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Abstract

When a general equilibrium model is solved, there are often a large number of exogenous shocks. The
change in each endogenous variable obviously depends on these different shocks.

We point out a natural way of decomposing the changes (or percentage changes) in the endogenous
variables as sums of the contributions made by the change in each exogenous variable. The change in
any endogenous variable is exactly equal to the sum of the contributions to this change attributed to
each of the exogenous variables.

The contribution of a group of exogenous variables to the change (or percentage change) in any
endogenous variable is defined to be the sum of the contributions of the individual exogenous
variables in the group. If all the exogenous variables are partitioned into several groups that are
mutually exclusive and exhaustive, the change (or percentage change) in any endogenous variable is
just the sum of the contributions made by these groups.

We introduce, and motivate, these decompositions in the context of a published GTAP
application in which 10 regions remove import tariffs and non-tariff barriers to imports. We use the
methods given in this paper to report numerical values for the contributions to the welfare gains of
various regions due to tariff reductions by particular regions or groups of regions in this simulation.
We show how the values obtained via the decomposition are related to the estimates in the
published study of the contributions to welfare gain due to certain groups of tariff reductions.

We describe a practical procedure for calculating the contributions of individual exogenous
variables or groups of exogenous variables to the changes (or the percentage changes) in all of the
endogenous variables. This procedure, which applies to a wide range of general equilibrium models,
is now automated in GEMPACK in a version that will be made publicly available in the future.

The contributions that make up the decomposition are defined as integrals. As such, they depend
on the path by which the exogenous values move from their pre-simulation to post-simulation
values. We propose one natural path, namely a straight line between these two points. Along this
path, the ordinary rate of change is constant for each variable.

JEL classification: C63, C68
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DECOMPOSING SIMULATION RESULTS WITH RESPECT
TO EXOGENOUS SHOCKS

W.Jill HARRISON, J.Mark HORRIDGE and K.R. PEARSON

1. Introduction

Policy simulations using computable general equilibrium (CGE) models often involve a multiplicity
of shocks. It is frequently of interest to partition the total effect of a package of shocks between
individual shocks or groups of shocks. For example we might ask, how much of the welfare change
that North America derives from a multilateral trade liberalization is due to trade liberalization by
Japan? If the shocks are partitioned into several groups, and if the contributions attributed to these
groups add exactly to the overall simulation result, we call this a decomposition of the simulation
results. Analysts have used various methods to calculate decompositions; in certain cases, as we
shall see, the different methods yield quite different numerical results. We present yet another
method of decomposing total endogenous changes into the effects of individual shocks. We argue
that our method has a natural interpretation, yields sensible values, and is in addition rather cheap
and easy to compute.

We begin, in section 2, by applying our proposed decomposition method to a GTAP simulation
from the literature. We compare our results to those yielded by other decomposition approaches.

Sections 3 and 4 are devoted to the mathematical details of our decomposition. In section 3 we
explain our method under the simplifying (but rarely true) assumption that endogenous variables are
explicit functions of exogenous variables.

We delay until section 4 the general case, where we explain how the decomposition introduced in
sections 2 and 3 can be calculated for models expressed as a simultaneous system of implicit
(nonlinear) equations. Section 4 includes a brief discussion of the GEMPACK implementation of
this decomposition.

In section 5 we describe briefly how this decomposition extends over a sequence of simulations,
where each simulation begins from the post-simulation data arising from the previous simulation
(such as in a year-to-year forecast).

We are not sure if this decomposition is a new result. If any reader knows of an existing
derivation, we will be most grateful to hear of it.

We are grateful to Peter Dixon for encouraging us to try to find a decomposition with respect to
exogenous variables.

2. Reducing Import Barriers: Who Gains from What?

In this section we revisit the simulations reported by Linda Young and Karen Huff in Chapter 9 of
the book Global Trade Analysis: Modeling and Applications (Hertel ed., 1997). We have chosen this
particular application because:

(a) we can build on the careful analysis of Young and Huff;
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(b) he chapter illustrates the strengths and limitations of a traditional method of decomposing
simulation results;

(c) the GTAP project has widely distributed the computer files needed to replicate the experiment;
and

(d) in these simulations the GTAP model exhibits some rather non-linear behaviour — this increases

the contrast between results derived from alternative decomposition methods.

The Young-Huff chapter, entitled Free trade in the Pacific Rim: On what basis?, examines the
effect of eliminating import barriers both within members of the APEC (Asia Pacific Economic
Cooperation) group and between the APEC group and the rest of the world (ROW). Two important
features of the simulations are (i) that they start from a synthetic database that incorporates the
effects of NAFTA, and (ii) that they show only the effects of eliminating import restrictions —
export subsidies and taxes are not altered.

The simulations show the effects of three packages of shocks:
1. Removal of import barriers between the 9 APEC regions (81 shocks).
2. Removal of barriers on imports to APEC from the ROW (9 shocks).

3. Removal of barriers on imports to the ROW from APEC (9 shocks).

Some of the results are summarized in the following table':

Table 1: Effects of trade liberalization on welfare ($US million)

A B C D E

Preferential: MFN: ROW MEFN: with

effect of [1] effect of [2] does not effect of [3] ROW
reciprocate reciprocating

effect of shock: [1] [2]1] [12] [3]112] [123]
North America -6611 -10108 -16720 14467 -2252
Japan 72289 -14489 57800 37494 95294
Australia & New Zealand -202 -929 -1131 1871 740
China & Hong Kong 5940 -3147 2792 4633 7426
Taiwan 5091 -1726 3366 3143 6508
South Korea 8471 -1555 6916 4203 11119
Malaysia & Singapore 2147 -1246 901 1947 2848
Thailand & Philippines -4509 125 -4384 2858 -1526
Indonesia -202 -978 -1180 1751 571
ROW -31631 49241 17610 -64698 -47088

Columns A, C and E show results from 3 central experiments, namely:

' Compare this with Table 9.6 of the Young-Huff chapter. The numbers differ slightly because we have computed the
results more accurately: the same data, model, and shocks were used. Column D is our own addition.
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Decomposing Simulation Results with respect to Exogenous Shocks

A: Preferential incorporating shock package 1 above, labelled [1].
C: MFN: ROW does not reciprocate incorporating shock packages 1 and 2 above, labelled [12].
E: MFN: with ROW reciprocating incorporating all 3 shock packages above, labelled [123].

In the spirit of our question from the Introduction, it is natural to ask how much of the total
benefit that North America derives in column E of Table 1 is due to each of shock packages [1], [2]
and [3]?

Columns A, B and D supply one set of answers to these questions. Column A shows the effect of
applying shock package [1] to the initial equilibrium. Column B shows the effect of applying shock
package [2] to an equilibrium that has already absorbed the effects of [1]; it is labelled [2|1] (2 given
1). Similarly column D shows the effect of applying shock package [3] after both [1] and [2]; it is
labelled [3|12] (3 given 1 and 2).

Columns A (effect of [1]), B (effect of [2]) and D (effect of [3]) exactly sum to the total results in
column E. In short, A, B and D are a meaningful decomposition of E.

Table 2: Different estimates of the contribution of the 3 shock packages to North
American welfare change ($US million)

Method Effect of [1] Effect of [2] Effect of [3] Total
1 order 123 -6611 -10108 14467 -2252
2 order 132 -6611 -13577 17936 -2252
3 order 213 -2725 -13994 14467 -2252
4 order 231 2762 -13994 8980 -2252
5 order 312 -1809 -13577 13134 -2252
6 order 321 2762 -18148 13134 -2252
7 average -2039 -13900 13686 -2252
8 new way -973 -14887 13608 -2252

In Table 1, the decomposition of the total effect into columns A, B and D depends on our
applying shock packages [1], [2] and [3] in that order. We might ask, how sensitive are our
estimates of the contributions to the order in which shocks are applied? That question is addressed
by the first 6 rows of Table 2, which show some alternative methods of decomposing the North
American welfare change. Row 1 shows the effect of applying the shocks in the order 123, and is
thus the same as columns A, B and D in the North America row of Table 1. Since there are 6 (=3!)
way of ordering 3 shocks, the next five rows show how the same three contributions could be
computed® using different shock orderings. The variation between the first six rows shows that
these sequential estimates of the contributions of the 3 shock packages are rather sensitive to the

* Simulations [1], [12], and [123] all began from the same starting point. To compute column B of Table 1, [2|1], we
apply shocks [2] to the post-simulation database produced by simulation [1]. Another way to compute the same result
would simply be to take the difference between columns A and C, that is, [2|1] = [12]-[1]. Similarly, we could also
compute column D, [3]12], as the difference between columns C and E ([3|12] = [123]-[12]).

* Although for n shocks there are n! decompositions corresponding to different shock orders, there are only 2°(n-1) ways
to calculate each particular contribution. Thus some numbers appear twice in rows 1 to 6 of Table 2.

3
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order in which shocks are applied. The variation arises because the effects of each shock depend to
some degree on the database to which it is applied — and this in turn is affected by previously
applied shocks.

Similarly, because the model is nonlinear, the obvious strategy of individually applying each of
packages [1], [2] and [3] to the original database yields estimates of contributions that are not a
decomposition of the welfare results since they do not add up to the total effect in column E.*

Sensitivity of contribution estimates to shock ordering could be a problem if similar techniques
were used to decompose the effects of other simulations, in which shocks could not be ordered in an
obvious or natural way”’.

If the shocks were divided into N groups, there would be N! ways of decomposing the total result.
In Table 2, N=3, giving rise to rows 1 to 6. For larger N, we could not compute or compare so many
combinations.

The large number of possible shock orderings, combined with the potential sensitivity of
decomposition results to the order used to calculate contributions, are disadvantages of the
sequential method of result decomposition. An order-independent way of calculating contributions
seems desirable.

Returning to Table 2, row 7 shows the average of the preceding 6, while row 8 shows a
decomposition computed by our proposed new method, which we will now explain.

2.1. Preview of the New Method

Suppose that one endogenous variable Z can be expressed as a function F of n exogenous variables
Xy, Xy, ..., X, via the equation

Z=FX,,..., X,)
Suppose that the vector of exogenous variables X = (Xj,..., X,,) moves along some path
beginning at X 0= (X105:--s Xn0)
and ending at X 1= X1y ooy Xpp) = (XotAX ..., XpotAX,).

Now suppose that we divided all the shocks into 100 equal instalments. The effect of applying
the first instalment (ie, one hundredth part of all the shocks) could be accurately approximated as:

dZ = F,dX;, + F,dX, ... +F,dX, where F;=0F/0X; and dX;=AX;/100

Provided the dX; were small enough the approximation would be exact, and the terms on the right
hand would unambiguously distribute the total change dZ between the n exogenous variables®.

! Moving along the diagonal of Table 2 we see that the effects on North America of applying packages [1], [2] and [3] to
the original database are respectively -6611, -13994, and 13134. These sum to -7471, not -2252.

> In the Young and Huff chapter, the order [1]-[2]-[3] arose naturally from their discussion of the political and economic
background of trade issues. It seemed unlikely, for example, that ROW would admit APEC imports, if APEC did not
first admit ROW imports. In the general case, such a natural ordering may not be apparent.

4



Decomposing Simulation Results with respect to Exogenous Shocks

We could go on to apply the other 99 instalments in just the same way (the F; , which depend on
X and Z, would change as we progressed), and by adding up the contributions obtained at each step,
obtain the final contribution, AZ; ,of each shock AX; to the total change AZ, along this path.

Row 8 of Table 2 was computed in essentially this way’.

We can visualize exogenous space as an n-dimensional cube with the starting point X , at one
vertex and the ending point X | at the diagonally opposite vertex. Under the method just described,
the exogenous variables move together towards their final value along a straight line (through the
interior of the cube) between these diagonally opposite vertices (since dX; = AX;/100 in each
instalment). By contrast, rows 1 to 6 of Table 2 could be computed by adding over different paths
in which only one group of variables at a time was changing. These paths also lead from vertex X
to X, diagonally opposite, travelling only along the edges.

Since the straight line path is an average of all possible edgewise routes, it would be natural to
suppose that each of our straight line estimates, AZ; , might lie in the middle of the range of the
corresponding estimates derived from the various edgewise routes. This would seem particularly
likely if the partial derivatives F; = 0F/0X; were monotonic functions of the X; over the relevant
range. And indeed we do see that each value in row 8 of Table 2 lies within the range of rows 1 to 6
in the same column.

Some support for this intuition comes from the special case where the function F is quadratic, that
is,
Z=F(Xpos Xo) = 2ot 2ot BiXiX;
Then it turns out that our estimate of AZ; (the part of AZ due to AX;), which we compute as an
integral, is just equal to the arithmetic mean of the various estimates of AZ; which might be obtained
by shocking one variable at a time®. This mean is shown in row 7 of Table 2. If welfare in the GTAP

model were a quadratic function of import tariffs, we should expect rows 7 and 8 of Table 2 to be
identical.

Table 3, which is computed using our new method, is the analogue of Table 1. Columns [1], [2]
and [3] show the contributions of shock groups [1], [2] and [3] towards the total change in each
region's welfare: their sum is the same as column E of Table 1. Unlike Table 1, Table 3 does not
require us to impose any particular order of application for shocks.

Table 4 is a more ambitious application of our new method. This time, each country's welfare
change is decomposed into the parts due to the lifting of restrictions on imports to each to the 10
regions. This enables us to answer the question posed at the beginning of the Introduction: actions’

by Japan contributed 12995 to towards North America's total welfare change of -2252.

6 Luckily, the values for F; , which our decomposition requires, arise as a by-product of the normal GEMPACK
solution algorithm (see section 4.2 for details).

” The adding of the 100 instalments is replaced by an integral (which is the precise way of adding infinitely small
instalments), as explained in section 3.

® We prove this in Section 3.9.

’ The 'actions' cover the abolition of barriers to all imports to Japan, not just imports from North America. This
suggests a further decomposition, which would also be easy to compute.

5
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Table 3: Contributions of 3 groups of import liberalizing shocks to total welfare changes
($US million)

Effect of facilitating imports from: ~ APEC to APEC ~ ROW to APEC APEC to ROW Total
(1] (2] [3] [1+[2]+[3]
North America -973 -14887 13608 -2252
Japan 70843 -15934 40385 95294
Australia & New Zealand 987 -2132 1884 740
China & Hong Kong 7547 -4774 4653 7426
Taiwan 5582 -2208 3134 6508
South Korea 10171 -3125 4073 11119
Malaysia & Singapore 2408 -1473 1913 2848
Thailand & Philippines -1699 -2628 2801 -1526
Indonesia 340 -1498 1729 571
ROW -35745 53977 -65321 -47088

Table 4: Contribution of each region's liberalization to welfare change in each region
($US million)

(M @ ©) 4) ®) ©) @) ®) © 10 a1y
NAM Jpn ANZ Chn Twn SKor MySg ThaPh Idn Row  Total

NAM: North America -34542 12995 392 544 2222 1610 -129 866 183 13608 -2252
Jpn: Japan 38165 3342 1837 2735 575 3202 349 3767 936 40385 95294
ANZ: Australia, NewZealand 396 1055 -2683 474  -184  -206 12 1 -10 1884 740
Chn: China, Hong Kong 1659 2108 350 -3053 256 1230 -78 165 135 4653 7426
Twn: Taiwan 1271 128 80 543 252 124 157 631 189 3134 6508
SKor: South Korea 796 1060 175 -160 48 4293 46 439 348 4073 11119

MySg: Malaysia, Singapore -426 262 214 -121 106 346 -59 522 90 1913 2848

ThaPh: Thailand, Philippines -173 353 5 -36 122 476 80 -5163 9 2801 -1526
Idn: Indonesia 140 186 -30 233 =22 68 -48 97 -1783 1729 571
ROW 3483 6078 971 3333 1252 655  -201 1936 726 -65321 -47089

As in our previous example, we could have produced a decomposition similar to that of Table 4,
by assuming that regions acted in a particular order, and measuring the effect of each successive
liberalization. With 10 regions, the different possible orders allow more than 3 million (=10!)
different decompositions — no one of which is obviously more plausible than the rest. Our
decomposition, which treats all regions equally, is, so far as we are aware, the only practical way to
produce more complex decompositions such as that of Table 4.
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3. The Decomposition

In this section we introduce the decomposition in the case where the endogenous variables can be
written explicitly as functions of the exogenous variables. Experienced modellers will realise that this
assumption is almost never true in practice. However it is the easiest way to understand the
decomposition.

In section 4 we explain how the decomposition can be calculated in the more realistic case where
the exogenous and endogenous variables are linked by implicit functions.

3.1. The Decomposition for One Endogenous Variable

In this section we suppose that there is just one endogenous variable Z. [We address the case where
there are several endogenous variables in subsection 3.3 below.] We suppose that Z can be
expressed as a function F of the n exogenous variables X , X,, ..., X,, via the equation

Z=FX,..., X,) . (1)
Suppose X = (Xj,..., X,) moves from
)~( 0~ (XIO:"-a XnO) to X 1= (le Y] an)'

X, X1 (t=1)

H(t)

Xo (t=0)

X
Diagram A: Path of 2 exogenous variables (n=2)

Here we are thinking of a simulation where X ( is the vector of exogenous values at the pre-
simulation solution of the model and X, is the vector at the post-simulation solution of the model.
Suppose further that X = (X...., X;;) moves from X,to X along some path parameterized by t
where t moves from 0 to 1. That is,

X =H(®
where X o =H (0) and X ;= H (1). Then
Z =F(X,,..., Xn) = F(X) = F(H(1)) = Q(V)

for some function Q. Suppose Z has pre-simulation value Z, (that is, when X =X () and that Z has
post-simulation value Z, (when X=X ). Then
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Z,=F(X,) =F(H(0))=Q(0) and

Z,=F(X ) =FHID)=Q).

Then, under the assumption that F and H are differentiable functions, it follows from the Chain Rule
[see, for example, Theorem 6-14 of Apostol (1957)] that

dz/dt = 2.1, (QF/OX)(dXydt) . )
Integration of (2) with respect to t shows that

_[tl:o (dz/dt) dt= 2., ftl:o (OF/0X,) (dX, /dt) dt .
The left-hand side of the above equals

Z(when t=1) - Z (when t=0) = Z, - Z,

and so is equal to the change in Z. Thus we have
¢ Z=2i1, Ll-o (OF/0X,) (dX/dt) dt 3)

where ¢_Z denotes the change in Z.

This is the decomposition. We see that the change in Z is equal to the sum of the contributions
due to each of X, ..., X,,, where these contributions are as defined below.

3.1.1. Definition (Contribution due to One Exogenous Variable)

The contribution to the change in Z due to the change in X; as X moves along the path H is defined
to be

_[tl:o (OF/0X,) (dXy/dt) dt

3.1.2. Proposition (The Decomposition for One Variable)

Under the assumptions set out above (including those that F and H are differentiable functions),
the change in the endogenous variable Z is equal to the sum of the contributions due to each of
X, ..., X, as X moves along the path H.

3.1.3. Example
Consider the example shown in Diagram B, in which
Z=X;X;, Xo=(1,1), X:=(23).
Suppose that X =(X;, X,) moves along a straight line from X ,to X ;. Then
Xi=1+t, Xp=1+4+2t, for0<t<]1,
cZ=6-1=5.

Now 0dF/0X; = X, so that the contribution to the change in Z due to X; as X moves along this path
1s
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1 1
It:O X,.1dt = It:O (1+2t)dt=2 .
Similarly, the contribution due to X, is
1 1
L:O X;.2dt = L:O (1+t).2dt=3.

Note that the sum of these two contributions is 5, as expected from Proposition 3.1.2.

3 X, =(2,3) Z=6
2 H(t)

1+ on(lal)
Z =1

| | X
1 2 3

Diagram B: Path for example 3.1.3

3.2. Contributions Made by Groups of Exogenous Variables

Suppose we group the exogenous variables into two groups, say Xj,...,X,, and X;,...,X,,. Then

cZ=S5" (cont.duetoX;)+ $ (cont. duetoX;) .
— i=1 i=p+l

The first term on the right-hand side is defined to be the contribution due to the first group of

exogenous variables, and similarly for the second.

In general, the contribution due to any set of exogenous variables is defined to be the sum of their

individual contributions.

This is stated a little more formally in the next definition. The proposition below follows easily

from Proposition 3.1.2 and equation (4).

3.2.1. Definition (Contribution of Group)

The contribution to the change in Z as X moves along the path H due to any set of exogenous
variables is defined to be the sum of their individual contributions to the change in Z as X moves

along the path H.
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3.2.2. Proposition (The Decomposition for Groups of Shocks)

If the set of exogenous variables is partitioned into several mutually exclusive and exhaustive
subsets then, under the assumptions in Proposition 3.1.2, the change in Z is equal to the sum of the
contributions of these sets of exogenous variables as X moves along the path H.

3.3. The Decomposition for Several Endogenous Variables

As a generalisation of section 3.2 above, now suppose that there are several endogenous variables
(not just one as in section 3.1), say Z;, Z,, ..., Z, . Suppose also that each of these endogenous
variables can be expressed as an explicit function of the exogenous variables via the m equations

ZJ = FJ (X],..., Xn) J = 1,..., m, (5)
where each function F; is differentiable. Then

dz;/dt = anl (9F;/0X;).(dXy/dt) j=1,.,m . (6)

Then we can define the contribution of any X; (or groups of Xj's) to the change in any one of the
Zj'S.

The following proposition is clear.

3.3.1. Proposition (The Decomposition)

Consider (5) above. If the set of exogenous variables is partitioned into several mutually exclusive
and exhaustive subsets then, for 1 <1< m, the change in Z; is equal to the sum of the contributions
of these sets of exogenous variables to the change in Z; as X moves along the path H (provided
F.,...,F., H are differentiable).

3.3.2. Example

Suppose that all is as in Example 3.1.3 above and that there is a second endogenous variable W
given by the equation

W= X] /Xz .
The change in W is equal to (2/3) - (1/1) =-1/3.

The contribution to the change in W due to X, as X moves along the straight-line path in Diagram B
is equal to

1 1
Joo(UX2)ddt = [ dU(1+2t) = (In3)/2.
Similarly, the contribution to the change in W due to X, as X moves along this path is equal to
[ (XalXaD)2dt = [ 20+ 0+ 207 dt =~(/3)~(In3)2.

Note that these two contributions do indeed add to -1/3, as expected from Proposition 3.3.1. [Of
course the contributions to the change in Z due to X; and X, are as calculated in Example 3.1.3.]

10
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3.4. The Decomposition Depends on the Path of the Exogenous Variables

Although the integral of the left-hand side of (2) does not depend on the path H (since its value is
equal to the change ¢ Z in Z whatever the path), the integrals which are defined to be the
contributions of the different exogenous variables X; to the change in Z do depend on the path H by
which X goes from X ( to X ;. This can be seen from the next example.

3.4.1. Example

Consider again Example 3.1.3, but with a different path for moving from (1,1) to (2,3). See
Diagram C. This time first go along to point A = (2,1) in a straight line and then go up from there to
(2,3) in a straight line.

X
3 - X, =(2,3) Z=6
7 _
1 S N
| | roX

1 2 3
Diagram C: Evaluating Contributions along Alternative Paths

Clearly the first part of this path produces zero contribution from X, (which does not change on
this part of the path), while the second part produces zero contribution from X;. Equally clearly the
contribution to ¢_Z from X along the first part of this path is equal to all the difference in Z along
this part of the path, namely 2-1=1. And the contribution to ¢_Z from X, along the second part of
this path is equal to all the difference in Z along this part of the path, namely 6-2=4.

Alternatively, start by going up to point B: only X, is changing and Z increases by 2. Then go
along to (2,3): now only X, is changing and Z increases by 3. So, going via B, X; contributes 3 and
X, contributes 2.

Table 5 summarizes the contributions due to X, and X, along all 3 paths: the straight line path and
the edge-wise routes visiting A and B. Note that:
 the contribution to ¢_Z due to a particular variable depends on the path taken,
* the row sum of the contributions (total change in Z) does not depend on the path taken,

* the straight line estimates lie between the estimates arising from the two edge-wise paths. Indeed,
because Z is a quadratic function of X; and X, the straight line estimates are just the arithmetic
mean of the estimates from the other two paths (proved in section 3.9 below).
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Table 5: Contributions to ¢_Z along 4 different paths

Path contribution contribution Total
due to X; due to X,
XotoX, viaA 1 4 5
X o to X direct 2 3 5
XotoX; viaB 3 2 5
X o to X via Hy(t) 1.67 3.33 5

The last row of Table 5 shows the contributions calculated along the curve H,(t) in Diagram C. That
curve is defined by the parametric equations X; = 1+t and X, = 1 + 2t%. Notice that the curve
lies between the direct route and the route via A; the contributions from the curve also lie between
those computed along the other two routes (see first 2 rows of Table 5).

3.5. Is There a Natural Path?

Because the contributions due to the different exogenous variables may depend on the path chosen
from the pre-simulation exogenous values to the post-simulation values, it is natural to ask if there is
a preferred path to take. Probably the answer to this is somewhat model-specific or even
simulation-specific.

However, we think that there is one natural path, namely the straight line between the pre- and
post-simulation values (as, for example, used in Example 3.1.3 above). Note that,

a) the rate of change in any exogenous variable is constant along this path,

b) the value of each exogenous variable remains between its pre- and post-simulation values at every
point along this path.

Of course, many different paths have property (b) but only the straight line has property (a).

It really does not matter whether you judge this to be the most natural path (or one of the natural
paths). The Decomposition, namely Proposition 3.3.1, remains valid for whatever path you may
prefer.

Nevertheless, even broad-minded people may agree that some paths are not natural. Some of these
are shown, for 2 dimensions, in Diagram D on the next page.

We can exclude paths such as these by requiring that as we move along a path parameterized by t
ranging from 0 to 1, dX;/dt does not change sign. That is, each exogenous variable either increases
continuously or decreases continuously. As well as precluding kinky and loopy behaviour, this
restricts paths to within the zone bounded by dotted lines in Diagram D. From this point of view,
sequential decompositions, represented by traverses along the dotted lines, tread the boundaries of
acceptable behaviour.
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Diagram D: Some Unnatural or Perverse Paths

3.6. Decomposition of Percentage-Change Results

Many modellers prefer to report mainly percentage-change results (rather than changes). The
decomposition here is easily adapted to that. It is easy to define the contribution to the percentage
change in any endogenous variable due to any group of exogenous variables along the relevant path.
Again the contributions to this percentage change due to the different groups of mutually exclusive
and exhaustive sets of exogenous variables add up to the total percentage change. We show this in
this section.

Suppose we have just one endogenous variable Z, as in section 3.1 above. Then
c Z=7Zy.p_7Z/100

where Z is the initial (pre-simulation) value of Z, and p_Z 1is the percentage change in Z. From (2)
we see that

Zo. p_Z/100 = zin:l (cont. due to X;) .

Thus

pZ= zi“:l [100.(cont. due to X;)]/Zo . (7)

The terms on the right-hand side are defined to be the contributions to the percentage change in Z
due to the different X;. Thus the contribution of X; to the percentage change in Z is simply related
to its contribution to the change in Z. Formally we have the following definition and proposition.

3.6.1. Definition (Contribution to Percentage Change)
The contribution to the percentage change in Z due to X; along the path H is defined to be

100.C; /Z,

where Z, is the pre-simulation value of Z and C; is the contribution to the change in Z due to X;
along the path H.
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3.6.2. Proposition (The Decomposition for a Percentage-change Variable)

Consider (5) above. If the set of exogenous variables is partitioned into several mutually exclusive
and exhaustive subsets then the percentage change in Z is equal to the sum of the contributions to
percentage change in Z due to these sets of exogenous variables as X moves along the path H
(provided F,,...,F,,, H are differentiable).

Thus the decomposition can be given equally well for the change or the percentage change in each
endogenous variable.

3.7. Implicit Relations between Endogenous and Exogenous Variables

Above the decomposition was explained and derived only in the case where each of the endogenous
variables can be expressed analytically (or algebraically) as functions of the exogenous variables.
Usually such algebraic expressions are not available for a general equilibrium model. Rather the
relation between the exogenous and endogenous variables is implicit as in the system of equations

Gi(Zis +vor Zins Xiyoorr Xy) =0 i=1,..,m . (8)

While it is not usually possible to write down algebraic expressions for the partial derivatives which
appear in the definition of the contributions due to each X; , it is usually possible to calculate
numerical values for these at all relevant points. This can be done by solving a system of numerical
linear equations, as we explain in detail in section 4. Then it is possible to calculate arbitrarily
accurate numerical approximations to the integrals used to define the contributions due to the
different exogenous variables. Hence the decomposition stated above also makes sense when the
model consists of a set of equations as in (8) above. The contributions due to any group of
exogenous variables can be calculated numerically; we explain this in more detail in section 4.2.

Hence

the Decomposition in Proposition 3.3.1 applies to models expressed as a system
of non-linear equations, as in (8) above.

The GTAP model used in section 2 can be represented as a system of equations like (8) above. The
numerical decompositions presented in section 2 were calculated using a new version of the
GEMPACK software (see Harrison and Pearson (1996)) which includes an implementation of the
algorithm set out in section 4.

3.8. Is the Decomposition a New Result?

When we found the decomposition set out above, our first thought was that it was rather simple
and was surely known before. This has been the first reaction of most of the colleagues to whom we
have described the decomposition. But, so far, no one has been able to point to an earlier exposition
of this decomposition. Further, we (and several others) feel that if the decomposition were known,
probably there would be software facilitating the reporting of the contributions of different groups
of exogenous variables. Perhaps one of the readers on this paper can point us to an earlier exposition
and/or software which does these calculations; if so, we will be most grateful.
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3.9. When the Model is Quadratic

Here we prove the claim made in section 2.1, that where an endogenous variable Z can be
expressed as as a quadratic function of the exogenous variables, namely,

Z=F(Xy,..., X)) = Zizl,n Zj:i,n BiiXiX; (here [ is upper triangular),

our straight-line estimate of the contribution AZ; (the part of AZ due to AX;) is just equal to the
arithmetic mean of the various estimates of AZ; which might be obtained by shocking one variable at
a time.

To compute one of the latter estimates, we start by assuming, without loss of generality, that we
are evaluating the contribution of X, that is, i=1. The change in Z as X; moves from its initial value,
X0, to its final value of X;; (= X;y+AX), is given by:

(one sequential) AZ, = By, AX,(2X o + AX,) + AX; 21y, BiiX;

The variation in these estimates arises only from variation in the final term, which is linear in X;.
Each of these X; (j=2..n), might be evaluated either at its initial or its final value. Each of the n! ways
of ordering shocks give rise to its own set of X values.

If we consider one particular X; it is clear that in half of the n! cases it will have the initial value
Xjo; otherwise it will have the final value Xj; ( = Xjo+AX;). Therefore the average of the n! sequential
estimates is:

(average sequential) AZ; = B;; AX;(2X;o + AX,) + AXlzjzz’n By(Xjo + AX/2)
Next we compute the contribution of X, using our integral method. From Definition 3.1.1,
1 1
AZ] = It=0 (GF/aXl) (Xm/dt) dt = It=0 [2BIIX1 + j=2.n BIJXJ] (Xm/dt) dt.
Along our preferred straight-line path, as t goes from O to 1,
Xj = Xj() + tAXJ for all _]
So dX,/dt = AX;, giving

(straight-line) AZ, AX, flo [2B11(X1p + LAX) + 2 g Bij (X0 + tAX))] dt

t=

or = BuAXi(2X g + AX)) + AX, 2, By (Ko + BX;12)
which is the same as the average of the sequential estimates. This proves the result.

Although few models are actually of quadratic form, a quadratic approximation is often reasonably
accurate over the interval through which variables change in a given simulation. When that seems
plausible, we have grounds for supposing that our straight-line estimate of the contribution due to a
particular shock or group of shocks lies around the middle of the range of the estimates that might be
obtained by measuring the same contribution along paths where only one exogenous variable (or
group of variables) at a time is allowed to vary.

For future work, we hope to investigate other conjectures. One conjecture is that if F is quadratic,
and if perverse paths like those of Diagram D in section 3.5 are excluded, the set of sequential
estimates described above includes both the greatest and the smallest estimate of a particular
contribution that could be obtained along any reasonable path. We may also be able to replace the
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quadratic assumption with a weaker assumption — perhaps that derivatives are monotonic within
the space under consideration — and still reach conclusions of a similar flavour.
4. Calculating the Decomposition

In practice we don't know the functions F,,...,F., in (5) explicitly. Rather the relation between the
exogenous and endogenous variables is implicit as in

G{(Zis +rrr Zos Xipooos X)) =0 i=1,..,m (8)

and we must calculate the partial derivatives (OF;0X;) numerically by solving a system of linear
equations. Suppose that each function G,,...,G,, is differentiable.

If we partially differentiate (8) with respect to X; using the Chain Rule [see, for example, Theorem
6-14 of Apostol (1957)], we see that, for j=1,..., m,

Zk:l,m(an 10Z,)(0Z,10X) +0G; /90X =0
since 0X./0X; =0 for s #i. Hence
R )

where A is the m X m matrix whose entry in row j and column k is (0G;/0Zy), and V; and W, and the
m X 1 vectors whose entries in row j are 9Z;/0X; and -0G;/0X; respectively. This means that, at any
point along the curve H from X, to X ;, we can calculate the numerical values of the partial
derivatives 0Z;/0X; (i=1,...,m; j=1,..., m) by solving the system (9) of linear equations numerically.

If we multiply both sides of (9) by dX;/dt, we see that
AV =W, (10)

where v; and w; are the mx1 vectors whose entries in row j are (0Z;/0X;)(dXi/dt) and
-0Gj/0X;)(dX/dt) respectively.

This means that, at any point along the curve H from X, to X, (and for any i=I,...,m), we can
calculate the numerical values of the terms

(0Z;/0X:)(dX/dt) i=l,.,m (11

by solving the system (10) of m linear equations numerically. But these numbers are exactly those
which are needed to calculate the contribution of X; to the change in Z; (along the path H) since this
contribution is defined to be

Itio(az,. 10X )(dX, / dt) d . (12)

Thus we can obtain arbitrarily accurate approximations to this contribution by various well-known
ways of approximating this integral which involve using the system (10) of linear equations N times
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(for some N = 1).!1° Indeed, it is possible (and practical) to produce arbitrarily accurate
approximations to (12) by extrapolating from two or more less accurate (but less expensive to
calculate) approximations, as is well known."!

Note that, when solving models represented as in (8), there is usually no a priori guarantee of the
existence of (suitably smooth) functions F,...,F,, as in equation (5). But, once the numerical
calculations have been done, if the results converge as theory suggests, we have a posteriori
confidence of the existence of the required functions and of the accuracy of the model results
obtained. The same applies to the numerical decomposition calculated.

4.1. Connection with the Simulation Results

In the simulation, the vector X of exogenous variables moves from its pre-simulation values X,
to its post-simulation values X; . It is common to regard the changes

¢ Zi,¢ Zoy ..., € Zn (13)

in the values of the endogenous variables (between their pre-simulation and post-simulation values)
as the solution of the simulation.'?

Here we outline one way of obtaining arbitrarily accurate approximations to the changes in (13)
(that is, to the solution of the simulation) which is very similar to the way outlined above of
obtaining arbitrarily accurate approximations to the contributions of each exogenous variables
Xi,...,X, to these changes.

Let v ( denote the mx1 vector whose jth entry is dZ;/dt. Now, for 1<j<m,
dz, /dt = Zizl’n(azj /9X.)(dX /dt) (14)

and thus

1
""" Consider the integral J-O c(t)dt. Provided we are able to calculate c(t) for any point t between 0 and 1, there are

many ways of obtaining arbitrarily accurate approximations to the integral. For example, consider N equally spread
points 0=ty, t,..., tn.1, tn=1 (Where t; = i/N); then

ay(© =S, N ¢

converges to the integral as N — co. [Calculating N of these approximations to (12) requires solving the system (10) of
linear equations N times.]

1
The approximations On(c) to IO c(t)dt given by equation (*) above are those obtained by applying Euler's method

[see, for example, Section 6.2 of Atkinson (1989)] to the initial value problem
t
d(0) = 0, d_(t) = c(t); find d(1) [where d(t) :I o c(u)du].
u=

Other methods [for example the midpoint method or Gragg's method - see, for example Chapter 15 of Press et al
(1986)] can be used to obtain more accurate approximations with comparable amounts of arithmetic. The 0n(c) values
are known to converge to the integral provided the underlying function c is suitably well-behaved (see Chapter 6 of
Atkinson (1989) or Chapter 15 of Press et al (1986) for more details).

For example, the extrapolated value obtained from 4-step, 6-step and 8-step Euler approximations (those with N=4,
6, 8 respectively) is likely to be as accurate than the 100-step Euler approximation. See, for example, Chapter 15 of
Press et al (1986) for an introduction to extrapolation.
"> We usually know (or can infer) the pre-simulation values of the Z; from the pre-simulation data base. If we know the
pre-simulation values Z; and their changes c_Z;, we can infer their post simulation values.
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V0= D L, U (15)

where the V; are defined just after equation (10) above. Thus, from (15) and (10),

Avpg =AY L L=> ALY W TW (16)

say. Hence, at any point along the path H, we can calculate the value of dZ/dt by solving the
system (16) of linear equations numerically. But, as we saw just before equation (3) in section 3.1,

c_Z =J’t1:O(de/dt) ot =1,..m .
Thus the numbers dZ;/dt can be used to calculate arbitrarily accurate approximations to ¢ Z;
following the methods outlined in footnote 1.
Thus
one algorithm for calculating the simulation results
¢ Zy..nc 7,

is to use the solution to the linear equations (16) to derive
arbitrarily accurate approximations to these.

This is essentially the algorithm implemented in GEMPACK. (See section 4.3 of Harrison and
Pearson (1996) for more details.) In the GEMPACK solution algorithm, the path H from X, to X
is taken to be a straight line.

4.2. Calculating the Decomposition in GEMPACK

As indicated previously, GEMPACK takes a straight line path H from X , to X ; . For suitably
chosen values of N, GEMPACK calculates an approximation to the simulation results in (13) by

* calculating the matrix A at each point
t=0, ti, ..., tx1, =1
(where t, = s/N),
* calculating the vector wj at each point t,,
* solving the system (16) of linear equations to find the entries of v

Then the methods outlined in footnote 1 are used to produce suitably accurate approximations to
the simulation results in (13).

To now implement the calculation of the contribution to the changes in any Z; due to any
exogenous variable X; (or of any group of exogenous variables) is relatively easy conceptually. The
steps are as follows.

(a) When calculating w, , the new algorithm has to also keep track of the separate vectors
Wi ,..., Wy (Whose sum equals wp).

(b) As well as solving (16) at each point t,, the new algorithm must also solve (10) for each 1<i<n.
The main cost (in terms of time) in solving (16) is that of calculating the LU decomposition of
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the matrix A. The extra time taken to solve (10) for the extra right-hand sides w ,..., w, is
relatively small compared to the time taken for the LU decomposition. (See, for example, section
8.1 of Atkinson (1989) or section 2.3 of Press et al (1986) for information about the cost of LU
decomposition.)

(c) The new algorithm must keep track of the solutions v ..., v, to (10), as well as the solution v
to (16). These v; are used to calculate the contribution of each X; to the changes in each
endogenous variable in the same way as the v, vectors (at each point t,, ti,...,tx) are used to
calculate (approximations to) the changes in each endogenous variable.

Thus the extra things GEMPACK must do in order to calculate the contribution of different
exogenous variables to the changes in the endogenous variables are as follows:

(1) The software must provide the user with an opportunity to say for which groups (if any) of
exogenous variables calculation of the contribution is required."

(i) Extra bookkeeping is required to keep track of the separate w; ,..., w, as well as wj .
(ii1) Extra CPU time will be taken to solve (10) for each right-hand side w; of (10).

(iv) Extra bookkeeping is required to keep track of the (approximations to) the contributions of each
group of exogenous variables to each endogenous variable.

In fact, if under (i) above the user identifies k different groups of exogenous variables, there are only
k extra systems of linear equations (10) to be solved at each point. These are of the form

Ap~r=q~r r=1,....k

where ¢, is the sum of the w; for all exogenous variables in the rth group of exogenous variables.
Thus there are only k vectors to keep track of under (ii), (ii1) and (iv) above. Typically the number
of groups of exogenous variables the user selects will be small (say 20 or less). Thus the extra CPU
time taken to calculate the contributions of these groups is usually a relatively small fraction of the
CPU time for the solution without these contributions.

5. The Decomposition for Sequences of Simulations

Suppose that we have a sequence of M different simulations, each one starting from the post-
simulation status of the previous one. Forecasts from the MONASH model of the Australian
economy (see, for example, Dixon and Rimmer, 1998) comprise such a sequence of linked annual
simulations. Suppose, for simplicity, that the exogenous variables are the same in each simulation.

Then it is natural to define the contribution of a group of exogenous variables to the total change
(between the starting state of the economy and the ending state, after the final simulation) in each
endogenous variable as the sum of the contributions from each simulation. Clearly the main result
(Proposition 3.3.1) holds for this sequence of simulations.

" Readers familiar with GEMPACK may be interested to know that this information is gathered from “subtotals”
statements (such as those currently allowed with the program SAGEM) in the Command file. To obtain numerical
contributions of different groups of exogenous variables, users only need to add the relevant “subtotal” statements.
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5.1. Decomposition of Percentage-Change Results

Contributions to percentage changes (see section 3.6 above) need to be defined and calculated a little
carefully to ensure that they add up as required. The ways of calculating the contributions in this
case are easily understood by converting everything back to ordinary changes.

The contribution C of a group of exogenous variables to the total percentage change p Z in an
endogenous variable Z is defined to be

C= zs:l,M Ascs

where C, denotes the contribution of this group of exogenous variables to the percentage change
p_Z in Z in simulation number s, and

A= 00(1 +p_Z7100) .

With these definitions, it is easy to see that the contributions of a set of mutually exclusive and
exhaustive sets of exogenous variables add to the total percentage change p Z over the sequence of
simulations (just as in Proposition 3.3.1).

For example, if M=3, the contribution of a group of exogenous variables to p_Z is given by
C, + (1+p Z/100)*C, + (1 +p_Z,/100)*(1 + p_Z,/100)*C;
where C; denotes the contribution of the group to p_Z in simulation number s.

Thus the decomposition can be carried over to any such sequence of simulations.

6. Conclusion and Further Work

We have described a way of decomposing the endogenous changes from a general equilibrium
simulation into parts attributable to each of the exogenous shocks. The decomposition

* is exact (adds up to the right total),

* can be easily generalized to groups of shocks, and percentage (rather than ordinary) changes,
* is easy to understand, and

* is cheap to compute.

We think it promises to be very useful in understanding and presenting results from experiments
with multiple shocks. The procedure is now automated in GEMPACK 1in a version that will be
made publicly available in the future. We shall see then how useful other modellers find it.

Further work includes: developing software to facilitate the calculation of decomposed results for
sequences of simulations; and developing visual interfaces both to choose a decomposition, and to
view its results.

20



Decomposing Simulation Results with respect to Exogenous Shocks

References

APOSTOL, Tom M. (1957), Mathematical Analysis: A Modern Approach to Advance Calculus,
Addison-Wesley, Reading.

ATKINSON, Kendall E. (1989), An Introduction to Numerical Analysis, second edition, Wiley, New
York.

DIXON, Peter B. and Maureen T. RIMMER (1998), 'Forecasting and Policy Analysis with a Dynamic
CGE Model of Australia', CoPS/IMPACT Working Paper Number OP-90, (available
electronically from URL http://www.monash.edu.au/policy/ELECPAPR/op-90.htm ).

HARRISON, W. Jill and K.R. PEARSON (1996), ‘Computing Solutions for Large General Equilibrium
Models using GEMPACK’, Computational Economics, vol. 9, pp 83-127.

HERTEL, Thomas W. (ed) (1997), Global Trade Analysis: Modeling and Applications, Cambridge
University Press.

PRESS, W.H., B.P. FLANNERY, S.A. TEUKOLSKY and W.T. VETTERLING (1986), Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press.

21



