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ABSTRACT VoIP services, in general, and session initiation protocol (SIP) ones, in particular, continue to
grow at a fast pace and have already become a key component of next-generation networks. Despite this
proliferation, SIP-based services expose a large attack surface for perpetrators, especially those who seek to
cause denial of service (DoS). While so far, a plethora of works in the literature have been devoted to the
detection of DoS attacks in SIP ecosystems, the focus is on those which exploit SIP headers neglecting the
message body. In an effort to fill this gap, this paper concentrates on the detection of DoS attacks, which,
instead, capitalize on the session description protocol (SDP) part of SIP requests. To this end, we not only
scrutinize this ilk of attacks and demonstrate their effect against the end-user but also develop an open-
source extensible SDP parser module capable of detecting intentionally or unintentionally crafted SDP
segments parasitizing in SIP requests. Following a firewall-based logic, currently, the parser incorporates
100 different rules organized in four categories (policies) based on the corresponding RFC 4566. Through
extensive experimentation, we show that our scheme induces negligible overhead in terms of processing time
when working as a software module in either the SIP proxy or a separate machine in front of the latter.

INDEX TERMS Covert channel, DoS, malformed messages, session description protocol, session initiation
protocol.

I. INTRODUCTION
Over the last decade, Voice over IP (VoIP) services have
dominated the market due to the low cost and flexibility
they offer compared to the legacy Public Switched Telephony
Network (PSTN) ones. Current reports indicate that until
2020 the global VoIP mobile market share will present a
Compound Annual Growth Rate (CAGR) of around 28% [2].
VoIP relies on a set of core operations for delivering services.
The most important of them deal with the signaling and ses-
sion management including the creation, modification, and
termination of a multimedia session. A handful of protocols
have been proposed to handle session management in VoIP.
Session Initiation Protocol (SIP) [3] seems the most prevalent
due to its open nature and the flexibility and scalability it
offers.

On the downside, as reported in various research
works [4]–[6] and software flaw databases,1 SIP is well-
known to be susceptible to a plethora of attacks ranging

1Common Vulnerabilities and Exposures https://cve.mitre.org

from Denial of Service (DoS), SQL injection, and signaling
manipulation. In a typical DoS attack, the attacker tries to
paralyze the victim by either sending against it a surge of SIP
requests or a number of malformed messages. In the former
case, the victim is unable to serve the voluminous number of
incoming requests, while in the latter the sufferer is incapable
of parsing or handling properly the incoming request, and the
service crashes.

The common denominator of the latter kind of attacks is
the manipulation of SIP message headers by the attacker so
as to hamper or preferably paralyze the parsing process at the
SIP server or client. To cope with this threat, the great mass of
works [7]–[10] in the literature propose some way for the SIP
server to detect malformed SIP headers, and thus discard the
corresponding messages outright. However, what is largely
neglected is that similar attacks may take advantage of the
SessionDescription Protocol (SDP) [1] part of a SIPmessage.
Recall that SDP is responsible for negotiating the media
information among the communicating peers, and as a result,
SDP information is present in a diverse type of SIP requests
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and replies. Moreover, according to the literature [11], SDP
can be exploited to build covert communication channels
in ignorance of the SIP network. For instance, such hidden
channels are typically exploited by botnets for realizing a
command and control (C&C) infrastructure.

Bearing the above in mind, the goal of the work at hand
is dual; first to provide proofs of the pernicious nature of this
type of attacks, on real-life SIP clients and servers, and second
to introduce a lightweight and flexible filtering mechanism
for effectively copying with them. Our defensive solution
comes in the form of a SDP parser software module either
embedded in the SIP server or running in a separate machine
in front of the former. In this way, the defender is able to
timely detect and silently drop messages that do not fully
comply with the standard [1]. Also, as a side advantage,
the parser is capable of rejecting SIP requests that are found
suspicious to carry information that may be part of a covert
communication channel.

We evaluated our solution in terms of service time over-
head using a custom made architecture, in which we simu-
late several scenarios involving a mix of normal and attack
traffic. The results indicate that the proposed mechanism
introduces negligible overhead to the processing of incoming
and outgoing SIP messages. To the best of our knowledge,
this is the first work that specifically focuses on SDPmessage
manipulations. As already mentioned, this is in contrary to
other works in the literature [9], [12], which solely deal with
deliberate malicious manipulations in SIP message headers.
The main contributions of this work can be summarized as
follows:

• We study the impact of SDP malformed messages on
a variety of SIP software and hardware phones, and
servers.

• We offer a publicly available open-source software mod-
ule capable of detecting malformed SDP messages lurk-
ing in SIP requests. Message parsing is done based on
RFC [1], while the implemented software can work
alongside the SIP server or independently in a separate
machine.

• We extensively assess the performance of the proposed
scheme in terms of service time.

The remainder of the paper is organized as follows.
The next section provides an overview of SIP architecture.
Section III details on the adversary model, while section IV
elaborates on SDP-oriented attacks. The internal workings
of the implemented SDP parser are given in section V.
Section VI deals with the performance evaluation of the pro-
posed SDP parser. The related work is given in Section VII.
The last section concludes the paper and outlines future work.

II. SIP ARCHITECTURE
SIP is an application layer, text-based protocol similar to
Hypertext Transfer Protocol (HTTP) and Simple Mail Trans-
fer Protocol (SMTP). It is based on a client-server archi-
tecture responsible for delivering the necessary messages to

FIGURE 1. Overview of SIP architecture and a typical message flow.

establish and manage a multimedia session. Figure 1 depicts
a typical SIP architecture. As observed from the figure,
the main entities are the SIP proxy, the Registrar, and the
communicating end-points, namely User Agent Client (UAC)
and User Agent Server (UAS). The SIP Registrar receives
REGISTER requests from the User Agents (UA) and stores
their location information for routing the incoming requests
to the appropriate network domain. The SIP proxy receives
requests, say, for establishing a call, and forwards them to
the registered UAs, assuming the latter are registered within
the same domain. If not, the SIP request is forwarded to the
corresponding authoritative SIP proxy.

The media session establishment process is initiated by
the UAC (caller) sending a SIP INVITE request to the UAS
(callee) via one or more SIP proxies. Upon receiving the
request, the SIP proxy extracts the callee’s username and
queries the Registrar for obtaining the corresponding location
information. Then, the SIP proxy forwards the request to the
callee. After that, the session is considered established and a
media protocol takes over the management of the audio and
video packets between the endpoints. Real-Time Tranport
Protocol (RTP) [13] has been acclaimed as the most appro-
priate for this purpose. At any time, either the caller or callee
may terminate the media session by sending a BYE request
toward the other endpoint.

SIP architecture offers a total of 88 messages for session
management. Among them, 14 are used as requests and the
rest as responses. A SIP message may consist of two main
parts, namely the SIP message headers (the upper part of the
message) and the message body carrying SDP information.
Specifically, the upper part carries information regarding the
method, the sender, the recipient of the message, and the
communication path. The SDP part, which is the focus of
this work, conveys information concerning the media of the
session and it may be present in specific SIP requests and
responses, including INVITE, ACK, 180RINGING, 183 Ses-
sion Progress, 200 OK. That is, with the help of SDP, SIP
employs the offer/answer model [14] to establish and manage
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TABLE 1. SDP descriptors. Some of the optional descriptors may be repeated across the SDP message segment.

FIGURE 2. The SDP part of a typical SIP INVITE request.

multimedia sessions. Figure 2 presents the SDP part of a
SIP INVITE request generated by the open source SIP UA
Jitsi [15]. According to the corresponding RFC [1], every
SDP message can contain up to 5 mandatory and 15 optional
different descriptors. Table 1 provides a succinct overview per
descriptor along with a typical example.

III. ADVERSARY MODEL
For analyzing DoS attacks caused by malformed SDP seg-
ments, we consider an adversary model which includes two
main types of opponents; the ones who register with the
SIP service (insiders), and those who remain unregistered

(outsiders). The former category typically refers to honest-
but-curious parties that establish and maintain some bond
of trust with the VoIP service, while the latter to malicious
external adversaries, i.e., aggressors who try to attack the
service from the network perimeter. Specifically, insiders are
normally considered to be trusted or semi-trusted, say, they
possess a SIP Uniform Resource Identifier (URI) and the
matching credentials to authenticate to the local SIP registrar.
On the downside, as explained in [16], trust may be the key
element for launching more silent type of attacks, without
violating the communication protocol or causing any obvious
damage. On the other hand, external evil-doers reside out-
side the local network, may muster an army of attack-bots
(e.g., an IP stresser and/or zombie machines), and employ
techniques like IP spoofing to minimize the footprint of their
attack. This is straightforward for protocols like SIP which
support both TCP and UDP. Both these types of adversaries
are capable of eavesdropping on SIP traffic, creating SIP
messages that contain a SDP segment, injecting data into the
exchanged SIP messages, and ultimately launching two basic
types of attacks as illustrated in figure 3:

• DoS attacks against specific or random UAs. That is,
by manipulating SDP messages, the attacker attempts to
cause DoS to the corresponding SIP entity. These mes-
sages can be crafted and sent at will to specific or ran-
domly selected users or be part of an ongoing session
between a caller and a callee, where the attacker acts
as a man-in-the-middle. Additionally, the attacker may
send such specially craftedmalformedmessages to a SIP
server with the aim of paralyzing its message parser.

• The creation of ‘‘hide-in-plain-sight’’ type of commu-
nication channels used to secretly convey information
via SDP.

In the first case, the SDP part of the message have been
intentionally crafted with the aim to crash the SDP parser at
the SIP phone. This is usually accomplished using a packet
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FIGURE 3. The malicious entity sends either malformed requests or (in
red) communicates with bots.

manipulation program [17]. Such a tool allows for the captur-
ing and crafting of SIP messages. However, keep in mind that
a malformed message may be also unintentionally generated
due to a software/hardware error. When the malformed SDP
data are received by the target phone, three outcomes are pos-
sible. First, the phone may not be able to decode the SDP seg-
ment, and it will display an error message. Second, the phone
will abnormally crash because for example its parser enters to
an infinite loop. Lastly, the malformed data will go unnoticed.
This typically happens because the malformed data lie in
non-critical fields, i.e., those that do not directly affect the
session establishment process. Overall, the effectiveness of
this type of attack depends on which specific part (or parts)
of the SDP segment have been manipulated. It is also to be
noted that the same attack strategy can be used against SIP
servers. That is, the attacker sends different SDP malformed
messages to the SIP server in hopes of driving its parser
to paralysis. Nevertheless, as discussed in the next section,
at least two major SIP servers are found immune to this
attack because they simply do not check the SDP part of the
message (while they should). This means that the SIP server
will simply forward the malformed SDP information toward
its final destination without bothering to check its soundness.
Of course, this negligence renders SIP clients highly prone to
the same kind of attack.

As already pointed out, the second type of adversaries are
assumed to use the SDP part of SIP messages to create a C&C
communication channel as described in detail in [11]. Briefly,
this scenario assumes that the SDP part of SIP messages
are used for secretly exchanging commands with the sole
purpose of coordinating a botnet. Therefore, in such a case,
the attacker’s goal, acting as a botmaster, is to realize a C&C
without affecting the underlying infrastructure and running
services. This is accomplished by malformed SDP messages
that go unnoticed, i.e., do not induce an error condition on the
target device.

IV. SDP-DRIVEN ATTACKS
This section details on SDP attacks targeted at both SIP
phones and servers. It also offers a concrete example of
a botmaster-to-bots covert communication channel realized
via SDP.

A. INTRODUCTION AND DATASET
During the last few years, the industry and research commu-
nities came across different kinds of vulnerabilities pertaining
to SDP [18]–[20]. These vulnerabilities have been collected
and categorized in databases [21], [22], and are mostly
due to software bugs in the respected products, either VoIP
servers or UAs. Such weaknesses may lead to attacks ranging
from DoS to the execution of malicious code. It is there-
fore obvious that SDP-based attacks can cause unpredictable
behaviors on real-life software and/or hardware systems of
everyday use.

Attacks which exploit SDP are typically performed in the
context of an offer/answer media negotiation. Based on RFC
6337 [14], which describes the offer/answer model [1], [23],
the SIP request messages that can contain a SDP segment are
INVITE, ACK, PRACK, UPDATE. Moreover, the following
messages can be used to convey SDP data in the context of
a response: 2xx INVITE, 1xx-rel INVITE, 200 PRACK, 2xx
UPDATE. Also, there are some messages which may bear a
SDP segment, but they are not part of the offer/answer model.
Suchmessages are for example the OPTIONS request and the
corresponding 200 OK answer.

A malformed SDP segment is likely to cause DoS to the
SIP server or the UA at different phases of the media nego-
tiation process. That is, a malformed SDP segment which
appears in the ‘‘offer’’ phase of media negotiation, may
go unnoticed by the SDP parser in the SIP server. These
messages target directly the end-user or they are used as
vehicles to convey information in the context of a hidden
communication channel. On the other hand, an attack against
a SIP proxy usually happens in the context of an ‘‘answer’’
phase of media negotiation. This typically occurs because
as detailed further down, the message parser in several SIP
servers is stateful regarding the SDP parameters. This means
that it tries to match the SDP parameters contained in the
‘‘offer’’ phase against those carried by the ‘‘answer’’. In case
of inconsistencies, and assuming a software bug, the parser
may crash. Bearing the above into mind and following the
discussion from section II, Table 2 summarizes the different
facets of this ilk of attack, the attacker’s goals, and the attack-
affected victims.

To test both the SDP data hiding and attack capacity,
we created a seemingly legitimate SDP segment using only
the G.711 PCMU codec. This selection appears in all mes-
sages depicted in figures 4 and 5. That is, the corresponding
codec is presented in the <m=> line with code ‘‘0’’. Keep
in mind that this static payload does necessarily need addi-
tional information to be decoded. In this way, we guarantee
that the phones will not reject the message with a ‘‘488 not
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TABLE 2. Summary of attack types and impact on the victim.

FIGURE 4. Malformed SDP bodies relayed from Kamailio (The malformed part is shown in
red font).

acceptable here’’ response. After that, as in [11], we crafted
specific parts of the SDP segment at will. Using this approach,
we have created a dataset of 12 representative malformed
SDP message bodies depicted in figures 4 and 5. Note that in
the course of our experiments, we also tested manymore SDP
malformed messages and cherry-picked those included in the
aforementioned figures. To our knowledge, no such dataset
containing a rich set of SDP malformed messages exists,
therefore the only option was to create one by crafting SDP
messages and performing an error-trial approach to observe
the consequences on the various phones and SIP servers.

All these 12 SDP bodies either miss or contain specific
pieces of information, which directly or indirectly violate
RFCs 4566 and 3551. More specifically, MalSDP1 lacks

the mandatory <v=> descriptor. Moreover, it is inconsis-
tent regarding the <t=> descriptor. That is, the start time
is greater than the end time. Finally, the a = rtpmap
attribute does not correspond to an already declared pay-
load. MalSDP2 contains the word ‘‘RANDOM’’ in the first
<m=> line. This value is completely irrelevant to the spec-
ification. Also, it contains the same media part twice. The
<t=> descriptor of MalSDP3 carries an end value which
has a length of 11 digits. This number exceeds the maximum
allowed limit of 10 digit. Additionally, numbers 1 and 2 can-
not be used as a payload because they are reserved. Finally,
the numbers 97, 98 correspond to dynamic payloads [23], but
they have not been declared in the media level. Keep in mind
that codecs which have been defined in ‘‘RTP Audio/Video

VOLUME 7, 2019 2405



Z. Tsiatsikas et al.: Devil is in the Detail: SDP-Driven Malformed Message Attacks and Mitigation in SIP Ecosystems

FIGURE 5. Malformed SDP bodies relayed from Kamailio and Asterisk (The malformed part is
shown in red font).

profile’’, do not require additional information to be decoded.
Nevertheless, the aforementioned session attribute lines (used
for dynamic codecs), may also be employed for the static
ones.

The <o=> descriptor in MalSDP4 carries a session ID
which violates the Network Time Protocol (NTP) format as
specified in RFC 4566. MalSDP5, conveys a cryptographic
key via the <k=> descriptor. However, the use of crypto-
graphic keys in favor of supporting older implementations are
not recommended by RFC 4566. Finally, MalSDP6 makes
use of a very big number equal to 34, 567, 999 ∗ 1033, as a
session-id in the <o=> descriptor. Additionally, it conveys
several voluminous strings. Moreover, all the 6 SDP bodies
depicted in figure 5 present significant fraudulent alterations
in either the session or the media part of their SDP segment.
Last but not least, the media level part of these bodies carry
the numbers 5, 0, which are nevertheless used only with audio
codecs.

B. EXPERIMENTATION WITH SIP EQUIPMENT
The 6 malformed SDP bodies of figure 4 were used to test
the robustness of 9 different SIP softphones and 1 hard-
ware phone. For selecting the softphones, we searched the
Google play and Apple store, and cherry-picked some of the
most popular ones [24], namely Sipdroid v.4.1 beta, EVA
Sip phone v.2.1, CSipSimple v.1.02.03, MizuDroid v.2.4.0,
Media5-fone v.4.25.4.13060, Linphone v.3.3.2, SessionChat
v.6.0, VaxPhone v.8.6.0.2, and rDialer v.1.1. Panasonic
KX-HDV130 (with firmwareHDV130/06.101) has been used
as the hardware SIP phone. This device is amongst the most
popular in the Unified Communications (UC) market [25].
All the above mentioned phones’ name, model and type are
summarized in Table 3.

SIP phones employ a set of audio and video codecs for
establishing a multimedia session with peer SIP components.
Normally, the phone selects the codecs based on a config-
urable prioritization list. For instance, ITU-T G.711 [26] is
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TABLE 3. SIP Phones used and results (Sw/Hw stands for softphone/hardware phone).

one of themost commonly used in VoIP realm. In this context,
when the phone receives a SDP segment containing codecs
which are incompatible, it will respond with a ‘‘488 not
acceptable here’’ SIP response. This means that the call is not
established. As observed fromTable 3, this error message was
generated by phones 3, 5 after sending allMalSDPs depicted
in figure 4. Finally, the same error code was generated by the
Panasonic phone, after receiving MalSDP1 and MalSDP2.
Obviously, this is an indication that the phone produces a
generic - and in this case misleading - codec error message
instead of a more precise and detailed one pertaining to the
specific SDP error. The rest of the phones responded with
different messages. Sipdroid produced a ‘‘403 forbidden’’
message. The EVA Sip phone encountered a bug as it kept
ringing continuously even after pressing the response button.
However, in this case, the corresponding logs showed that the
rest of the protocol messages (180 RINGING and 200 OK )
have been exchanged successfully. A similar behavior to
the EVA SIP phone has been observed with the MizuDroid
softphone. Finally, the Linphone ringed normally and the call
was answered, but for MalSDP2 and MalSDP5 the call time
counter had frozen.

We also sent 5 consecutive instances ofMalSDP6 message
to all the phones.The EVA Sip phone, Sipdroid, CSipSimple,
and Media5-fone showed the same behavior as previously.
On the other hand, Linphone and MizuDroid crashed, and
additionally forMizuDroid, the smartphone rebooted without
a warning.

Regarding the softphones on the iOS platform, Session-
Chat responded with a ‘‘480 Temporarily not available’’ for
MalSDP2 to MalSDP5. For MalSDP1, the same softphone
displayed a ‘‘400 SDP parse error’’ message. VaxPhone and
rDialer did not respond at all. Finally, the Panasonic phone
responded with a ‘‘488 Not acceptable here’’ error message
for MalSDP1 and MalSDP2. For the rest, the phone ringed
normally and the call was answered. Table 3 summarizes
the behaviour of the tested software and hardware phones.
Generally, a SIP phone which receives a manipulated SDP
request and it responds normally, provides the attacker with
beneficial information regarding an inherent weakness of the
SDP parsing process at the UA side. Then, using this infor-
mation gathered during a reconnaissance phase, the attacker
knows which UAs are suitable for hosting their bot(s). After
infection (which is outside the scope of this paper), the

botmaster can uneventfully convey hidden commands toward
their bots. An example of this situation is the Panasonic
device listed in Table 3, which does not produce an error code
for messages MalSDP3 to MalSDP5. Details on the creation
of such a communication channel are given further down in
this section.

As the reader realizes, the root cause of this kind of attacks
is that the SIP proxies forwarding SIP messages between the
peers do not inspect their SDP bodies for possible inconsis-
tencies. In our tests, we employed two of themost popular SIP
servers in the VoIP realm, namely Kamailio ver. 5.0.2 (former
OpenSER) [27] and Asterisk ver. 14.6.0 [28]. Both these
servers relayed the majority, if not all, of the crafted mes-
sages. Precisely, Kamailio relayed all the messages depicted
in figures 4 and 5, while Asterisk only those included in
figure 5. Generally, Asterisk presented a higher resiliency
in crafted SDP bodies, especially when the manipulation
concerns the <m=> descriptor. This is the main reason that
the messages depicted in figure 4 were rejected by Asterisk.

In any case, this parsing negligence leaves plenty of
room for creating covert communication channels. That is,
as already mentioned, the attacker is able to uneventfully
convey ‘‘in plain sight’’ whatever information they wish,
by simply altering the SDP segment of certain SIP messages.
Let’s say that a botmaster wishes to construct a simple com-
munication channel consisting of 3 commands pertaining to
the type, the parameters, and the initiation/termination of an
attack. To do so, they rely on, say, the <a=> and <t=>

descriptors, and exploit their respective fields included in
red rectangles in Table 1. For the former descriptor, the pos-
sible values are chosen to be 20 (notifies the receiving
UA-bot to extract the attack parameters and stand by for
further instructions), and 30, 40 (correspondingly signify
the initiation/termination of the attack. On the other hand,
the first and the second half of the victim’s IP are included
in the second and third fields of the <t=> descriptor. Say
for example that the victim’s IPv4 is 212.120.83.153. Then,
the second and third fields of the <t=> descriptor would be
3|3|212|120|00 and 2|3|83|153|110 respectively. Note that the
vertical bar character has been included in the numbers to
ease the comprehension of the example. That is, assuming a
quad-dotted notation, the UA-bot will interpret the aforemen-
tioned numbers as follows: the first 2 digits of each number
(3, 3 for the first number and 2, 3 for the second) carry the
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number of digits that comprise this half of the IPv4 address,
which immediately follows (i.e., 212.120 for the first half and
83.153 for the second). Also, the type of the attack is included
in the first 2 of the last 3 digits (11) of the second number.
Note that all the selected values in both these descriptors seem
perfectly legitimate. For instance, the length of the 2 num-
bers, correspondingly denoting the session id and version,
is 10 digits, so as to fully comply with RFC 4566. Also,
the channel remains functional because the selected <a=>,
<t=> descriptors receive values that correspond to fields
which do not affect the session establishment. Naturally, one
has to also consider that each optional descriptor adds ≈10
extra bytes per message, which however is insignificant and
hardly perceivable by the underlying defense mechanisms.
Another point to consider is that the abovementioned channel
will be blocked by the SDP protection module detailed in the
next section. This is simply because the syntax of the <t=>

descriptor infringes rule no. 62 as referred in the Appendix.
Lastly, more worrisome is the fact that apart from crafted

messages, we managed to relay a huge SDP segment using
Kamailio. That is, we created a SDP segment with size equal
to 12,116 bytes. This segment passed through the SIP proxy
intact without returning an error code to the sender. This
means that the SIP proxy could potentially relay enormous
SDP bodies without hesitation. This naturally renders both
the SIP server and registered UAs prone to simple volumetric
DDoS attacks.

V. SDP PROTECTION MODULE
This section elaborates on our solution to bolster defense
capabilities against SDP-driven attacks.

A. HIGH-LEVEL DESCRIPTION AND NETWORK
ARCHITECTURE
A SDP parser is a software module capable of analyzing
SDP bodies. Normally, such a module is present in every SIP
server and UA. However, as already explained in section 4,
both these (real-life) entities largely fail when it comes to
malformed SDP bodies. So, from an attacker’s viewpoint,
virtually all major SIP components, either servers or end-user
equipment are sitting targets. Also, more advanced attackers,
say, botmasters perceive the SIP infrastructure as an alluring
means of building their C&C protocol. Once more, as in the
case ofmany other protocols or systems, it seems that security
is not the first priority of the designers/implementors of SIP
products and security-by-design is still a far-fetched goal. The
solution however is rather straightforward; the SDP parser
must be able to tell between a well-formed and malformed
message in terms of RFC 4566. Preferably, this must be done
for both the incoming and outgoing traffic to/from the SIP
server.

To this end, this work introduces an autonomous open-
source software module for SDP messages that can be either
physically co-located with the SIP proxy or reside in a dif-
ferent machine, say, in the perimeter of the network. In the
context of this work, we opt to select the latter configuration

FIGURE 6. Overview of the deployed testbed. The letters n, k, m represent
the number of rules per rule category.

as it is entirely transparent to any SIP compliant component.
This option also enables one to integrate the SDP parser with,
say, a next generation firewall. The overall architecture of
such a network configuration is illustrated in figure 6.

Very similar to a firewall, the SDP parser protection mod-
ule inspects each message based on a parsing policy reflected
to one or more sets of rules, and decides if it can be forwarded
to the SIP server or silently dropped. That is, the filtering
operation starts by extracting the message body from any
incoming SIP request. Next, the SIP headers of the message
are stripped away and the remaining part containing the SDP
message (descriptors) is kept for further processing. Algo-
rithm 8 provides an overview of the process flow and discrete
operations of the SDP parser.

B. FILTERING POLICY AND PARSER RULES
As per RFC 4566, the implemented rules have been divided
into 4 major categories (policies). Namely, we compiled a
set of SDP parsing rules and we grouped them into the fol-
lowing categories: ‘‘MUST’’, ‘‘NOT RECOMMENDED’’,
‘‘SHOULD NOT’’. For the remaining rules, i.e., those which
do not fall within any of the above mentioned categories,
we created a fourth category, namely ‘‘GENERAL INCON-
SISTENCIES’’. The ‘‘MUST’’ policy can be further cat-
egorized into 3 sub-policies, namely ‘‘MUST APPEAR’’,
‘‘MUST NOT APPEAR’’, and ‘‘MUST HAVE’’. Until now,
altogether the 4 chief categories contain a total of 100 rules,
which tackle the vast majority of inconsistencies that may
exist in a SDP message. Of course, one is able to add more
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Algorithm 1 SDP Segment Classification
1: for RuleSet i← 1 k do
2: if RuleSet i is enabled then
3: for Rule j← 1 N do
4: if Rule j applies on SDPsegment then Drop

message; return;
5: end if
6: end for
7: end if
8: end for

rules at any time. The full list of the implemented rules is
given in the Appendix.

Note that all the rules have been created after grind-
ingly extracting every single piece of information which
pertains to the standard syntax of SDP. For example, with
reference to figure 2, rule 63 describes the length of the
<t=> descriptor. Based on RFC 4566, the length of this
descriptor must be equal to 2, meaning that if this descriptor
appears in a SDP session level part, it must have the form
t = <start-time><stop-time>. The same logic has been
followed for the rest of the implemented rules. Up to now,
our implementation covers all the mandatory descriptors,
plus many of the optional ones. Full coverage is expected
in a future version of the parser, which is publicly available
at [29].

The implemented rules can be categorized either by using
the 4 above mentioned categories, or according to their rel-
evance to the different SDP regions (i.e., with reference to
figure 2, session level and media level). This three-fold sub-
categorization is described under the ‘‘Filtering sub-policies’’
header in the Appendix. For example, the mandatory descrip-
tors reside only in the session level of the SDP segment. So,
the first filtering sub-policy in the Appendix dictates that all
the mandatory descriptors must be present in an SDP mes-
sage. Otherwise, the message is dropped. Overall, for every
defined rule, each time an inconsistency is found, the parser
silently drops (and preferably logs) the SIP message. On the
contrary, if the message is found to be sound it is forwarded
to the SIP proxy.

C. DESIGN CONSIDERATIONS
Misuse detection systems (also known as signature-based
detection) rely on known signatures, that is, detection rules
aiming to distinguish legitimate traffic instances from the
malicious ones. However, while these systems are able to
detect known attacks and have a high degree of portability
between systems that face the same ilk of attacks, they miss
to recognize novel attacks or variations of known ones. Thus,
the detection ability of a misuse detection system, as the
one proposed in this work, primarily depends on the new-
ness of the detection rules the system has been configured
with. In this context, we selected the specific rules based on
the fact that, in the normal case, altogether the mandatory

descriptors, namely <v=>, <o=>, <s=>, <m=>, <t=>

offer a limited number of ‘‘variables’’ in contrast to the
optional ones. The term ‘‘variable’’ refers to the part of
every descriptor which can be altered by the sending entity,
either for benign or malicious purposes. For example, with
reference to the fourth column of Table 1, and for the <o=>

mandatory descriptor, the number of ‘‘variables’’ is equal
to 6. In general, altogether the mandatory descriptors but
<m=> provide 13 ‘‘variables’’, which can be malignantly
altered. In the normal case, <m=> carries 3 ‘‘variables’’
plus a number of payloads, which ranges from 1 to n. Also,
in certain cases, e.g., in an audio/video session, there may be
more than one instances of <m=>.
The 10 optional descriptors on the other hand provide

a much larger ‘‘variable’’ space for the assailant, simply
because their number may be triple the quantum of the
mandatory ones (some of them may even be repeated in
the SDP segment), and pieces of information conveyed by
certain optional descriptors may not be critical or simply
ignored by the SIP proxy. Therefore, as shown in the exam-
ple of section IV, the optional descriptors are low hanging
fruits for attackers who seek to hide information in a SDP
body toward creating a covert communication channel. Even
worse, considering the offer/answer model (see sections II
and IV) the UA is capable of renegotiating the SDP param-
eters at any time and each time present a different SDP
segment. For instance, if the caller wishes to put the callee
on hold, it needs to send them a re-INVITE carrying the
SDP <a=inactive> attribute (along with any other crafty
SDP alterations).
All in all, the greater the number of ‘‘variables’’ the larger

the attack vector the malformed message may yield, because
the aggressor is able to arm the message with several different
variations of malformed fields in an effort to inflict damage to
the victim or pass through a richer set of hidden information.
Of course, as already touched upon in section IV, the inclu-
sion of many optional descriptors in the message is sure to
increase its size (note that any SIP implementation must be
capable of handling messages up to the maximum datagram
packet size, e.g., for UDP this size is 65,535 bytes, including
IP and UDP headers). Also, it is to be noted that in order
to avoid the fragmentation of messages over UDP and offer
congestion control for larger messages, RFC 3261 states that
any request within 200 bytes of the path Maximum Trans-
mission Unit (MTU) or larger than 1,300 bytes if the path
MTU is unknown, must be dispatched using TCP. This, on the
other hand, complicates the creation of large malformed SDP
messages along with IP spoofing at the attacker’s side.
Bearing the above in mind, we designed the SDP parser in

such a way so the mandatory descriptors - which are critical
and cumulatively have the lesser number of ‘‘variables’’ - are
always filtered first. After that, the selection of the rules grad-
ually covers the case of voluminous SDP segments, where the
parser possibly needs to go through a much greater number
of rules. More details regarding the time complexity of the
parser are given in the next section.
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D. IMPLEMENTATION
The SDP message parser has been implemented as a stan-
dalone multi-threaded Java application. Its first task is to
intercept SIP requests and responses carrying a SDP segment
(see section IV) and destined to the SIP proxy. To do so,
we employed the well-known JAIN-SIP stack [30]. The JAIN
architecture comprises 3 different layers. The first layer cor-
responds to the protocol stack. The second refers to the JAIN
layer, and the last one to the actual application. Precisely,
the latter layer provides the necessary methods to format and
send out SIP messages. Furthermore, it provides interfaces
capable of extracting and parsing specific message headers.
As shown in figure 6, we employed the well-known iptables
linux utility program to redirect the traffic as follows: for
every incoming packet with destination TCP or UDP port
equal to 5060 (the standard SIP proxy port used for non-
encrypted signaling traffic), we forwarded the packet to the
parser, listening on the corresponding TCP or UDP port 6090.
If the message is found to be well-formed, it is forwarded to
the SIP proxy as normal. This is done with the help of the
SendRequest method of the JAIN SIP API.

The parser allows the network administrator to select the
descriptors to be filtered based on a graphical user interface
(GUI). Namely, the user is capable of selecting a specific pol-
icy reflected to one or more categories of rules, as illustrated
in figure 6 and described in the Appendix. A screenshot of
the parser’s GUI is presented in figure 7. As observed from
the figure, the various filtering policies (categories of rules)
reside in the upper left section of the GUI. Recall that the
parser application is freely available for further development
and experimentation [29].

FIGURE 7. The front-end of the SDP parser.

We also developed a Java attack tool capable of generating
malformed SDP INVITE SIP messages. The application pro-
duces a variety of malformed SDP messages, including the
ones described in section 4, as well as others with random
values in specific SDP fields. Also, the same tool allows one
for sending a single or a surge of malformed SDP requests
towards a UA or SIP proxy. While our experiments make use

of only INVITE requests, the exact same methodology can
be followed for any other SIP request/response having a SDP
segment, as detailed in section IV.

VI. PERFORMANCE EVALUATION
This section reports on the performance evaluation of the
proposed scheme. To this end, we employed a SIP testbed
architecture in which we launched various attack scenarios to
estimate the effectiveness of our SDP parser under different
traffic conditions.We assess our solution in terms of the intro-
duced overhead for service provision. The following sub-
sections elaborate on the testbed architecture, the deployed
scenarios, and the obtained results.

A. TESTBED
The employed testbed is depicted in figure 6. Specifically,
3 different Virtual Machines (VM) have been used to host
the UAC/UAS, the SDP malformed message attack tool
described in subsection V-D, the SDP parser, and the SIP
proxy. The physical machine hosting the VMs is equipped
with an Intel i5-4310m processor clocked at 2.7 GHz and
8 GB of RAM. The Kamailio SIP server in ver. 5.0.2 has been
used as a SIP registrar and proxy. We utilized the well-known
Sipp tool [31] to test the performance of the parser under
stress, that is, by simulating legitimate SIP calls between a
caller and a callee. The UAC and the UAS operate on the
same VM using different port numbers, namely 6040 and
8040 correspondingly. Keep in mind that the conveyed traffic
must always be filtered by a firewall.

As already pointed out, for launching the attacks, we used
the Java tool already described in subsection V-D. This attack
tool dispatches a number of SDP malformed requests (those
of figures 4, 5, plus the one with the huge SDP segment)
depending on the needs of each scenario. A detailed descrip-
tion for the employed scenarios can be found in the next
subsection. The SDP parser has been logically placed in front
of the SIP proxy, but both run on the sameVM, sharing a dual-
core CPU and 2 GB of RAM. Having the SDP parser hosted
by a separate physical machine is estimated to introduce neg-
ligible time penalty in terms of communication time, given
that the SIP proxy and the parser will normally reside in the
same subnetwork.

B. SCENARIOS
For evaluating the performance of the parser, and conse-
quently estimate the overhead inflicted by our solution on the
provided service, we created a set of 16 scenarios (Sn) divided
in 4 categories as shown in Table 4. That is, as indicated in
the third column of the table, for each category of scenar-
ios, we flooded the target proxy with 500, 1500, 2500, and
4000 INVITE SDP malformed requests, using random time
intervals of 3 to 10 sec between the flood bursts.

We selected random time intervals because the strategy of
the attack (i.e., the use of a certain distribution in the attack
pattern) does not affect the detection accuracy. This hap-
pens because a syntactically wrong message will be dropped
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TABLE 4. Parameters of attack scenarios.

independently of the call distribution. Namely, in the worst
case scenario, the system may loose some packets due to lack
of CPU resources, but statistically the SDP parser detection
accuracy is not affected as the arriving INVITE packets are
mirrored to statistically independent events.

Moreover, as shown in the second column of Table 4,
during the execution of the attacks, the SDP and SIP proxies
were stressed with legitimate traffic following a pace of 10,
20, 40 and 80 calls per second (CPS).

C. PERFORMANCE EVALUATION
Given that the detection accuracy of the SDP parser depends
solely on the implemented rules (i.e., the parser had 100%
detection accuracy against the malformed messages of
figures 4 and 5), the focus of this section is on service time
provision. To this end, we assess the overhead on both the
SDP parser and SIP proxy in terms of message processing
time. This means that for each group of scenarios in Table 4
(Sn1.1 to Sn1.4, Sn2.1 to Sn2.4, and so on), we measured
the processing time per incoming message in both the SDP
parser and the SIP proxy. Next, we present the results per
group of scenarios using box-and-whisker plots in figure 8,
where the lower hand edge of the blue box corresponds to the
1st quartile, the upper hand edge of the red box to the 3rd
quartile, and the line between the boxes is the median. For
instance, in the upper half of the figure, the distribution of
message processing time for all scenarios (Sn1.x) in group
Sn1 for the SDP parser is marked as ‘‘Sn1’’ in the horizontal
axis.

For the last 4 sub-scenarios (Sn4.x), we used the same
number of SDP malformed INVITE packets. As explained
in subsection VI-B, this has been done because the detection
accuracy of the SDP parser is not affected by the number
of packets. Nevertheless, we used a different number of
packets for the first 3 groups of scenarios (Sn1 to Sn3) for
the purpose of demonstrating that the SDP parser behavior
remains stable independently of the deviation in the rate of the
incoming malformed packets. As expected, during the exper-
iments, we witnessed network performance issues expressed
as packet loss. This was due to the excessive attack traffic on
top of the legitimate calls. Keep in mind that this behavior is

FIGURE 8. Time overhead per category of scenarios for the parser module
(upper half) and the SIP proxy Kamailio (bottom half).

expected because of the connectionless nature of UDP, which
is often preferred over TCP, especially when the number of
devices connecting to the SIP server grows.

Focusing on the upper half of the figure, i.e., the SDP
parser, we easily observe that the average message processing
(parsing) time per incoming message for all the scenarios
fluctuates between 30 to 50 msec. Also, the minimum and
maximum values for all the 4 groups of scenarios are between
17 and 60 msec. Overall, we can safely argue that the SDP
parser adds a negligible time of the order of tenths of mil-
liseconds. Even in the most stressing group of scenarios (Sn3,
Sn4) where the CPS is 40 to 80, the average parsing time
does not exceed 60 msec. However, bear in mind that the
aforementioned parsing times are only indicative because
they do not only depend on the volume and type of SIP traffic,
but also on the computing resources available at the parser
side (i.e., processor type, available memory, etc).

When comparing the first 3 groups of scenarios, one can
also perceive an increment of ≈ 10 msec in the average
message parsing time proportionally to the CPS parameter.
That is, from ≈ 30 msec for Sn1 to ≈ 40 for Sn2 and
≈ 50 for Sn3. Sn4 on the other hand, showed faster message
parsing times because the volume of the SDP malformed
messages sent in all Sn4.xwas constant. This is verified by the
corresponding Interquartile Range (IQR = Q3-Q1), which is
the smallest amongst all four group of scenarios.

In a nutshell, and as explained further in the next subsec-
tion, the parser introduces a delay proportional to the number
of rules. That is, in terms of asymptotic notation, the parser’s
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upper bound is O(N), where N is the number of rules enabled
in the parser. Of course, this number is reflected to the cur-
rently activated SDP filtering policies as the case may be.
A second factor which affects the parser complexity pertains
to the number of selected categories. When this number is
constant (as in our case where k = 4), then the complexity
converges to O(N). On the other hand, if k is variable, then
the asymptotic worst-case reaches the quadratic complexity,
namely O(N*k).
To acquire a better understanding of the aforementioned

results in terms of SDP parsing penalization, we compare
the previous times against those produced by Kamailio for
exactly the same 4 groups of scenarios. The results are
depicted in the bottom half of figure 8. From the figure, it is
easily perceivable that Kamailio produces very fast and stable
message processing times in the order of millisecond even
under excessive stress. This is however highly expected as
modern VoIP servers are developed for handling thousands
of CPS [27]. Specifically, for all the 4 scenarios, the average
processing time per message fluctuates between 0.48 and
0.52 msec. This means that even with the addition of the SDP
parser in front of the SIP server, one would expect overall
message processing times in the order of 100 msec. Also,
in the case of a volumetric attack leveraging SDP, the SDP
parser is expected to ease the burden of the SIP server because
the malformed messages will be dropped.

D. DISCUSSION
As already pointed out, the SDP parser has been developed
with a firewall-based logic. That is, as shown in Algorithm 8,
upon the arrival of a SIP message carrying SDP information,
the parser extracts the SDP segment and performs a linear
search against the list of the enabled rules, with the aim
of detecting inconsistencies. Obviously, a SDP malformed
message will pass through the parser undetected in case it
contains an inconsistency that has not been implemented as
a rule (or due to the current policy, the corresponding set
of rules is not enabled). As already mentioned, the SDP
parser performs a linear search, thus, assuming N active rules,
the worst case will require the examining of N rules, while
the best only involves the first rule in the current set. Note
that the worst case applies also when the incomingmessage is
well-formed. To put it another way, the overall time required
to detect a malformed message is always proportional to the
number of the enabled rules and does not depend on the
specific set of rules or the combination of the enabled set of
rules as the case may be. Therefore, the time complexity of
the parser is O(N). On the other hand, the detection accuracy
of the parser will always reach 100%, assuming that the
presented inconsistency has been addressed in an already
implemented rule, which is additionally enabled.

A separate note should be done regarding the selection of
the Java programming language for implementing the parser.
Note that this was mainly done for the sake of portability.
In this respect however, the parser’s performance may be
negatively affected by a) the Java Virtual Machine translation

cost, and b) Java garbage collection process. Therefore,
if portability is not a priority, a C-based implementation of
the parser may perform faster given that (a) C code is directly
compiled into native code, thus is expected to surpass Java
bytecode even in the case of Just-in-Time compilation [32],
and (b) memory management optimizations are possible
when programming with C (but this may on the other hand
increase the software bug surface).

VII. RELATED WORK
Single source or distributed DoS attacks comprise one of
the cardinal issues in the cybersecurity domain. Up to now,
a great mass of researches have been presented in the litera-
ture to cope with this ilk of attacks in diverse network ecosys-
tems [33]–[38]. In this context, one of the biggest challenges
at the defender’s side pertains to the filtering mechanisms as
a part of, say, an Intrusion Detection System (IDS), which
are employed for telling the normal and attack traffic apart
[39]–[41]. This section elaborates on the related works that
have been presented in the literature so far regarding VoIP
security in general and malformed-message-driven DoS in
particular.

To date, several research works have been devoted to the
domain of malformed messages in SIP ecosystems. Their
common ground, however, is that they all considermalformed
SIP headers, not SDP ones, which therefore is the focus of
this work. The very first of them, namely the PROTOS test
suite [42], evaluated the robustness of SIP entities against
different types of malformed messages. The outcomes of
this project indicated that, at least at that time, most of the
components of the SIP architecture were unable to success-
fully parse malformed messages. Actually, this type of flaw
is directly inherited to any SIP-based service. For instance,
Vrakas [43], [44] demonstrated the impact of malformed
messages in the IP Multimedia Subsystem (IMS), which is
an integral part of modern 4G and beyond mobile networks.
In [7], the same authors employed a bloom filter mechanism
for dealing with this kind of DoS attacks, and they reported
a ≈ 0.95 probability of detection.
Concentrating on SIP proxies, Geneiatakis et al. [9] intro-

duced a protection solution, which can be used to strengthen
the robustness of SIP server’s message parser against these
attacks. Their results showed that SIP parser enhancements
inflict negligible delays, and thus do not affect the end-user
in terms of service times. Some very similar approaches has
been followed by the works in [45]–[47]. Also, Chen and
Itoh [12] introduced a methodology for creating appropriate
rules for SIP messages based on Augmented Backus-Naur
Form (ABNF) metalanguage, while Lahmadi and Festor [48]
presented a specification language to describe SIP vulner-
abilities, including malformed message ones as well as the
associated countermeasures.

Rieck et al. [49] contributed a machine learning based
solution for detecting both known and unknown attacks
against SIP based services. This is orthogonal to existing
protection approaches as it can function complementary
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TABLE 5. Summary and comparison of related work.

to them for improving the security level of the provided
services. In the same direction, Ferdus et al. [50] devel-
oped a two-stage solution based on lexical analysis and
machine learning techniques for detecting sophisticated mal-
formed SIP message attacks. Following a similar approach,
Tsiatsikas et al. [51], [52], evaluated the performance of sev-
eral machine learning classifiers in the detection of (D)DoS
attacks. Also, Akbar et al. [53] developed a SIP message
parser with the purpose of counteracting (D)DoS attacks. The
parser utilizes Support Vector Machine (SVM) for message
classification, and they report a 99.89% accuracy under dif-
ferent scenarios involving malformed messages residing in
SIP message headers.

Excluding attacks that exploit malformed messages,
Sisalem et al. [54] demonstrated the consequences of well-
formed SIP messages that incorporate in their headers irre-
solvable addresses. The authors showed that this type of
attack can paralyze the provided service. Later on, as a mit-
igation strategy against this type of attack, Zhang et al. [55]
introduced a non-blocking DNS caching solution.

Lastly, the still limited number of SDP-related vulnerabil-
ities included in public Common Vulnerabilities and Expo-
sures (CVE) databases [21], [22] are the most relevant to
our work. Actually, these flaws pertain to simple, sporadic
bugs discovered in random during either the phase of media
negotiation at the SIP proxy, or upon message parsing at the
SIP phone. Usually, the fixes given in such cases are propri-
etary or ad-hoc, say, patching the software bug, or correcting
the SIP flow from a design point of view. On the contrary,
the solution proposed by this work is holistic and purely
proactive, meaning that the malformed messages are reaped
before having the chance to interact with the SIP entities.

Given the above, the literature so far largely misses the
exploration of SIP malformed message attacks, which specif-
ically leverage SDP information conveyed by certain SIP
messages. Even the RFC 4475 [56] which is dedicated to SIP
torture test messages does not explicitly elaborate on SDP
malformed message attacks. To this end, the work at hand
not only contributes proofs of the feasibility and impact of
this ilk of attack against real-life diverse SIP entities, but
additionally offers a publicly available parsing mechanism
that can remedy it. Also, the same solution can help into
deterring evildoers from exploiting the SIP infrastructure for

building secret communication channels. To ease the reading
of this section, Table 5 summarizes the works dealing with
malformed messages in SIP, and offers a side-by-side com-
parison based on 6 criteria, where available. Note however
that the last two criteria, namely ‘‘overhead’’ and ‘‘accuracy’’,
in the table can only be considered as indicative because:
• They are concerned with different parts of a SIP mes-
sage. That is, all the works but ours examine the SIP
header, not the SDP segment. The latter is far more
complex than the former because, as detailed in subsec-
tion V-C, it may contain several optional descriptors, and
each of them may carry several ‘‘variables’’ as shown in
the fourth column of the revised Table 1.

• The overall setup, including the testbed, the imple-
mented scenarios, and the dataset in the various works
are not the same. With reference to subsections V-D
and VI-A, the SDP parser is implemented in Java, and
runs on the same VM with Kamailio having a dual-core
CPU and 2GB of RAM. On the other hand, for instance,
the work in [9] employed a machine equipped with a
Pentium 4 processor clocked at 2.5 GHz and 256 MB of
RAM, while that in [48], uses an Intel Core i7 2.0 GHz
Quad-core CPU and 8 GB RAM.

• The nature of the solutions are different. That is,
some are rule-based, while others are machine-learning
driven. Therefore, for the former, the detection accuracy
depends on the quality and freshness of the implemented
rules, while for the latter on factors including the quality
of the dataset (labeled/unlabeled data), the classifiers
used, and the pre-processing and training processes.

A last point to consider is that SDP is not specific to SIP.
In fact, as per RFC 4566, SDP is designed to offer a general
purpose format for conveying multimedia session description
metadata to the peers. Hence, it can be used in a variety of
network domains and applications, and over several transport
protocols, including Session Announcement Protocol (SAP),
SIP, Real Time Streaming Protocol (RTSP), electronic mail
via the Multipurpose Internet Mail Extensions (MIME), and
the Hypertext Transport Protocol (HTTP). This means that
the contributions of this work directly apply to also any
application that uses one of the aforementioned transport
protocols to enable multimedia communications. Another
positive quality of the proposed rule-based scheme is that
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is more generic and it can be more easily incorporated in
low computing power client-side equipment, say, a hardware
phone in the case of SIP or another end-device utilizing one of
the aforementioned protocols. This does not normally apply
to machine learning solutions, which are more computation-
ally intensive.

VIII. CONCLUSIONS AND FUTURE WORK
Media negotiation comprises a fundamental operation in SIP
ecosystems. However, the text nature of SDP creates a fer-
tile ground for attackers aiming to launch DoS attacks by
crafting the message bodies. So far, research has concentrated
on malformed SIP message headers, largely neglecting SDP
bodies. To fill this literature gap, we not only demonstrate the
magnitude of SDP-powered attacks to real-life SIP equipment
and the user, but also propose a straightforward to imple-
ment and fully compatible with SIP proxy-based method to
solve it.

The obtained results show that our solution comes at a neg-
ligible cost in terms of service time provision while, as with
any misuse detection system, its detection accuracy depends
solely on the freshness and quality of the implemented rules.
Also, it is directly extensible by simply contributing addi-
tional rules to one or more of its categories pertaining to
SDP message body filtering policies. These policies can
be enforced or disabled by the administrator at will. Also,
as explained in Section VI, each new rule added to the list,
affects linearly the parser performance. That is, in terms of
algorithmic time complexity, the search operation will always
be equal to O(N) across the number of rules included in the
currently enabled policies.

Given that SDP may be used on top of different trans-
port protocols, our future work aims at (a) calibrating the
parser and populating it with more rules, (b) testing the
parser in other application domains, including Web Real-
Time Communication (WebRTC) environments that leverage
SIP as their signaling protocol, and (c) implementing a two-
layer solution, which in addition to rule-based detection, will
employ machine learning techniques to cope with previously
unseen instances of SDP malicious alterations.

APPENDIX
This appendix contains the full list of the rules that have been
implemented in our SDP parser until now.

Filtering Categories (policies):
• Filter MUST descriptors.
• Filter NOT RECOMMENDED descriptors.
• Filter SHOULD NOT descriptors.
• Filter GENERAL INCONSISTENCIES.

Filtering Sub-policies:
• Examine the presence and location of mandatory
descriptors in the session level of SDP message. The
included rules can be further categorized into 3 sub-
policies, namely ‘‘MUST APPEAR’’, ‘‘MUST NOT
APPEAR’’, and ‘‘MUST HAVE’’.

• Examine the number of elements per descriptor.
• Examine the length and/or the type of the elements per
descriptor.

Set of currently implemented rules in the SDP parser
per policy and sub-policy

MUST

1) ‘‘=’’ A space Must Not appear in the left side of the
equal sign.

2) ‘‘= ’’ A space Must Not appear in the right side of the
equal sign.

3) ‘‘ = ’’ A space Must Not appear in the left and the right
side of the equal sign.

4) The ‘‘c=’’ descriptor Must appear.
5) The ‘‘s= ’’ descriptor Must appear at most once in the

session level.
6) The ‘‘i= ’’ descriptor Must appear at most once in the

session level.
7) The ‘‘u= ’’ descriptor Must appear at most once in the

session level.
8) The ‘‘H261’’ codec Must appear for video media.
9) The ‘‘H264’’ codec Must appear for video media.
10) The ‘‘H264-RCD0’’ codecMust appear for videomedia.
11) The ‘‘H264-SVC’’ codec Must appear for video media.
12) The ‘‘DV’’ codec Must appear for video media.
13) The ‘‘u= ’’ descriptor Must appear before the first ‘‘m’’

one.
14) The ‘‘e= ’’ descriptor Must appear before the first ‘‘m’’

one.
15) The ‘‘H261’’ codec Must have a clock rate equal to

90000.
16) The ‘‘H264’’ codec Must have a clock rate equal to

90000.
17) The ‘‘H264-RCD0’’ codec Must have a clock rate equal

to 90000.
18) The ‘‘H264-SVC’’ codec Must have a clock rate equal

to 90000.
19) The ‘‘DV’’ codecMust have a clock rate equal to 90000.

SHOULD NOT & NOT RECOMMENDED

1) Permanent sessions Should Not be used.
2) Unbounded sessions Should Not be used.
3) ‘‘k=’’ descriptor is Not Recommended.
4) ‘‘b=X-’’ descriptor is Not Recommended.

GENERAL INCONSISTENCIES

1) RTP payload number ‘‘0’’ is used for audio.
2) No need for an ‘‘a=rtpmap:0’’ attribute.
3) No need for an ‘‘a=fmtp:0’’ attribute.
4) RTP payload number ‘‘1’’ is RESERVED. It cannot be

used.
5) RTP payload number ‘‘2’’ is RESERVED. It cannot be

used.
6) RTP payload number ‘‘3 to 18’’ is used only for audio.
7) No need for an ‘‘a=rtpmap:XXX’’ attribute for RTP

payloads with numbers ‘‘3-18’’.
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8) No need for an ‘‘a=fmtp:XXX’’ attribute for RTP pay-
loads with numbers ‘‘3-18’’.

9) RTP payload numbers ‘‘19 to 24’’ are either
RESERVED or UNASSIGNED. They cannot be used.

10) RTP payload numbers ‘‘25 to 26’’ are used for video.
11) No need for an ‘‘a=rtpmap:XXX’’ attribute for RTP

payloads with numbers ‘‘25-26’’.
12) No need for an ‘‘a=fmtp:XXX’’ attribute for RTP pay-

loads with numbers ‘‘25-26’’.
13) RTP payload number ‘‘27’’ is either RESERVED or

UNASSIGNED. It cannot be used.
14) RTP payload numbers ‘‘28’’ is used for video.
15) No need for an ‘‘a=rtpmap:XXX’’ attribute for RTP

payloads with number ‘‘28’’.
16) No need for an ‘‘a=fmtp:XXX’’ attribute for RTP pay-

loads with numbers ‘‘28’’.
17) RTP payload numbers ‘‘29’’ is used for video.
18) No need for an ‘‘a=rtpmap:XXX’’ attribute for RTP

payloads with number ‘‘29’’.
19) No need for an ‘‘a=fmtp:XXX’’ attribute for RTP pay-

loads with numbers ‘‘29’’.
20) RTP payload numbers ‘‘30’’ is used for video.
21) No need for an ‘‘a=rtpmap:XXX’’ attribute for RTP

payloads with number ‘‘30’’.
22) No need for an ‘‘a=fmtp:XXX’’ attribute for RTP pay-

loads with numbers ‘‘30’’.
23) RTP payload numbers ‘‘33’’ is used for audio/video.
24) No need for an ‘‘a=rtpmap:XXX’’ attribute for RTP

payloads with number ‘‘33’’.
25) No need for an ‘‘a=fmtp:XXX’’ attribute for RTP pay-

loads with numbers ‘‘33’’.
26) RTP payload numbers ‘‘31’’ is used for audio/video.
27) No need for an ‘‘a=rtpmap:XXX’’ attribute for RTP

payloads with number ‘‘31’’.
28) No need for an ‘‘a=fmtp:XXX’’ attribute for RTP pay-

loads with numbers ‘‘31’’.
29) RTP payload numbers ‘‘32’’ is used for audio/video.
30) No need for an ‘‘a=rtpmap:XXX’’ attribute for RTP

payloads with number ‘‘32’’.
31) No need for an ‘‘a=fmtp:XXX’’ attribute for RTP pay-

loads with numbers ‘‘32’’.
32) RTP payload numbers ‘‘34’’ is used for audio/video.
33) No need for an ‘‘a=rtpmap:XXX’’ attribute for RTP

payloads with number ‘‘34’’.
34) No need for an ‘‘a=fmtp:XXX’’ attribute for RTP pay-

loads with numbers ‘‘34’’.
35) Codec ‘‘G7291’’ must be used for audio.
36) Codec ‘‘VC1’’ must be used for video.
37) RTP payload numbers ‘‘35 to 71’’ are either

RESERVED or UNASSIGNED. They cannot be used.
38) RTP payload numbers ‘‘72 to 76’’ are either

RESERVED or UNASSIGNED. They cannot be used.
39) RTP payload numbers ‘‘77 to 95’’ are either

RESERVED or UNASSIGNED. They cannot be used.
40) RTP payload numbers ‘‘96 to 127’’ a=rtpmap is not

contained in the m line.

41) RTP payload numbers ‘‘96 to 127’’ fmtp is not contained
in the m line.

42) The sixth argument in the ‘‘o’’ must exist in the SIP
headers.

43) Codec ‘‘VC1’’ must have 2 arguments.
44) Codec ‘‘G7221’’ must have 2 arguments.
45) Check if ‘‘o’’ line contains 6 arguments.
46) RTP payload numbers ‘‘>127’’ are out of range.
47) If the ‘‘VC1 fmtp’’ attribute is present, it Must con-

tain one of the following profile values: ‘‘profile=0’’,
‘‘profile=1’’, ‘‘profile=2’’.

48) If the ‘‘VC1 fmtp’’ attribute, is present, it Must con-
tain one of the following level values: ‘‘level=1’’,
‘‘level=2’’, ‘‘level=3’’.

49) Codec ‘‘VC1’’ must have a clock rate equal to 90000.
50) Codec ‘‘G7221’’ clock rate is either equal to

‘‘16000’’ or ‘‘32000’’.
51) Codec ‘‘G7221’’ must have a clock rate equal to

‘‘24000’’ ‘‘32000’’ assuming a sample rate equal to
‘‘16000’’.

52) Codec ‘‘G7221’’ must have a clock rate equal to
‘‘32000’’ ‘‘48000’’ assuming a sample rate equal to
‘‘32000’’.

53) Codec ‘‘G7221’’ must have a bit rate which is multiple
of 400.

54) Codec ‘‘G7221’’ must have one of the values mentioned
in rules 50, 51, 52 for the clock rate. Otherwise the value
is out of range.

55) The clock rate for codec ‘‘G7291’’ must be ‘‘8000’’,
‘‘12000’’, ‘‘14000’’,‘‘16000’’, ‘‘18000’’, ‘‘20000’’,
‘‘22000’’, ‘‘24000’’, ‘‘26000’’, ‘‘28000’’, ‘‘30000’’ or
‘‘32000’’.

56) The clock rate for codec ‘‘L20’’ must be ‘‘8000’’,
‘‘11025’’, ‘‘16000’’,‘‘22050’’, ‘‘24000’’, ‘‘32000’’,
‘‘44100’’ or ‘‘48000’’.

57) The clock rate for codec ‘‘L24’’ must be ‘‘8000’’,
‘‘11025’’, ‘‘16000’’,‘‘22050’’, ‘‘24000’’, ‘‘32000’’,
‘‘44100’’ or ‘‘48000’’.

58) A bigger number of ‘‘rtpmap’’ attributes than RTP pay-
loads exists in the SIP body.

59) The ‘‘a=orient’’ attribute can receive the following val-
ues: ‘‘portrait’’, ‘‘landscape’’, ‘‘seascape’’.

60) Check the transport protocol in the m line. It should
be equal to one of the following values: ‘‘udp’’,
‘‘RTP/AVP’’, ‘‘RTP/SAVP’’.

61) An m line should contain one of the following values:
‘‘audio’’, ‘‘video’’, ‘‘application’’, ‘‘text’’, ‘‘message’’.

62) Problem in the start and or end time in the ‘‘t’’ line.
63) The length of the ‘‘t’’ line must be equal to 2.
64) The length of the ‘‘c’’ line must be equal to 3.
65) The length of the ‘‘v’’ line must be equal to 1.
66) The length of the ‘‘s’’ line must be equal to 1.
67) The first argument in the ‘‘c’’ line must be equal to

‘‘IN’’.
68) The second argument in the ‘‘c’’ line must be equal to

‘‘IP4’’.
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69) The second argument in the ‘‘v’’ line must be equal
to ‘‘0’’.

70) The first argument in the ‘‘o’’ line must be equal to the
username or equal to ‘‘-’’.

71) The second argument in the ‘‘o’’ line must be 10 digits.
72) The third argument in the ‘‘o’’ line must be 10 digits.
73) The fourth argument in the ‘‘o’’ line must be equal to

‘‘IN’’.
74) The fifth argument in the ‘‘o’’ line must be equal to

‘‘IP4’’.
75) The first argument in the ‘‘t’’ line must be 10 digits.
76) The second argument in the ‘‘t’’ line must be 10 digits.
77) The port number must be between ‘‘1024’’ and

‘‘65535’’.
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