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Bayesian Sparse Topical Coding
Min Peng, Qianqian Xie, Hua Wang, Yanchun Zhang, Gang Tian

Abstract—Sparse topic models (STMs) are widely used for learning a semantically rich latent sparse representation of short texts in
large scale, mainly by imposing sparse priors or appropriate regularizers on topic models. However, it is difficult for these STMs to
model the sparse structure and pattern of the corpora accurately, since their sparse priors always fail to achieve real sparseness, and
their regularizers bypass the prior information of the relevance between sparse coefficients. In this paper, we propose a novel Bayesian
hierarchical topic models called Bayesian Sparse Topical Coding with Poisson Distribution (BSTC-P) on the basis of Sparse Topical
Coding with Sparse Groups (STCSG). Different from traditional STMs, it focuses on imposing hierarchical sparse prior to leverage the
prior information of relevance between sparse coefficients. Furthermore, we propose a sparsity-enhanced BSTC, Bayesian Sparse
Topical Coding with Normal Distribution (BSTC-N), via mathematic approximation. We adopt superior hierarchical sparse inducing
prior, with the purpose of achieving the sparsest optimal solution. Experimental results on datasets of Newsgroups and Twitter show
that both BSTC-P and BSTC-N have better performance on finding clear latent semantic representations. Therefore, they yield better
performance than existing works on document classification tasks.

Index Terms—Document Representation, Bayesian Topic Model, Sparse Coding, Hierarchical Prior.
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1 INTRODUCTION

SHORT texts have been an important information source
for many internet users with the rapid development

of social media, such as Facebook, Weibo, and Twitter.
These short texts are characterized by fast spreading, short
length, large amount, sparse information, snarled noise and
irregular modality [16]. Because of these features, short
texts cannot be handled by manual and traditional tools.
Thus, there is an urgent need for powerful tools which are
capable of extracting useful and meaningful latent repre-
sentations from a large scale of short texts. The extracted
latent representations are important to follow-up research
and engineering applications, such as emergencies detection
[20], [13], user interest modeling [21], Micro-Blogger influ-
ence analysis [22], and automatic query-reply [58]. Latent
Dirichlet Allocation (LDA) [1], [15] is such a useful proba-
bilistic tool for analyzing overwhelming texts. It has made
dramatically advances in many domains, such as hyperlink
analysis [47]and query processing [50]. LDA-based proba-
bilistic topic models [2], [3], [4] learn the latent document
and topic representations from original corpus without any
labels. In essence, they generate the latent representations by
implicitly capturing the document-level word co-occurrence
information [4]. They have been widely used for long texts
which have abundant word co-occurrence information for
learning in recent years. Nevertheless, short texts are char-
acteristic of short document length, a very large vocabulary,
a broad range of topics, and snarled noise. Therefore, the
word co-occurrence information in each short document
becomes much sparser, inevitably compromising the per-
formance of these models. It also has been proven that
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when the average token number N of texts is too small,
LDA-based probabilistic topic models can not learn topics
accurately and may produce mostly incoherent topics [57].
This is because the topics learned from these models are
formally a multinomial distribution over N co-occurrent
words scattered in different short texts. Table 1 shows exam-
ples of topic words by directly applying LDA on the Tweets
collection. Obviously, the topic words learned by LDA are
meaningless and incoherent. The words lauder, facebook and
president in topic 2 actually belong to different topics, but
they are unreasonably allocated to the same topic. To sum
up, directly applying these models on short texts will suffer
from the severe data sparsity problem.

This problem has gained so much attention that many
methods have been made recently, which can be summa-
rized as following two aspects: using sparse priors [9], [8],
[16] and imposing posterior regularizations [11], [12], [23].
Both methods are based on the observation that the latent
representations to be learned are highly sparse (i.e. each
document focuses on a few topics, and each topic focuses
on a few words) [12]. The first method introduces auxiliary
variables into probabilistic topic models, like ”Spike and
Slab”, but it is ineffective in controlling the sparsity for the
admixing proportions of probabilistic topic models (PTMs).
The second method imposes posterior regularization on
non-probabilistic models, like lasso [10], group lasso [24],
[6], and sparse group lasso [5]. They can realize sparse rep-
resentations in real sense. These two attempts are capable of
finding full sparse representations [14], [16], which are more
interpretable, clear and meaningful than those generated
by traditional topic models. For purposes of comparison,
we report some theoretical characteristics of five closely
related models in Table 2. Although the two methods above
have achieved relatively good performance, there are still
some challenges: (1) the first method fails to realize sparse
representation in real sense, (2) the second method takes few
prior information of relevance between sparse coefficients
into consideration.
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TABLE 1
Example Topic Words.

topic 1 obama appl relationship facebook este enter hit high lie
topic 2 lauder lip facebook enter president nail follow win store
topic 3 tweet estee instagram enter high may spread obama win
topic 4 obama enter high metallic stock lacquer iphon facebook ipad

In this paper, we present a novel approach to learn
sparse latent representations efficiently. The approach is
based on our recent work of Sparse Topical Coding with
Sparse Groups (STCSG)[16]. STCSG is a non-probabilistic
formulation of topic models for discovering latent represen-
tations of large collections of data, by introducing sparse
prior. Through imposing sparse groups, STCSG relaxes the
normalization constraint of the inferred representations and
can model the sparsity of word, topic and document codes
effectively. However, STCSG bypasses the prior information
of relevance between sparse coefficients for using traditional
sparsity-inducing regularization. To tackle the above chal-
lenges and flaws of STCSG, we present a novel Bayesian
hierarchical sparse topical coding, the Bayesian Sparse Top-
ical Coding with Poisson Distribution (BSTC-P), which is
an essential Bayesian extension of STCSG and have greater
flexibility in employing the structural information of the
sparse solution. It can learn a sparser and more meaningful
representation, and exploit the keywords which correlate
strongly with one topic, but are weakly related to other top-
ics as far as possible, thus forms excellent ability to express
the semantics of topics. BSTC-P utilizes Poisson distribution
to model discrete word counts, and uses Gamma-Jeffrey dis-
tribution, to model the probability distributions of keywords
in the vocabulary, probability distributions of topics in the
keywords semantic space, and the topic basis. By using
hierarchical Laplace prior, it can discover more compact and
efficient coding than STMs which utilize non-hierarchical
sparse prior and traditional sparse-inducing regularization.
However, it still fails to find the sparsest optimal solution,
due to taking the Gamma distribution as the prior distribu-
tion of sparse solution, since it can affect the convergence
of BSTC-P. Therefore, we propose the sparsity-enhanced
BSTC, Bayesian Sparse Topical Coding with Normal Dis-
tribution (BSTC-N), which utilizes Normal distribution to
model word count, and incorporates zero mean Normal-
Jeffrey prior to model probability distributions of keywords
in the vocabulary, probability distributions of topics in the
keywords semantic space, and the topic basis. Generally, for
BSTC-N, it is more likely to obtain the sparsest optimal so-
lution and can achieve sparser and more meaningful latent
representations than BSTC-P. Noticed that it is unsuitable to
model text and discrete data.

The main contributions of this paper are listed as follows:

1) To the best of our knowledge, we are the first one to
employ sparse hierarchical prior for sparse topical
coding. We design a novel Bayesian hierarchical
topic model BSTC-P, to obtain more accurate and
effective document, topic and word-level sparsity
by introducing sparse Bayesian learning. In order
to derive the sparsest optimal solution and more
compact sparse representations further, we propose

TABLE 2
Theoretical Comparison of Some Topic Models.

model LDA Dual-ST STC GSTC STCSG
Document sparsity - no yes yes yes

Topic sparsity - yes no no yes

Word sparsity - no yes no yes

Sparsity control - indirectly directly directly directly

a novel Bayesian hierarchical topic model BSTC-N.
2) We incorporate the Expectation Maximization algo-

rithm (EM) and Variational Inference to efficiently
approximate the posterior of these two models.

3) We evaluate the effectiveness and efficiency of our
models by conducting experiments on 20 News-
groups and Twitter dataset. Experimental results
show that these two models outperform other base-
lines.

2 RELATED WORK

There have been many works on sparse topic model for
obtaining sparse latent representations. Our work is related
to the following lines of literature.

2.1 Sparsity-Enhanced Probabilistic Topic Models
(Sparsity-PTMs)
There are many sparsity-enhanced probabilistic topic mod-
els which aim at extracting meaningful latent word, topic
and document representations, by imposing sparse priors
on LDA-based models. Wang et al. [25], [26] presented
the focused topic model (FTM) for learning sparse topic
mixture patterns via using a sparse binary matrix drawn
from an IBP to enforce sparsity in the latent document
representations. Based on the FTM, Chen et al. [27] pre-
sented cFTM via leveraging contextual information about
the author and document venue, in which the hierarchical
beta process is employed to infer the focused set of topics
associated with each author and venue. Archambeau et
al. [28] proposed IBP-LDA, in which the four-parameter
IBP compound Dirichlet process (ICDP) is used to account
for the very large number of topics present in large text
corpora and the power-law distribution of the vocabulary
of natural languages. Similar to IBP-LDA, dual-sparseTM
[12] was proposed by using the ”Spike and Slab” prior to
decouple the sparsity and smoothness of the document-
topic and topic-word distributions. Doshi-Velez et al. [23]
introduced Graph-Sparse LDA by leveraging knowledge of
relationships between words, in which topics are summa-
rized by a few latent concept-words from the underlying
graph that explains the observed words. Based on LDA,
Kujala [29] proposed sparse topic model LDA-CCCP, in
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which the Concave-Convex Procedure (CCCP) is utilized
to optimize over the LDA objective and produce sparse
model. However, all the methods above lack the ability of
controlling the posterior sparsity directly.

2.2 Sparsity-Enhanced Non-probabilistic Topic Models
(Sparsity-NPTMs)
There are also some non-probabilistic sparse topic models
[9], [8], [16] which can directly control the sparsity by
imposing regularizers such as lasso, group lasso and sparse
group lasso. Methods like matrix factorization (e.g.[7], [30],
[31]) formalized topic modeling as a problem of minimizing
loss function regularized by lasso, group lasso and so on.
But, representations learned by these models are usually
non-positive. Furthermore, sparse coding was introduced
to non-probabilistic topic models. Zhu et al. [9] proposed
sparse topical coding (STC) by using mixture regularizers,
for discovering latent representations of large collections of
data. However, STC is not able to discover group sparsity
patterns. Bai et al. [8] devised group sparse topical coding
(GSTC) by imposing group sparse, resulting in better per-
formance than STC. But they fail to achieve fully sparse
of topics per document, terms per topic, and topics per
term. Subsequently, Peng et al. [16] presented sparse topical
coding with sparse groups (STCSG) to find latent word,
topic and document representations of texts. Than et al.
[14] proposed Fully Sparse Topic Model (FSTM), which can
quickly learn sparse topics, infer sparse latent representa-
tions of documents, and help significantly save memory
for storage. Unlike PTMs, they succeed in directly realizing
sparse posterior representations in a real sense. However,
they still fail to take advantage of prior information of
relevance between sparse coefficients.

2.3 Sparse Bayesian Learning
Sparse Bayesian Learning (SBL) was proposed by Tipping
[32] for obtaining sparse solutions to regression and clas-
sification tasks. From then on, SBL was widely introduced
to compressive sensing (CS), such as [33], [36], [35]. Unlike
traditional CS which utilizes lasso, these methods have
favorable performance, even if there exists strong correla-
tion between columns of sensing matrix. Wipf et al. [33]
motivated the SBL cost function as a vehicle for finding
sparse representations of signals from overcomplete dic-
tionaries. This SBL frame retains a desirable property of
the lasso diversity measure and is capable of obtaining a
sparser solution by using Jeffreys super prior. This is a
non-informative prior distribution for a parameter space,
and has been widely used in Bayesian analysis [36], [44].
[34], [35] utilized hierarchical form of prior distributions to
model the sparsity of the unknown signals that have high
degree of sparsity. Chien et al. [17] presented a new Bayesian
sparse learning approach to select salient lexical features for
sparse topic modeling based on LDA. Moreover, Minjung
et al. [37] proposed fully Bayesian formulation of lassos.
Compared with traditional penalty-based algorithm (such
as lasso, Basis Pursuit), Sparse Bayesian Learning has many
obvious advantages: 1) The global minimum of L1-based
algorithm is not the true sparsest solution in the absence
of noise [38]. Sparse Bayesian Learning, however, is just

the opposite case and is a better alternative [33]; 2) It has
been proved that Sparse Bayesian Learning is equivalent to
an iterative reweighted L1 minimization [39]. Meanwhile,
it has been pointed out that the true sparsest solution can
be easily induced by using the iterative reweighted L1

minimization [40].
In our work, we propose BSTC-P by employing SBL

to obtain a sparser and more meaningful representation.
On one hand, it can directly control the posterior sparsity
like sparse-NPTMs. On the other hand, it can infer sparse
document, topic and word proportions like sparse-PTMs.
Moreover, we employ the zero mean Normal-Jeffreys hier-
archical prior via mathematic approximation to achieve the
sparsest optimal solutions in BSTC-N.

3 BAYESIAN SPARSE TOPICAL CODING WITH
POISSON DISTRIBUTION

Firstly, we define thatD = {1, ...,M} is a document set with
size M , T = {1, ...,K} is a topic collection with K topics,
V = {1, .., N} is a vocabulary with N words, and wd =
{wd1, .., wd|I|} is a vector of terms representing a document
d, where I is the index of words in document d, andwdn(n ∈
I) is the frequency of word n in document d. Moreover,
we denote KSd as the keyword set of document d, and
β ∈ RK×N as a dictionary with k bases. Additionally, all
the notations used in this paper are summarized in Table 3.

TABLE 3
Variables and Notations.

Notation Meaning
D document set
T topic collection
V vocabulary
wd,. word vector of document

Sd,. document code of document d
sd,n word code of n in document d
KSd keyword set of document d
β topic dictionary d

θd,. topic representation d
φd,.t keyword proportion of t
IKS increased keywords set

b0d,.t, b
1
d,k, b

2
k, c

1
d,.k parameters of gamma distribution

σ2
d0,n, σ

2
d1,.t, σ

2
d2,k, σ

2
3,k. parameters of normal distribution

Definition 1 (Word Code, Document Code, Topic Presen-
tation). In this work, a word code sd,n(n ∈ I) in
a document d is defined as the empirical word-topic
assignment distribution p(z(n) = k), where z(n) is the
topic of word n. A document code Sd,.(d ∈ D) can be
regarded as an admixture distribution over words in the
document d. The topic presentation θd of a document d
is an admixture proportion on topic k.

Definition 2 (Keyword, Keyword proportion). In this paper,
a keyword of a document d is the word that correlates
strongly with one topic, but is weakly related to other
topics. A keyword proportion φd,.t(t ∈ ksd) is an ad-
mixture distribution over words in document d.
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3.1 Probabilistic Generative Process for BSTC-P
Similar to STCSG, BSTC-P assumes that each word count
is a latent variable, and can be reconstructed by linear
combination of each keyword proportion and each keyword
code with the counterpart column in topic dictionary. To
better understand the above assumption, we provide a
graphic describing in Figure 1 . Unlike STCSG, BSTC-P

dd dsS 
Topic dictionary

Word codes dS

keyword proportion d keyword codes ds

, ., .

T

d n nd n
Sw 

Word count ,d nw

 

(document    word   ) ,d n

matrix multiplication

dot product 

Fig. 1: A graphic describing the reconstruction assumption.

introduces the keyword set and imposes the sparse prior
on each dictionary to improve the learning effect of sparse
representations. It aims at discovering accurate and mean-
ingful document, topic and word sparse representations for
large scale of short texts. According to STCSG and previous
works, it can be easily inferred that the document codes are
the average aggregation of the word code vectors, and topic
codes can be also represented by word code vectors with the
dictionary. In summary, BSTC-P is a Bayesian hierarchical
latent variable model and Bayesian extension of STCSG
by exerting Sparse Bayesian Learning (hierarchical sparse
prior). For simplification purposes, we suppose that the
observed word counts are independent to each other. The
probabilistic generative process of BSTC-P is presented as
follows (BSTC-P is depicted in Figure 2 graphically):
For each topic k ∈ {1, ...,K}:

Sample the topic dictionary vectors: βk. ∼
Gamma(1, b2k.). For each document D = {1, ...,M}:

1) For each keyword t ∈ KSd:
Sample the keyword proportion: φd,.t ∼
Gamma(1, b0d,.t).

2) For each topic k ∈ {1, ...,K}:
Sample the keyword code vectors: sd,.k ∼
Gamma(1, b1d,k c

1
d,.k).

3) For each observed word n ∈ I :
Sample the latent word count: wd,n ∼
p(wd,n | (φd,n. sd,.)

T
β.n).

,d nw

…
…

…
…

…

, 1d n0
,. 1d nb

…
…

…

…
…

…
…

…
…

…
…

1n

kn 2
knb

2
1nb

1 1
,. ,.d db c

,.ds0
,d ntb ,d nt

Fig. 2: The graphical model of BSTC-P.

In this process, there are several assumptions:

1) Each word count is generated by a Poisson distribu-
tion: Poiss(wd,n; (φd,n. sd,.)

T
β.n). The reason for

choosing Poisson distribution is the same as in [44],
[45], [11].

2) Each row of topic dictionary is generated from
a Gamma distribution: Gamma(βk.; 1, b

2
k.), where

b2k. = {b2k1, b2k2 ..., b2k|I|} is a parameter of Gamma
distribution.

3) Each column of keyword codes in document
d is derived from Gamma distribution:
Gamma(sd,.k; 1, b

1
d,k c

1
d,.k), where b1d,k and

c1d,.k = {c1d,1k, c1d,2k, ..., c1d,tk} are the parameters of
Gamma distribution.

4) Each column of keyword proportion in doc-
ument d is also derived from Gamma dis-
tribution: Gamma(φd,.t; 1, b

0
d,.t), where b0d,.t =

{b0d,1t, b0d,2t, ..., b0d,|I|t} is the parameter of Gamma
distribution.

3.2 Hierarchical Prior Structure of BSTC-P
The observation noise of this model is independent and
followed in Poisson distribution [18], that is:

p(wd,n |φd,n., sd,., β.n) = Poisson(wd,n; (φd,n. sd,.)
T
β.n),

φd,n. ≥ 0, sd,. ≥ 0, β.n ≥ 0.
(1)

Unlike using the whole word set, we consider extracting
the keyword set to represent the semantic of each topic. For
keyword proportions, a Gamma distribution is employed to
model it, then we deduce

p(φd,.t |1, b0d,.t) = b
0
d,.t e

−φd,.t/b0d,.t . (2)

Since the Gamma distribution is the conjugate prior of
Poisson distribution, it can be generally chosen as the prior
for the Poisson distribution. In the first stage of hierarchical
prior, we employ the following prior on sd,.k to achieve
sparse codes at document and topic-level:

p(sd,.k |1, b1d,k c1d,.k) = Gamma(sd,.k; 1, b
1
d,k c

1
d,.k) (3)

In the second stage, we exert the non-informative Jeffreys
super prior on each b0d,.t, b

1
d,k and c1d,.k independently as

follows:

p(b
0
d,.t) ∝

1

b0d,.t
, p(b

1
d,k) ∝

1

b1d,k
, p(c1d,.k) ∝

1

c1d,.k
. (4)

The Jeffreys prior is an improper prior, and has been proved
that it can enforce sparsity in classification, regression mod-
els and compressive sensing. From the two stages above, we
have

p(φd,.t |1, b0d,.t) = −
∏
i

b
0
d,it e

−φd,it/b0d,it , (5)

p(sd,.k |1, b1d,k c1d,.k) = − b1d,k
(|KSd |)∏

i

c1d,ik e
− sd,ik / b1d,k c

1
d,ik .

(6)
Since φd,.t ≥ 0, sd,.k ≥ 0, Eq. (5) and (6) can be rewritten as:

p(φd,.t |1, b0d,.t) = −
∏
i

b
0
d,it e

− |φd,it |/b
0
d,it , (7)
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p(sd,.k |1, b1k c1d,.k) = − b1k
(|KSd |)∏

i

c1d,ik e
− |sd,.k |/ b

1
d,k c

1
d,ik .

(8)
In Eq. (7) and (8), we can find that the hierarchical prior on
φd,.t is approximately equivalent to a hierarchical Laplace
prior, and the hierarchical prior on sd,.k is approximately
equivalent to a hierarchical Multi-Laplace prior. The hierar-
chical Laplace and Multi-Laplace prior have been proved to
be superior to lasso and group lasso in variable selection, for
employing prior information of relevance between sparse
coefficients. In this paper, we consider each column of s as
a group. We also impose hierarchical prior for each βk. the
same as φd,.t, following the future work of STCs. The two-
layer hierarchical prior structure of βk. can be expressed as:

p(βk. |1, b2k.) = b
2
k. e
− βk./b2k. , p(b

2
k.) ∝

1

b2k.
, (9)

According to Eq. (9), we infer

p(βk. |1, b2k.) = −
∏
i

b
2
ki e
− βki/b2ki , (10)

Similar to φd,.t, Eq. (10) can be rewritten as

p(βk. |1, b2ki) = −
∏
i

b
2
ki e
− |βki |/b

2
ki , (11)

From Eq. (11), we can see that the two-layer hierarchical
prior of βk. is a hierarchical Laplace prior. In summary,
BSTC-P is a four-stage hierarchical model. The first stage
is to reconstruct latent observed word counts by Poisson
distribution. The second part is to generate keyword pro-
portions for extracting focused words. The third and fourth
result in parameter-free group Laplace prior by hierarchical
prior, for extracting focused topics. Compared with STCs,
BSTC-P makes the exploiting of the structure information
more flexible for taking parameterized Gamma distribution
as the prior distribution of sparse solution, and has the
advantages of obtaining sparse word, topic and document
representations by bringing SBL framework.

3.3 Bayesian Inference of BSTC-P
3.3.1 Bayesian Inference
Now, we aim to estimate unknown parameters which enable
posterior maximum at the same time. According to Bayes’
Rule, the posterior distribution of this model is

p(φ, s, β|w)
∝ p(w|φ, s, β)p(φ| b0)p(s| b1, c1)p(β| b2)p(b0)p(b1)p(c1)p(b2).

(12)
Then, for each document d, the logarithm of Eq. (12) is:

ln(p(φd,. , sd,., β. |wd,.)

=
∑
d

(
wd,. ln

∑
t

(φd,.t sd,t.)
T
β.

−
∑
t

((φd,.t sd,t.)
T
β.−φd,.t

/
b
0
d,.t)

+
∑
k

(−sd,.k
/
b
1
d,k c

1
d,.k −β.k

/
b
2
.k)

)
.

(13)

By inferring the objective function (13), we can learn key-
word proportions, word codes, as well as the dictionaries.

The Variational Inference [45], [46] is widely used for infer-
ring of various complex models in Bayesian estimation and
machine learning. According to the Variational Bayes (VB)
method, the lower bound of the marginal log-likelihood is
tight for the exact posterior q = q(φ, s, β), that is:

Lw(φ, s, β, b
0, b

1, c1, b
1)

≥ 〈log p(w, φ, s, β| b0, b1, c1, b1)〉q +H[q]
= ELBOV B [q],

(14)

where q = q(φ, s, β) is an instrumental distribution and

H[q] is its entropy. Therefore, the expectation of the exact
posterior is approximately equal to

Q (φ, s, β|w)
∝
∑
d

(
∑
t

(wd,. ln (φd,.t sd,t.)
T
β.− (φd,.t sd,t.)

T
β.

−φd,.t
/
b
0
d,.t − ln b

0
d,.t) +

∑
k

(−sd,.k
/
b
1
d,k c

1
d,.k−β.k

/
b
2
.k)),

(15)
Jensens Inequality plays a central role in the derivation
of the Expectation Maximization algorithm [48] and Vari-
ational Inference [45] to facilitate the calculation. In Eq.
(13), we employ the Jensens inequality again for ease of
calculation. According to Jensens inequality, we maximize
the variational objective with respect to the variational
parameters (φ, s, β) of q. For each keyword t ∈ KSd in
document d, we deduce,

q(φd,.t)∝Gamma(φd,.t; 1, b0d,.t)

b
0
d,.t≡

1 +
∑
n
wd,n

(b0d,.t)
0 + (sd,t. β.)

T

−1
φd,.t= 〈b0d,.t〉.

(16)

For each topic k ∈ {1, ...,K} in document, we deduce,

q(sd,.k)∝Gamma(sd,.k; 1, b1d,k c1d,.k)

b
1
d,k ≡ (

1 +
∑
n
(wd,n− c1,n)

(b1d,k)
0 +

∑
t

(βk. φd,.)
T
)

−1

c1d,.k ≡ (

1 +
∑
n
(wd,n− c1,n)

(c1d,.t)
0 + (βk. φd,.)

T
)

−1

sd,.k = 〈b1d,k c1d,.k〉.

(17)

After we have inferred the latent representations (φ, s) of all
documents, we update the dictionary as follow:

q(βk.)∝Gamma(βk.; 1, b2k.)

b
2
k.≡ (

1 +
∑
d

∑
n
(wd,n− c1,dn)

(b2k.)
0 +

∑
d

(φd,. sd,.k)
T
)

−1

βk.= 〈b2k.〉,
(18)

where c1 =
∑
d

K∑
i=1∧i6=k

φd,. sd,.i βi. and c2 = c1. These three

equations (Eq. (16), Eq. (17) and Eq. (18) are analogous to
the posterior of EM in E step and they all follow the Gamma
distribution.

3.3.2 Dynamic Update of keyword Set
The quality of the keywords is important to construct mean-
ingful word, topic and document representations. However,
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in practice, the number of keywords should neither be
too large nor too small. Generally, it is hard to find the
optimal number of keywords. What’s worse, the initialized
keywords are usually not very accurate. Therefore, there
is still a problem of how to learn reliable keyword, even
though we have inferred their clear update expressions. To
solve this problem, we utilize a robust iterative approach
[49], which can improve the quality of keywords, and
determine the number of keywords, thus can approximate
more stable topic representations. We initialize keywords by
TFIDF score. As shown in Figure 3, after generating φ, s, β,
the prediction information can be regarded as feedback to
word space. To reselect keywords, we recalculate TFIDF
score of each word according to the learned φ, s, β. That
is:

w∗ = (φs)
T
β, (19)

wherew∗ is the weight of words. Then, we choose the words
that are highly relevant to the topic as the keywords, namely,

KS = KS ∪ IKS, (20)

where IKS is the increased keyword sets. To sum up, the
learning algorithm can be summarized in Algorithm 1.

Algorithm 1 Bayesian Inference for BSTC-P

Input: φ, s, β,D,KS;
Output: φ, s, β;
1: repeat
2: for each d ∈ {1, ...,M} do
3: for each keyword t ∈ KSd do
4: Eφd,.t = 〈b

0
d,.t〉;

5: caculate b0d,.t according to Eq. (16);
6: end for
7: for each topic k ∈ {1, ...,K} do
8: Esd,.k = 〈b1d,k c1d,.k〉;
9: caculate b1d,k, c

1
d,.k according to Eq. (17);

10: end for
11: end for
12: Eβk. = 〈b

2
k.〉;

13: caculate b2k. according to Eq. (18);
14: w∗d,. = (φd,. sd,.)

T
β.;

15: KS = KS ∪ IKS;
16: until KS − (KS ∪ IKS) = NULL

4 BAYESIAN SPARSE TOPICAL CODING WITH NOR-
MAL DISTRIBUTION

In the above sections, BSTC-P is used to learn meaningful
latent sparse representations. Although BSTC-P performs
better than STCSG and other STMs, it does not succeed
in obtaining the sparsest optimal solution for the stability
problems from adopting the Gamma distribution as the
prior distribution of sparse solution. This results in the
proper prior for sparse coefficients, therefore, cannot ensure
the global convergence of model. To address the weakness
of BSTC-P, we next propose the BSTC-N via mathematic
approximation. In this model, unlike BSTC-P, we expect to
construct the improper sparse prior for sparse coefficient, so
as to promote the sparse solution and ensure the conver-
gence of model.

4.1 Probabilistic Generative Process for BSTC-N
Similar to STCSG and BSTC-P, in this model, word count
is also treated as a latent variable, and can be reconstructed
by the linear combination of each keyword proportion, each
keyword code with the counterpart column in topic dictio-
nary. However, in BSTC-N, the continuous Normal distribu-
tion is used to model the latent word counts rather than
Poisson distribution in BSTC-P, meanwhile the keyword
proportions, word codes and topic dictionary are all subject
to Normal distribution with zero mean but not the Gamma
distribution in BSTC-P. It devotes to discovering accurate
and meaningful full sparse representations for large scale of
short texts as well. Furthermore, it can acquire the spars-
est optimal solution and outperforms BSTC-P in finding
sparse coding for using zero mean Normal-Jeffrey-based
hierarchical prior. To derive this model, we first present the
generative process of BSTC-N as follows (The whole process
also can be seen in Figure 4).
For each topic k ∈ {1, ...,K}:

Sample the topic dictionary vectors: βk. ∼ N(0, σ2
3,k.).

For each document D = {1, ...,M}:

1) For each keyword t ∈ KSd:
Sample the keyword proportion: φd,.t ∼
N(0, σ2

d1,.t).
2) For each topic k ∈ {1, ...,K}:

Sample the keyword code vectors: sd,.k ∼
N(0, σ2

d2,k).
3) For each observed word n ∈ I :

Sample the latent word count: wd,n ∼
p(wd,n | (φd,n. sd,.)

T
β.n, σ

2
d0,n).

Several simplified assumptions are made in this model:

1) As the limit of Poisson distribution is Normal
distribution, we therefore assume the word
count is generated by Normal distribution
N((φd,n. sd,.)

T
β.n, σ

2
d0,n), where σ2

d0,n is the
appropriate covariance.

2) For the convenience of calculations, we assume the
topic dictionary is the Normal distribution with zero
mean i.e., N(0, σ2

3,k.), where σ2
d3,k. is the appropri-

ate covariances.
3) For similar reason, the keyword code vector and

each column of keyword proportion are also Nor-
mal distributions with zero mean i.e., N(0, σ2

d2,.k)
and N(0, σ2

d1,.t), where σ2
d2,k and σ2

d1,.t are appro-
priate covariances.

4.2 Hierarchical Prior Structure of BSTC-N
In this paper, we formulate BSTC-N as a Bayesian problem.
According to the above generation process, the reconstruc-
tion error is

p (wd,n |φd,n, sd,., β.n)
= N(0, (φd,n. sd,.)

T
β.n), φd,n ≥ 0, sd,. ≥ 0 , β.n ≥ 0.

(21)
To achieve sparse word representations, we expect to dis-
cover keywords to represent semantics of the topic well,
while discarding the meaningless words. We also expect
that only a little set of topics are non-zeros and a little set of
words are non-zeros, so as to achieve document and topic
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sparse representations. They could be achieved by exerting
hierarchical prior on keyword proportions, keyword codes
and the topic basis. A keyword proportion is generated by

p(φd,.t |0, σ2
d1,.t) =

1√
2π σ2

d1,.t

exp
−

φ2d,.t

2 σ2
d1,.t . (22)

In the second step, we employ the non-informative Jeffreys
super prior on parameter σ2

d1,.t like BSTC-P, that is:

p(σ2
d1,.t) ∝

1

σ2
d1,.t

. (23)

Similarly, keyword codes and topic basis are also generated
by that hierarchical prior as follows:

p(sd,.k |0, σ2
d2,k) =

1√
2π σ2

d2,k

exp
−
sd,.k

2

2 σ2
d2,k , p(σ2

d2,k) ∝
1

σ2
d2,k

,

(24)

p(βk. |0, σ2
3,k.) =

1√
2π σ2

3,k.

exp
− βk.

2

2 σ2
3,k. , p(σ2

3,k.) ∝
1

σ2
3,k.

,

(25)
The hierarchical prior that is constructed by Normal dis-
tribution with zero mean and Jeffrey’s super prior, also has
better capacity to select variables for utilizing prior informa-
tion of relevance between sparse coefficients. Furthermore,
compared with lasso and hierarchical Laplacian prior, this
method tends to obtain the sparsest solution because of the
improper hierarchical prior to sparse coefficients [32], [33].
Figure 6 shows the contour plots of the penalty functions in
two dimensions resulting from Laplace prior and Jeffrey’s
prior models. In Figure 6, the fit terms are elliptical con-
tours, and the solution is the first place that this contour
touches the penalty contour[54]. From Figure 6, we can see
the penalty contour of Jeffrey’s prior has more chance to
touch the corner, that is to say, the penalty function from
Jeffrey’s prior has more chance to lead a sparse solution
than Laplace prior [52]. Figure 7 displays soft-thresholding

(a) Laplace.

 

(b) Jeffrey’s.

Fig. 6: Contour.

(a) Laplace. (b) Jeffrey’s.

Fig. 7: Soft-thresholding.

plots for Laplace and Jeffreys prior. Soft-thresholding plots

show the sparsity properties of regularizers and the solution
of the penalized problem [52], [53]. From Figure 7, we can
find that the Jeffrey’s prior has a smooth penalty with non-
zero coefficients asymptotically approaching the solution
without shrinkage. As shown above, we can observe that the
Jeffrey’s prior results in better performance than the Laplace
prior.

We also note that there are sparsity regularizations which
encourage more sparsity than the hierarchical Gaussian-
Jeffreys prior, such as hard-thresholding. However, we
choose this prior for following reasons: 1) The estimation
rule produced by the EM Algorithm with the Jeffreys hyper-
prior combines the advantages of hard and soft threshold
estimation rules. For comparison purposes, Figure 5 plot
the estimation rule produced by the EM Algorithm with
the Jeffreys hyperprior, alongside the well-known hard and
soft threshold estimation rules. It shows that the Jeffreys
hyperprior is close to the soft rule at small value, thus
effectively behaving like a shrinkage rule, and it approaches
the hard rule at large value, avoiding the undesirable bias
incurred with the soft rule [36]. In conclusion, the estima-
tion rule of the Jeffreys hyperprior places itself between
two threshold estimation rules, combining the advantages
of both. 2) Although the Jeffreys prior has a non-convex
contour, its update rule of the expectation-maximization
(EM) algorithm suits the case when a closed form solution
can be derived due to its hierarchical structural with normal
distribution. Because the complete log-posterior is easy to
deduce when we regard the hyper-parameter as a hidden
variable [36]. 3) With the Jeffreys prior, the tuning or adap-
tive estimation of the parameters of the prior is unnecessary.

In summary, BSTC-N also has four stages, the first stage
is to reconstruct latent observed word counts by Normal
distribution. The second part is to generate keyword pro-
portions, for word sparsity. The third and fourth result in
parameter-free group sparse prior by hierarchical prior, for
topic and document sparsity. Both BSTC-P and BSTC-N are
Bayesian hierarchical latent variable models based on the
same core idea, while the only difference among them is
the priors for latent variables. Furthermore, we provide a
comparison between them: 1) BSTC-P is much better suited
to model text data than BSTC-N. In BSTC-P, the observed
word count is sampled from the Poisson distribution, which
is generated from the Normal distribution in BSTC-N. Many
real data can be well expressed via Gaussian noise model.
However, this is an inappropriate assumption for text data,
which is often represented as the word count vector. For
the discrete word count, the discrete Poisson distribution
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is a better choice than the continuous Gaussian distribu-
tion. 2) Compared to BSTC-N, BSTC-P is more natural to
constrain the feasible domains (non-negative for modeling
word counts). Yet the Normal distribution based BSTC-N
could take fractional or negative values, which may lead
to inefficient learning. 3) From the perspective of sparsity
inducing, BSTC-N is more possible to find the sparsest
optimal solution, due to the Normal-Jeffrey’s hyper prior.

4.3 The EM algorithm of BSTC-N

We aim to infer the keyword proportions, word codes and
dictionaries by maximizing marginal likelihood directly and
efficiently. According to the generative process, we have the
posterior distribution of BSTC-N as follow:

p(φ, s, β|w)∝ p(w|φ, s, β, σ2
0)p(φ|σ2

1)p(s|σ2
2)p(β|σ2

3)
p(σ2

0)p(σ
2
1)p(σ

2
2)p(σ

2
3),

(26)

For each document d after some mathematical transforma-
tions, we can obtain the logarithm of Eq. (26) as follow:

log p(φd , sd, βd |wd)

∝
∑
d

((
∑
n

− log σ2
d,0n−

||wd,n− (φd,n. sd,.)
T
β.n |

2

σ2
d,0n

)

+
∑
t

(−φTd,.t ψ(σ2
d1,.t)φd,.t)

+
∑
k

(− sTd,.k ψ(σ2
d2,k) sd,.k −β

T
k. ψ(σ

2
3,k.)βk.)),

(27)
where ψ(σ2

d1,.t) = diag(σ2
d1,1t

−1
, σ2
d1,2t

−1
, ..., σ2

d1,|I|t
−1

),

ψ(σ2
d2,k) = diag(σ2

d2,k
−1
, σ2

d2,k
−1
, ..., σ2

d2,k
−1

), and
ψ(σ2

3,k.) = diag(σ2
3,k1
−1
, σ2

3,k2
−1
, ..., σ2

3,k| I |
−1

). In the E
step, given the current parameter estimates and the ob-
served data, the expected value of the complete log-
posterior Q(φ, s, β|w) ∝ log p(φd,. , sd,., βd,. |wd,.). It is easy
to maximize φ, s and β, because

E (σ2
d1,nt

−1 |φd,nt) =
1

|φd,nt |
2

E (σ2
3,kn

−1 |βkn) =
1

|βkn |
2

E (σ2
d2,k
−1 | sd,.k) =

1

||sd,.k ||
2 .

(28)

Therefore, it is easy to maximize Q with respect to φ, s and
β, yielding

σ2
d0,. =

∑
d

||wd,.− (φd,. sd,.)
T
β. ||

2
. (29)

For each word n in document d, we yield

φd,n.=
∑
d

∑
n

((sTd,. β.n β.n s
T
d,.

+σ2
d,0n diag{φ

2
d,n1

−2
, φ2d,n2

−2
, ..., φ2d,nt

−2})
−1

sTd,. β.n wd,n),

(30)

As for each topic k in document d, we deduce

sd,.k =
∑
d

(
∑
n

(
φTd,n. βkn βkn φ

T
d,n.

σ2
d,0n

+ diag{ 1

||sd,.k ||
2 ,

1

||sd,.k ||
2 , ...,

1

||sd,.k ||
2 })
−1

∑
n

φTd,n. βkn(wd,n−Cd,nk)
σ2
d,0n

),

(31)

where Cd,.k =
∑
d

∑
i6=k

((φd,. sd,.i)
T
βi.).

For all document, we can update the dictionary by
minimizing the following object function:

β.n=
∑
n

((
∑
d

φd,n. s
T
d,. s

T
d,. φd,n.

+σ2
d,0n diag(β

2
1n

−2
, β2

2n

−2
, ..., β2

Kn

−2
))
−1∑

d

φd,n. s
T
d,. wd,n).

(32)

In this paper, an similar iterative approach is also devised to
obtain a preferable keyword set like BSTC-P. The learning
algorithm can be summarized in Algorithm 2.

Algorithm 2 EM algorithm for BSTC-N

Input: φ, s, β,D,KS;
Output: φ, s, β;
1: repeat
2: for each d ∈ {1, ...,M} do
3: σ2

d0,. =
∑
d
||wd,.− (φd,. sd,.)

T
β. ||

2
;

4: for each word n ∈ {1, ..., |I|} do
5: caculate φd,n. according to Eq. (30);
6: end for
7: for each topic k ∈ {1, ...,K} do
8: caculate sd,.k according to Eq. (31);
9: end for

10: end for
11: caculate β.n according to Eq. (32);
12: w∗d,. = (φd,. sd,.)

T
β.;

13: KS = KS ∪ IKS;
14: until KS − (KS ∪ IKS) = NULL

5 EXPERIMENTS

In this section, we will display the dataset, experimental
settings, and evaluation results.

5.1 Dataset and Experimental Setting
We perform experiments on 20 Newsgroups 1 and Twitter
dataset to test the performance of BSTC-P and BSTC-N. The
20 Newsgroups dataset is comprised of 18775 newsgroup ar-
ticles with 20 categories, and contains 60,698 unique words.
The Twitter feeds, which covers 2,068,721 tweets with 10
categories, are gathered by our web crawler 2. We build
up a vocabulary that contains 3000 frequency terms after
removing stop words and infrequent words. BSTC-P and

1. http://qwone.com/jason/20Newsgroups/
2. http://sc.whu.edu.cn/



9

BSTC-N are implemented with MATLAB under a desktop
with 2.33GHZ Intel processor, Xeon CPU and 8GB RAM.
We initialize the keywords proportion, the word code and
the topic dictionary to be Gamma distribution in BSTC-P.
Meanwhile, we initialize the keywords according to their
TFIDF score for each document, set b0d,nt = 0.05| Id |,
c1d,tk = 0.05 |T d |, b1d,k = || c1d,.k ||2, b

2
kn = 1/k, σ2

d,0 = 1
N ,

and use the alternate iteration method to solve to initialize
the keywords proportion, the word code and the topic
dictionary in BSTC-N by solving wd,n ∼ (φd,n. sd,.)

T
β.n+ε.

For 20 Newsgroups, we set the initial number of keywords
T to 10, while for Twitter dataset, we set T to 3, and
the size of the IKS is bT/2c each time. In experiments,
we compare the performance of our two BSTCs with the
following models:

• DsparseTM. DsparseTM is a recently proposed dual-
sparse topic model that addresses the sparsity in
both the topic mixtures and the word usage.

• Sparse Topical Coding with Sparse Groups
(STCSG). STCSG is a fully sparsity-enhanced non-
probabilistic topic model which aims at learning
word, topic and document sparse representations.

• Sparse Topical Coding (STC). STC 3 is a sparsity-
enhanced non-probabilistic topic model. It has been
proven to achieve word and document sparse rep-
resentations, and perform better than some of the
existing models.

• LDA. LDA 4 is a classical probabilistic topic model,
which can induce sparsity as the Dirichlet prior
approaches zero, but can’t decouple the smoothness.

• Mixture of Unigrams. The Mixture of Unigrams as-
sumes that each document is generated by only one
topic which generates words independently from
the conditional multinomial.

The performance of these methods is evaluated from topic
coherence, sparse ratio of latent representations of docu-
ment, topic and word and classification accuracy of docu-
ments.

5.2 Evaluation of Topic Coherence
Topic coherence is a common measure of topic models
generalization ability on test data. Newman et al. [55] calcu-
lated the pointwise mutual information (PMI) of each word
pair to measure the semantic coherence of topics. It has
been widely used to measure the statistical independence
of observing two words in close proximity [56]. The PMI
can be computed as follow :

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
, (33)

where (wi, wj) is word pair, p(wi, wj) is the joint probability
of words wi and wj co-occurring in the same document,
and p(wi) is the marginal probability of word wi appearing
in a document. In this paper, we choose top-15 words to
calculate the average relatedness of each pair of these words
as the PMI score of each topic. Table 4 shows the PMI scores
of six candidate methods in two datasets with 120 topics
and 50 topics, respectively. From Table 4, we can find that

3. http://bigml.cs.tsinghua.edu.cn/ jun/stc.shtml/
4. http://www.cs.princeton.edu/blei/lda-c/

TABLE 4
Topic Coherence (PMI) of Six Models.

20NG Twitter
Number of topics 120 50
BSTC-P 1.6698 1.6319
BSTC-N 1.6779 1.6657
DsparseTM 1.6210 1.5510
STC 1.5150 1.3780
LDA 1.3360 1.1989
Mixture of Unigrams 0.6910 1.1210

the proposed BSTC-P and BSTC-N yield higher PMI scores
than DsparseTM and STC methods in both datasets. This is
mainly because BSTC-P and BSCT-N utilize the keyword set
and hierarchical sparse prior, which achieve more coherent
and meaningful topics. It also shows that BSTC-P and
BSTC-N perform well in both long and short documents.
As for BSTC-P and BSTC-N, we can see that BSTC-P has
a lower PMI score than BSTC-N because of the Normal-
Jeffrey hierarchical prior of BSTC-N has more ability to
cover focused topics than Gamma-Jeffrey hierarchical prior
of BSTC-P. Moreover, we also observe that the four sparse-
enhanced topic models BSTC-P, BSTC-N, DsparseTM and
STC have higher PMI scores than two non-sparse-enhanced
topic models LDA and Mixture of Unigrams, because their
sparsity-induced prior can detect document-topic sparsity.

To further demonstrate the semantics of the topics
learned by our models, in Table 5 and 6, we show the top-8
words of learned focused topics of BSTC-P in Twitter and
20 Newsgroups. We omit the results of BSTC-N in order
to save space. It is obvious that the learned topics are
clear and meaningful. Such as color, compression, graphics,
photoshop, photos and polygon in the topic about graphics,
and bike, motorcycle, bikes, seat, and back in the topic about
motorcycles.

TABLE 5
Top Words of Learned Topics in Tweets.

barack obama chanel eatee lauder facebook iphone 5s

obama coco estee facebook iphon

follow chanel lauder share ipad

barack obama love intens retweet photo

win girl lip life buy

folli price high relationship apple

romney chanc mettalic twitter galaxi

presid style stock instagram phone

vote pricey lacquer davelacki mini

5.3 Evaluation of Classification accuracy
In this part, we quantitatively investigate the performance
of our model in learning meaningful sparse representations
in these two datasets. Here, we compare the accuracy of
text classification tasks to verify the performance of our
model in learning meaningful sparse representations. For
20NG dataset, we use 60% documents as training set and
40% as testing set. As for Twitter dataset, we sample 10%
tweets from the Twitter data set, then we use 80% doc-
uments for training and 20% for testing. We adopt the
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TABLE 6
Top Words of Learned Topics in 20NG.

comp. misc. sci. alt. soc.
graphics ms-windows ibm.pc forsale crypt electronics atheism christian

color windows ibm trade encryption coil pinko god
compression dos apple watchy math voltage tribe church

graphics screen pc market db electronics islamic jesus
photoshop load scsi trades signature connect authorities resurrection

photos program card sale log wave muslims bible
polygon workplace video brand key pins humanitarian ye

files unix floppy offer des wires ijaz judah
bmp keyboard vram price attack wattage godless chronicles

LIBSVM toolbox 5 as the classifier with the sparse document
representation of each document. To better understand the
behavior of document representations in classification, we
sample different ratio of training set (0.2%, 1%, 10% and
100%) as labeled documents. Figure 8 reports the classifi-
cation accuracy under different sampling ratios of training
data. Figure 9 shows the classification accuracy on Twitter
dataset. From Figure 8, we can observe that BSTC-P and
BSTC-N outperform other four models all the time due to
the hierarchical sparse prior, where the learned document
codes are more trenchant among word set. Meanwhile,
the sparsity-enhanced models, BSTC-P, BSTC-N, DsparseTM
and STC perform much better than LDA and M-U even
when the training data is rare. The possible reason is that
they focus on obtaining admixture document codes, where
keyword features are likely to overfit the classifier to the
data, and are immune to rare word co-occurrence informa-
tion. From Figure 9, it is obvious that BSTC-P and BSTC-N
have higher classification accuracy than basic STCSG and
other two models (STC and LDA). One possible reason for
the improvement is that, in these two models the learned
admixture proportions are more distinct and better than
document codes that are learned by other three models.
Moreover, in both datasets, BSTC-N outperforms the BSTC-
P mostly. This indicates that the Normal-Jeffrey hierarchical
sparse prior is superior to the Gamma-Jeffrey hierarchical
sparse prior in learning sparse representations of short texts.
Nevertheless, we observed that the accuracy of BSTC-P
is higher than BSTC-N in Figure 8b. It reveals the poor
expression of BSTC-N in discrete word count, due to the
Gaussian distribution assumption. Thus the discrete Poisson
distribution method BSTC-P yields better performance than
BSTC-N.

5.4 Evaluation of Sparse Latent Representations
In this part, we further compare the sparsity of the learned
latent representations of words, topics and documents from
different models qualitatively.

Word codes: We further quantitatively evaluate the spar-
sity of learned word codes. Figure 10a presents the average
word representations of top-representation words learned
by BSTC-P of three example categories in training docu-
ments. We calculate average word codes for all documents
in each category. Here, we only display the results of BSTC-

5. http://www.csie.ntu.edu.tw/ cjlin/libsvm/

P to save space. BSTC-P tends to learn a narrow spectrum
of topics for each word. It is obvious that there are only
little non-zero elements in learned average word codes, and
the little non-zero elements have significant weights. These
illustrate BSTC-P can learn quite clear and sparse word-
level representations. We further quantitatively evaluate the
sparsity of the learned word codes. Figure 11 presents the
average word sparse ratio of 20NG. We can see the average
word codes learned by BSTC-P and BSTC-N are sparser
than those learned by other three models, and the four
sparsity-enhanced models outperform LDA, which have no
mechanism to induce word-level sparsity. As for BSTC-
P and BSTC-N, the BSTC-N outperforms BSTC-P, because
the Normal-Jeffrey prior of BSTC-N has more chance to
lead a sparse solution than the Laplace hierarchical prior
of BSTC-P. All these above proves the hierarchical sparse
prior can induce sparser representations than traditional
lasso of STC, as well as sparse group lasso of STCSG, and
it can also induce sparser representations than hierarchical
Laplace sparse prior of BSTC-P.

Topic codes: Similar to word codes, we also display the
average topic code of the most possible topic learned by
BSTC-P for three example categories in training documents
in Figure 12. As we can see, the representations of three
example topics only focus on a small set of words and
all of non-zero elements are salient and distinct. Moreover,
we quantitatively evaluate the average sparse ratio of topic
codes in Figure 10b. Not surprisingly, we can find that
the sparse ratios of BSTC-P, BSTC-N and STCSG are much
higher than those of STC and LDA, which nearly have no di-
rect sparsity control over topic representations. Meanwhile,
the sparse ratio of STC is also higher than that of LDA. This
is mainly because that STC has direct control over word
and document topic representations, but not for LDA. The
topic codes learned by BSTC-P and BSTC-N are sparser
than those learned by STCSG, which indicates that imposing
the hierarchical sparse prior on word codes makes better
performance than imposing non-hierarchical sparse prior.
As for BSTC-P and BSTC-N, BSTC-N outperforms BSTC-P
again, mainly because imposing the Normal-Jeffery sparse
prior on word codes.

Document codes: Figure 13 shows the average docu-
ment codes for 3 example categories discovered by BSTC-
P, unlike STC, we find BSTC-P tends to learn a narrow
spectrum of topics, and can obtain discriminative and sparse
representations of documents. It is also worth noting that,
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Fig. 8: Classification accuracy on 20NG.
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Fig. 9: Classification accuracy on Twitter.

although each document code can be sparse, the average
document codes seems to be not so sparse. Moreover, Fig-
ure 10c presents the sparse ratio of document codes with
setting different topic numbers. We observe that BSTC-P
and BSTC-N outperform STCSG and STC, which indicates
that directly imposing hierarchical sparse prior can achieve
better sparsity again. Meanwhile, the sparse ratio of BSTC-P
is lower than that of BSTC-N, which also proves that the
Normal-Jeffrey hierarchical sparse prior can make better
performance in sparsity than the Gamma-Jeffrey sparse
prior.

6 CONCLUSION

In this paper, we have presented a novel topic model, called
Bayesian sparse topical coding with Poisson distribution
(BSTC-P) based on our recent work of Sparse Topical Coding
with Sparse Groups (STCSG). In this model, the sparse
Bayesian learning was introduced to improve the learn-
ing of sparse word, topic and document representations.
BSTC-P gains advantages in learning word, topic and docu-
ment proportions. Meanwhile, a sparsity-enhanced version
of BSTC is also proposed to obtain the sparsest optimal
solution by putting the Normal-Jeffrey hierarchical prior.
The Expectation Maximization (EM) and the Variational
Inference procedure are incorporated to learn BSTC-P and
BSTC-N effectively. Experimental results shows that both
methods can achieve better performance than other baseline
approaches in learning meaningful and sparse represen-
tations of texts, thus accordingly improve the document
classification accuracy. As a part of our future work, we will
explore the suitable number of initial keyword sets number,
and investigate more efficient algorithms for BSTC-P.
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(b) Average sparse ratio of topic codes
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(c) Average sparse ratio of document codes

Fig. 10: The sparse ratio of a latent semantic representing
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Fig. 12: The average topic codes of the most possible topic learned by BSTC-P of three example categories.
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Fig. 13: The average document codes learned by BSTC-P of three example categories.

19th international conference on World wide web, ACM, 2010, pp.
851–860.

[21] K. Sasaki, T. Yoshikawa, T. Furuhashi, Online topic model for
twitter considering dynamics of user interests and topic trends.,
in: EMNLP, 2014, pp. 1977–1985.

[22] M. Peng, J.-J. Huang, N. Ghani, S.-T. Sun, B. Wu, Y.-X. He, W.-D.
Wen, Micro-blogger influence analysis based on user features, ŁŁ
14 (2) (2013) 307–314.

[23] F. Doshi-Velez, B. Wallace, R. Adams, Graph-sparse lda: a topic
model with structured sparsity, arXiv preprint arXiv:1410.4510.

[24] M. Yuan, Y. Lin, Model selection and estimation in regression with
grouped variables, Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 68 (1) (2006) 49–67.

[25] S. Williamson, C. Wang, K. Heller, D. Blei, Focused topic models,
in: NIPS Workshop on Applications for Topic Models: Text and
Beyond, 2009.

[26] S. Williamson, C. Wang, K. A. Heller, D. M. Blei, The ibp
compound dirichlet process and its application to focused topic
modeling, in: Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 1151–1158.

[27] X. Chen, M. Zhou, L. Carin, The contextual focused topic model,
in: Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, 2012, pp. 96–104.

[28] C. Archambeau, B. Lakshminarayanan, G. Bouchard, Latent ibp
compound dirichlet allocation, IEEE transactions on pattern anal-
ysis and machine intelligence 37 (2) (2015) 321–333.

[29] J. Kujala, Sparse topic modeling with concave-convex procedure:
Flemish algorithm for latent dirichlet allocation, Tech. rep., Tech-
nical Report, 2004. 2 (2004).

[30] D. D. Lee, H. S. Seung, Learning the parts of objects by non-
negative matrix factorization, Nature 401 (6755) (1999) 788–791.

[31] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
R. Harshman, Indexing by latent semantic analysis, Journal of the
American society for information science 41 (6) (1990) 391.

[32] M. E. Tipping, Sparse bayesian learning and the relevance vector
machine, Journal of machine learning research 1 (Jun) (2001) 211–
244.

[33] D. P. Wipf, B. D. Rao, Sparse bayesian learning for basis selection,
IEEE Transactions on Signal Processing 52 (8) (2004) 2153–2164.

[34] S. D. Babacan, R. Molina, A. K. Katsaggelos, Bayesian compressive
sensing using laplace priors, IEEE Transactions on Image Process-
ing 19 (1) (2010) 53–63.

[35] Z. Zhou, K. Liu, J. Fang, Bayesian compressive sensing using
normal product priors, IEEE Signal Processing Letters 22 (5) (2015)
583–587.

[36] M. A. Figueiredo, Adaptive sparseness for supervised learning,
IEEE Transactions on Pattern Analysis and Machine Intelligence
25 (9) (2003) 1150–1159.

[37] M. Kyung, J. Gill, M. Ghosh, G. Casella, et al., Penalized regres-
sion, standard errors, and bayesian lassos, Bayesian Analysis 5 (2)
(2010) 369–411.

[38] D. L. Donoho, M. Elad, Optimally sparse representation in general
(nonorthogonal) dictionaries via 1 minimization, Proceedings of
the National Academy of Sciences 100 (5) (2003) 2197–2202.

[39] S. N. David Wipf, Iterative reweighted `1 and `2 methods for
finding sparse solutions, Journal of Selected Topics in Signal
Processing (Special Issue on Compressive Sensing) 4 (2) (2010)
317–329.

[40] E. J. Candes, M. B. Wakin, S. P. Boyd, Enhancing sparsity by
reweighted 1 minimization, Journal of Fourier analysis and ap-
plications 14 (5-6) (2008) 877–905.

[41] M. N. Schmidt, H. Laurberg, Nonnegative matrix factorization
with gaussian process priors, Computational intelligence and neu-
roscience 2008 (2008) 3.

[42] H. Lee, R. Raina, A. Teichman, A. Y. Ng, Exponential family sparse
coding with application to self-taught learning., in: IJCAI, Vol. 9,
Citeseer, 2009, pp. 1113–1119.

[43] W. Buntine, A. Jakulin, Discrete Component Analysis, Springer
Berlin Heidelberg, 2006, pp. 1–33.

[44] H. Zou, T. Hastie, R. Tibshirani, Sparse principal component
analysis, Journal of computational and graphical statistics 15 (2)
(2006) 265–286.

[45] M. J. Wainwright, M. I. Jordan, Graphical models, exponential



14

families, and variational inference, Foundations and Trends R© in
Machine Learning 1 (1-2) (2008) 1–305.

[46] M. D. Hoffman, D. M. Blei, C. Wang, J. W. Paisley, Stochastic
variational inference., Journal of Machine Learning Research 14 (1)
(2013) 1303–1347.

[47] J. Hou, Y. Zhang, Effectively finding relevant web pages from
linkage information, IEEE Transactions on Knowledge and Data
Engineering 15 (4) (2003) 940–951.

[48] T. K. Moon, The expectation-maximization algorithm, IEEE Signal
processing magazine 13 (6) (1996) 47–60.

[49] X. Pu, R. Jin, G. Wu, D. Han, G.-R. Xue, Topic modeling in
semantic space with keywords, in: Proceedings of the 24th ACM
International on Conference on Information and Knowledge Man-
agement, ACM, 2015, pp. 1141–1150.

[50] Y. Gu, G. Liu, J. Qi, H. Xu, G. Yu, R. Zhang, The moving k diversi-
fied nearest neighbor query, IEEE Transactions on Knowledge and
Data Engineering 28 (10) (2016) 2778–2792.

[51] Y. Guan, J. G. Dy, Sparse probabilistic principal component analy-
sis., in: AISTATS, 2009, pp. 185–192.

[52] S. Chen, D. Donoho, Basis pursuit, in: Signals, Systems and
Computers, 1994. 1994 Conference Record of the Twenty-Eighth
Asilomar Conference on, Vol. 1, IEEE, 1994, pp. 41–44.

[53] J. Fan, R. Li, Variable selection via nonconcave penalized likeli-
hood and its oracle properties, Journal of the American statistical
Association 96 (456) (2001) 1348–1360.

[54] A. E. Hoerl, Application of ridge analysis to regression problems,
Chemical Engineering Progress 58 (3) (1962) 54–59.

[55] D. Newman, J. H. Lau, K. Grieser, T. Baldwin, Automatic eval-
uation of topic coherence, in: Human Language Technologies:
The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, Association for
Computational Linguistics, 2010, pp. 100–108.

[56] P. Pecina, Lexical association measures and collocation extraction,
Language resources and evaluation 44 (1-2) (2010) 137–158.

[57] J. Tang, Z. Meng, X. Nguyen, Q. Mei, M. Zhang, Understanding
the limiting factors of topic modeling via posterior contraction
analysis, in: ICML, 2014, pp. 190–198.

[58] M. Peng, B. Gao, J. Zhu, J. Huang, M. Yuan, F. Li, High qual-
ity information extraction and query-oriented summarization for
automatic query-reply in social network, Expert Systems with
Applications 44 (2016) 92–101.

Min Peng is a professor in Computer School
at Wuhan University, Wuhan, China. She re-
ceived her Ph.D. degree in Computer Software
and Theory from Wuhan University in 2006. She
worked as a post-doctor from 2009 to 2010 at the
Advanced Cyber-Infrastructure Laboratory, ECE
Department at the University of New Mexico,
USA. Her current research focus areas include
information retrieval, network services and natu-
ral language process.

Qianqian Xie is a Ph.D candidate in Computer
School at Wuhan University, Wuhan, China. She
received her bachelors degrees from Jiangxi
Normal University. Her current research focus
areas include topic model, sparse coding and
deep learning.

Yanchun Zhang is a professor and director of
the Centre for Applied Informatics (CAI) in Vic-
toria University. His current research interests
include databases, data mining, health informat-
ics, web information systems, and web services
(yanchun.zhang@vu.edu.au).

Gang Tian is a lecturer and PhD in Wuhan Uni-
versity. His research focus is in the fields of Big
Data Techniques and Mining, machine vision,
and machine learning (tiang2008@whu.edu.cn).


	Introduction
	Related Work
	Sparsity-Enhanced Probabilistic Topic Models (Sparsity-PTMs)
	Sparsity-Enhanced Non-probabilistic Topic Models (Sparsity-NPTMs)
	Sparse Bayesian Learning

	Bayesian sparse topical coding with Poisson distribution
	Probabilistic Generative Process for BSTC-P
	Hierarchical Prior Structure of BSTC-P
	Bayesian Inference of BSTC-P
	Bayesian Inference
	Dynamic Update of keyword Set


	Bayesian sparse topical coding with Normal distribution
	 Probabilistic Generative Process for BSTC-N
	 Hierarchical Prior Structure of BSTC-N
	 The EM algorithm of BSTC-N

	Experiments
	Dataset and Experimental Setting
	Evaluation of Topic Coherence
	Evaluation of Classification accuracy
	Evaluation of Sparse Latent Representations

	Conclusion
	References
	Biographies
	Min Peng
	Qianqian Xie
	Yanchun Zhang
	Gang Tian


