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A B S T R A C T

The city of Melbourne in southeast Australia experiences frequent heatwaves and their frequency, intensity and
duration are expected to increase in the future. In addition, Melbourne is the fastest growing city in Australia and
experiencing rapid urban expansion. Heatwaves and urbanization contribute in intensifying the Urban Heat
Island (UHI) effect, i.e., higher temperatures in urban areas as compared to surrounding rural areas. The
combined effects of UHI and heatwaves have substantial impacts on the urban environment, meteorology and
human health, and there is, therefore, a pressing need to investigate the effectiveness of different mitigation
options. This study evaluates the effectiveness of urban vegetation patches such as mixed forest (MF), combi-
nation of mixed forest and grasslands (MFAG), and combination of mixed shrublands and grasslands (MSAG) in
reducing UHI effects in the city of Melbourne during one of the most severe heatwave events. Simulations are
carried out by using the Weather Research and Forecasting (WRF) model coupled with the Single Layer Urban
Canopy Model (SLUCM). The fractions of vegetated patches per grid cell are increased by 20%, 30%, 40% and
50% using the mosaic method of the WRF model. Results show that by increasing fractions from 20 to 50%, MF
reduces near surface (2m) UHI (UHI2) by 0.6–3.4 °C, MSAG by 0.4–3.0 °C, and MFAG by 0.6–3.7 °C during the
night, but there was no cooling effect for near surface temperature during the hottest part of the day. The night-
time cooling was driven by a reduction in storage heat. Vegetated patches partitioned more net radiation into
latent heat flux via evapotranspiration, with little to no change in sensible heat flux, but rather, a reduction in
the storage heat flux during the day. Since the UHI is driven by the release of stored heat during the night, the
reduced storage heat flux results in reductions in the UHI. The reductions of the UHI2 varied non-linearly with
the increasing vegetated fractions, with lager fractions of up to 50% resulting in substantially larger reductions.
MF and MFAG were more effective in reducing UHI2 as compared to MSAG. Vegetated patches were not effective
in improving HTC during the day, but a substantial improvement of HTC was obtained between the evening and
early morning particularly at 2100 local time, when the thermal stress changes from strong to moderate.
Although limited to a single heatwave event and city, this study highlights the maximum potential benefits of
using vegetated patches in mitigating the UHI during heatwaves and the overall principles are applicable
elsewhere.

1. Introduction

Urbanization results in increased runoff and decreased infiltration
of water due to impervious surfaces. The higher thermal conductivity of
construction materials in urban areas increases the absorption of solar
radiation and reduced vegetation cover limits evapotranspiration.
These changes in the surface energy balance can have impacts on near-
surface air temperature, humidity, winds and atmospheric convection

(Liu et al., 2018; Morris et al., 2017). A well-documented impact of
urbanization is the Urban Heat Island (UHI), defined as higher tem-
peratures in city areas as compared to surrounding rural areas (Howard,
1833). In addition, the intensity of the UHI is amplified during heat-
waves (Li et al., 2015; Zhao et al., 2018). From a meteorological con-
text, a heatwave is usually defined as very unusual hot conditions for at
least three consecutive days, during which the mean of minimum and
maximum temperatures exceeds the climatological 95th percentile
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(Nairn and Fawcett, 2013). The combination of UHI and heatwaves can
severely affect urban meteorology, environment, energy demand and
human health (Liu et al., 2018).

The higher temperatures in urban areas increases energy demand
for cooling systems and water demand for urban landscape irrigation
(Yu and Hien, 2006). The increased energy demand can also cause
higher ambient temperatures via the use of air conditioners for building
cooling systems (Ohashi et al., 2007). The UHI and heatwaves further
amplify heat-related diseases and mortality (Mirzaei and Haghighat,
2010; Nicholls et al., 2008). For example, between 35,000 and 50,000
people are estimated to have died in Europe because of heat-related
diseases during heatwaves in 2003 (Harlan et al., 2006). This threat is
also important in Australia, with 374 and 167 additional human deaths
during heatwaves in the state of Victoria in southeast Australia in 2009
and 2004 respectively (Victorian Auditor General's Report, 2014). The
threats imposed by the UHI and heatwaves are very important in
southeast Australia because of its hot summer, and these threats are
likely to get worse in the future with projections that the intensity,
frequency and duration of heatwaves in Australia will increase (Cowan
et al., 2014).

The city of Melbourne, the capital of Victorian state of Australia, has
been facing frequent heatwaves for the last two decades (Perkins-
Kirkpatrick et al., 2016). For example, maximum temperatures of up to
45.1 °C and 43.9 °C were recorded in January 2009 and 2014 respec-
tively (Victorian Auditor General's Report, 2014). In addition, the rate
of urbanization is increasing rapidly to accommodate the increasing
population. It is estimated that the population of the city of Melbourne
will increase by 1.5–3.5 million by 2056 (Australian Bureau of
Statistics, 2008). Hence, urban expansion will continue to meet the
residential demands for the increasing population. Recently, the Vic-
torian government released “Plan Melbourne 2050”, a policy document
which provides projections of future urbanization and recent studies
have shown that this future urban expansion could increase the noc-
turnal near-surface UHI by 0.75–2.80 °C over the expanded urban areas
during heatwaves in the city of Melbourne (Imran et al., 2018c).
Therefore, impacts of the UHI, especially during heatwave events, must
be minimized to make the city more resilient and livable.

A number of studies, including observational, modelling, or both,
focusing on the micro to the meso-scale, have investigated the effec-
tiveness of using different mitigation strategies to reduce the UHI in
various cities. These strategies include increasing urban vegetation
(Bowler et al., 2010; Coutts et al., 2016; Fallmann et al., 2013; Oliveira
et al., 2011; Rizwan et al., 2008); use of water bodies (Hathway and
Sharples, 2012; Theeuwes et al., 2013; Žuvela-Aloise et al., 2016) and
changing the size and geometry of urban infrastructures (Ali-Toudert
and Mayer, 2007; Middel et al., 2014). Adding more urban trees, parks,
gardens, wetlands, and green roofs within urban areas, is generally
referred to as the implementation of Green Infrastructure. The GI
strategy is generally regarded as a sustainable strategy in mitigating
UHI effects due to their multiple functionality and benefits for the
urban environment such as increasing biodiversity and improving air
quality in urban areas (Akbari et al., 2001). Initially, GI was defined as
floodways, wetlands and parks, which provide water infiltration and
flood control facilities (McMahon and Benedict, 2000). More recently,
the definition has been expanded to include a variety of environmental
and sustainability goals through a network of natural and planted ve-
getation such as street trees, parklands, rain gardens, community gar-
dens, wetlands, green and cool roofs, and green walls (Foster et al.,
2011). However, there is limited information about the potential of GI
in mitigating UHI effects particularly during heatwaves when different
GI scenarios are applied at the city scale. In addition, there is a pressing
need to examine to what extent these mitigation strategies should be
implemented to obtain substantial cooling benefits to mitigate UHI ef-
fects during heatwaves.

Increasing the areas of green spaces in urban areas can be an ef-
fective strategy to mitigate UHI effects by modifying the surface energy

balance of the city by reducing storage heat in urban surfaces (Jacobs
et al., 2018) and increasing evapotranspiration (Loughner et al., 2012).
These two mechanisms play a key role in reducing UHI effects. Urban
surfaces have higher thermal conductivity than vegetated surfaces, and
store more heat during the day, which is later released at night. Hence,
by decreasing the surface area of urban surfaces, and increasing the
area of vegetated surfaces, storage heat is reduced during the day,
leading to cooling at night. Another effect of vegetation on urban sur-
faces is direct shading by vegetation on urban surfaces, which also re-
sults in lower storage heat, and consequently, night-time cooling. Ad-
ditionally, vegetated surfaces transform more of the net radiation to
latent heat, rather than sensible heat, due to the evapotranspiration
processes, and consequently, reduce urban temperatures. The size of
green areas and their spacing play an important role in obtaining the
optimum cooling benefit for the surrounding environment. Honjo and
Takakura (1990) investigated the spatial extent of cooling effects of
green areas based on their size. They reported that cooling effect ex-
tended to almost 300m and 400m, when the sizes of green areas were
100m2 and 400m2 respectively. Shashua-Bar and Hoffman (2000) used
an empirical model to investigate the cooling effect of wooded sites
using a combination of trees and urban green areas. They showed that
the partially shaded areas by the tree canopy was the main driving
factor for controlling air temperature within green areas, while tree
characteristics and geometry played a limited role.

Urban vegetation also plays significant role in improving human
thermal comfort within cities (Coutts et al., 2016; Shashua-Bar et al.,
2010). Coutts et al. (2016) investigated the effects of street trees in
reducing air temperature and improving Human Thermal Comfort
(HTC) within individual streets at the micro-scale in the city of Mel-
bourne in southeast Australia, and showed that urban trees are effective
in reducing daytime Universal Thermal Climate Index (UTCI) during
summer, whereby the thermal stress is reduced from very strong
(UTCI> 38 °C) to strong (UTCI 32 °C). Furthermore, Jacobs et al.
(2018) investigated the effectiveness of increasing urban vegetation,
cool roofs and a combination of both strategies in reducing UHI effects
and human thermal stress in the city of Melbourne using the Princeton
Urban Canopy model (Wang et al., 2013) coupled with the WRF model.
In their study, the percentage of urban grass was increased to evaluate
the effectiveness of urban vegetation in reducing UHI intensity. Jacobs
et al. (2018) report that urban vegetation is effective in mitigating UHI
effects during the night due to lower ground/storage heat flux, with
minimal cooling during the day, while cool roofs are more effective
during the day but the combination of urban vegetation and cool roofs
provides the maximum cooling benefit. Green and cool roofs have also
been shown to reduce the UHI and improve the HTC particularly during
the day, in the city of Melbourne during heatwaves (Imran et al.,
2018a). Although all these studies provide highly valuable information
on the effectiveness of different UHI mitigation strategies, the effects of
implementing different GI components such as mixed forest, shrublands
and grasslands, and their combined effects in reducing UHI effects and
improving HTC for the city of Melbourne during heatwave events need
further investigation. In addition, given the impacts of future urban
expansion in Melbourne on the UHI (Imran et al., 2018c), there is a
need to investigate the effectiveness of different GI components in re-
ducing UHI impacts during heatwaves under future urban expansion
scenarios. By implementing different types of urban vegetation/GI
components, this study further builds on Imran et al. (2018c) by ex-
amining the effectiveness of different areas of vegetated patches within
urban grid cells in reducing UHI effects due to urban expansion. The
aim of this study is to evaluate the effectiveness of different types of
urban vegetated patches, such as mixed forest, mixed forest with
grasslands and mixed shrublands with grasslands in mitigating UHI
effects and improving HTC at a city scale (meso-scale) during one of the
most severe heatwave events, using the latest future urban expansion
scenario for the city, as per the “Plan Melbourne 2050” urban expansion
strategy. Simulations are carried out by increasing fractions of
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vegetated patches within urban grid cells to investigate the maximum
possible cooling benefits that can be obtained.

2. Methodology

2.1. Model configuration

Numerical weather and climate models are effective and commonly
used in urban meteorology studies. One of the most widely used models
is the Weather Research and Forecasting (WRF) model, which has been
used in numerous urban meteorology studies (Li et al., 2014, 2015;
Imran et al., 2018a; Jacobs et al., 2017, 2018; Liu et al., 2018; Morris
et al., 2017; Sharma et al., 2016). This study uses the Weather Research
and Forecasting (WRFv3.8.1) model with the Advanced Research WRF
(ARW) dynamics solver (Skamarock et al., 2008).

The WRF model was operated using three nested domains (d01, d02
and d03) at 18, 6 and 2 km horizontal resolution respectively, as illu-
strated in Fig. 1a. The largest domain (d01) includes a larger part of
southeast Australia and the second domain (d02) covers major part of
Victorian State. The innermost domain covers the Melbourne me-
tropolitan and surrounding rural areas. The dominant land use cate-
gories for each grid cell are derived from the 24-USGS land use clas-
sification. Furthermore, the urban grid cells were modified based on the
Plan Melbourne 2050 urban expansion strategy (more details about
plan Melbourne at http://www.planmelbourne.vic.gov.au/the-plan).
Such re-classification of urban land use represents the future urban
expansion for the city of Melbourne. Following Imran et al. (2018c)
who investigated the impacts of future urbanization on the UHI during
heatwaves in Melbourne, all urban expansion was set to high-density
urban. This is also consistent with other studies, which have in-
vestigated the impacts of future urban expansion for other Australian
cities (e.g., Argüeso et al., 2014). The dominant land use classification
for the innermost domain are shown in Fig. 1b. 38 vertical levels were
used (model top at 50 hPa), spaced closer together near the surface, and
wider apart in the upper atmosphere. Initial and boundary conditions
were from 6-hourly ERA-interim reanalysis, which has a spatial re-
solution of 0.75×0.75° (Dee et al., 2011).

The WRF model offers a number of physics options for each physical
parameterization including the Land Surface Model (LSM), Planetary
Boundary Layer (PBL), cumulus parameterization, short and longwave
radiation (SW and LW) and microphysics (MP), and the model is known

to be sensitive to selection of different physics options (e.g., Evans et al.,
2012; Imran et al., 2018b; Kala et al., 2015a). This study uses the
physics options suggested by Imran et al. (2018b), who conducted an
extensive sensitivity analyses of the different physical parameteriza-
tions of the WRF model in simulating the UHI during heatwaves for the
city of Melbourne, including the heatwave event in this study. By
evaluating an ensemble of WRF simulations against station, gridded and
sounding observations, Imran et al. (2018b) provide an ideal WRF set-
up for simulating the UHI during heatwaves. This set-up has been used
and further evaluated by Imran et al. (2018a), who investigated the
effectiveness of green and cool roofs as UHI mitigation strategies during
heatwaves in Melbourne. Hence this study uses the same set-up, which
includes: unified Noah LSM (Chen and Dudhia, 2001), the Thompson
MP scheme (Thompson et al., 2008), the Mellor-Yamada-Janjic PBL
scheme (Janjic, 1994), the RRTMG SW and LW schemes (Iacono et al.,
2008), the Monin-Obukhov similarity scheme for the surface-layer and
the Grell–Devenyi scheme (Grell and Dévényi, 2002) scheme for cu-
mulus convective parameterization. The cumulus scheme is only used
for the two outermost domains d01 (18 km) and d02 (6 km) as the in-
nermost domain, d03 (2 km) is at a sufficiently high resolution to re-
solve convection.

Additionally, WRF was operated with the unified Noah LSM coupled
with the Single Layer Urban Canopy Model (SLUCM) (Chen and
Dudhia, 2001; Chen et al., 2011; Liu et al., 2006) with the mosaic op-
tion. The SLUCM calculates fluxes for the urban surfaces within a grid
cell, and incorporates parameterization of physical processes involved
in the exchange of heat, momentum and water vapor in the urban en-
vironment by considering shadowing effects from buildings, reflection
of shortwave and longwave radiation, wind profile in the canopy layer
and a multilayer heat transfer equation for roofs, walls, and road sur-
faces (Kusaka and Kimura, 2004; Kusaka et al., 2001). On the other
hand, the Noah LSM calculates fluxes for the vegetated portion of the
grid cell. Thus, the coupled Noah-LSM and the SLUCM complete the
urban surface energy balance by calculating fluxes from both the ve-
getated portion and built/impervious portion of urban areas. However,
an important limitation of WRF-SLUCM is that the model does not re-
solve direct interactions between vegetation and urban surfaces, such as
the shading effects of vegetation on buildings facades and roads,
whereas more sophisticated urban canopy models resolve such effects
(e.g., Lee and Park, 2008; Lemonsu et al., 2012; Krayenhoff et al., 2013;
Redon et al., 2017). Since the aim of this paper is to investigate the

Fig. 1. (a) WRF domain configuration, where d02 and d03 represent second and innermost domains with resolution 6 km and 2 km, respectively, (b) Dominant land
use classification in the innermost domain (d03) incorporating future urban expansion according to Plan Melbourne 2050.
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effects of relatively large portions of urban grid cells being completely
converted to vegetation, rather than the implementation of vegetation
within individual urban canyons, direct shading of urban surfaces by
vegetation is not the key mechanism, and hence this limitation is rea-
sonable given the aims. We note that we do not show any model eva-
luation in this paper since extensive model evaluation against ob-
servations for the same heatwave event, using the same WRF version
and configuration has already been carried by Imran et al. (2018b), and
additional model evaluation is also provided in Imran et al. (2018a).
Both studies showed that WRF was able to simulate the UHI and
heatwave conditions well.

The Noah LSM in WRF can be operated by using either dominant
land-use types or a mosaic approach. When using dominant land-use
types, the whole grid cell represents only one land use category. On the
other hand, when mosaic approach is used, a grid cell can be subdivided
into multiples tiles, to represent different land use categories within a
single grid cell. This method is ideal to investigate the effects of con-
verting relatively large portions of urban grid cells to vegetation.
Moreover, recent studies by Sharma et al. (2017) have showed that use
of the mosaic approach in WRF to represent sub-grid scale variations in
land use improved simulation of the UHI for the city of Chicago in the
USA. The mosaic approach allows a user to introduce different land use
types into individual grid cells. To investigate the effectiveness of dif-
ferent vegetated patches in mitigating UHI effects, the mosaic approach
was used, with two tiles per grid cell for MF and MSAG and three tiles
per grid cell for MFAG (more details in section 2.2). When the mosaic
approach is used, the SLUCM is used only for the urban tile instead of
the whole grid cell, and the Noah LSM is used for the vegetated portion.

2.2. Numerical experiments

Following our recent work which examined the effectiveness of
green and cool roofs in mitigating UHI effects in Melbourne during a
heatwave event (Imran et al., 2018a), we focus on one of the most
severe heatwave events, which occurred from the 27th to 30th January
2009. All simulations were conducted for four days and the first 24 h
were considered as spin-up time, following our previous study (Imran
et al., 2018a). This heatwave event occurred after a long of period of
drought (Nicholls and Larsen, 2011), and antecedent soil moisture
conditions played an important role (Kala et al., 2015b). To examine
the effectiveness of different types of GI scenarios, a portion of each
urban grid cell is replaced with different types of vegetated patches,
namely, MF, MSAG and MFAG by using the Mosaic option. MF is a
combination of different trees such as evergreen broadleaf/needleleaf
trees and deciduous broadleaf/needleleaf trees. The city of Melbourne's
urban forest strategy is that urban forest will be no more than 5% of any
tree species, no more than 10% of any genus and no more than 20% of
any one family (Melbourne (Vic.) Council, 2011). Therefore, this study
uses the mixed type of vegetation, which includes mixed forest,
shrublands and grasslands. To evaluate the potential city-scale effects of
the proposed vegetated patches, comparisons are made between the
control run (includes both current urban land use and future urban
expansion) and experiments (includes different vegetated patches im-
plemented into all urban grid cells). For all simulations, the urban and
built areas are modified following Imran et al. (2018c) based on the
Plan Melbourne 2050 urban expansion strategy and increasing fractions
of each vegetated patch (Table 1) are incorporated into all urban grid
cells (includes current urban and 2050 urban expansion). All these si-
mulations were carried out by increasing the land-use fraction within
all urban grid cells by 20%, 30%, 40% and 50%, as summarized in
Table 1, and Table 2 summarizes key properties of the different plant
functional types. It should be noted that urban surfaces in the SLUCM
are assigned an urban fraction (Chen et al., 2011), e.g., 0.9 for high
density urban as used in this study. The rest is assumed to be grass, and
the minimum and maximum LAI for the urban category in Table 2 re-
fers to the 0.1 grass fraction. The shade factors in Table 2 refer to direct

shading on the ground by the different vegetation types or urban grid
cells. It is important to note that these shade factors do not represent
shading of vegetation on urban surfaces and vice-versa as this is not
resolved by the model.

2.3. Pedestrian level HTC calculation

Following Imran et al. (2018a) and Imran et al. (2018c), this study
uses the Universal Thermal Comfort Index (UTCI) index in quantifying
the pedestrian level (2 m) HTC, via the UTCI index. The UTCI index is
used to assess how different vegetated patches improve the HTC in the
city of Melbourne. The UTCI index calculates a physiological response
based on meteorological and several human thermal parameters and
represents human bioclimatic conditions and their relevance to human
thermal stress. The UTCI index is used in representing human thermal
stress under various climatic conditions (Blazejczyk et al., 2012; Vatani
et al., 2016), which makes this index widely used. Temperature, re-
lative humidity and solar radiation simulated by the WRF model were
used as meteorological input and a default clothing factor of 0.90 and
activity rate of 80W for a male of 35 years are used as human thermal
parameters. All these variables were used as input to the bioclimatic
model RayMan Pro 3.1 (Matzarakis et al., 2007, 2010) to calculate the
UTCI index. The HTC is classified as five categories based on the ranges
of the UTCI index (Bröde et al., 2012) as shown in Table 3.

3. Results

3.1. Diurnal variations of the UHI

Before investigating the effects of different vegetated patches on the
UHI, it is useful to first analyze the diurnal variation of the UHI from
the control simulation to first understand its temporal evolution.
Additionally, since the Plan Melbourne policy aims to increase vege-
tation cover by 40% by 2040, we also include results from 40% increase
experiments. This is illustrated in Fig. 2, showing the hourly variation
of the near surface (2m) (UHI2) and skin surface UHI (UHIsk). The UHI2
and UHIsk are computed as the difference between urban and sur-
rounding rural areas. The effectiveness of vegetated patches relative to
urban areas in reducing the UHI2 and UHIsk is estimated as the differ-
ence of the UHI2 and UHIsk, respectively between the experiment (with
different fractions of vegetated patches within urban grid cells) and
control (only urban) (UHIveg – UHIurban). The control simulation shows
the UHI2 ranges from 1.0 to 5.9 °C and UHIsk ranges from 2.0 to 11.0 °C.
The UHI2 and UHIsk reach their peaks at 1900 and 2000 local time,
respectively. The intensity of UHIsk is higher than the UHI2 especially
between the evening and early morning. The intensity of UHIsk is lower
during the day as compared to the night, since the urban surfaces emit
less heat during the day due to higher thermal conductivity of con-
struction materials. On the other hand, urban surfaces re-radiate stored
heat and result in higher skin-surface temperatures during the night.
Vegetated patches reduce the UHI2 and UHIsk from evening to morning
and no cooling effect is obtained during the day while the maximum
UHI2 and UHIsk occurred at 1900 and 2000 local time, respectively.

3.2. Reductions of the UHI by different % of vegetated patches

Having examined the diurnal variation of the UHI2 and UHIsk from
the control simulation and 40% experiments, we now examine the
changes in the UHI2 and UHIsk with different percentages of vegetated
patches within urban grid cells. This is illustrated in Fig. 3 showing the
city-scale impacts of vegetated patches on the UHI2 and UHIsk averaged
over three diurnal cycles from 28 to 30 January 2009 by using their
fractions 20%, 30%, 40% and 50% (Table 1). The changes in UHI2 and
UHIsk are calculated as the differences between the experiments and the
control.

Fig. 3 Shows that MF was effective in reducing the UHI2 and UHIsk
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from the night to morning (Fig. 3a–b). The UHI2 shows smaller changes
(< 0.5 °C) as compared to UHIsk. The reductions of UHI2 and UHIsk
increase with increasing fractions of MF. The UHI2 reductions range
from 0.6 to 3.4 °C during the night when the fraction of MF increases
from 20% to 50% while the reductions of UHIsk range from 0.8 to
4.2 °C. Although the UHIsk increases slightly during the day (between
1000 and 1700 local time), there is no substantial increase in the UHI2.
Both the UHI2 and UHIsk show maximum reductions at around 2100
local time. MSAG reduces the UHI2 from 0.4 to 3.0 °C, and the UHIsk
from 0.8 to 3.7 °C between the evening and early morning (Fig. 3c–d). It
is noteworthy that MSAG shows more warming at the skin surface be-
tween 1000 and 1700 local time with an increase in the UHIsk between
0.3 and 1.0 °C, but there are no substantial changes in UHI2. MFAG
shows slightly higher effectiveness in reducing UHI effects during night
as illustrated in Fig. 3e–f showing that increasing fractions of MFAG
from 20 to 50% can reduce the UHI2 by 0.6–3.7 °C, and UHIsk by
1.0–4.4 °C from evening to early morning. The maximum reduction
occurs at 2100 local time, similar to the experiments with MF and
MSAG.

Fig. 4 shows the relationship between reductions in the UHI2 and
UHIsk as a function of different vegetated fractions when the maximum
UHI2 and UHIsk reductions occurs at 2100 local time. There are non-
linear relationships between the reductions of both UHI2 and UHIsk and
increasing vegetated fractions. Much larger reductions in the UHI2 and
UHIsk occur when vegetated fractions increases more than 40%. MFAG
show the highest reductions in UHI2 and UHIsk while the MSAG show
the lowest reductions. The reductions of UHI2 and UHIsk by MF are
slightly lower as compared to MFAG.

3.3. Influence of different % of vegetated patches on the surface energy
balance

To better understand the drivers of the changes in Figs. 3 and 4, we
next examine the changes in the surface energy balance, as illustrated in
Fig. 5 showing the sensible (SH), latent (LH) and ground (G) heat fluxes
for the control and all experiments (Table 1). MF and MFAG do not
show substantial changes in SH except for 50% MF and MFAG, which
show reductions in SH between 20 and 40Wm−2 during midday as

compared to the control. Interestingly, all fractions of MSAG slightly
increase SH (by approximately 10Wm−2) during the day particularly
at midday. By increasing vegetated fractions from 20 to 50%, LH in-
creases by 20–120 for MF, 5 to 50 for MSAG and 20–130Wm−2 for
MFAG during the day. It is noteworthy that the MF and MFAG show a
higher increase in LH during the day as compared to MSAG. It is also
noteworthy that there was a larger increase of LH for 20–30%, lower
increase of LH for 30–40% and abruptly higher increase of LH for 50%
vegetated patches. Storage heat decreases by 20–80 for MF, 20 to 60 for
MSAG and 20–80Wm−2 for MFAG by increasing vegetated fractions
from 20 to 50%. It should be noted that the increase in LH is not exactly
balanced by the decrease in G and SH (e.g., for 50% MFAG). This is
because G only includes the ground heat flux and not storage heat into
building materials. All fractions of vegetated patches show a similar
diurnal cycle of storage flux. A positive sign of storage heat during the
night indicates heat fluxes flow from the surface to the atmosphere and
vice-versa for negative storage heat during the day. The daytime re-
ductions in storage heat flux are higher as compared to the nighttime
reductions as less heat is stored during the day to be released during the
night. The maximum reductions of storage heat occur at 1200 local
time. MF and MFAG show higher reductions in storage heat and higher
increases in LH as compared to MSAG. There were no substantial
changes in net shortwave radiation but smaller reductions in net
longwave radiation ranging from 5 to 15Wm−2 between late night and
early morning (not shown). In summary, vegetated patches sub-
stantially alter the surface energy balance by increasing LH and

Table 1
Design of numerical experiments for different vegetated patches.

Vegetated Patches Urban Fraction (%) Fraction of Vegetated Patch (%) Combinations

Control (Urban) 100 – Urban/Impervious areas

MF (Mixed Forest) 80 20 20% Mixed forest
70 30 30% Mixed forest
60 40 40% Mixed forest
50 50 50% Mixed forest

MSAG (Mixed Shrublands and Grasslands) 80 20 20% Mixed shrublands and grasslands
70 30 30% Mixed shrublands and grasslands
60 40 40% Mixed shrublands and grasslands
50 50 50% Mixed shrublands and grasslands

MFAG (Mixed Forest and Grasslands) 80 20 10% Mixed forest + 10% Grasslands
70 30 15% Mixed forest + 15% Grasslands
60 40 20% Mixed forest + 20% Grasslands
50 50 25% Mixed forest + 25% Grasslands

Table 2
Different properties of urban area and vegetated patches in the WRF model.

Urban/Vegetated Patches Shade Factor Minimum LAI Maximum LAI Minimum Albedo Maximum Albedo

Urban 0.10 1.00 1.00 0.15 0.15
Mixed Forest (MF) 0.80 2.80 5.50 0.17 0.25
Mixed Shrubland/Grassland (MSAG) 0.70 0.60 2.60 0.22 0.30
Mixed Forest and Grassland (MFAG) 0.80 0.52 2.90 0.19 0.23

Table 3
Universal Thermal Comfort Index (UTCI) range for different
grades of human thermal perception and associated physio-
logical stress (Bröde et al., 2012).

UTCI (°C) Physiological Stress

+9 to +26 no thermal stress
+26 to +32 moderate heat stress
+32 to +38 strong heat stress
+38 to +46 very strong heat stress
> +46 extreme heat stress
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decreasing storage heat with relatively smaller changes in SH.
Fig. 3 showed that vegetated patches reduce the maximum UHI2 and

UHIsk at 2100 local time and this is related to reductions in storage heat
during the day. By replacing part of an urban grid cell with vegetation,
the storage heat flux is reduced, as urban surfaces have higher thermal
conductivity than vegetated surfaces. Additionally, a higher proportion
of vegetation in urban grid cells leads to partitioning of net radiation
into LH due to evapotranspiration but there were no substantial re-
ductions in SH. The reduced the storage heat in urban surfaces during
the day which is released after sunset, leads to a cooling effect by the
vegetated patches from evening to morning. On the contrary, MSAG
show a slight warming effect during midday because of the slight in-
crease in sensible flux at that time. Vegetated patches have little in-
fluence in reducing the UHI2 during the day despite the fact that there is
an increase in LH during this time. This is due to the fact that the in-
crease in latent heat flux is not accompanied by a decrease in sensible
heat flux, but rather changes in the ground heat flux. With little to no
change in sensible heat flux, there are little to no changes in tempera-
ture during the day.

3.4. Spatial changes due to different vegetated patches

Having examined changes averaged over urban grid cells, we now
examine the spatial changes across the domain. This is illustrated in
Fig. 6 showing the spatial changes (experiments minus control) in mean
T2 when maximum reductions in the UHI occur (averaged from 2100 to
0400 local time from 28 to 30 January 2009) as a function of increasing
fractions of vegetated patches. By increasing vegetated fractions from
20 to 50%, reductions in T2 range from 0.5 to 5.0 °C for MF, 0.5 and
4.5 °C for MSAG, and 0.5–5.5 °C for MFAG. It is noteworthy that al-
though the reduction ranges of mean T2 are nearly similar for MF and
MSAG, MFAG show higher reductions over larger areas. The highest
reduction in the T2 occurs in the center of the city. The non-linearity of
the reduction in temperature with increasing fractions of vegetated
patches shown earlier in Fig. 4 is further reflected in Fig. 6 showing the
much larger reductions with 50% scenarios as compared to lower
percentages.

Fig. 7 shows the changes in storage heat for increasing proportions
of different vegetated patches averaged over the same period used for
Fig. 6. The reductions in storage heat ranges from 5 to 35Wm−2 by
increasing the fractions from 20 to 50% of MF and MSAG while the
decrease in storage heat ranges from 5 to 40Wm−2 for MFAG by in-
creasing the same fractions. MFAG and MF are slightly more effective in
reducing the storage heat over larger areas as compared to MSAG.

The effects of the vegetated patches on the spatial distribution of

relative humidity (2 m) and wind speed (10m) are shown in Figs. 8 and
9 respectively, averaged over the same period used for Fig. 6. The 20%
MF, MSAG and MFAG experiments do not substantially increase the
relative humidity as there are no substantial reductions of T2 (Fig. 6).
Increasing the fractions of vegetated patches from 30 to 40%, leads to
increases in relative humidity by 2–8% for MF, MSAG and MFAG. The
50% MF, MSAG and MFAG experiments show substantial increases in
relative humidity ranging from 4 to 14% because of larger reductions in
T2 (Fig. 6). The increases in relative humidity by MF and MFAG are
higher as compared to MSAG. 50% vegetated patches lead to the
highest increase in relative humidity over the urban areas as compared
to other fractions. The increase in relative humidity is a direct result of
the changes in temperature as where were no changes in mixing ratio.
There were no substantial changes in relative humidity during the day
(from 1100 to 1400 local time, not shown), when vegetated patches
caused a slight warming effect.

Fig. 9 shows the changes in wind speed (experiments minus control)
due to implementation of different fractions of vegetated patches in the
urban areas. The wind direction from the experiments is overlaid on the
changes in wind speed, as there were no substantial changes in wind
direction due to the implementation of vegetated patches. Wind speed
ranges between 5 and 7m s−1 over urban areas for control experiment
(not shown). The reductions in wind speed range from 0.25 to
1.25m s−1 by increasing fractions of vegetated patches from 20 to 50%.

Furthermore, changes in the boundary layer structure, e.g., vertical
profiles of air temperatures, wind speed, relative humidity, vertical
wind component and turbulent kinetic energy were examined, but these
did not show substantial changes and are therefore not shown.
Vegetated patches did not substantially influence vertical mixing within
the boundary layer during the heatwave event.

3.5. Changes in human thermal comfort (HTC)

Fig. 10 shows the HTC via the UTCI index for the control simulation
(Fig. 10 (a)) and the changes in HTC for 40% (Fig. 10b) and 50%
(Fig. 10c) vegetated patches as these vegetated fractions showed the
largest changes in UHI2 and UHIsk. A lower UTCI index indicates higher
HTC and vice-versa. The results illustrate that increasing vegetated
patches in urban areas improves the HTC from evening to night in the
urban areas. MF and MFAG increase HTC by reducing the UTCI index
from 3.2 to 4.8 °C during the night by using 40–50% vegetated patches,
while MSAG reduces UTCI index from 1.7 to 2.5 °C. The maximum
improvement in HTC occurs during the evening (2100 local time),
when the maximum UHI2 and UHIsk reductions occur. No substantial
improvement of HTC is obtained during the day (between 1000 and

Fig. 2. Diurnal variations of near surface (UHI2) and skin-surface (UHIsk) UHI averaged over the urban grid cells only across domain d03 over 3 days (28–30 January
2009), for the control simulation, and 40% MF, MSAG and MFAG experiments.
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1700 local time) especially when very strong human discomfort occurs.
Therefore, vegetated patches are not able to improve HTC when
stronger heat stress occurs. In addition, MSAG slightly deteriorate the
HTC by increasing the UTCI index by 0.50 °C due to slightly higher
sensible heat flux during the day (Fig. 10b and c). MF and MFAG show
similar effectiveness in improving HTC (reducing UTCI) while MSAG
show lower effectiveness as compared to MF and MFAG.

4. Discussion

This study examined the potential of different vegetated patches in
urban areas in reducing UHI effects due to future urban expansion in
the city of Melbourne during an extreme heatwave event. Although MF,
MFAG and MSAG substantially increased latent heat flux and decreased
storage heat during the day (Fig. 5), no substantial reductions of the
UHI2 and UHIsk occurred during the day, as there was little to no
change in sensible heat flux (Fig. 3). Rather there was a slight warming
effect in the skin surface temperature between 1000 and 1700 local

Fig. 3. Hourly changes (experiment minus control) in UHI2 (left column) and UHIsk (right column) for (a) and (b) MF, (c) and (d) MSAG and (e) and (f) MFAG by
using their fractions 20%, 30%, 40% and 50%. The UHI2 and UHIsk have been averaged over urban grid cells only over 3 days from 28 to 30 January 2009.
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time which is likely due to the rapid release of terrestrial radiation and
trapping of solar heat from MSAG, MFAG and MF as compared to a
slower release from the urban surfaces as reported by Papangelis et al.
(2012), who found similar warming effects over open vegetated urban
green surfaces due to faster release of terrestrial radiation. Additionally,
the heatwave event considered in this study resulted in very hot and dry
conditions, and therefore, vegetated surfaces would like have become

warmer as compared to usual summer days during the day. The key
driver in substantial reduction of the UHI2 and UHIsk between evening
and early morning was the storage heat flux, and this result is consistent
with Jacobs et al. (2018). The higher the reductions of storage heat
(Fig. 7), the higher the reductions of the UHI2 and UHIsk (Fig. 6). The
main driver of the reduction in storage heat was the lower urban
fraction with increasing fractions of vegetated patch implementation

Fig. 4. Change in (a) UHI2 and (b) UHIsk as a function of % vegetated patches when the reductions reach their maxima (2100 local time). The UHI2 and UHIsk have
been averaged over 3 days from 28 to 30 January 2009.

Fig. 5. Surface energy balance for MF (left column), MSAG (middle column) and MFAG (right column) for all experiments including the control simulation (Table 1),
averaged over urban grid cells only in d03 (Fig. 1) over 3 days from 28 to 30 January 2009.
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(Table 1).
A number of studies report daytime cooling of the near surface air

temperature by increasing urban vegetation (e.g., Lee and Park, 2008;
Loughner et al., 2012; Coutts et al., 2016) due to shading and evapo-
transpiration, but this study found no such cooling during the day. The
urban canopy models and experiments used for those studies con-
sidered shading effects of urban vegetation over buildings, roads and
walls, which was the main driving mechanism in reducing day time
temperatures in urban areas. In this study, vegetation is implemented as
patches using the mosaic approach, i.e., entire portions of urban grid
cells are converted to vegetated surfaces, rather than the implementa-
tion of vegetation which urban canyons whereby the shading effect of
individual trees on buildings would be a key factor. The nighttime
cooling was driven by a reduction in storage heat by the urban surfaces
during the day as the higher fractions of urban areas were replaced by
vegetated surfaces (e.g., MF, MFAG and MSAG). MF and MFAG showed
higher cooling effect as compared to MSAG since MF and MFAG had a
lower storage heat. This lower storage heat is likely due to the to higher
shade factor and LAI as compared to MSAG, which would have led to

even less radiation reaching the ground surface during the day, leading
to lower storage heat. Similar findings have been reported by other
studies (Kumar and Kaushik, 2005; Lin and Lin, 2010). Several studies
have shown that leaf color (e.g., light green leaves) and LAI of plants
are the most important factors in driving the cooling effect (Kumar and
Kaushik, 2005; Lin and Lin, 2010; Rey, 1999; Tanaka and Hashimoto,
2006), with light-green leaves being more effective in reflecting solar
radiation as compared to darker-green leaves and higher LAI of plants
provides more cooling benefits via evapotranspiration. This study sug-
gests that higher LAI and shade factor (on the ground) for MF and
MFAG as compared to MSAG (Table 2) leads to higher reductions of the
UHI2 and UHIsk. Although, the cooling effect of MF, MFAG and MSAG
depend on other factors (e.g., leaf thickness, texture of trees), which are
beyond the scope of this study. There was a slight warming effect at
skin-surface level due to increasing vegetated patches particularly for
MSAG at 1200 local time because of a slight increase in sensible heat.
MSAG resulted in higher SH flux due their lower LAI and shade factor
(Table 2) as compared to MF and MFAG. Lower LAI would have allowed
more solar radiation to reach the surface, and given the very dry soil

Fig. 6. Changes in T2 (experiment minus control) by using 20%, 30%, 40% and 50% vegetated patches averaged from 2100 to 0400 (when maximum UHI2 reduction
occurs) local time over 3 days from 28 to 31 January 2009.
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conditions during the heatwave, more solar radiation reaching the
surface would have enhanced SH, and consequently led to a slight
warming effect on skin surface temperature. Furthermore, increased
vegetation patches showed minimal cooling effect for near surface
temperature during the hottest part of the day similar to Jacobs et al.
(2018).

Although previous studies showed that the cooling effect of parks
extended to surrounding built-up areas (Papangelis et al., 2012; Yu and
Hien, 2006) due to cooler air advection over the parks and downwind
into the urban areas (Papangelis et al., 2012), this study did not show
noticeable cooling effects beyond urban areas when different types of
vegetated patches were used (Fig. 6). The reason was likely due to very
dry air flowing from heated interior during the heatwave event, which
limited cooling effects to surrounding areas. The relationship between
the UHI reductions and increased fractions of vegetated patches was
non-linear, with 50% vegetated patches resulting in much larger
cooling benefits than lower fractions. This was most likely due to the
reductions of wind speeds (Fig. 9) for 50% as compared to other ve-
getated fractions. The higher vegetated fractions led to weaker winds

particularly in the center of the city. These weaker winds would have
promoted stagnation rather than advection of the cooler air, leading to
more cooling in the city center (Fig. 6), where the reductions of wind
speeds were higher (Fig. 9). Furthermore, MF and MFAG showed higher
effectiveness in reducing UHI effects as compared to MSAG (Fig. 6)
because of lower storage heat (Fig. 7), which is likely due to the higher
shade factor and LAI (Table 2).

Earlier studies have shown that MFAG can result in reductions of air
temperature by 5 °C in the city of Washington and Baltimore, USA
(Loughner et al., 2012), and 2.5 °C due to MF in Athens, Greece
(Papangelis et al., 2012) during the night, due to lower storage heat in
the areas of MFAG and trees during the day and unobstructed and rapid
release of this stored heat during the night. Loughner et al. (2012)
showed that MFAG reduced neighborhood air temperature by 1 °C
during the day because of advection of cooler air due to sea-breeze
while Papangelis et al. (2012) reported the reduction of maximum day
time temperature by 4.1 °C for MF due to the combined effects of tree
shading and evapotranspiration, and sea-breeze. Although this study
showed cooling benefits from different vegetated patches during the

Fig. 7. Changes in storage heat (experiment minus control) for MF (upper), MSAG (middle) and MFAG (bottom) by using fractions 20%, 30%, 40% and 50%. All the
results are averaged from 2100 to 0400 local time for the 3 days (28–30 January 2009) when maximum UHI2 reductions occurred.
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night, there were no cooling effects during the day as no substantial
reductions in SH occurred during this time.

Several studies have shown that changes in wind speed and direc-
tion were another driver in influencing the variability of air tempera-
ture as these variables play important role in influencing vertical
mixing (Lin and Lin, 2010; Loughner et al., 2012; Park et al., 2012).
This study did not show substantial reductions in wind speed for 20 and
30% vegetated patches (Fig. 9). However, the moderate reductions of
wind speed (ranging from 0.50 to 1.25m s−1), particularly in the center
of the city for 40 and 50% vegetated patches, could have had an in-
fluence on cooling in the center of the city. Vegetated patches were not
effective in improving HTC during the day and the reason was most
likely due to increased relative humidity during the same time (Fig. 10).
However, HTC substantially improved during the night due to vege-
tated patches because of the reductions of storage heat (Figs. 5 and 7).

5. Conclusions

The study investigated the effectiveness of MF, MSAG and MFAG as

vegetated patches in reducing UHI effects in the city of Melbourne in
southeast Australia using the mesoscale WRF model coupled with the
SLUCM during a severe heatwave event. A future urbanization scenario
was implemented based on the Plan Melbourne 2050 urban expansion
strategy. Experiments were carried out by increasing the percentage of
vegetated patches from 20 to 50% within all urban grid cells by using
the mosaic approach in WRF. All vegetated patches led to reductions in
the UHI2 and UHIsk and thereby improved HTC from evening to early
morning. The reductions of UHI2 and UHIsk were higher when the
fractions of vegetated patches were increased, but substantially higher
when 50% was used, and the cooling effects were more intense in the
center of the city. The application of different vegetated patches sub-
stantially altered the surface energy balance by substantially reducing
storage heat and increasing latent heat flux, with the storage heat flux
being the key driver in reducing UHI effects.

MF and MFAG were more effective in reducing UHI effects as
compared to MSAG. On the other hand, MSAG resulted in slight
warming during midday because of increased sensible heat flux due to
lower LAI and shade factor. The effectiveness of different vegetated

Fig. 8. Changes in relative humidity (experiment minus control) for MF (upper), MSAG (middle) and MFAG (bottom) by using fractions 20%, 30%, 40% and 50%. All
the results are averaged from 2100 to 0400 local time for the 3 days (28–30 January 2009) when maximum UHI2 reductions occurred.
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patches in reducing UHI effects was not substantial during the day as
there were no changes in sensible heat flux. In addition, considerable
reductions in wind speed were obtained for only 40 and 50% vegetated
patches especially in the center of the city, and therefore, the cooling
effects due to implementing vegetated patches stagnate in the center of
the city. In addition, vegetated patches also improved HTC particularly
during the night when substantial reductions of UHI occurred. Based on
overall results, the findings of this study suggests that the urban
greening strategy, released by the city of Melbourne to increase urban
vegetation cover from 22 to 40% by 2040, could help to achieve a more
thermally comfortable, sustainable and livable urban environment.

Finally, this study has some limitations that need to be discussed.
Direct interactions between vegetation and urban surfaces are not ac-
counted for in our model. In reality, shading effects of vegetation at the
edges of vegetated patches on urban surfaces would likely result in even
lower storage heat flux. Hence, the cooling effects reported in this study
are likely to be under-estimated. The study quantified the effectiveness
of different vegetated patches in mitigating UHI effects including future
urban scenarios but without considering future warming which would
be expected by 2050. Reductions in the UHI via vegetated patches could

be lower if there is substantial future warming. This study also assumed
that vegetated patches are implemented within all urban grid cells ra-
ther than only within the future projected urban expansion area. It is
unlikely that up to 40–50% vegetated patches can be practically im-
plemented across the entire city. Hence, this study only provides esti-
mates of the maximum possible benefits, rather than practical benefits
considering the challenges of implementing vegetated patches at such
large scales. It should also be noted that this study does not include
anthropogenic heat emissions during the simulations, such as heat from
air conditioning units.
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