) < D (f(A)). 1.2)

We observe that if ¥ € 3 [B (H) , B (K)] with ¥ (15) € B** (K), then by taking @ = ¥~ 1/2 (1) Y¥ V2 (1p)
in (1.2) we get
FFan Y@y am) < @ Y (@) ¥ ).

If we multiply both sides of this inequality by ¥*/? (1g) we get the following Davis-Choi-Jensen’s inequality
for general positive linear maps:

v f (A Y@ ¥ (1)) ¥ () < ¥ (). (13)

In this paper, motivated by the above results, we establish some inequalities of Hermite-Hadamard type
for operator convex functions and positive maps. Applications for power function and logarithm are also
provided.
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40 — S.S.Dragomir DE GRUYTER

2 Refinements of HH-Inequality
Let f : I — R be an operator convex function on the interval I and two selfadjoint operators A and B with

spectrain I and @ € Py [B (H), B (K)] . We know that @ is continuous, see for instance [11, Proposition 2.8].
By taking the positive map @ in (1.1) and using the continuity property of @, we have

o(r(%3°)) 2ol (%)) o (r ()] e

1
/(D(f((l—t)A+tB))dt
0

1
=3
@

(p( (A+B)) N fp(f(A));rCP(f(B))]

FA)+o(fB)
2

If we write the inequality (2.1) for @ (A) and @ (B) then we also have

f(M) S%{f(w) +f(w>} 2.2)

1
< /f((l—t)(D(A)+td>(B))dt
0

1 DA+ P (B)\ | f(PA)+Sf(P(B)
5 > ¥ 2
Sf((D(A))+f(tD(B)).

2

It is then natural to ask how the following integrals

1 1
/db(f((l—t)AH‘B))dtand /f((1-t)q>(A)+t<p(B))dt
0 0

do compare?
The following simple result holds:

Theorem 3. Let f : I — R be an operator convex function on the interval 1. Then for any selfadjoint operators
A and B with spectrain I and @ € Py [B (H) , B (K)] we have

1 1
/f((l — ) @A)+t (B))dt < / @ (f(1-1)A+tB))dt. (2.3)
0 0

Proof. By (1.2) we have
fA-DPA)+tD(B) =f(P((1-A+B)<P(f((1-t)A+(B))

forany t € [0, 1].
By integrating this inequality on [0, 1] and using the continuity property of @ we get the desired re-
sult (2.3). O

We define by 3 [B (H) , B (K)] the convex cone of all linear, positive maps ¥ with ¥ (1g) € B** (K), namely
¥ (1y) is positive invertible operator in K.
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DE GRUYTER Some Hermite-Hadamard type inequalities =—— 41

Corollary 1. Let f : I — R be an operator convex function on the interval I and selfadjoint operators A and B
with spectrain I. If ¥ € B, [B (H) , B (K)] , then we have

1
w2 (1p) ( / FF P am@-ow @+ v @Y an) dt) w12 (1p)
0

1

< / Y(f((1-t)A+tB))dt. 4)

0

Proof. If we write the inequality (2.3) for @ = ¥~Y/2 (1) ¥¥~V/2 (1), then we get

1
/ Fa-ov? @y @ e qm+ v an Y @Y 1) dt
0

1
< /‘I"l/z A Y (F(1-0)A+B) ¥ Y2 (1) dt,
0

that can be written as
1

/ F(P2 @ - 0w @+ tr @) ¥ 1) de

0
1
<2 (1p) (/ W(f((1-1t)A +tB)) dt) w2 (1.
0
Finally, if we multiply both sides of this inequality by ¥*/2 (1x) , then we get the desired result (2.4). O

The following representation result holds.

Lemma1l. Letf : I — C be a continuous function on the interval I and two selfadjoint operators A and B with
spectrain I. Then for any X € [0, 1] we have the representation

1 1
/f((l—t)A+tB)dt=(1—A)/f[(l—t)((l—)\)A+)\B)+tB]dt (2.5)
0 0

1
+>\/f[(1—t)A+t((1—)\)A+>\B)]dt.
0

Proof. For A = 0and ) = 1 the equality (2.5) is obvious.
Let A € (0, 1) . Observe that

1 1
/f[(l—t)(/\B+(1—>\)A)+tB]dt=/f[((l—t)/\+t)B+(1—t)(1—)\)A]dt
0 0

and ) )
/f[t(AB+(1—>\)A)+(1—t)A]dt=/f[tAB+(1—>\t)A]dt.
0 0

If we make the change of variable u := (1 - t) A\+tthenwehave1-u = (1-¢)(1 - N anddu = (1 - \) du.
Then

1 1
/f[((l—t)/\+t)B+(1—t)(1—)\)A]dt=fl)\/f[uB+(1—u)A]du.
0 A
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42 — S.S.Dragomir DE GRUYTER

If we make the change of variable u := \t then we have du = \dt and

1 A
/f[tAB+ (1- D A]dt - %/f[uB +(1-u)A] du.
0 0

Therefore

1 1
(1—)\)/f[(1—t)(>\B+(1—)\)A)+tB]dt+)\/f[t()\B+(1—)\)A)+(1—t)A]dt
0 0
1 A
=/f[uB+(1—u)A]du+/f[uB+(1—u)A]du
A 0

1
=/f[uB+(1—u)A]du
0

and the identity (2.5) is proved. O

We have now the following generalization of (1.1):

Theorem 4. Let f : I — R be an operator convex function on the interval I. Then for any selfadjoint operators
A and B with spectra in I and for any X € [0, 1] we have the inequalities

f<¥)S(l_A)f[(1—)\)A;r(1+)\)B}+Af{W} (2.6)

1
< /f((l—t)A+tB)dt
0

< %U((l—)\)A+)\B)+(1—)\)f(B)+>\f(A)]

_fA)+f(B)
SOTE)

Proof. Using the Hermite-Hadamard inequality (1.1) we have

f {(1—A)A+(1+A)B

1
. ] < /f[(l —)((1- \) A + A\B) + tB] dt .7)
0

<f((1—)\)A+)\B)+f(B)
N 2

and

f[(Z—)\)A+/\B

1
> } s/f[(l—t)A+t((1—)\)A+)\B)]dt (2.8)
0

A +f(1-NA+AB)
) 2

forany X € [0, 1].
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DE GRUYTER Some Hermite-Hadamard type inequalities = 43

If we multiply inequality (2.7) by 1-) and (2.8) by ), add the obtained inequalities and use representation
(2.5), then we get

(1_)\)f{(1—/\)A+(1+/\)B} Mf{(Z—A)Ah\B]

2 2
1
< /f((l ~t)A + tB)dt
0

(1-XMA+XB)+f(B) +)\f(A)+f((1—)\)A+)\B)
2 2 ’
which proves the second and third inequalities in (2.6).
By the operator convexity of f we have

s(l—)\)f(

(1_)\)f[(1—)\)A;r(1+)\)B} oof {W}
Ef[(l_)\)(l—)\)A+(1+)\)B+)\(2—)\)A+)\B] :f(A+B)
2 2 5

and

D@04+ 2B+ (1~ N (B)+ M (4)]

S %[(1—/\)f(A)+>\f(B)+(1—)\)f(B)+)\f(A)] - jw
that prove the first and last inequality in (2.6). -
We have:

Corollary 2. Letf : I — R be an operator convex function on the interval I. Then for any selfadjoint operators
A and B with spectrain I and @ € By [B (H) , B (K)] we have

o{1(152)) co-nos 255008 o ([E08])

2
1
< /cD(f((l—t)A+tB))dt
0
< SID(F (- A+AB)+(1- ) D (F (B) + \D(f (A)

L LA+ P (f(B)
N 2

forany X € [0, 1].

3 Bounds for HH-Difference

We consider the difference functional

n n
Jn(P; A, f, 1) = ijf (4j) - Pof (Pln Zp,-A,-) (3.1)
j=1 j=1

where p =(p1, ..., pn), pj 2 Owithj € {1,...,n} and Pn > 0, A=(44, ..., Apn) is an n-tuple of selfadjoint
operators with Sp (A,-) ClIforje {1,...,n}andf : I — Ris a operator convex function defined on the
interval I.

We denote by Py, the set of all n-tuples p = (p1, ..., pn) , pj = Owithj € {1, ...,n} and P, > 0. Forp, q €Py,
we denote p > qif p; > g; foranyj € {1, ..., n}.

In [7] we established the following properties of the functional J, (:; A, f, I):
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44 —— S.S.Dragomir DE GRUYTER

Theorem 5. Assumethatf : I — Ris anoperator convex functionand A = (A1, ..., An) an n-tuple of selfadjoint
operators with Sp (Aj) C I, then for any p, q €P;, we have

]Tl (p+q’A1f’I) 2]71 (p;A,f’I)"']Tl (q,A’f’I) 2 0’ (3-2)

i.e.,, Jn (3 A, f, I) is a super-additive functional in the operator order.
Moreover, if p, q €P;, with p = q, then also

Jn (@A, f, D) 2 Jn(@;A, f,1) 20, (3)

i.e.,, Jn (-3 A, f, I) is a monotonic functional in the operator order.
The following boundedness property also holds:

Corollary 3. Assume that the function f : I — R is operator convex and the n-tuple of selfadjoint operators
(A1, ..., An) satisfies the condition Sp (Aj) ClIforanyje {1,...,n}.Ifp, q €P;, and there exists the positive
constants m, M such that
mq <p < Mq, (34)
then
m]n(q;A’f’I)Sjn(p;A’f’I)SM]n(q;A:f’I) (35)

in the operator order.

We observe that ifall g; > 0, j € {1, ..., n}, then we have the inequality

 min }{%}Jn (@A f. D) < Jn (DA, £, ) (36)
n ]

<  max {Iﬁ}]n(q;A,f,I)
je{1,...n} | qj

in the operator order.
In particular, by (3.6) forn=2,p; =1-p,p, =p,q1 =1-qgand g, = gqwithp € [0,1]and g € (0, 1)
we get

min {2, 1241~ 0)f @)+ of (B) - (1~ 0)4 + aB) 6
<[(1-p)f (4) +f (B)~f (1 ~p)A + pB)]
max {2, 1:’;} [(1-0)f (A)+ af (B) - (1 - ) A + 4B)]

for any selfadjoint operators A and B with spectra in I.
If we take g = 1 in (1.1), then we get

2min{t,1 -t} {f(A);'f(B) -f (A;Bﬂ <[(A=0f (A)+tf (B)-f((1- ) A + tB)] (3.8)
< 2max{t,1-t} {f(A);f(B) 5 (AQB)}

for any selfadjoint operators A and B with spectrain I and ¢ € [0, 1] .
If we take in (3.7) the map @, then we have

min {’;; 1%5} (- Q@ (W) +q®( B) - P (1-DA+3B)] (39)
<[(1-p) O (4) + PO (f (B) - P (1 - p) A + PB))

smax{g, H‘;} (- @)@ (A)+ 9P (B) - P (1-9)A+qB))]
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DE GRUYTER

forany @ € By [B (H), B (K)] .

The following result provides some upper and lower bounds for the HH-difference

1
M _/f((l—t)A+tB)dt.
0

Some Hermite-Hadamard type inequalities = 45

Theorem 6. Let f : I — R be an operator convex function on the interval I. Then for any selfadjoint operators

A and B with spectra in I we have the inequality

1
Ja-0f @@ -fa-a+qp) LT - [ra-pa-ma
0

ld’-g+1
24q(1-9)
foranyq € (0,1).

Proof. From (3.7) we have
min{ £, 1= 0 -0r @ af ) r@ - 04+ aB)
<[(L-OF (A)+ tf (B) - £ ((1- A + B)]
emax{ £ 1t ia-ar W ar ) -f (@ - 0)4+ g8
with t € [0,1]and g € (0, 1).
If we integrate over ¢ € [0, 1] the inequality (3.11), then we get

1
[(1—q)f(A)+qf(B)—f((1—q)A+qB)]/mm{é’%}dt
0

1
sw—/f((l—t)A+tB)dt
0

1
(0 -0 )+ af B)-F(A - A+a) [max L 10 bar
0

q

for any A, B with spectrain I and g € (0, 1).

Observe that
£_1—t: t-q
g 1-q q(1-9)
showing that
Lifos<t<qg<1
. {t 1—t} 4 a
min a,i =
fLifosgsts1
and -
~Lifos<st<g=<1
t 1-t 1-q a
max 5,fq =
éifogqst<1
Then
1 q 1
/min{f, _t}dt=/£dt+/£dt
J 1-¢g q 1-¢qg
q

0

2 2
a1 (. (1-82\)_
_2q+1—Q<1 1 ( 2 >>_

(3.10)

[(A-@)f(A)+af (B)-f((1-q)A+gB)]

(3.11)

(312
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46 =—— S.S.Dragomir DE GRUYTER

and
1 q 1
max 7,;t dt = udt+ £dt
1-¢g 1- q
0 0 q
2 2
B S (P

1-¢q 2 2q

7’ -q+1

2q(1-9q)
and by (3.12) we obtain the desired result (3.10). O

Corollary 4. Let f : I — R be an operator convex function on the interval I. Then for any selfadjoint operators
A and B with spectrain I and @ € By [B (H), B (K)] we have

% (1-@)@(f(A) +qP(f(B)-P(f((1-q)A+gB) (.13)

1
< QAN+ O((E) _/q>(f((1—t)A+tB))dt
0

-qg+1

1q°
3 qa-g (- DPCAN+qaP((B)-P(F (1 -9 A+gB)].

We also have the following bounds for the other HH-difference

/f((l—t)A+tB)dt f(A+B>

Theorem 7. Letf : I — R be an operator convex function on the interval 1. Then for any selfadjoint operators
A and B with spectra in I we have the inequality

Zq(ll )mm{l q,9} {/f((l—t)A+tB)dt—12/f((1 s)A+sB)ds] (3.14)

/f((l—t)A+tB)dt f(A+B>

1
smmax{l 9,9} [/f((l—t)A+tB)dt—1 o /f((l s)A+sB)ds]
0

or, equivalently

% !/f((l—t)A+tB)dt f(A+B>] (3.15)

1
s/f((l—t)A+tB)dt— - ! ~s)A +sB)ds
0

c_204-9 [/f((l—t)A+tB)dt f(A+B)]

min{1l-gq,q}

foranyq € (0,1),q# }.
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DE GRUYTER Some Hermite-Hadamard type inequalities = 47

Proof. 1f we take in (3.7) p = %, then we have
290-9 min{1-4q,q}[(1-q)f(A)+qf (B)-f((1-9q)A+¢gB)] (3.16)

fA)+f(B) A+B
OO ()

max{1-q,q}[(1-q)f(A)+qf(B)-f((1-q)A+qB)]

1
P —
2q(1-9)

for any A, B with spectrain I and g € (0, 1).
If we replace A by (1 - t) A + tB and B by tA + (1 - t) B in (3.16), then we get

1 .
mmm{l -4, ¢} [A-f(1-)A+tB)+qf (tA+(1-t)B) (3.17)
f(A-g[1-A+Bt]+q[tA+(1-1t)B])]

F(A-OA+tB)+f(tA+(1-OB) ,(A+B
- 2 2

1
<——— —max{l-gq, 1- 1-t)A+tB)+ tA+(1-t)B
sq =g "X (14, (L= f (1-0A+(B)+af (A +(1-)B)
f(A-q@[(A-0A+Bt]+q[tA+(1-1t)B])]
foranyA,Be C,te€[0,1]and g € (0,1).
If we take the integral over t € [0, 1] in (3.17) and take into account that

1 1
/f((l—t)A+tB)dt=/f(tA+(1—t)B)dt
0 0

we get

1 1
1
_min{l—q,q}[ f((1-6A+tB)dt - f((l—q)[(l—t)A+tB]+q[tA+(1—t)B])dt] (3.18)
2q(1-q) O/ 0/

1
s/f((l—t)A+tB)dt—f<A;rB)
0

1 1
< ﬁmax{l—q,q} [/f((l—t)A+tB)dt —/f((l—q)[(l—t)A+tB]+q[tA+(1—t)B])dt]
0 0

orany A, B with spectrainIand g € (0,1).
Observe that for any A, B with spectrain I, t € [0, 1] and g € (0, 1) we have
(1-9[A-0A+tBl+q[tA+(1-)B]=[1-q)(1-)+qt]A+[1-q)t+(1-6)q]B
and by putting s := (1 - )t + (1 - t) g, for g # 3 we have
(-9 -+qt]lA+[Q1-@)t+(1-t)q]B=(1-5)A+sB.

If g # %, then s is a change of variable, ds = (1 - 2q) dt and we have for any A, B with spectra in I that
1 1-q
/f((l—q)[(l -t)A+tB]+q[tA+(1-t)B])dt = 1%2(1 /f((l—s)A+sB)ds.
0 q
On making use of (3.18) we get the desired result (3.14).

Brought to you by | Victoria University Australia
Authenticated
Download Date | 7/18/19 7:18 AM



48 — S.S.Dragomir DE GRUYTER

Corollary 5. Let f : I — R be an operator convex function on the interval 1. Then for any selfadjoint operators
A and B with spectrain I and @ € Py [B (H) , B (K)] we have

/CD(f((l—t)A+tB))dt— (f (A;B»] (3.19)

q

1 1-
s/(:D(f((l—t)A+tB))dt— 1_12q /CD(f((l—s)A+sB))ds
0 q

/1<:D(f((1—t)A+tB))dt—CD(f (A;B))]
0

2q(1-qg)
max{1-g,q}

2q(1-9q)
" min{l-gq,q}

forany q € (0,1), g # 3.
Remark 1. If we take q = ; in (3.15) and (3.19), then we get

3/4

[/f((l—t)A+tB)dt f(A+B>] /f((l—t)A+tB)dt— /f((l s)A+sB)ds  (3.20)

1/4

<3 [/f((l—t)A+tB)dt f(A+B)]

and
1 3/4

% !/cb(f((l—t)A+tB))dt—d7(f (A >> /CD(f((l—t)A+tB) dt - Z/CD(f((l—s)A+sB))
0 1/4

(3.21)

<3
2

/CD(f((l—t)A+tB))dt— (f (A;B))}

forany A, B with spectrainI and @ € Py [B (H), B (K)] .

4 Some Examples

The function f (t) = t" is operator convex on (0, oo) if either 1 < r < 2 or -1 < r < 0 and is operator concave on
(0,00)ifO0<r<1.

If we write the inequality (2.3) for the power 1 < r < 2 (or -1 < r < 0) we have

1 1
/ (-6 DP(A) +td(B)) dt < / D ((1-t)A+tB))dt, (4.1)
0 0

where @ € By [B(H),B(K)]and A, B € B* (H) (A,B € B** (H)). In the case 0 < r < 1 the inequalities
reverse in (4.1).
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If we write the inequality (2.9) for the power 1 < r < 2 (or -1 < r < 0) we have

¢(<A;’B)r) S(1—>\)<D<{(1_)‘)A;(1+)‘)B}r> +A@([(2'A)ZA”BD (4.2)

1
/cD (1-t)A+tB)") dt
0
1
=2
¢>

[@((L-XN)A+AB))+(1-N)@(B") + D (A")]
@ (A7) + @ (B') +<P(B ).

where A € [0,1], @ € Py [B(H),B(K)]and A, B € B (H) (A,B € B'" (H)). In the case 0

< r < 1 the
inequalities reverse in (4.2).

If we write the inequality (3.9) for the power 1 < r < 2 (or -1 < r < 0) we get for p € [0, 1], g € (0, 1) that

1— r r r
mm{% fZ} [(1-q)@ (A7) +q® (B") - @ ((1-q)A+gB)")] “3)
<[1-p)@(A") +p® (B") - @ ((1-p)A+pB))]
<max{§ 17}[(1 QP (A")+qP(B")-@((1-9)A+gB)")]

where @ € Py [B (H), B (K)] and A, B € B* (H) (4, B € B** (H)).
From (3.13) we have for 1 < r < 2 (or -1 < r < 0) that

% (1-q)@ (A7) +q® (B") - @ ((1- q)A +gB)")] (4.4)
1
< w —/CD(((l ) A+ tBY) dt
0

<1M - r r _ _ r
3 40-9) [(1-q)@ (A7) +q® (B") - @ ((1-q)A+gB)")]

while from(3.19) we have that

2q(1-9q)
max{1-g4g,q}

1 r
/(D(((l—t)A+tB)’)dt—(D(<A;B) ﬂ (4.5)
0

1 1-q
< /@(((1—t)A+tB)’) dt - 1_12q /(D(((l—s)A+sB)') ds
0 q

/1<:D(((1—t)A+tB)’) dt—d)((A;’B>r)
0

where p € [0,1], g € (0,1), ® € Py [B (H), B(K)] and 4, B € B* (H) (4, B € B** (H)).
The function f (f) = - In t is operator convex on (0, o) . Then by (2.3) we have

2g(1-gqg)
" min{l-gq,q}

>

1 1
/ln (1-t)D(A)+ D (B))dt /cp(ln (1-t)A+tB))dt (4.6)
0 0
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while by (2.9) we have, for \ € [0, 1] that

@ (ln <A;B)) s(1-N)@ <1n {(1”)‘4;(1”)3}) +AD (ln [WD 4.7)
1

> /(D(ln((l -t)A +tB))dt
0

> % [@(n(1-X)A+AB)+(1-NP(In(B)) + \@ (In(4))]

_ @(In(A)) + @ (In(B))
> . :

where @ € Py [B (H), B (K)] and A, B € B** (H).
From (3.9) we have for p € [0, 1], g € (0, 1) that

min {2, 222} (@ (n (1~ A+ 4B) - (1~ ) @1 (4) - (In B) “8)
< [®(In (1~ p)A + pB) - (1 - p) @ (In (4)) - p&® (n ()
<max{z 1op }[cD(ln((l 9)A+qB) - (1- ) ®(In(A) - g (In (B)],

from (3.13) we have

% [@(In((1-q)A+gB))-(1-q)P(n(A)-qP(n(B))] (4.9)
1
< /@(ln (-0 A +tB) dt - 20A) : @ (In (B))

0
< %qq(i) [@(n((1-q)A+gB) - (1-q)@(In(4)) - g (In(B))].

while from (3.19)

1
#—_I;{)q} !(,‘D <ln (A;B)> —/cD(ln (1-HA+ tB))dt] (4.10)

1-q
<1 2q/cb(ln (1-5s)A +sB))ds - /cD(ln( — ) A +tB))dt
q

. 2q(1-9q) A+BY\)\ _ B
_M[¢(ln( :2)) O/Q(m((l t)AHB))dt]

where @ € Py [B (H), B (K)] and A, B € B** (H).
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