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ABSTRACT

This paper focuses on one way a linearized representation of a nonlinear economic model

can be used to obtain arbitrarily accurate solutions to simulations. The key is a method for

translating a simulation problem directly to a so-called initial value problem. Since many

different methods for solving initial value problems are known and well understood, and since

each one converts to an algorithm for solving simulation problems, this insight greatly expands

the computational tool kit for conducting simulations. This paper contains a survey of the

theoretical results guaranteeing convergence and forming the basis for extrapolations of two

important methods for solving initial value problems. Theoretical considerations suggest that

the faster rate of convergence of one of these methods (the modified midpoint method) is likely

to cause it to dominate the other (Euler’s method) in many situations faced by applied general

equilibrium modellers. The other main points of the paper are:

(i) to emphasize that linearized (symbolic) representations of models lead naturally

to efficient algorithms which can be used to compute solutions having any desired

degree of precision; and

(ii) to suggest that such accurate methods (rather than Johansen’s method) should be

the default when solving models (especially applied general equilibrium models)

represented in linearized form.
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SOLVING NONLINEAR ECONOMIC MODELS ACCURATELY

VIA A LINEAR REPRESENTATION

by

K.R. Pearson*

1. Introduction

Linearized representations have been used for over 30 years as a means of obtaining

solutions of nonlinear economic models. Most commonly these representations have been used

in applied general equilibrium analysis to obtain the so-called Johansen solution which is only

an approximation to the exact solution (see, for example, Johansen (1960, 1974) and Dixon et

al. (1982)). But, as shown in section 35 of Dixon et al. (1982), arbitrarily accurate solutions

can be obtained by repeated solution of the linear equations associated with a linearized

representation. This method, called Euler’s method, has been used to solve ORANI and

Miniature ORANI as described in sections 8, 33, 35 and 47 of Dixon et al. (1982); see also

Exercises 3.7 and 3.8 of Dixon et al. (forthcoming). Although Euler’s method was known to be

closely related to the method of the same name for solving what are usually called initial value

problems (see Problem Set 3B in Dixon et al. (forthcoming)), in the absence of a tight link

between the two classes of problems, a direct proof of the convergence of the Euler solution to

the true solution was given for simulation problems in section 35 of Dixon et al. (1982).

Initial value problems have been studied in great detail for many years. Many different

methods for solving them are known and well understood both computationally and theoreti-

cally. Most books on numerical analysis or scientific numerical computation devote a chapter

or more to these problems (see, for example, Chapter 15 of Press et al. (1986) or Chapter 8 of

Dahlquist and Björck (1974)).

*I am grateful to P. Dixon, J.M. Horridge, A.Jones, J. Kautsky, M.Malakellis, A.Powell, I.Robinson and
P.Wilcoxen for stimulating discussions and/or comments about different aspects of the material in this paper.
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This paper shows how simulation problems can be converted directly and easily to initial

value problems of exactly the kind studied in numerical analysis. A survey is given of two of

the well-known methods for obtaining arbitrarily accurate solutions to initial value problems,

and it is shown how these translate to algorithms for solving simulation problems with any

desired accuracy. Included is a precise statement of theoretical results which (under suitable

hypotheses on the functions involved) guarantee convergence and are the theoretical basis for

extrapolation procedures (including those in Dixon et al. (1982) and in Exercise 3.8 of Dixon

et al. (forthcoming)).

This reworking of the theoretical underpinnings for computations of so-called ‘large-

change’ solutions of linearized models enables the techniques and experience of the numerical

analysis literature on initial value problems to be directly appropriated. Each algorithm for

solving an initial value problem potentially can be used to calculate the result of a simulation.

When these methods are applied to a simulation, it turns out that the main computational

task is the repeated solution of a system of linear equations. The numerical equations to be

solved are those obtained naturally from a (symbolic) linearized representation of the model.

The methods used to solve initial value problems can produce solutions of any desired

accuracy. They thus provide a means of calculating simulation results to any required level

of precision.1 Of course, different algorithms for the initial value problem become different

algorithms for simulation problems.

The remainder of this paper is structured as follows. A brief introduction to the appli-

cation of Euler’s method in the simulation context is given in section 2, where this method’s

relatively slow speed of convergence is noted. In section 3, notation is set up for describing

the computation of simulation results from a non-linear economic model; the term simulation

problem is then defined precisely with the help of this notation. There follows in section

4 a precise definition of an initial value problem, and the statement of a theorem which

identifies conditions sufficient for such a problem to possess a unique solution. The conversion

1It is tempting to say that these methods can calculate exact results but, given rounding errors, this
is almost never true of any numerical computation. However, subject to the usual proviso that calculations
carried out on computers nearly always contain rounding errors, it is reasonable to think that solving a simulation
problem as an initial value problem gives access to the exact solution.
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of a simulation problem to an initial value problem is then described. Sections 5 and 6 respec-

tively contain reviews of two well-known methods for solving initial value problems; namely,

Euler’s method and the modified midpoint method. The use of Richardson’s extrapolation is

discussed in each case with the aid of a simple numerical example. Linear representations of a

non-linear economic model are set out in section 7, where the practicalities of applying each of

the foregoing methods are assessed in some detail. In the eighth and final section a tentative

agenda for future research is sketched.

2. Euler’s Method: Some Preliminary Remarks

As translated into the simulation context by Dixon et al. (1982), Euler’s method divides

the changes in the exogenous variables of the model into N equal parts (where N is an integer

> 1) and results in an estimate z
˜
(N)
1 for the solution to the simulation problem. The solution

can be calculated to any desired accuracy because

lim
N→∞

z
˜
(N)
1 = z

˜
1 (2.1)

where z
˜
1 is the vector of exact solutions of the simulation problem. Another way of saying this

is that, given any desired (scalar) tolerance ε > 0, there is a (finite) value of N such that2

‖z
˜
(N)
1 − z

˜
1‖ < ε.

For this value of N , each component of z
˜
(N)
1 will be at most ε in error from the exact value.

Despite being able to give arbitrarily accurate solutions, Euler’s method is perhaps the

worst of the many methods known for solving initial value problems. Here “worst” refers to

the fact that the convergence in (2.1) is slow compared to other alternatives. Adapting one

of these better methods for initial value problems to simulation problems will give a method

2In this paper, the vector norm ‖ ‖ referred to is that defined by

‖(r1, r2, . . . , rk)‖ = max16i6k |ri|,

although results stated would need very little modification to apply to any of several other norms. (See, for
example, Section 4.1 of Gear (1971) for information about norms.)
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which converges more rapidly to the true result. Another way of saying this is that significantly

less computation will be required to give the desired accuracy.

For Euler’s method, convergence in (2.1) is linear in the sense that the error between z
˜
(N)
1

and z
˜
1 is inversely proportional to N , so that, for example, multiplying N by 10 only reduces

the error to one–tenth. Section 6 contains a description of the modified midpoint method

which, for a given value of N , requires approximately the same amount of computation as

Euler’s method, but which has the distinct advantage that the error is inversely proportional

to N2 . The difference between these two becomes even more striking when extrapolations

are used. As shown in sections 5 and 6, extrapolations based on 3 Euler solutions have errors

inversely proportional to N3 while those based on the modified midpoint method are inversely

proportional to N6 : then multiplying N by 10 reduces the errors to one-millionth of their

previous size.
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3. Models and Simulations

The methods described here apply to those economic models which can be written as a

finite number of equations3

gi(y1, . . . , yn+m) = 0 i = 1, . . . , m

where g1, . . . , gm are functions of the m + n variables y1, . . . , yn+m . To solve this model,

n of the variables must be specified exogenously leaving the other m endogenous. We use

x1, . . . , xn to denote a set of exogenous variables and z1, . . . , zm the corresponding endogenous

ones. Then the equations of the model can be written as

gi(z1, . . . , zm, x1, . . . , xn) = 0 i = 1, . . . ,m. (3.1)

It is convenient to introduce vectors

z
˜

= (z1, . . . , zm)

x
˜

= (x1, . . . , xn)

g
˜
(z
˜
, x
˜
) = (g1(z

˜
, x
˜
), . . . , gm(z

˜
, x
˜
)).

Here g
˜

is a vector-valued function from Rn×m to Rm and the equations of the model are

g
˜
(z
˜
, x
˜
) = 0

˜
. (3.2)

Because x1, . . . , xn is a set of exogenous variables, the equations g
˜
(z
˜
, x
˜
) = 0

˜
determine z

˜
as a function of x

˜
, say z

˜
= f

˜
(x
˜
). This means

zi = fi(x
˜
) = fi (x1, . . . , xn) i = 1, . . . m

where4

f
˜
(x
˜
) = (f1(x

˜
), . . . , fm(x

˜
)).

3Models whose underlying theory involves inequalities as well as equations are not covered unless the
inequalities can be rewritten as equations.

4In practice, although the functions g1, . . . gm are known (in the sense that formulae for them are given),
explicit formulae for f

˜
or f1, . . . , fm are not known; there is merely a guarantee of their existence.
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It is assumed below that each function fi has continuous first partial derivatives at each

point x
˜

in some relevant domain and also that each function gi has continuous first partial

derivatives with respect to each of its m + n variables. That is, it is assumed that

∂gi

∂zj
and

∂gi

∂xk

exist and are continuous functions of z
˜

and x
˜

at each point in some relevant domain.

By a simulation problem for such as model we mean that one solution of the model, say

z
˜

= z
˜
0 when x

˜
= a

˜
, is given and also given is another set of values for the exogenous variables,

say x
˜

= b
˜
. The problem is to calculate the value z

˜
1 of z

˜
when x

˜
= b

˜
. That is,

given z
˜

= z
˜
0 when x

˜
= a

˜
is a solution of (3.3)

(3.1) or (3.2), find the value z
˜
1 of z

˜
when x

˜
= b

˜
.

In the notation used above,

g
˜
(z
˜
0, a

˜
) = 0

˜
(or f

˜
(a
˜
) = z

˜
0)

and the problem is to find z
˜
1 such that

g
˜
(z
˜
1, b

˜
) = 0

˜
( or f

˜
(b
˜
) = z

˜
1).

We let

a
˜

= (a1, . . . , an) and b
˜

= (b1, . . . , bn).
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4. Converting a Simulation Problem to an initial value Problem

An Initial Value Problem is a problem of the following form. Consider a vector w
˜

=

(w1, . . . , wm) depending on a scalar variable u ∈ R such that w
˜

is a differentiable function of

u .5 Given is a function q
˜
(w
˜
, u) of w

˜
and u such that

dw
˜

du
= q

˜
(w
˜
, u)

for all w
˜

and u in some suitable domain.6 Also given is the value w
˜

0 of w
˜

when u = u0 (the

“initial values”) and another value, say u1 , of u . The problem is to calculate the value w
˜

1 of

w
˜

when u = u1 . That is,7

given w
˜

0 = w
˜
(u0),

dw
˜

du
= q

˜
(w
˜
, u) for all relevant w

˜
, u,

the problem is to calculate w
˜

1 = w
˜
(u1).





. (4.1)

The function q
˜
(w
˜
, u) is said to satisfy a Lipschitz condition if there is a positive constant

L such that

‖q
˜
(w
˜

1, u)− q
˜
(w
˜

2, u)‖ 6 L‖w
˜

1 − w
˜

2‖

for all u between u0 and u1 and for all vectors w
˜

1, w
˜

2 .

The following well-known result (see, for example, Theorem 3.1 of Henrici (1962)) gives

conditions which guarantee that an initial value problem has a unique solution.

Theorem 4.1. Consider the initial value problem given in (4.1). If q
˜
(w
˜
, u) is continuous (for

all w
˜

and all u between u0 and u1 ) and if q
˜
(w
˜
, u) satisfies a Lipschitz condition then there is

a unique continuously differentiable function w
˜

: [u0, u1] → Rm satisfying w
˜
(u0) = w

˜
0 and

dw
˜

du
= q

˜
(w
˜
, u) for u0 6 u 6 u1 .

Although the Lipschitz condition as stated above must hold for all w
˜

, in practice it is

only needed on some finite region of w
˜

values within which the solution can be shown to lie. If

5That is, each wi is a differentiable function of u .

6 dw
˜

du
is the vector

(
dw1

du
, . . . ,

dwm

du

)
and q

˜
is a function from Rm+1 into Rm .

7A simple example (in which m = 1) is: given dw
du

= w and w = 1 when u = 0, find w when u = 1.

The solution is w = e (since w = eu in general).
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q
˜
(w
˜
, u) has continuous partial derivatives with respect to w

˜
then q

˜
always satisfies a Lipschitz

condition in any bounded region since L can be taken as the associated matrix norm of the

matrix Kij where

Kij = max(w
˜

,u)∈region

∣∣ ∂qi

∂wj
(w
˜
, u)

∣∣

(see, for example, section 4.2 of Gear (1971)). In particular, if, as is often the case, q
˜
(w
˜
, u) is

an analytic function, then the initial value problem (4.1) has a unique solution.

The purpose of this section is to show that any simulation problem for a model satisfying

the hypotheses of the previous sections can be converted to (or re-expressed as) an initial value

problem. We use the notation introduced in the previous section for the simulation problem.

The key idea is to introduce a new scalar variable v ∈ R and to consider the exogenous

variables x
˜

as a function of v given by

x
˜

= a
˜

+ v(b
˜
− a

˜
).

Note that x
˜

= a
˜

when v = 0, x
˜

= b
˜

when v = 1 and that x
˜

moves along the straight line (in

n dimensions) joining a
˜

and b
˜

as v increases from 0 to 1.

Because x
˜

is a function of v and z
˜

is a function of x
˜

via z
˜

= f
˜
(x
˜
) or g

˜
(z
˜
, x
˜
) = 0

˜
, it

follows that z
˜

is also a function of v . Indeed,

z
˜

= f
˜
(x
˜
) where x

˜
= a

˜
+ v(b

˜
− a

˜
)

or, alternatively,

zi = fi(x
˜
)

where

xk = ak + v(bk − ak) for k = 1, . . . , n.

By assumption each function fi has continuous first partial derivatives while clearly each xj is

a differentiable function of v . Thus, by the Chain Rule (see, for example, Theorem 1 in section

8.7 of Kreyszig (1979), each zi is a differentiable function of v and

dzi

dv
=

n∑

j=1

∂fi

∂xj

dxj

dv
=

n∑

j=1

∂zi

∂xj

dxj

dv
.
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However, because no formulae for the functions f1, . . . , fm are given (there is merely a

guarantee of their existence), the formula above does not give an effective way of calculating

dzi

dv . But we can go back to the original equations of the model to get an effective way of

calculating these derivatives. Recall from (3.1) that

gi(z1, . . . , zm, x1, . . . , xn) = 0 for i = 1, . . . ,m.

By assumption ∂gi

∂zj
and ∂gi

∂xk
exist and are continuous functions of z

˜
and x

˜
. Also we have seen

that each zj is a differentiable function of v (as is each xk ). Thus the Chain Rule can be used

to differentiate the above equations with respect to v . This gives

m∑

j=1

∂gi

∂zj

dzj

dv
+

n∑

k=1

∂gi

∂xk

dxk

dv
= 0 for i = 1, . . . , m. (4.2)

But xk = ak + v(bk − ak) so that

dxk

dv
= bk − ak for k = 1, . . . , n.

Thus, expressing (4.2) in matrix form gives



∂g1
∂z1

. . . ∂g1
∂zm

...
...

∂gm

∂z1
. . . ∂gm

∂zm







dz1
dv
...

dzm

dv


 = −




∂g1
∂x1

. . . ∂g1
∂xn

...
∂gm

∂x1
. . . ∂gm

∂xn







b1 − a1
...

bn − an


 .

That is,

C(z
˜
, x
˜
)
dz
˜

dv
= D(z

˜
, x
˜
)

where x
˜

= a
˜

+ v(b
˜
− a

˜
), C(z

˜
, x
˜
) is the m ×m matrix whose (i, j) entry is ∂gi

∂xj
evaluated at

(z
˜
, x
˜
),

dz
˜

dv
is the m×1 vector whose j th entry is dzj

dv and D(z
˜
, x
˜
) is the m×1 vector obtained

by mutiplying the m × n matrix whose (i, k) entry is ∂gi

∂xk
evaluated at (z

˜
, x
˜
) by the n × 1

vector whose kth entry is ak − bk . Now x
˜

= a
˜

+ v(b
˜
− a

˜
) depends on v . If we let

A(z
˜
, v) = C(z

˜
, a
˜

+ v(b
˜
− a

˜
)),

B(z
˜
, v) = D(z

˜
, a
˜

+ v(b
˜
− a

˜
))

then, for all relevant v ∈ R ,

A(z
˜
, v)

dz
˜

dv
= B(z

˜
, v). (4.3)
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For a given z
˜

and v , this is a system of m linear equations in the m unknowns dz1
dv , . . . , dzm

dv .

In practice, it seems to be the case that the matrix A(z
˜
, v) is invertible for the relevant

values of z
˜

and v occurring for a valid closure in a well-specified model.8 In what follows we

assume that A(z
˜
, v) is invertible at all relevant points. Then, for any relevant z

˜
and v , we

can solve (4.3) and so calculate
dz
˜

dv
(in terms of z

˜
and v ).9

Thus, as foreshadowed, the simulation problem has been converted to an initial value

problem. Here z
˜

is a differentiable function of v . The initial value problem is as follows.

Given z
˜

= z
˜
0 when v = 0, and

that
dz
˜

dv
can be calculated by solving (4.3).

Find z
˜
1, the value of z

˜
when v = 1.





(4.4)

8I do not know of a theoretical result which guarantees the invertibility of this matrix. This is a question
that needs further investigation. (The only examples I am aware of where A(z

˜
, v) is not invertible at some

point are cases where g
˜
(z
˜
, x
˜
) = 0

˜
does not have a unique solution for z

˜
in terms of x

˜
in a neighbourhood. This

is not unlike the example in equation (35.6) of Dixon et al. (1982).)
9As explained in section 35.4 of Dixon et al (1982), we do not know ex ante whether (4.3) can be solved

but numerical calculations can leave us confident ex post. (Also, while there is a very clear theoretical distinction
between invertible and non-invertible matrices, the distinction is blurred in practice because of rounding errors
in any actual calculation.)
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5. Euler’s Method for Initial Value Problems

The best-known method for solving an initial value problem is called Euler’s method.

Consider the problem

Given: w
˜

= w
˜

0 when u = u0, and

dw
˜

du
= q

˜
(w
˜
, u) for all w

˜
, u.

Calculate w
˜

1, the value of w
˜

when u = u1.





(5.1)

To calculate the solution by Euler’s method, first select an integer N > 1. The idea is to

divide the interval from u0 to u1 into N equal steps. Let

h =
u1 − u0

N

and consider u values

u(s) = u0 + sh for 0 6 s 6 N.

Note that u(0) = u0 and u(N) = u0 + Nh = u1 . Let w
˜

(0) = w
˜

0 .

Given an estimate w
˜

(s) for w
˜

when u = u(s) , the derivative of w
˜

at this point is used to

calculate w
˜

(s+1) , an estimate for the value of w
˜

when u = u(s+1) , via the formula

w
˜

(s+1) = w
˜

(s) + hq
˜
(w
˜

(s), u(s)) for 0 6 s 6 N − 1. (5.2)

When w
˜

is a scalar, this can be seen geometrically from the figure on the next page.

Although w
˜

(1), w
˜

(2), . . . , w
˜

(N) are only estimates (or approximations) for the true values

of w
˜

when u = u(1), u(2), . . . , u(N) = u1 , and although (5.2) only gives an approximation for

the true value of w
˜

when u = u(s+1) even if w
˜

(s) is correct, it can be shown that, under suitable

hypotheses on the function q
˜
(w
˜
, u) (see Theorem 5.1 below), the value w

˜
(N) calculated as an

estimate for w
˜

1 approaches w
˜

1 as N →∞ . That is,

lim
N→∞

w
˜

(N) = w
˜

1.

Another way of saying this is that, given any desired tolerance ε > 0 (no matter how small),

there is a (finite) value of N such that

‖w
˜

(N) − w
˜

1‖ < ε.

11
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For this value of N , each component of w
˜

(N) will be at most ε in error from the exact

value.

Clearly the estimate for w
˜

1 actually calculated by Euler’s method depends on N . Ac-

cordingly, let

w
˜

E
1 (N)

(where the E indicates Euler) denote the actual result obtained as an estimate for w
˜

1 using

Euler’s method with N subintervals. The following theorem, which is a consequence of

Theorem 3.1 of Gragg (1965), gives detailed information about w
˜

E
1 (N).

Theorem 5.1. Consider a fixed initial value problem as in (5.1) above with true solution w
˜

1 .

Suppose the function q
˜
(w
˜
, u) is infinitely differentiable10 and satisfies a Lipschitz condition.

Then there are constant vectors c
˜
1, c

˜
2, . . . such that, for each integer J > 1,

w
˜

E
1 (N) = w

˜
1 + c

˜
1

(
1
N

)
+ c

˜
2

(
1
N

)2

+ · · ·+ c
˜

J

(
1
N

)J

+ O

(
1

NJ+1

)
. ¥

As indicated below, this theorem guarantees convergence of w
˜

E
1 (N) to w

˜
(under the

hypotheses stated) and is the theoretical basis for extrapolations. For convergence note that

w
˜

E
1 (N) = w

˜
1 + O

(
1
N

)
,

or, equivalently, there is a constant vector d
˜
1 such that

‖w
˜

E
1 (N)− w

˜
1‖ 6 ‖d

˜
1‖

N
.

This obviously guarantees that

lim
N→∞

w
˜

E
1 (N) = w

˜
1.

In general, the error between what is calculated, w
˜

E
1 (N), and the true result w

˜
1 is given by

the series

c
˜
1

(
1
N

)
+ c

˜
2

(
1
N

)2

+ . . . .

10In fact this hypothesis can be weakened. All that is required is tht the J th Fréchet derivative exists
and satisfies a Lipschitz condition; and note also that the J th Fréchet derivative must exist if p

˜
is J times

continuously partially differentiable.

13



This is the theoretical basis for extrapolation, as is shown below. Because, in general, the

vector c
˜
1 in Theorem 5.1 is nonzero, the series there indicates that the rate of convergence of

w
˜

E
1 (N) to w

˜
1 will only be inversely proportional to N . This means that the error in w

˜
E
1 (2N)

will be approximately half of the error in w
˜

E
1 (N).

As an illustration, consider the function w(u) = u2 with u0 = 1 and u1 = 2. Here

dw

du
= 2u = 2

√
w. (5.3)

Thus we can set up an initial value problem

u0 = 1, w0 = 12 = 1.

dw

du
= q(w, u).

Find w1 when u1 = 2.





(5.4)

Equation (5.3) indicates two possible choices for the function q . It is possible to use either

q1(w, u) = 2u or q2(w, u) = 2
√

w.

Clearly the exact solution is w1 = 4. In the table below are given the values of wE
1 (N) for

various values of N and for the two different functions q1 and q2 .

N 1 2 10 20 100 1000

wE
1 (N) using q1(w, u) 3.0 3.5 3.9 3.95 3.99 3.999

wE
1 (N) using q2(w, u) 3.0 3.41421 3.86598 3.93185 3.98619 3.99862

It is easy to see that the errors are approximately inversely proportional to N . For example

using q2(w, u), the error 0.13402 for N = 10 is reduced to 0.01381 (approximately divided by

10) when N = 100. (The fact that, for q1(w, u), the errors are exactly proportional to 1/N

is not typical but a result of the very simple problem in this case.) The table makes it clear

that the results obtained depend on the function q(w, u) used. The results using q2 are less

accurate because calculations of q2(w(2), u(s)) in (5.2) depend on the w(s) values which are

14



only approximations to the true value of w when u = u(s) whereas q1(w(s), u(s)) only depends

on u(s) which is known exactly.

Results such as the one in Theorem 5.1 occur frequently in numerical analysis and are the

basis for various extrapolation procedures. Basically an extrapolation procedure is a method for

combining results calculated for different values of N to produce a result which is significantly

more accurate that any of the individual results. It can be thought of as a way of obtaining

a new sequence of results whose convergence to the exact result is much faster than that of

the original sequence. As indicated below, there are standard extrapolation procedures for

obtaining cheaply from Euler results sequences which converge at rates inversely proportional

to N2, N3, N4 and so on. The extrapolations considered below are all called Richardson

extrapolations.

The simplest Richardson extrapolation is based on two Euler solutions w
˜

E
1 (N) and

w
˜

E
1 (2N). It follows from Theorem 5.1 that

w
˜

E
1 (N) = w

˜
1 +

c
˜
1

N
+ O

(
1

N2

)
,

w
˜

E
1 (2N) = w

˜
1 +

c
˜
1

2N
+ O

(
1

N2

)
,

and so

2w
˜

E
1 (2N)− w

˜
E
1 (N) = w

˜
1 + O

(
1

N2

)
(5.5)

since the c
˜
1 terms cancel out. Thus, if

w
˜

E2
1 (N) = 2w

˜
E
1 (2N)− w

˜
E
1 (N) for all N > 1, (5.6)

the new sequence {w
˜

E2
1 (N)} converges to w

˜
1 at a rate inversely proportional to N2 . The

values of w
˜

E2
1 (N) are calculated by using Euler’s method applied to N and 2N subintervals

and then combining these results via (5.6). The superscript E2 is used to indicate that this is

an extrapolation obtained from two different Euler solutions. We call it the 2-Euler-solution

Richardson extrapolation.

It is possible to obtain better extrapolations by combining three Euler approximations.

15



It follows from Theorem 5.1 that

w
˜

E
1 (N) = w

˜
1 +

c
˜
1

N
+

c
˜
2

N2
+ O

(
1

N3

)
,

w
˜

E
1 (2N) = w

˜
1 +

c
˜
1

2N
+

c
˜
2

4N2
+ O

(
1

N3

)
,

w
˜

E
1 (4N) = w

˜
1 +

c
˜
1

4N
+

c
˜
2

16N2
+ O

(
1

N3

)
.

First choose pairwise combinations to eliminate the terms involving c
˜
1 . Thus

2w
˜

E
1 (2N)− w

˜
E
1 (N) = w

˜
1 − c

˜
2

2N2
+ O

(
1

N3

)
,

4w
˜

E
1 (4N)− w

˜
E
1 (N) = 3w

˜
1 − 3c

˜
2

4N2
+ O

(
1

N3

)
.

Now the c
˜
2 terms can be eliminated since

6[2w
˜

E
1 (2N)− w

˜
E
1 (N)]− 4[4w

˜
E
1 (4N)− w

˜
E
1 (N)] = −6w

˜
1 + O

(
1

N3

)
.

That is,

−16w
˜

E
1 (4N) + 12w

˜
E
1 (2N)− 2w

˜
E
1 (N) = −6w

˜
1 + O

(
1

N3

)

and so, dividing by −6,

8w
˜

E
1 (4N)− 6w

˜
E
1 (2N) + w

˜
E
1 (N)

3
= w

˜
1 + O

(
1

N3

)
.

So the 3-solution extrapolation is

w
˜

E3
1 (N) =

8w
˜

E
1 (4N)− 6w

˜
E
1 (2N) + w

˜
E
1 (N)

3
. (5.7)

These values will converge to w
˜

1 at a rate inversely proportional to N3 . Note that w
˜

E3
1 (N)

is the Richardson extrapolation based on the N, 2N and 4N Euler results; it is called the

3-Euler-solution Richardson extrapolation.

The table below shows extrapolation results for the example problem in (5.4), using

q2(w, u) = 2
√

w (the less accurate of the two q ’s).

N 1 2 10 20

wE2
1 (N) 3.828427 3.948886 3.997712 3.999422

wE3
1 (N) 3.989039 3.998666 3.999992 3.999999
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Note that here errors are approximately inversely proportional to N2 for wE2
1 (N) and to

N3 for wE3
1 (N). For example, the error of 0.051114 in wE2

1 (2) is reduced by a factor of

approximately 100 to 0.000578 in wE2
1 (20).

It is possible to form Richardson extrapolations based on 4 or more solutions (see,

for example, section 7.2.2 of Dahlquist and Björck (1974)). For example, the 4-solution

extrapolation is obtained by taking suitable combinations of the N, 2N, 4N and 8N results

to eliminate the c
˜
1, c

˜
2 and c

˜
3 terms in these series. In this paper we concentrate on 2- and

3-solution extrapolations.

Some care must be exercised in using extrapolation results. Although w
˜

E3
1 (N) will be

considerably more accurate than w
˜

E
1 (4N) for large N , it may not be a better approximation

to w
˜

1 for small N (say, N = 1). In a particular case it depends on whether most of the

difference between w
˜

1 and w
˜

E
1 (N) is in the first one or two terms c

˜
1/N + c

˜
2/N

2 of the series

or in the next. (Note that the individual entries in c
˜
2 may be much larger in absolute value

than the corresponding entries in c
˜
1 , and similarly for c

˜
3 and so on.)

If indeed most of the error is in the 1
N term then

w
˜

E
1 (N) + w

˜
1 + c

˜
1/N,

w
˜

E
1 (2N) + w

˜
1 + c

˜
1/2N,

w
˜

E
1 (4N) + w

˜
1 + c

˜
1/4N,

and so

w
˜

E
1 (2N)− w

˜
E
1 (4N) + c

˜
1/4N + 1

2
(w
˜

E
1 (N)− w

˜
E
1 (2N))

or, taking the negative on both sides,

w
˜

E
1 (4N)− w

˜
E
1 (2N) + 1

2
[w
˜

E
1 (2N)− w

˜
E
1 (N)]. (5.8)

If, for example, one component of w
˜

E
1 (2N) is larger than the corresponding component of

w
˜

E
1 (N) then this says that this component of w

˜
E
1 (4N) should be still larger than this compo-

nent of w
˜

E
1 (2N) – indeed about half as large again. Similarly if one component of w

˜
E
1 (2N)
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is less than the corresponding component of w
˜

E
1 (N), then w

˜
E
1 (4N) should be approximately

half as much again smaller than w
˜

E
1 (2N).

The following hypothetical examples show different possibilities.
N-step 2N-step 4N-step Comment

(1) 3.4612 3.5804 3.6485 (5.8) holds.
(2) 3.4612 3.5804 3.5926 4N result is bigger than 2N

one, but increase is not approx
half that from N to 2N.

(3) 3.4612 3.5804 3.5172 Oscillation. 2N larger than N but
4N less than N. This suggests 1/N
term is not dominant for this N.

(4) 3.4612 3.3421 3.2802 (5.8) holds.
(5) 3.4612 3.3421 3.2015 4N result is less than 2N

one, but decrease is not approx.
half that from N to 2N.

(6) 3.4612 3.3421 3.3975 Similar to (3).
(7) 3.4612 3.5804 3.1214 Oscillation. But here difference between

4N and 2N significantly exceeds that
between N and 2N. Perhaps results
not converging?

(The results in (7) above could indicate that the values are not converging, perhaps because

the hypotheses of Theorem 5.1 are not satisfied (or even because of an error in the code for

computing the solutions). Alternatively, it may happen that (5.8) will be satisfied if N is

increased significantly.)

When (5.8) holds, one can have considerable confidence that the 2-solution extrapolation

is in error by no more than the absolute difference between these components of w
˜

E
1 (N) and

w
˜

E
1 (2N) and can be optimistic (that is, have some confidence but not considerably confidence)

that the 3-solution extrapolation result is a more accurate estimate of the exact solution than

w
˜

E
1 (4N). This is the basis of the “careful extrapolation” described in De Boor (1971). Of

course, (5.8) may hold for some component of w
˜

E
1 and not for others. A consequence of

Theorem 5.1 is that (provided the hypotheses of that theorem are satisfied), (5.8) will eventually

hold, provided N is large enough. So, if it does not hold for some value of N, the cautious

approach is to increase N until it does hold and then base results on this larger value of N. Of

course, extrapolated results may be (and often are) more accurate than the results on which

they are based even if (5.8) does not hold.
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6. The Modified Midpoint Method for Initial Value Problems

Consider the initial value problem given in (5.1). As for Euler’s method, the interval

[u0, u1] of interest is divided into N equal subintervals. The modified midpoint method11

uses N + 1 calculations to produce its estimate w
˜

M
1 (N) of the value w

˜
1 . As before, let

h = (u1 − u0)/N and let u(s) = u0 + sh for 0 6 s 6 N . Then, to calculate w
˜

M
1 (N), put

w
˜

(0) = w
˜

0 ,
w
˜

(1) = w
˜

(0) + hq
˜
(w
˜

(0), u(0)),

w
˜

(s+1) = w
˜

(s−1) + 2hq
˜
(w
˜

(s), u(s)) for 1 6 s 6 N − 1,

w
˜

(N+1) =
1
2
[w
˜

(N) + w
˜

(N−1) + hq
˜
(w
˜

(N), u(N))].





(6.1)

Then w
˜

M
1 (N) = w

˜
(N+1) .

Notice that w
˜

(1) is the same as in Euler’s method. But then w
˜

(2) is based on w
˜

(0) and

the derivative of w
˜

with respect to u at u = u(1) , as estimated by calculating q
˜
(w
˜

(1), u(1)).

Then w
˜

(2) is a good estimate of the value of w
˜

at u = u(2) since, as can be seen from the

first diagram on the previous page, the gradient of the tangent to the curve at u = u(1) (point

P in the diagram) is a very good approximation to the gradient of the chord from A (when

u = u0) to C (where u = u(2) ).

Indeed (see the second diagram on the previous page), the calculation of w
˜

(2), . . . , w
˜

(N)

in the midpoint method is based on the idea that, for small ∆x ,

f(a + ∆x)− f(a−∆x)
2∆x

(6.2)

is a very good approximation to the derivative f ′(a) of a function f at x = a .

Euler’s method, on the other hand, relies on

f(a + ∆x)− f(a)
∆x

(6.3)

as an estimate of f ′(a). The modified midpoint method is generally more accurate than Euler’s

method because (6.2) is generally a better estimate of f ′(a) than is (6.3).12

11This method was introduced by Gragg — see the method denoted by A(t; h) at the end of section 5
of Gragg (1965). This method is sometimes referred to as Gragg’s method (see, for example, section 6.3.2 of
Stetter (1973)).

12The error in (6.2) is proportional to (∆x)3 while that in (6.3) is proportional to (∆x)2 . (See, for
example, Chapter 6 of Atkinson (1989).) Hence (6.2) is usually more accurate if ∆x is small.
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Information about the relation between w
˜

M
1 (N) and the true solution w

˜
1 is given by the

following theorem which is a consequence of Theorem 6.3.1 in Stetter (1973). (See also section

5 of Gragg (1965) where this result was first proved.)

Theorem 6.1. (Gragg) Consider a fixed initial value problem as in (5.1) above with true

solution w
˜

1 . Suppose the function q
˜
(w
˜
, u) is infinitely differentiable13 and satisfies a Lipschitz

condition. Then there are constant vectors d
˜
1, d

˜
2, . . . such that, for all even integers N , and

for all integers J > 1,

w
˜

M
1 (N) = w

˜
1 + d

˜
1

(
1
N

)2

+ d
˜
2

(
1
N

)4

+ · · ·+ d
˜

J

(
1
N

)2J

+ O

(
1

N2J+1

)
.

Here the error between what is calculated, w
˜

M
1 (N), and the true value w

˜
1 , is

d
˜
1

(
1
N

)2

+ d
˜
2

(
1
N

)4

+ d
˜
3

(
1
N

)6

+ . . . .

There is no 1
N term and the dominant term involves

(
1
N

)2 , and so the error is inversely

proportional to N2 . If, for example, N is multiplied by 10, the error will decrease by a factor

of approximately 100 (compared to only 10 for Euler’s method). The fact that the modified

midpoint method is a 1/N2 method while Euler’s is a 1/N method suggests that w
˜

M
1 (N) will

be more accurate than w
˜

E
1 (N). While this is usually the case, it is not guaranteed. (If the

d
˜
’s in Theorem 6.1 are larger than the c

˜
’s in Theorem 5.1 for a particular problem, this may

counteract the decrease from 1/N to 1/N2 for some values of N .)

The table below shows wM
1 (N) for various values of N for the example problems (5.4),

using q(w, u) = 2
√

w .

N 1 2 10 20 100 1000

wM
1 (N) 3.732051 3.892532 3.995037 3.998717 3.999950 3.9999995

It is easy to see that the errors here are approximately inversely proportional to N2 . Notice

also, for example, that wM
1 (2) is considerably more accurate than wE

1 (2).

13The comments made in relation to Theorem 5.1 also apply here.
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The absence of a
(

1
N

)3 term in the series means that extrapolations become more accurate

more quickly. For example, if N is even,

w
˜

M
1 (N) = w

˜
1 +

d
˜
1

N2
+ O

(
1

N4

)
,

w
˜

M
1 (2N) = w

˜
1 +

d
˜
1

(2N)2
+ O

(
1

N4

)

and so

4w
˜

M
1 (2N)− w

˜
M
1 (N) = 3w

˜
1 + O

(
1

N4

)
.

Hence the 2-modified-midpoint-solution Richardson extrapolation

w
˜

M2
1 (N) =

4w
˜

M
1 (2N)− w

˜
M
1 (N)

3

has error inversely proportional to N4 . (Recall that the 2-Euler-solution extrapolation has

error inversely proportional to only N2 .)

A 3-solution extrapolation is also possible and the errors decrease in proportion to 1/N6 .

To see this, note that, if N is even,

w
˜

M (N) = w
˜

1 +
d
˜
1

N2
+

d
˜
2

N4
+ O

(
1

N6

)
,

w
˜

M (2N) = w
˜

1 +
d
˜
1

4N2
+

d
˜
2

16N4
+ O

(
1

N6

)
,

w
˜

M (4N) = w
˜

1 +
d
˜
1

16N2
+

d
˜
2

256N4
+ O

(
1

N6

)

so that

4w
˜

M (2N)− w
˜

M (N) = 3w
˜

1 − 3d
˜
2

4N4
+ O

(
1

N6

)
,

16w
˜

M (4N)− w
˜

M (N) = 15w
˜

1 − 15d
˜
2

16N4
+ O

(
1

N6

)
,

and therefore

4[16w
˜

M (4N)− w
˜

M (N)]− 5[4w
˜

M (2N)− w
˜

M (N)] = 45w
˜

1 + O

(
1

N6

)
.

Hence

w
˜

M3(N) =
4[16w

˜
M (4N)− w

˜
M (N)]− 5[4w

˜
M (2N)− w

˜
M (N)]

45

=
64w

˜
M (4N)− 20w

˜
M (2N) + w

˜
M (N)

45
,
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the 3-modified-midpoint-solution Richardson extrapolation, has error inversely proportional

to N6 . Thus, provided of course that N is sufficiently large so that the 1/N2 and 1/N4

terms contain most of the errors in w
˜

M
1 (N), w

˜
M
1 (2N) and w

˜
M
1 (4N), it is reasonable to expect

w
˜

M3
1 (N) to be a good approximation to w

˜
1 and that errors in it will decrease inversely

proportionally to N6 .

The table below shows some 2-solution and 3-solution extrapolations for the initial value

problem in (5.4) with q(w, u) = 2
√

w .

N 1 2 10 20

wM2
1 (N) 3.946026 3.995951 3.999991 3.9999994

wM3
1 (N) 3.999280 3.999920 3.999999989 3.9999999998

It is easy to check that errors in wM2
1 (N) and wM3

1 (N) here are (very) approximately propor-

tional to 1/N4 and 1/N6 respectively. (Note, however, that the case N = 1 is not covered by

Theorem 6.1.)

As with extrapolations based on Euler’s method, we can only have confidence in w
˜

M3
1 (N)

if the N, 2N and 4N step results are related appropriately. If most of the errors are in the

1/N2 terms then

w
˜

M
1 (N) + w

˜
1 +

d
˜
1

N2
,

w
˜

M
1 (2N) + w

˜
1 +

d
˜
1

4N2
,

w
˜

M
1 (4N) + w

˜
1 +

d
˜
1

16N2

so that

w
˜

M
1 (4N)− w

˜
M
1 (2N) + 3

16N2
+ 1

4
[
w
˜

M
1 (2N)− w

˜
M
1 (N)

]
. (6.4)

This gives a test to apply to see how much confidence to place in the extrapolated result.

Ideally N should be increased until (6.4) holds before extrapolating.
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7. Linear Representations of an Economic Model

A simulation problem is converted to an initial value problem essentially by solving the

system (4.2) of linear equations for dzj

dv (in terms of z
˜

and v ). In applying Euler’s method

(see (5.2)), it is necessary to calculate
dz
˜

dv
and multiply it by h = 1/N . (Recall that v0 = 0

and v1 = 1 when a simulation problem is converted to an initial value problem.) In applying

the modified midpoint method (see (6.1)),
dz
˜

dv
is calculated and multiplied either by h = 1

N

or 2h . In each case, the quantity we multiply by can be thought of as a small change ∆v in

v and we have to calculate
dz
˜

dv
.∆v . This leads naturally to the change linear representation

of the model, discussed in Section 7.1 below. An alternative linear representation, based in

percentage changes or proportional changes, is described in section 7.2. A combination of these

two representations is often best, as described in section 7.3.

7.1 Change Linear Representation of a Model

To obtain the change linear representation of the economic model, begin with (4.2),

multiply each equation by ∆v and then write

dzj

dv
.∆v as ∆zj and

dxk

dv
.∆v as ∆xk.

Thus the change linear representation of the economic model described by (3.1) is

m∑

j=1

∂gi

∂zj
∆zj +

n∑

k=1

∂gi

∂xk
∆xk = 0 (i = 1, . . . , m). (7.1.1)

For a given ∆v, ∆xk can be computed from

∆xk =
dxk

dv
∆v = (bk − ak)∆v.

In (7.1.1), the symbolic expressions for ∂gi

∂zj
, and ∂gi

dxk
involve z

˜
and x

˜
but not v . However,

given v , it is easy to calculate x
˜

from x
˜

= a
˜
+v(b

˜
−a

˜
). Thus, for a given z

˜
and v , the numerical

version of (7.1.1) can be computed and (provided the resulting system is non-singular) these

equations can be solved to find values for the unknowns ∆zj (j = 1, . . . , m). These values can
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then be fed into either the formulae (5.2) for Euler’s method or (6.1) for the modified midpoint

method.14

The equations (7.1.1) have a natural interpretation in terms of the model. If ∂gi

∂zj
and

∂gi

∂xk
are evaluated at some solution (z

˜
, x
˜
) of the model then, for small changes ∆xk in the

exogenous variables xk , the ∆zj ’s are the corresponding small changes in the endogenous

variables zj . Note also that (7.1.1) can be obtained by totally differentiating the left hand side

of each equation in (3.1) and replacing dzj and dxk by ∆zj and ∆xk respectively.15

The change representation (7.1.1) can be combined with either Euler’s method or the

modified midpoint method to give an algorithm for solving the simulation problem (3.3). The

two algorithms are described below.

7.1.1 Euler’s Method for a Simulation Problem, Based on the Change Linear Representa-

tion

Given the simulation problem (3.3), Euler’s method for the equivalent initial value problem

(4.4) leads directly to the following algorithm for solving the simulation problem.

14Many other methods for initial value problems also rely on calculations of
dzj

dv
.∆v and so the change

version linear representation (7.1.1) would be just as useful for them.
15If we totally differentiate each side of

gi(z1, . . . , zm, x1, . . . , xn) = 0,

we obtain

0 = dgi =

m∑
j=1

∂gi

∂zj
dzj +

n∑
k=1

∂gi

∂xk
dxk.
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Algorithm 7.1.1. Let z
˜
(0) = z

˜
0 and x

˜
(0) = a

˜
. For s = 0 to N − 1,

(i) calculate the partial derivatives

∂gi

∂zj
and

∂gi

∂xk
when x

˜
= x

˜
(s), z

˜
= z

˜
(s);

(ii) solve (7.1.1) for ∆zj (j = 1, . . . , m), given

∆xk = (bk − ak)/N for k = 1, . . . , n;

(iii) put

z
˜
(s+1) = z

˜
(s) + ∆z

˜
, x

˜
(s+1) = x

˜
(s) + ∆x

˜

(where ∆z
˜

is the vector with components ∆z1, . . . , ∆zm and ∆x
˜

is the vector with

components ∆x1, . . . , ∆xn ).

Finally let z
˜

E
1 (N) = z

˜
(N) ; this is the Euler estimate of the simulation result z

˜
1 .

Provided the hypotheses of Theorem 5.1 are satisfied,

lim
N→∞

z
˜

E
1 (N) = z

˜
1.

Hence, by taking N large enough, z
˜

E
1 (N) can be made arbitrarily close to z

˜
1 . Richardson ex-

trapolations based on 2 or more Euler solutions can also be used to obtain quicker convergence.

The theory outlined in section 5 gives the properties of these extrapolations.

7.1.2 Modified Midpoint Method for a Simulation, Based on the Change Linear Represen-

tation

Given the simulation problem (3.3), the modified midpoint method for the equivalent

initial value problem (4.4) leads directly to the following algorithm for solving the simulation

problem.
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Algorithm 7.1.2. Let z
˜
(0) = z

˜
0 and x

˜
(0) = a

˜
. Calculate z

˜
(1) and x

˜
(1) as in Algorithm 7.1.1.

For s = 1 to N ,

(i) calculate the partial derivatives ∂gi

∂zj
and ∂gi

∂xk
when x

˜
= x

˜
(s), z

˜
= z

˜
(s) ;

(ii) solve (7.1.1) for ∆zj (j = 1, . . . , n), given ∆xk = (bk − ak)/N for k = 1, . . . , n ;

(iii) if 1 6 s 6 N − 1, put

z
˜
(s+1) = z

˜
(s−1) + 2∆z

˜
, x

˜
(s+1) = x

˜
(s) + ∆x

˜
,

or, if s = N , put

z
˜
(N+1) =

1
2
[z
˜
(N−1) + z

˜
(N) + ∆z

˜
]

where ∆z
˜

and ∆x
˜

are as in (iii) of Algorithm 7.1.1.

Finally let z
˜

M
1 (N) = z

˜
(N+1) ; this is the modified midpoint estimate of the simulation result

z
˜
1 .

Again, provided the hypotheses of Theorem 6.1 are satisfied,

lim
N→∞

z
˜

M
1 (N) = z

˜
1,

and Richardson extrapolations (whose behaviour was discussed in section 6) can be used to

obtain more accurate results.

7.1.3 Data Requirements for the Change Representation

The data requirements are those values needed to calculate the coefficients in the system

of equations (7.1.1) to be solved. Since ∂gi

∂zj
and ∂gi

∂xk
must be evaluated at various points in

terms of x
˜

and z
˜
, the (levels) values of x

˜
and z

˜
are needed at all points. Step (iii) of the

algorithms keeps track of these values. Thus, for each variable zj or xk in the model, it is

necessary to know their values at the initial solution.

Hence the change representation (7.1.1) naturally leads to algorithms which produce

estimates of the values of all these variables at the final solution. They can also easily produce

estimates of the actual change in each endogenous variable (by just adding up the changes at

each step).
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7.2 Percentage (or Proportional) Change Linear Representation of a Model

Consider a fixed (small) change ∆v in v . Then, for any variable w (exogenous or

endogenous), ∆w = dw
dv .∆v represents the corresponding small change in w . Provided w 6= 0,

the corresponding percentage change pw in w is given by

pw =
∆w

w
.100 =

dw
dv .∆v.100

w
.

Indeed ∆w can be recovered from pw via

∆w =
w.pw

100
.

Thus the change representation (7.1.1) becomes

m∑

j=1

∂gi

∂zj
.zj .

pzj

100
+

n∑

k=1

∂gi

∂xk
.xk.

pxk

100
= 0 for i = 1, . . . , m. (7.2.1)

This is the percentage change linear representation of the economic model described in (3.1).

The closely related proportional change linear representation is obtained from (7.2.1) by

omitting the two divisions by 100 and by intepreting pw as the proportional change ∆w
w in w .

In what follows we concentrate on the percentage change representation, but everything said

applies equally well (with the obvious minor changes) to the proportional change representation.

Since ∆w = w.pw
100 , ∆w can be obtained from pw and, provided w 6= 0, pw can be

obtained from ∆w via pw = ∆w.100
w . Thus the change of notation

∆w ↔ w.pw

100

is merely a different way of writing (7.1.1). That is, solutions of (7.1.1) can be recovered from

solutions of (8.1.1) and vice versa. The natural interpretation of ∆zj as the approximate

change in zj resulting from small changes ∆x1, . . . , ∆xn in the exogenous variables means

that pzj can be interpreted as the approximate percentage change in zj resulting from small

percentage changes px1, . . . , pxn in the exogenous variables.
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7.2.1 Data Requirements for the Percentage Change Representation

The percentage change representation has the advantage that its data requirements are

less than those of the change representation described in Section 7.1.3 above.

This is because there are usually many prices P , quantities X and associated dollar

values F related via

F = PX or F − PX = 0. (7.2.2)

Here the relevant function in (3.2) takes the form g(F, P,X) = F − PX , so ∂g
∂F = 1, and

∂g
∂P = −X. Thus the change version of (7.2.2) is

1.∆F −X.∆P − P.∆X = 0

or ∆F = X.∆P + P.∆X. (7.2.3)

The percentage change version is

1.F.
pF

100
−X.P.

pP

100
− P.X.

pX

100
= 0.

This can be simplified by replacing each occurrence of PX by F and then multiplying both

sides by 100/F to obtain successively

F

100
.pF − F

100
.pP − F

100
.pX = 0,

pF − pP − pX = 0, or pF = pP + pX. (7.2.4)

Note that the values of P and X are not required in (7.2.4) but they are needed for (7.2.3).

Indeed the values of P and X can be eliminated from the percentage change version of

other equations involving P and X . For example, a market clearing condition for commodities

may be expressed as

X = X1 + X2 + X3.

The change version is

∆X = ∆X1 + ∆X2 + ∆X3,

and so the percentage change version is

X.pX = X1.pX1 + X2.pX2 + X3.pX3.
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Now, if both sides of this are multiplied by a relevant price P , this becomes

PX.pX = (PX1).pX1 + (PX2).pX2 + (PX3).pX3

or

F.pX = F1.pX1 + F2.pX2 + F3.pX3. (7.2.5)

Then, provided the values of F, F1, F2, F3 at this price are stored on the data base,16 the values

of the X ’s (and of P ) are not needed.

This is a major advantage for the percentage change representation in comparison with

the change representation. Provided dollar values (often at different prices) are held on the

data base, individual prices and quantities are not needed.

Equally importantly, since

pF = pP + pX when F = PX,

it is never necessary to have variables pF explicitly in the percentage change representation.

(Simply replace pF by pP + pX any time pF occurs.) The resulting reduction in the number

of variables in the system of numerical equations (based on 7.2.1) to be solved speeds up actual

calculations based on the percentage change representation.

Accordingly, in practice the percentage change representation (7.2.1) is written in such a

way that
the values of dollar values F are held on the data base,

but not of prices P and quantities X



 (7.2.6)

and
variables pP and pX occur explicitly,

but not pF.



 (7.2.7)

Following (7.2.6) approximately halves the data requirements (when compared to the change

version) while (7.2.7) reduces by approximately one-third the number of unknowns in the

numerical equations to be solved.

16The term “data base” is used here to describe the data requirements of the method in question — that
is, the set of values needed to calculate the coefficients of the system (7.2.1) of linear equations to be solved.
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7.2.2 Update Formulae and Reporting Results

If a variable W is increased by the small amount ∆W then

newW = oldW + ∆W.

This is the way data is “updated” after each step in following Euler’s method or the modified

midpoint method based on the change representation. For the percentage change representation

this becomes

newW = oldW +
(oldW ).pW

100

= oldW

(
1 +

pW

100

)
.

If F = PX , note that, since pF = pP + pX , this becomes

newF = oldF

(
1 +

pP + pX

100

)
.

With the percentage change representation, it is most natural to report percentage changes

in zj (from its initial value in z
˜
0 to its final value in z

˜
1 ). It is also natural and easy to calculate

and report final levels values of all data in the data base. After each step of the algorithm,

data is updated using the update formulae discussed above. Thus the natural output from a

simulation based on the percentage change representation of a model is

(a) the percentage changes in all endogenous variables as a result of the shocks, and

(b) the updated data base – that is, the (estimated) data values corresponding to the exoge-

nous variables x
˜

= b
˜
.

When using the percentage change representation it is also most natural to specify the shocks

(that is, movement of exogenous variables x
˜

from a
˜

to b
˜
) as percentage changes

pxk =
(bk − ak)

ak
(provided ak 6= 0).
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7.2.3 Euler’s Method Based on the Percentage Change Representation

Given the simulation problem (3.3) and a percentage change representation (7.2.1) for

the model, as modified by use of (7.2.6) and (7.2.7), Euler’s method leads to the following

algorithm.

Algorithm 7.2.1. Let z
˜
(0) = z

˜
0 and x

˜
(0) = a

˜
.

For s = 0 to N − 1,

(i) calculate the coefficients of (7.2.1) (as modified using appropriate versions of (7.2.6) and

(7.2.7)) at x
˜

= x
˜
(s), z

˜
= z

˜
(s) ;

(ii) solve (7.2.1) as modified for pzj (j = 1, . . .m) given

pxk =
[(bk − ak)/N ].100
ak + s

N (bk − ak)
;

(iii) put x
˜
(s+1) = a

˜
+ s+1

N (b
˜
− a

˜
) and

(z
˜
(s+1))j = (z

˜
(s))j +

pzj .(z
˜
(s))j

100
if 1 6 j 6 m.

(Here (z
˜
(s))j denotes the j th component of the vector z

˜
(s).)

Then z
˜
(N) is z

˜
E
1 (N).

7.2.4 Modified Midpoint Method Based on the Percentage Change Representation

Given the simulation problem (3.3) and a percentage change representation (7.2.1) for the

model, as modified by use of (7.2.6) and (7.2.7), the modified midpoint method leads to the

following algorithm.

Algorithm 7.2.2. Let z
˜
(0) = z

˜
0 and x

˜
(0) = a

˜
. Calculate z

˜
(1) and x

˜
(1) as in Algorithm 7.2.1.

For s = 1 to N ,

(i) calculate the coefficients of (7.2.1) (as modified using the appropriate versions of (7.2.6)

and (7.2.7)) at x
˜

= x
˜
(s), z

˜
= z

˜
(s) ;
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(ii) solve (7.2.1) as modified for pzj (j = 1, . . . , m) given

pxk =
[(bk − ak)/N ].100
ak + s

N (bk − ak)
;

(iii) if 1 6 s 6 N − 1, put x
˜
(s+1) = a

˜
+ s+1

N (b
˜
− a

˜
) and

(z
˜
(s+1))j = (z

˜
(s−1))j +

2.pzj .(z
˜
(s))j

100
if 1 6 j 6 m,

or, if s = N , put

(z
˜
(N+1))j =

1
2

[
(z
˜
(N−1))j + (z

˜
(N))j +

pzj .(z
˜
(N))j

100

]
if 1 6 j 6 m.

Then z
˜
(N+1) is z

˜
M
1 (N).

33



7.3 Mixed Percentage Change/Change Representation

Introduction of a percentage change variable pW is inappropriate if W can be zero. Thus

quantities such as the balance of trade or tax rates (which can be positive, negative or zero)

should never be replaced by their percentage changes; rather their change form ∆W should

be left in the linear representation. For most other variables it is usually best (for the reasons

outlined in section 7.2.1) to include their percentage change (and not their actual change) in

the linear representation used. Thus, in practice, it is best to use a mixed representation which

includes the percentage change pW of most variables and the change ∆W of a few variables.

Consider, for example, the levels equation

B = E −M (7.3.1)

where E and M are respectively the foreign currency values of exports and imports and B is

the trade balance. Because E and M are never zero but B can be zero, positive or negative,

it is best to use pE, pM and ∆B as variables. The linearized representation of (7.3.1) is thus

∆B = ∆E −∆M

=
E.pE

100
− M.pM

100
=

1
100

(E.pE −M.pM).

A second example involving a tax may help to tie together several points discussed in

section 7.2 above, including (7.2.6) and (7.2.7). Consider a quantity X which has two relevant

prices P0 , the basic price, and P1 , the price including an ad valorem tax levied at the fractional

rate T , so that

P1 = P0(1 + T ). (7.3.2)

Following (7.2.6) the data base should contain F0 = P0X and F1 = P1X (not P0, P1, X

or T ). Following (7.2.7), and noting that ∆T rather than pT should appear as a variable,

the variables that should appear explicitly in the linear representation are pX, pP0 and ∆T .

Including pP1 explicitly is optional. If it is included, its connection to pP0, pX and ∆T can

be seen by totally differentiating (7.3.2); this gives

∆P1 = (1 + T ).∆P0 + P0.∆T
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so that

P1.pP1 = (1 + T ).P0.pP0 + P0.∆T.100

which, after multiplication of both sides by X , gives

F1.pP1 = F1.pP0 + 100F0.∆T. (7.3.3)

This is the appropriate linear representation of (7.3.2). However the variable pP1 may not be

of much interest and then it (and equation (7.3.3)) need not appear explicitly in the linear

representation of the model. In this case, the update formula for F1 is of some interest. The

linear representation of

F1 = F0(1 + T )

is

∆F1 = F0.∆T + (1 + T ).∆F0

= F0.∆T + (1 + T ).
F0.pF0

100

= F0.∆T + F1

(
pP0 + pX

100

)
.

Thus

newF1 = oldF1 + F0.∆T + oldF1

(
pP0 + pX

100

)

= oldF1

(
1 +

pP0 + pX

100

)
+ F0.∆T (7.3.4)

is the update formula for F1 in terms of just the variables pP0, pX and ∆T . (Of course if the

variable pP1 is also explicitly in the system, the update can also be accomplished via

newF1 = oldF1

(
1 +

pP1 + pX

100

)

which, from (7.3.3), is identical to (7.3.4).)
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8. Topics for Further Investigation

This paper has set out the theory for converting a simulation problem to an initial

value problem, and raised the possibility of applying different initial-value-problem methods

(including, but not restricted to, Euler’s method and the modified midpoint method) to

simulation problems. This leaves many interesting and important questions unanswered, some

of which are discussed briefly below.

1. Achievable accuracy. Although these methods can theoretically calculate solutions to

any desired accuracy, in practice achievable accuracy is limited by machine precision and

accumulation of rounding errors. What guidance can be given to determine the actual

accuracy that can be achieved, and how many steps might be needed? (As the number of

steps increases, results are theoretically more accurate. But, for a very large number of

steps, rounding errors can more than offset this increase in accuracy – see, for example,

section 1.3.4 of Gear (1971).)

2. Which method? The modified midpoint method is theoretically much more efficient than

Euler’s. In practice, what does this mean for applied general equilibrium models? Are

there other methods for initial value problems which may give more efficient methods

for solving simulations? (For the simulation problem, the cost of each evaluation of

the function q
˜
(w
˜
, u) in (4.1) is very high: this is because it requires calculation of

the coefficients of a potentially large system of linear equations and then their solution.

Accordingly, only methods with relatively small numbers of function evaluations are likely

to be attractive.)

3. Extrapolation methods. There are several other possibilities besides the Richardson

extrapolation described in this paper. Other possibilities are to use different meshes

(rather than the 1, 2, 22, 23, . . . mesh used by Richardson) or to use rational function

extrapolation instead of the polynomials used in Richardson. (See, for example, Chapter

6 of Gear (1971) or Chapter 15 of Press et al. (1986).) Which is best for simulation

problems?
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4. Are the methods robust? That is, do the methods guarantee convergence in all or most

circumstances (without user intervention)? Firstly this asks when the matrix A(z
˜
, v)

in (4.3) is invertible. This requires theoretical investigation (how is the invertibility of

A(z
˜
, v) related to the specification of a valid exogenous/endogenous split (or closure) for

the model?) Secondly this asks when the hypotheses of Theorems 5.1 and 6.1, or a suitable

modification of these,17 hold. In particular, this requires theoretical investigation of the

properties of
dz
˜

dv
, as calculated by solving (4.3), as a function of z

˜
and v . In some cases,

or for some models and closures, it may be possible to give a theoretical guarantee that

the conclusions of Theorem 5.1 and 6.1 apply for the simulation problem converted to an

initial value problem. For some models, such a guarantee may not be available a priori;

in such cases, section 35.4 of Dixon et al (1982) is highly relevant. Information on these

questions can also be obtained “experimentally” by applying the methods to a wide class

of models and closures. Already there is plenty of such experimental evidence that the

invertibility of A(z
˜
, v) is common (if not universal), and the preliminary information on

convergence and extrapolation is positive. Thus there are reasonable grounds for hoping

that these methods will prove very robust in practice.

5. Stability. Methods for initial value problems have different stability properties. How

do these affect applications to simulation problems? For example, some methods are

only weakly stable which means that small errors due to rounding or in early steps can

introduce so-called parasitic solutions which can eventually dominate the true solution.

(See, for example, Dahlquist and Björck (1974), Examples 8.3.1 and 8.3.8 or section 6.4

of Atkinson (1989).) This is one reason for preferring the modified midpoint method to

the explicit (or unmodified) midpoint method (see, for example, section 8.3.1 of Dalquist

and Björck (1974)).

6. Variable step size. In the discussion in sections 5 and 6, N is fixed in advance and the

interval [u0, u1] is divided into N equal subintervals. This amounts to taking a fixed step

size equal to (u1 − u0)/N . However methods which vary the step size can achieve great

17As indicated earlier, the hypotheses of these theorems are sufficient conditions; they are not necessary.
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efficiency by taking larger step sizes when the resulting errors are small and only taking

small steps when larger ones would lead to unacceptably large errors (see, for example,

Chapter 15 of Press et al. (1986)). Does varying step size have much to offer simulation

applications?

One way to investigate these questions is to apply different methods to a range of applied

general equilibrium models. The general-purpose economic modelling software GEMPACK (see

Pearson (1988) and Codsi and Pearson (1988)) currently uses Euler’s method with Richardson

extrapolation. A prototype offering the modified midpoint method as an alternative has been

used on several models. The preliminary results suggest that, in practice, this may prove

considerably more efficient than Euler’s method in most (if not all) cases. A striking example

is the percentage change in US aggregate utility in the simulation described in Section V of

Hertel et al. (1991): the value given by the 2-step modified midpoint method is more accurate

than the 40-step Euler solution.18

18As discussed in Hertel et al. (1991), calculating this value is a good test for methods based on a
linearized representation since the Johansen solution even has the sign incorrect. The correct value is −0.03621 ,
the Johansen value is +0.08280 , the 40-step Euler gives −0.03339 and the 2-step modified midpoint gives
−0.03448 .
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