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ABSTRACT

This paper offers a critical comparison between the
North American levels school of applied general
equilibrium modelling and the Norwegian/Australian
school of linearizers. The paper develops both the levels
and linearized representations of a neoclassical,
multiregion trade model. This development is used to
focus attention on similarities and differences between
the two schools. The main conclusions are as follows.

(i) The method used to solve applied general equilibrium
models is not really the issue — the solution method
used has become short-hand for a host of cultural
differences reflecting the orientation of the two groups.

(ii) Levels or linearized versions of models are equally valid
representations. Either representation is a natural
starting point for obtaining accurate solutions of the

model.

(iii)  Linearized versions often aid transparency in explaining
the mechanisms at work in a model.

(iv) In view of recent developments with the GEMPACK
software suite, it is no longer necessary for linearizers
to settle for solutions containing linearization errors.

(v) The two schools have a great deal in common and both
would benefit from greater cooperation.
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 Levels Schools of Applied General Equilibrium Modelling

by
Thomas W. HERTEL J. Mark HORRIDGE
University of Melbourne Centre of Policy Studies
and Purdue University 4 Monash University
an
K.R. PEARSON

La Trobe University and University of Melbourne
L Introduction

Applied general equilibrium analysts have often seemed obsessed with
computational issues and solution algorithms. This usually strikes the
uninitiated as rather peculiar, since economists normally leave these issues to
specialists in algorithm development. However, the intellectual origins of
research in applied general equilibrium are deeply rooted in computational
concerns. The first problem, and one which preoccupied many welfare
economists during the first half of this century, was whether or not it was
actually feasible to perform a centralized computation of the Pareto optimal
allocation of an economy's resources (Whalley (1986), pp. 30-34). Gradually
attention shifted from the centralized "planner's problem" to the
decentralized equilibrium problem. This transition culminated in Johansen's
implementation, in the late 1950s, of the first applied general equilibrium
(AGE} model. His innovation was to writé the equations down in their
linearized form, thus permitting the model to be solved by inverting a single
matrix. The equilibrium problem which Johansen solved is most
appropriately viewed as a local perturbation to an initial equilibrium position.
This solution was, of course, only exact for an infinitesimal change in the
exogenous variables. However, given the uncertainty associated with many
model parameters, this method of solution was deemed appropriate for small
changes. since linearization errors were likely to be less significant than the
error bounds associated with parametric uncertainty.

Several long-lived research programs have evolved, based on what is
often termed the "Johansen approach" to AGE modelling. Most notable are
the efforts which followed up on Johansen's initial contribution in Norway
(see Schreiner and Larson for an overview), and the work initiated by the
Impact Project in Australia (Dixon ef al (1982); see also Powell and Lawson
(1986)). Apart from the fact that these models are written down as systems
of linearized equations, it cannot generally be said that they share any
attributes which distinguish them uniquely from other types of AGE analysis.
Indeed. the range of model types and the variety of applications of linearized
AGE analysis is probably representative of the breadth of the field as a whole.
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The obvious drawback of the linearized approach to AGE analysis is the
lingering question: How small is a small perturbation? Alternatively: How
rapidly does the local approximation deteriorate as one moves away from the
initial equilibrium? Periodically, researchers have attempted to address this
question by solving a given perturbation to a particular model with a particular
set of parameters via both the linearized the non-linear routes. (The
numerous qualifiers in the previous sentence indicate the difficulty of
generalizing from such experience.) Examples include Dixon et al. (1982),
and Bovenberg and Keller {1981). Judging from the subsequent work of
these authors, they seem to have concluded that the approximation errors
were of an acceptable magnitude for many applications.

An alternative "school" of AGE modelling emerged in the late 1960s
motivated by the algorithmic work of Scarf (1973) which provided a robust
method for solving non-linear general equilibrium problems "in the levels”, as
distinct from solving a linearized represention for proportional changes in
endogenous variables. Due to the specificity of these early non-linear solution
algorithms, applications tended to be limited to those working with Scarf, or
with his students (most notably Shoven and Whalley). Eventually, however,
general-purpose soffware evolved, based on advances in the operations
research field, and it is now relatively routine to solve nonlinear AGE models.}

Given the fact that most large-scale modelling work tends to become
somewhat competitive, and also that, until recently, obtaining a non-linear
general equilibrium solution was a non-trivial exercise, it is perhaps not
surprising that something of a split developed between the linearization and
levels schools of modelling. Typical arguments run as follows. Adherents of
the former school will often argue that information about behavioural
elasticities is only locally valid. Also, since most policy changes are only
marginal, a local perturbution is adequate. Besides, the "linearizers” argue,
the model itself is much simpler to interpret when expressed in elasticity

form. The non-linear school quickly counters: while it may be true that most
actual policy reforms are marginal, the linearizers often look at non-marginal
hypothetical changes. Furthermore, despite parametric uncertainty, if the
model's equations (a production function, for example) do not hold at the new
equilibrium, how can one possibly do proper welfare analysis?

High-minded arguments aside, purely practical considerations have
meant that most AGE modellers perpetuate the method which they
themselves first learned. Since the form in which an AGE model is writien is
its most visible manifestation, the linear versus levels labels quickly became a
proxy for other issues, such as preferred closure of the model, etc. To many
outsiders, this schism between the two schools of AGE modelling appeared
quite irrelevant, being dwarfed by concerns about the vast number of
parameters required, and the validity of assuming a simulianeous equilibrium
in all markets. :

1 GAMS (Brooks, Kendrick and Meeraus, 1988) and MPS/GE (Rutherford, 1989) are
two popular alternatives. The latter is specifically designed for AGE models,
while the former is not.
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We believe that the linear/non-linear split is a red herring which has
hindered. progress in the field of AGE-based research. This paper represents
one attempt to help bridge the illusory gap between these two schools of
modelling. We do so by taking a neoclassical, multiregion trade model and
developing both its levels and linearized forms. Along the way a number of
interesting insights about the two alternative ways of expressing an AGE
model crop up. We then demonstrate that by treating the linearized form as a
system of differential equations to be numerically integrated, the two models,
when solved, will produce the same new equilibrium. We conclude with a
discussion of the pros and cons of each approach.

II. An Overview of the Model

The model employed in this paper is a relatively simple, multiregion
trade model based on perfectly competitive behaviour. A further
simplification involves the use of a single, representative household which
absorbs all income in each region., and which generates all final demands.
Primary factors of production are in fixed supply at both the global and
regional levels. Thus new investment does not come "on line" over the course
of the simulation. Each household purchases a portfolio of capital goods in
order to satisfy its demand for savings. If these are foreign capital goods,
then the transaction represents a capital outflow and conversely. All
international transactions other than trade in merchandise, non-factor
service trade, and international investment, are treated as transfer payments
among households. Thus we abstract from the fact that each household’s
initial factor income may depend on returns to foreign assets. The latfer

- possibility could be easily accommodated, given the availability of data on the
pattern of international cross-ownership of assets.

Figure 1 provides an overview of the basic structure of each regional
cconomy, as represented in the model. Starting at the bottom of this figure,
we see that domestic industries compete for a common primary factor
endowinent in order to supply domestic and foreign markets with tradeable
producer goods. Producer goods are absorbed by the so-called "margins
Industries”, which assemble products from different origins and subsequently
provide domestic consumers with a nontradeable consumer good. Note that
this specification permits us to identify gross trade flows, since products
leaving the country differ from similar products entering the country. In
other words this is an "Armington” type of trade model.

Note also that all goods are treated in a symmetric fashion in Figure 1.
Thus, in the case of capital goods, households are viewed as purchasing a
portfolio of assets from the appropriate margins industry (e.g., banking and
financial services). The composition of this portfolio depends on the relative
attractiveness of domestic and foreign capital goods. Finally, (ransfers are
handled by endowing the recipient region with a primary factor: “"goodwill”,
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and creating a demand for this factor in the donor region. In this way, these
transfers are also translated into market transactions.?

Table 1 lays out the relevant notation for this model. Note that the price
of each commodity may vary across all uses, so household prices are distinct
from firm prices, which in turn may differ from domestic market prices. In
the case of tradeable commodities, the domestic market price of 1 in region

IMPORTS

REGIONAL EXPENDITURE

MARGINS INDUSTRIES

/NN /NN

MARKETS FOR TRADEABLE PRODUCER GOODS

EXPORTS
——

DOMESTIC INDUSTRIES
A

PRIMARY FACTOR ENDOWMENT
"INDUSTRIES"

Figure 1: An overview of the model

2 This approach to handling transfers follows Rutherford (1989). Its main virtue is
that it simplifies the model structure, as the pattern of transfers is provided by
the data-base, rather than as modifications to the model's equations.
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Table 1
Notation Employed in the Model Exposition*
Variables Description
Prices: Pyy World market price of commodity i (ie T)

P;Ii Domestic price of i in region r

Pll:ﬁ Househoild price ofiinr

Pg ij Supply price of i received by industry jinr

T
PDi_j Demand (purchase) price of i paid by jinr

Taxes: Try = Pyyi/Puwi
THi = Pin/Purs
Tgij = Pgy/Pu;
| TI]_:)ij = Phy/Pu;
Quantities: Q;H
G5y
oy
Values: V}rﬁ_ = P}rﬁ QII:Ii

rA
Vsij = Psy Usy

rA r
Vbyj = Ppy Opj;

Other Variables: 7~

YI’
T
Uj
UI’
Sets: T
NT
C
NC
EI
EC

Ad valorem border intervention on iin r ie T)

Power of tax on i consumed by households in
region r

Power of tax on sales of i by industryjinr

Power of tax on purchases ofibyjinr

Demand for comimodity i by households in region r

Supply of i by industry jinr

Demand foribyjinr

Household expenditures on commodity i in region
r (valued at agent's prices)

Revenues associated with sale of i by industry jin r

" (valued at agent's prices)

Producer expenditures on i by j in r (valued at
agent's prices)

Value of a transaction in region r at agent's prices
Value of a transaction in region r at market prices

at domestic market prices (P;I Q)
Value of a transaction in region r at world market

prices (Py Q)

Activity level of industry j in region r
Households' disposable income in region r
Subutility associated with purchases of i by
region r

Aggregate utility in region r

Set of all tradeable commodities
Nontradeable commodities

Consumption commodities
Nonconsumption commodities
Endowment industries

Endowment commodities

* We adopt certain conv

entions to simplify notation used for quantification in this

table and for quantification and summations in the equations of this paper.

Unless otherwise indic

industries and indic

aled, index r ranges over all regions, index j ranges over all
es i and k range over all commodities; ‘this applies to

quantifiers (where "V" means “for all"} and sums.
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by {P;ﬁ) will also diverge from the world market price of i (Pyr;) i the
presence of border interventions. All interventions are characterized in ad
valorern equivalent form, and there is a complete vector of such taxes for each
agent in each region. Finally, input-output separability in production is
assumed, so that supplies (Q.) may be uniquely distinguished from demands
(@Qp).
Il. A Detailed Exposition of the Model in Both Nonlinear
and Linearized Forms

This section lays out the detailed structure of the trade model, both in
its levels and linearized® forms. Along the way we will discuss economically
relevant differences between the two formulations and consider the ease with
which each may be implemented and interpreted. We begin with the
accounting equations. These are what define the model as general
equilibrium in nature. We then turn to the behavioural equations which
describe how each agent's market transactions are determined.

Accounting Conditions

- Market clearing: There are two types of market clearing conditions in the

model. The first set applies to commodities i which are not traded across
regional borders {i € NT). In the model described above, this set includes
the primary factor endowments, and consumer goods which are supplied by
the domestic margins industries. These may be written as follows:

¥ Qgij =3 Gpy + O vr;Vie NT . (1)
J i

This equation is very direct, intuitive and easy to implement. Indeed all of
the accounting conditions are most naturally expressed in terms of the levels

of variables.
In order to "linearize" equation (1), we first totally differentiate it as
follows:
> dQg;; = 2 dQpy + dQg;
J ]
Now muliiply each element by Q/Q such that the differential pertubations are

converted into quantity-weighted proportional changes, denoted here by the-
use of lower case letters (i.e., q = dQ/Q)

3 Various linearizations are possible. In this paper we use the version in which
variables are interpreted as percentage {or proportional} changes. A linearized
representation based in actual changes is also possible (but less useful, in our

view).
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T r r r r T

2. Osij dsij = b Opij 9py * 9Hi 9Hi

J ]
Mutltiplying both sides of this equation by the market price of commodity i in
r, we can now write the market clearing condition in terms of values, as
opposed to quantities. This will be the form of the nontradeable market
clearing conditions in the linearized model; hence the asterisk above the
equation number.

™ r M T )
ZVSU Sl_] ZVDlj qDl_} V;—Ii 9y ¥ 1 ¥VieNT (1%)

The fact that market clearing conditions may be expressed in terms of
appropriately normalized values (which are used to weight proportional
changes in quantities) has important implications for implementations based
on a linearized representations. In particular, it will never be necessary to
cornpute the level of quantities or prices in the process of solving the
nonlinear general equilibrium problem.? The benchmark equilibrium data
set is most naturaily supplied in value terms anyway. Furthermore, this has
certain advantages when it comes to solving the model via its linearized
representation, as will be discussed below. Of course, in order to implement
the process of iteration and extrapolation needed to obtain accurate solutions
of the nonlinear problem we will require the initial data-base to be
systematically updated. But this may also be done without reference to the

level of quantities or prices, since:
av/v = d(PQ)/(PQ) =p + q. (F1)

In sum, even though the linearized model is expressed in terms of
proportional changes in prices and quantities, the underlying levels of those
variables will never be computed. This has implications for model calibration
as well, which will also be discussed below.

The market clearing condition for the tradeable commodities, expressed
in levels, is given by equation (2). This is identical to (1), only now it is global
supplies which must equal global demands. Note that this condition is only
imposed for (N-1} of the N tradeable commodities. Equilibrium in the Nth
market follows by virtue of Walras' Law.>

4 ° This is an advantage which is peculiar to proportional or percentage change
linearized representations. A linearization based on actual changes would need
to compute changes in levels of prices and quantities.

5 By including a "dummy” equation which computes excess demand in the omitted
market one obtains a valuable consistency check on the model. However, in the
linearized representation (2*) the form of this omitted equation becomes a
relevant consideration. At first sight, it seems natural to add a variable set equal
to the difference between the two sides of (2*) for the Nth commodity.
Unfortunately, since in some simulations the two values whose difference is
being calculated are moderately large, this can lead to substantial loss of
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22 Osy; -2 Opy + p e i=1, ., ,N-le T (2)
I i J r

j r

The linearized form of (2) is likewise analogous to (1*), with the
important exception that now one must also sum over regions. In order to
place all quantity changes on a common basis, the value weights must be

evaluated at the common world price for commodity i.

D s‘i}’ dsy = 2 ZVBV; dpy f Vi gy i=1...N-leT (2%
i ]

T by r

Price Linkage: The price linkage equations in this model are very straight-
forward, as all interventions are expressed in ad valorem equivalent form.

They are given in (3) and (3%):

Pp; = Ty Pwi VrvieT
Pry; = Tr Pa v ori
Pgi_j = Tgij P vV r.ij (3)
P}raij = Tlrjij P_i;[i v or,j, i
i:’ll\F/Ii=t'l1n*i + Dwi VrivieT
P]I-h-"tfr-li + Pmi Y ori
Psj = tgij + P Vo1, j (3%)
: vV or,ij

r 4T
Ppij = py  + P

Zero Profits: Since we assume input-output separability, industries never
alter the set of commodities for which they are net suppliers. Thus the zero
profits condition (which does not apply to the endowment industries)

becomes:

accuracy (so-called "subtractive cancellation”), which can cause the extrapolated
results to be unreliable. This problem is overcome by adding two variables, one
for each side of (2%), and comparing them. In the application below, we found
excellent agreement between the two values obtained.
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I r T T )
Z PSij QSij *Z PDij QDiJ- Vr;Vje El (4)

1 1

The linearized form of (4) is most commonly expressed in terms of rev-
iy A A TA A
enue and cost shares: Sgij = Vgg /2 ngj . and Spyj = er;)ij / Z Dkj

k k
This yields the following restriction on price changes (quantity changes
drop out due to the envelope theorem):

r r T T
ZSSij Psij -2 Spij Py
i 1

Note that since Z i Vé‘% = Z i VII)?“J [by equation (4]], it is also possible to
express the linearized zero profit condition directly in terms of values at

agent's prices:

AT TA r _
i i

Regional Income: The final accounting condition in the model permits us to

calculate regional (household) income as the sum of payments to primary

factor endowments (i e EC), supplied by the endowment "industries” {j € EI},

and taxes, net of subsidies. Note that the definition of the tax rates in (3]

‘- means that tax revenue for a given transaction will be positive if Tpy > L
T I . r 5

Ty > 1, Tgij < 1, Ty > 1 for imports and Ty < 1 in the case of exports.

Thus we have:

I I T T r '3 I
Yi= Z 2 Psy Osy + 2 (T = 1) Phiy Oy + 2 20 (1 - Tgij} Pyi Osyj
jeEI i€EC i i '

I (Trmj - 1) Py ngij + 2 (T - D Py [Of; + 2, {er)ij - Qgij”

joi ie T J
v o r (B)

From the final term, it is clear that when T’i‘i > 1, the border intervention in
question will raise revenue when the term in brackets [ » ] is positive, i.e.,
when the region is a net importer of commodity i. Conversely a domestic
price in excess of the world price implies a net subsidy when domestic
supply exceeds demand.8

6 Use of the term "net importer” does not preclude the possibility of a "gross trader”
model in which products are differentiated by origin. In such a framework Qg



10 T.W. Hertel, J.M. Horridge and K.R. Pearson

Linearization of (5} is facilitated by first expressing this equation in
terms of a sum of differenices in the value variables, evaluated at appropriate
prices. This gives the following expression, which will be denoted (59

YT = Z ZVSlj +Z {VI{I? - VIIZII\}'/I] +Z Z [VEI;/JF - Vglj Z Z (VDlJ B
i i

jeEl ieEC

Vpij)

+ Z [VIHA;I_V;—-IY] +Z [WSZ]I Dl_] (VrW VSI_] :| (57

ieT i

Given the complexity of this expression for regional income, the notation has
been carefully selected in order to facilitate easy checking. For example, all
subscripts within a given summation must be the same. This is because net
lax revenue is always found by examining differences in the value of a given
agent’'s transaction at prices inclusive and exclusive of the tax in question. In
the case of domestic taxes, this will be the difference between the value at
agent's prices (superscript A) and that at domestic market prices (M). For
trade taxes we will look at the difference between V'™ and VIW,

Having reexpressed (5) as (5'), linearization proceeds in a straight-
forward manner, analogous to the earlier accounting conditions. The only
difference is that now we must take into account both changes in prices and
quantities. Since the value differences in (5') are evaluated at different
prices, their rate of change will also be distinguished in this manner. The
rates of change in quantities behind each of these value pairs must be the
same, since both refer to the same transaction -— simply viewed from
different sides of the policy wedge. Total differentiation of (5’ and
reexpression in terms of proportional changes yields (5*): '

M _r T
Yy Z E Sl_} (pSg + ng +Z [VH1(pH1 + qH1) Vili (P + dap!]
jeElI ieEC i

A, T T
“"Z Z Vgl_] {le_] + ng} Vgij (Psyj * dsyj)!
TA | T T ™ 1 T
+Z Z [vDij (pDiJ- + quj) ~ Vpi; (pMij + quj]]
i i
M 1 r W T
- X (Vi gt ah) — Vi s + g

ie T
(equation continues next page}

will simply be a very sparse matrix, such that domestic producers never supply
imported commodities.
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W
+ r\é‘fj’ (Bw; + Gy) = Viy (Ppy + G5y)] | ) e (5%)

Behavioural Equations

Whereas the accounting conditions are more naturally expressed in
terms of levels, the opposite is true for the behavioural equations. They are
more naturally expressed in terms of elasticities, which in turn call for a
representation in terms of proportional changes. Consequently, in this
section we will sometimes proceed by first considering the linearized
equation, thereupon turning to the levels form of the behavioural relationship
in question. The latter relationships, as well as the formmuilae defining the
elasticities in the linearized equations, will depend critically on the form of
the function chosen to represent technology or preferences. As such it is not
possible to proceed in full generality. However, we have chosen what we
believe to be an interesting mix of functional forms for different parts of the
model. In particular, we consider both explicit and implicit functional forms
to highlight some important differences between the linearized and levels

representations of the model.

Demands: The proportional change in industry demands in the model are
expressed as conditional derived demand equations:

q}li-)ij =2 nlrjikj ngj + er vr.ji . (6%)
k

where zr\S\upAL(r,jJ is the proportional change in the activity level of industry
J» and np;;c 18 the derived demand elasticity, conditional on a given activity
level. This equation follows directly as a consequence of constant returns to
scale. It does not vary with the choice of functional form, although the
formula for calculating n;,; as a function of prices and technology parameters
obviously does vary w1tJh the form of the cost function chosen. This
invariance, along with the simplicity and ease of interpreting (6* is one of
the great attractions of the linearized form of this model.

In this model, all cost functions er[.) are of the constant elasticity of
substitution (CES) variety, so that:

Y
r,. T T T r Py |1/py _r : .
Cj {PD_]‘ZJ}: ZBDIJ [PDU} ] L Z_] s vVi.r
J

where PD is the vector of input prices facing j in r. The B .'s are scale
parameters and 0 (p i +1) is the elasticity of substitution 1n productlon
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This functional form is standard "workhorse" of CGE models. It gives rise to
the following conditional demand equation:

T T
—-G: G; (o

I
(3, =1
Opyj = Bpyj (Ppy) GJ/[ZBEkj (Phyy) J17 7 ! z vrjio (6
K

These demand equations in {6) are obviously more complex than (6*).
Despite this complexity, the formulae for the derived demand elasticities are
quite straightforward. Indeed, it was via this route that the CES was initially
invented {Arrow et al.. (1961)):

n;;lkj = (Sgkj— 851 cr vr,j,i,k - (F2)
where SD1 is the cost share of input i in mdustry j. region r, as defined
previously, and 6; = 1, §; = O fori= k.

Industry Supplies: While only some industries in the model are truly
multiproduct, they will be universaily treated as such. (When there is only
one product produced, then the following supply equation degenerates to an
identity.) Once again, we begin with the linearized form of this behavioural

eguatior::

qSlJ Zﬂsmj Pskj * % vr,j,i. {7a*)

k

Here the ngik- are activity-level constant, supply elasticities. Thus they
ernbody only a transformation effect.

These supply equations may be derived from a maximum revenue
function: R(PS, 7). Since we wish to have somewhat greater flexibility in
specifying supply elasticities than is afforded by a Constant Elasticity of
Transformation (CET) revenue function, we have chosen a more general
functional formm — the Constant Difference Elasticity {CDE) revenue function
(Hanoch {1975); see also Hertel et al.. (1991)). This embodies the CET as a
special case. Furthermore, since the CDE is an implicit function, it provides
us with an opportunity to highlight some substantive differences between the
linearized and levels formulations.

The CDE implicit maximum revenue function, with constant returns to
scale imposed, is wriften as follows:

Ct T, U- .
ZBSU Sij [PSU/R(PSJ 7) “SU) = 1 vr, .

The Bgl > O are scale parameters, while the parameters ag-- > 1 relate to the
ease of transformation among products thus determining the condltlonal

supply elasticities. Unless O‘ij" on ¥i, maximum revenue, R(PSJ Z] cannot
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be isolated. This renders the revenue function implicit in R. When all of the
transformation parameters are equal this reduces to the (explicit) CET
revenue function. If we combine the fact that dR(*)/3Z = R(*)/Z, under
constant returns to scale, with oR(#)/3Z = P, = the shadow price of activity in
the industry, then the revenue function can be simplified to the following

price frontier:

r
o N
2 BSy (Pgy /PRI ™S =1 wr g (7b)
i
Application of the implicit function theorem and Hotelling's lemma
yields the following conditional supply equations:
¥
ror .r 1 (og;—1)
Bgyj agyy (Pgyj/Pz;) =Y
I r
Osij = Z vr.j. (7a)
I
iy r r r OESk-
ZBSkj ogij P/ Pz;) =9
k

But there is a complication introduced by the form of {7a). Given a vector of
supply prices P;. we need to compute unit revenues (R/Z or P,) before we can
evaluate these supply equations. This problem may be handled by calling a
special subroutine designed to solve (7a) for P, (Hertel et al. (1991)}.

In contrast, the linearized representation treats both explicit and
implicit functional forms with equamnimity. All that is required in addition to
(7a*) are the formula for computing Mgy as a function of prices (or revenue
shares) and the transformation parameters. This is provided by Hanoch

(1975), and is given in (F3):

I r T I r r . r
Msikj = Ssij § (1~ ogyy) + (1 - ogyg) - 2 Ssmy (1~ Ggmyll = 8 (1 - argy)
I

Vor i ik, (F3)

where Sgi- Is revenue share of sales of commodity i by industry j in region r,
as defined previously, §;; = 1 and e =0ifizk

While the linearized version of (7b) is not required, it is useful to provide
it here, for future reference:

T
r b T N 299 T T
ZBSU aSij (PSij/PZj} Yy (stj - ij) =0 (7b*)
i

Note further, that if both sides of (7a) are multiplied by (Pgi. /ng Z} ] we
obrtain an expression for the share of commodity i supplies in %otal revenue
(Ssl-j) which may._ be substituted into (7b*) so that it simplifies to the following

expression for Pz
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r T r
Pzj = D, Ssyj Psy -
i

Clearly this is optional and need not be included in the linearized
. r . :
representation of the model, as Pz is simply an intermediate variable.

Consumer Demand: The structure of preferences in this model is designed to
hold the share of disposable income allocated to current consumption
constant, while providing considerable scope for the incorporation of
indepenident econometric estimates of expenditure and price elasticities of
consumnption demand. Thus aggregate utility is a Cobb Douglas function of
individual subutilities derived from purchases of goodwill {transfer payments).
capital goods purchases (savings) and current consumption:

I
BrrANS ve (8a)

r r
Bcons Bsav
U" =[Ucons Usaw)  Urans
In the case of savings and transfer payments (i.e., "non-consumption
commodities”, i € NC}, the level of U§ is equal to the quantity of these goods

purchased:
U?"Qﬁl = E»fYT)/P;hL " ¥r; Vie NC . (8b)

In the case of the subutility of composite consumption, UCONS is c}_etenmned
by the following implicit CDE minimum expenditure function, E(Py, UCONS)
governing purchases of consumption commeodities (i € C):
I I F
2 By Weons) T Pl /EE] U onsl] T
ieC
Once agam the B's are scale parameters, this time for demands, with BI—h > 0.
The O‘Hx < 1 parameters govern substitution in consumption, and all of these
values must lie on the same side of zero for global regulant;/ to apply (Hanoch
(1975); see also Hertel et al.. (1991), footnote 2). The yy; > O parameters
appear due to non-homotheticity in consumption [}{h # 1). Equation (8¢} is
used to evaluate minimum expenditures, given prices and Usgyg- This in
tum must equal the share of disposable income allocated to current
consumption:

Yr. (8c)

ill
o

E[PII:I' Ucons) = Beons Y* vr . (84)

Finally, application of Shepard's lemma and the implicit function
thercem to (8c) gives us the following ufility compensated household
demands

T (OCH]'__ 1)

r T T OlH‘ 'YH‘ T S § o
Omi = (B miUcons)  [Pry/EPy; Ucons)] )

’ r r T -1
T T Op1; YHi 0 T OLgyj .
2 Bt (Ucons) 0 T [Py /E(Py. Ugong)l ©0 » VI:iV ieC.
ieC (8e)
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The sub-system of equations given by (8a) — (8e) are clearly the most
complex part of the model, as written in the levels variables. In contrast,
these equations are greatly simplified when the model is expressed in
linearized form. Beginning with the differential of the aggregate utility
function, and the associated non-consumption demands, we have:

r_ T T T T T I
1 = Bcons Ucons * Bsav Usav + BTRaNS UTRANs 7 T (8a*)

uir = qII:Ii = y,r - pII:ﬁ ¥Yr;vie NC. (8b*}

As was the case with the implicit, CDE revenue function, since minimum
expenditures will not appear in the linearized demand equations, it is no
longer necessary to evaluate to evaluate E(PII:I. U') as an implicit function of
the other variables. Thus we do not need the analogue to (8c). However, we
do need to know the value of UEONS in order to evaluate (8a*). The relevant
equation [(8d*} below] may be derived from (8d). Use of this budget
constraint and total differentiation yields:

dE(Py;, Ugong) = dYT
or

2 RE()/ 3Py} + BE/3Ucons) d Ugoys = dY*

ieC
Dividing through by E(+) = Y*, multiplying terms by (Pg,/Pi;,). (Ucons/Usons)
and employing Shepard's lemma, gives:

iy r I r r
2 Sqi Pu; + 2 VS buons = YT Yr o (8d%)

ie C i

where SII:Ii = P;h. Q}‘ﬁ/E[PIr{, UEONSJ, and we have used the fact that
(QE/3UTIUT/E(») = Z 'Y;Ii S;Ii = the expenditure elasticity with respect to

utility (Hanoch).,  €C

- The linearized demand equations associated with current consumption
items are given in (8e*). Once again, they are invariant to the choice of
functional form:

r T T r .
Ui = 2 MHik PHi * My’ Vo i (8e¥)

k

where n;Hk ilg, the uncompensated cross-price elasticity of demand between i
and k and nyy; is the income elasticity of demand for i in region r. These
demand elasticities are related to the preference parameters by the following

formulae:

r r T r ; ,
MHik = Opg~ Ny Sk v vikeC
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Ok = (1-agy + (1~ o) - (F4)

D Stm(l = 0hy) — 8y (1~ 0h)/Shl vrvVikeC,
Tl
-1

r T T I Tr T T r
N o= | 2 SHm YHm Wiz 019 * 2% Stm Yim (1 — )

m m

+ {l—aﬁ_ﬁ}ﬂz S;Im[l—o.;lm) Vr:vie C

where 5--: 1l and 8, =0,i#kand 8 =

It is 1nterest1ng to note that the scale parameters (B's) for C(PDJ, ZJ}
R(P si» Z) and E(PH UCONS) do not appear in the linearized representation of
the model. This stems from the fact that we are never required to compute
the level of the quantities QD_] QS_] or QH

IV. Model Simulation

Having laid out the equations for two equivalent representations of a
general equilibrium trade model, the question arises: How shall we solve
each of these models? What special properties do these alternative solution
strategies possess?

Calibration and Benchmarking

The data-base underlying a typical AGE model consists of: (a) tables of
flows showing transactions between agents, and (b) files of behavioural
parameters (such as substitution elasicities}). It is assumed that this daia is
consistent with a solution of the model. The raw data-base does not include,
however, levels values of prices (which would allow us to infer quantities from
flows) or the full set of parameters. For models formulated in the levels,
these additional values are required. Calibration refers to the process of
deducing the missing parameters from the data available and from the
model's behavioural equations.

To do this, initial values of prices must be assumed. This amounts to an
arbitrary choice of units. With prices and quantities given, we can deduce the
scale parameters in production and ut111ty functions. For example, in the case
of the CES demand equations (6), the BD1 S may I’pe inferred from o once
expenditures have been partitioned into prices {(P[;;) and quantities (QDl)
(see, for example, Mansur and Whalley). Similarly in the case of CDE supphes
(7a) the scale parameters (Bgij) may be inferred from the transformation
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parameters (ocgij), once prices and quantities are specified (Hertel et al..
(1991)).

In contrast. linearization in proportional or percentage changes takes
advantage of the invariance to units implicit in rational economic behaviour.
Those parameters deduced in the levels calibration process are not required,
since their values merely reflect arbitrary price assumptions. Thus no such
calibration step is needed.

Benchmarking in a levels model is the process of reproducing the initial
equilibrium by using the model solution procedure. Since calibration
depends on the initial truth of all behavioural equations, the benchmarking
process amounts to: (a) checking that the calibration program correctly
implemented the behavioural equations, and (b) checking that the model
data-base satisfies simple accounting identities. For a linearized model, step

{a) does not apply.

Condensing a Model

- The size of a model (that is, number of variables and number of equations
to be solved) can be reduced by making algebraic substitutions. Consider, for
example, the demands ngij in the model described in Section II. Egquation
(6) gives an expression for these in terms of other variables (Pp's and Z’s in
this case) of the model. We can use this expression to replace all occurences
of Qgij in the other equations (equations (1), (2), (4} and (5)) by the
appropriate expression in terms of the Pp's and Z's. Tl%en, provided we are
not interested in shocking or reporting values of these QDij variables, we can
ignore the equations given by (6) and solve just the remaining equations (as
modified). This one algebraic substitution removes I x J x R actual equations
and variables from the original model, (where I is the total number of
commodities in the model, J is the common number of industries in each
region and R is the number of regions). Similarly, in the linearized
representation, equation (6*) can be used to eliminate qu)i- from all other
equations, thus producing an equivalent equation and variable reduction. For
-large models several such substitutions may be essential to reduce the system
to be solved to a size that can be handled on a particular computer.

‘This method of condensing a model by substituting out one or more
variables can only be applied when it is possible to isolate an explicit algebraic
formula for the variables in question. If the variable in question is orly given
by an implicit function (for example P;- in equation (7b)) it may not be
possible to obtain such an explicit formula. This limits the amount of
condensation possible using a levels representation. However, with a
linearized representation, implicit functions are never a problem since each
variable in an equation can always be isolated.? For example, equation (7b*
can be rewritten as

7 This is because the equations are linear; for example, from the equation Tb + Uc
+Vd = 0 it is easy to isolate b as b = -{Uc + Vd}/T. The saving involved is usually
only worthwhile when a single algebraic substitution covers all possible indices
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iy r

¥ iy T r T gy i3 r T T LG r -

Pzj = 2. Bgy ¢sy (Pgyy / Pzz) 77 / > By Oskj(Psyy / Pzy) =9 |Psy VI
i k

to isolate ezl:_lch pg- {in terms of the pgij’s). Thus it is easy to eliminate (7b*)
and the p,;'s from the linearized representation,® although this is not
possible with the levels representation.

Solving the Equilibrium Problem

It is important to distinguish between the way a model's equations are
written down and the algorithm used to solve the model. Applied general
equilibrium models are inherently nonlinear, as illustrated by equations (1)-
(8e) above. However, most models® can also be expressed in linearized form,
as in (1*) — (8e*). The important thing is that either of these representations
of the model can be used as a starting point for obtaining true solutions of the
model; indeed several different algorithms can be used to obtain these true
solutions (as we indicate below). Some algorithms rely on the levels
representation and others on the linearized representation. '

Considerable confusion has occurred in the past due to the tendency to
classify models according to the solution method employed, as opposed to the
economic content of the model. Thus models whose equations are usually
represented and discussed in linearized form have been referred to as models
of the "Johansen class". The confusion has occurred because these models
have often been solved by Johansen's method!?. This method is not capable
of producing arbitrarily accurate simulation results; the numerical results
obtained are only approximations to the true results and Johansen’s method
provides no way of increasing the accuracy of these results. In our view the
confusion would be avoided by referring to such models as models which are

associated with the variable in question (as for the pgj example in the next
sentence of the main text). Covering all indices is only possible when there are
as many actual equations specified by the single symbolic equation in question
as there are instances of the variable in question. For example, while the single
actual equation (5% could be used to isolate pyy; for any one commmodity i, the
resulting expression would involve pyy; for all other commodities t; such a
substitution is algebraically messy and would not be helpful in practice.

8 Carrying out substitutions like this with pencil and paper is time consuming
and error prone. For this reason, GEMPACK {Codsi and Pearsom, 1988}
automates such substitutions. The user simply nominates which variable to
eliminate and which equation to use. Then the software carries out all of the
algebra (including isolating the relevant variables, if necessary, as above).

9 Some models require inequalities as well as equations. See the paragraph below
headed “Limitations of Linearized Representations™ for relevant comments.

10 This method is described in the subsection “Obtaining Accurate Results from a
Linearized Representation” below.
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implemented via a linearized representation.!l This representation can be
used as the starting point for (approximate) solution by Johansen’s method.
But, moere importantly, it can also be the starting point for accurate solution
by other methods, as we describe in the subsection “Obtaining Accurate
Results from a Linearized Representation” below.

The most important feature of any model is its basic economic content.
Of secondary importance is the way its equations are written down. Of only
tertiary importance is the algorithm usually used to solve it sinee, in general,
several different algorithms can be used to obtain the same results. The only
qualifications that should be made to the previous sentence is to add
“provided the algorithm used is capable of producing numerical results of any
desired accuracy”.12 In particular, we believe that models represented in
linearized form should be solved as a matter of routine by an algorithm (such
as those described below) that is able to produce such arbitrarily accurate
results.13

Naturally software specialists will want to compare the efficiency of
different algorithms {that is, how much computing time and other resources
are required to obtain a given level of accuracy). But, most economic
modellers will choose the type of model representation {levels or linearized)
on the basis of which they find more helpful for formulating their model,
modifying it and understanding and communicating its results. Also of great
importance to modellers who are not computer experts is the range of
general-purpose software which they can access.14

Obtaining Accurate Solutions from a Linearized Representation: It may be of
interest to practitioners used to either levels or linearized representations of
their models to see how a linearized representation can be used to obtain
accurate solutions. Firstly we illustrate this in the special case where there is
just one- exogenous variable x and one endogenous variable y, and where the
only equation of the model g(x, y) = 0 is as shown in F igure 2. Suppose we

11 The term “Johansen model” should either be dropped or, perhaps more fittingly,
be used to describe models whose economic foundations are similar to those of

Johansen's 1960 model.

12 Of course, the accuracy of any actual calculation is limited by machine accuracy
and the fact that rounding errors inevitably occur in any large calculation.

13 For this reason, Euler’s method with extrapolation (see below) is currently the
default in GEMPACK (Pearson, 1991).

14 In this regard, important questions include the following.

{i) Does any programming have to be done to communicate the model's
theoretical structure and data to the software? (In some cases the user must
provide subroutines which can calculate the values or derivatives of certain
functions in the model. Other software such as GAMS, GEMPACK,
HERCULES and MPS/GE do not require any code to be written; they can read
and interpret symbolic (or numeric, in the case of MPS/GE) representations

of the model prepared by users.)

(ii) Does the software give access to algorithms which are robust in the sense
that they conwverge to the solutions of well-posed problems with little or no
user intervention?
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know an initial solution of the model, say y = Yg when x = xg (see the point A

in Figure 2) and we wish to calculate the value of y when x increases to xj.

The true solution is y = y; (see point B in Figure 2). In this case the linear-
d

ized representation of the equation is used to calculate the gradient a% (in

terms of x and y) at any point on the curve g{x, y} = 0 (and at points just off it).

Johansen’s method is to calculate ad—% at A and then, in passing from xg to
x;. to move along the tangent to the curve at A. This brings us to the point
B; in the figure and so this produces the estimate y;. The idea behind other
more accurate methods is to follow the curve g(x, y) = O more closely. For
example, start out in the direction of the tangent at A but, after a smaﬂddis—
tance, stop, recompute the direction to move in {that is, recompute a%in
terms of the new values of x and y reached), move in the new direction for a
short distance, then recompute the direction, and so on until x reaches x;.

Euler's method is to divide the interval [xg. x3] inte N equal subintervals
and then proceed as indicated above, recomputing the direction to move in at
the end of such subinterval. This is shown in Figure 2 for N = 2, when the
path is from A to C, to B, which produces the approximate solution yg,. The
important point to note is that, by taking N sufficiently large, the approximate
solution ygy; obtained can be made arbitrarily close to the true solution y. 18
Note also that Johansen’s method produces the Euler result yp; when N = 1.

‘When there are more exogenous and endogenous variables, it is less easy
to visualize what happens when Euler's method is used, but the method does
generalize. If there are n exogenous variables X =(x;, xy, ..., x,;) with initial
values @ = (ay, a, ..., a, )} and final values b = (by, by, .... b,;), one way of
visualizing this is to imagine a straight line in n dimensions joining dto b and
a scalar variable t equal to O at @ and to 1 at b. The linearized representation

of the model makes it possible to calculate 3 for all of the endogenous
variables z;,..., z,, of the model. (This is done by solving a system of linear
equations in m unknowns derived directly from the linearized representation
of the model.} The levels equations of the model define a surface {the set of
all solutions of the model) and there will be a path on this surface from the
initial value 2, of (2. ..., z,,)) to its final value Z° which Z moves along as t goes
from O to 1 (or x goes from @ to b along a straight line). The idea is to
approximate this path along the surface in (m + n)-dimensional space by a
sequence of short line segments, much as in Figure 2 in 2 dimensions.

Although Euler's method is guaranteed to converge to the true solution
for large classes of models,18 its convergence is not quick. Indeed the errors
are only approximately halved when N is doubled. However, this basic
method can be refined to give much faster convergence. Firstly, there is a
procedure known as extrapolation which, given two Euler solutions (say for

15 The relevant theorem places certain continuity and differentiability
restrictions on the function glx, y); see Pearson (1991) for details.
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—&- x
X X4

Figure 2: Mustration of Euler's method

N = 10 and N = 20), calculates an approximation which is significantly more
accurate than either of them; extrapolations based on 3 different Euler
solutions are even more accurate. Secondly, Euler's method is just the first
and simplest of a whole class of methods which can be applied once the
derivatives are known via a linear representation of the model.17 Details of
alternative methods, extrapolation, rates of convergence and underlying
theory which guarantee convergence are given in Pearson (1991).

Updating Instructions: The equations of a linearized representation (such as
(1*} - (8e*) above) are usually solved once for each step of a mulli-step
solution procedure such as Euler's method described above. The solutions
obtained are percentage changes (or, occassionally, actual changes) in the
relevant (levels) variables for this step. The levels of the variables at the end
of each straight line segment must be estimated on the basis of these
percentage changes. This is done via update formulae of the form!8

16 See Pearson {1991) for details.

17 In pPearson {1991}, it is shown how the simulation problem can be converted to a
so-cailed Initial Value problem. Many different algorithms are known for such
problems; indeed most textbooks on numerical computation or numerical
analysis contain at least a chapter on such problems. (See, for example, Chapter

15 of Press et al. (1986) or Chapter 8 of Dahlquist and Bjorck (1974)).

18 Here "old-V" refers to the value of V at the left-hand end of the line segment and
new-V at the right-hand end in Figure 2.
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new V = old V[l + (% change in V) / 100] .

In practice (as in our model), percentage changes in the flows (values in
dollar terms) are not explicitly in the linearized equations solved, just the
associated prices and quantities. If V = PQ in levels (Flow = price times
guantity} the percentage change linearization is v = p + g and so the update
formula is

newV = old V[l +(p-+gqg}/ 100].

The discipline of specifying these update formulae helps to ensure that there
is a well defined system of nonlinear equations (that is, a full behavioural
specification} underlying the linearized representation.

How does this compare to “nonlinear” algorithms? Despite the fact that it is
based on a linearized representation, Euler's method and ifs extensions are
true nonlinear methods in that, like other “nonlinear” methods, they can be
used to obtain solutions of any desired accuracy.!? Indeed, the way Euler’s
method relies on calculations of derivatives and partial derivatives has a great
deal in common with many other nonlinear algorithms. Most of those iterate
towards the final value by moving along short straight line segments (whose
direction is based on calculations of derivatives). Some algorithms calculate
values of derivatives numerically from calculation of function values?0, while
others require users to supply routines?! which calculate these derivatives.

In summary, either a levels or a linearized representation of a model can
be taken as the starting point for algorithms which calculate accurate
solutions to the nonlinear equilibrium problem. Many models can be
represented in either form and so solved by algorithms suited to either
representation. '

Limitations of Linearized Representations: Since explicit differentiation is
carried out in forming a linearized representation of a model, such a
representation is only valid for models which can be expressed as a system of

equations
Gi (21, oo 2 X7, 0 X)) = 0 (i=1,...m

whose underlying functions g; are diflerentiable in some suitable domain
containing the initial and final equilibria. However these limitations are not
unique to the linearized approach since many of the traditional nonlinear
algorithms only apply to equations and are based on calculations of derivatives.

19 Modellers used to tradional nonlinear software may think it produces “exact”
solutions. However, because of limited precision in storing real numbers in
computers and because of rounding errors that accumulate whenever a
complicated numerical calculation is carried out on a computer, the results
obtained by any software are only approximations (hopefully, quite accurate
ones) to the true solution.

20 To estimate the derivative of a function f at a point a, take two values b, c close to
a and calculate ( f(B) - f(d)/(b- d.

21 Such routines may be based on explicit algebraic formulae for the derivatives, as
is the case in any linearized representation of the model.
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Note also that inequalities (a < b efc) cannot be directly represented in
linearized form (although in some cases it may be possible to convert these to
equalities). Thus linearized representations may not be suitable for models in
which inequalities play a vital role or in which corner solutions are sought.
Once again this is also a limitation of many of the trachtmnal nonlinear
algorithms.22

Systematic Sensitivity Analysis

As the solution of nonlinear equilibrium problems has become more
routine, attention has turned to the problem of conducting systematic
sensitivity analysis with respect to key parameters (Harrison et al.. (1991),
Wigle (1991)). Complete, unconditional systematic sensitivity analysis is
extremely costly, requiring m"™ model solutions, where m is the number of
different levels at which n parameters of interest are to be set.23 Thus it is
more common to vary one parameter at a time, thereby conducting a
conditional systematic sensitivity analysis. Even this more modest approach
is costly and is thus often reserved for special applications of well-established
models. Since any sensitivity analysis is also specific to the experiment in
question, most general equilibrium analysis proceeds in the absence of any
information about the robustness of model results to changes in parameter

values.

One virtue of expressing the general equilibrium problem in its
linearized form is that it is very easy (and cheap) to obtain a complete local
sensitivity analysis for a local perturbation to the model. The methodology for
doing so is developed in Hanslow and Pearson (1991). Their approach can be
readily understood by considering the industry demands as characterized by
(6*%) and (F2). Denote the one-step (i.e., Johansen) general equilibrium
solution to a particular shock (say a subsidy on food production) by appending
an asterisk to the variable in question. Thus, in the linearized equations, the
perturbation in the food subsidy results in the following set of industry
demands:

qu Z MDikj pDk} + zJ Vrj.i. (6%*)
k
Now, assume that we would like to know how sensitive the general
equilibrium solution is to the elastxmhes of substitution in all olf the indusiry
cost functions in all regions (i.e., the o; s) A perturbation in o; affects (6%}
through (F2), so we totally differentiate {F2), recognizing that tﬁe cost shares
(SDkJ) will be left unchanged:

T
AN = (Spig ~ 8 do (aF2)

22 At present, the nenlinear complementarity methods used by Rutherford (1989)
and Preckel (1988) are most suitable for solving models in which inequalities
play a vital role.

23 Clearly, since m™ grows so quickly, an unconditional systematic sensitivity
analysis becomes impractical [or even moderately large values of m and n.
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Similarly totally differentiate {6**} around the Johansen solution, recognizing
that do; will affect both the elasticity of demand and the general equilibrium
price cijange:

r* T r* T T* r*
ddpy = 2 [@Mpikj Poig * Mpig dPpigl + 4% (6677)
K

- Now if do; is the only parametic perturbation of interest, then differen-
tiation of the Temainder of the linearized model, (i.e., (1%} — (5*) and (7% -
(8*)) is easy. Indeed simply append the differential operator and asterisk to
all of the variables, i.e., p becomes dp* and we are left with a system of
equations which describes the changes in the one-step general equilibrium
solution (itself expressed in terms of percentage changes), as a result of
perturbing the o;'s. The model is solved for these changes as a function of
the original solution (as embodied in pgk-] and the parameteric pertur-
bations, do;, and any combination of these perturbations may be examined
from this one solution of the model. While this approach is not a substitute
for global systematic sensitivity analysis, it is a -useful method which can be
easily automated and routinely employed in order to determine the potential
relevance of parametric uncertainty in the context of any particular simulation
of interest.2¢4 (An example of this will be provided in the next section.)

V. Application of the Model

In order to illustrate the points made previously in this paper and in
particular to verify that the two methods of model implementation give the
same solution, we have selected a simple application which is already available
in published form (Hertel et al., 1991). In this empirical model there are
two regions: the United States (U.S.) and the rest of the world (R.O.W}. Each
region produces, consumes and trades three basic commodities: food,
manufactures and services, as well as a composite capital good used to satisfy
the demand for domestic and foreign savings. The data refers to 1982, and is
based on an aggregation of that reported in Peterson (1989). The experiment
which will be used to compare the two models is the introduction of a 20 per
cent subsidy on the output of food in the U.S. (No distortions are built into the
initial equilibrium data set.) Documentation of the computer code used to
implement the levels version of the model using NCPLU (Preckel. 1988] is
discussed in Hertel et al. (1991). The linearized representation used to solve
this via GEMPACK (Codsi and Pearson, 1988) is provided in Appendix B.

From Table 2 it can be seen that, in the initial equilibrium, both regions
are on their individual budget constraints {once the transfler from ROW to US

24 Although we have only described here how the method in Hanslow and Pearson
(1991) can be used to oblain the local sensitivity of the Johansen solution, their
method can also be used to obtain the local sensitivily of true nonlinear
solutions. The basic idea is to take into account possible changes in the
parameters as well as in the variables when forming the linearized
representation to be used for sensitivity calculations.
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_ Table 2
Benchmark Equilibrium Data ($US 1982 Trillion)
Us. Trade ROW.
Commodity  Net Invest- House- us. ROW. Hous- Invest- Net
Output  ment hold Exports Exports hold ment Output
Demand  Demand Demand Demand

Food 24204 — 0.22552 0.03101 0.01449 1.30000 —_ 1.28348
Manu- 0.54618 0.16865 0.43705 0.16515 0.22467 1458009 0.827677 2.343206

factures
Services- 1.68051 0.28114 1.38995 0.06879 0.05937 4.541441 1.379737 5.911758
Capital — — 0.44876 0.024078 0.093048 2208444 - —

goods
Transfer — e — 0.03255 — e — o—
Totals’ 2.46873 0.44979 2.50128 0.391578 0.301578 9.505894 2207414 9.538444

is taken into account) and they are thus (equivalently) in balance of payments
equilibrium with one another. There are really only two -agents in
eacheconomy: a representative consumer and an aggregate, multiproduct
industry. However, implementation of this model via equations {1} — (8e) or
(1*) — (8e* is facilitated by defining seven additional "dummy industries”
in each region. These include: (a) two endowment industries (one to
distribute the primary factor endowment to the aggregate domestic firm
which in turm supplies the three net outputs, and one to supply the
"goodwill”), (b} a capital goods industry which assembles investment goods,
and [c) four "margins” industries, assembling foreign and domestic food,
manufactures, services, or capital goods (savings)., thereupon making it avail-
able to domestic consumers. In practice, such margins industries will them-
selves absorb real resources. However, we abstract from that possibility here.

As noted in the context of the behavioural equations developed above,
multiproduct technology is represented by a CDE implicit revenue function,
with constant returns to scale imposed. This applies to the production
possibilities frontier which determines each economy’s net output, based on
its exogenous primary factor endowments. All other industries are single
product enterprises represented by a CES cost function which also exhibits
constant retumms to scale. Finally, consumption behaviour is represented via a
non-homothetic, CDE implicit minimum expenditure function. Details on the
model's parameters are provided in an Appendix A.

Comparison of Empirical Results

Table 3 presents the predicted outcomes for key variables derived from
implementation of the 20 per cent U.S. food production subsidy using both
the linearized and the levels systems of equations. In the case of the
linearized representation, two alternative solutions are presented. The right
hand column presents estimates based on a one-step solution. This is the
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Table 3

A Comparison of Results from the Levels and Linearized Implementations(a)
of the Two Region Model: 20 Per Cent Subsidy on U.S. Food Production—
Predicted Levels of Selected Variables in New Equilibrium

{Percentage changes in parentheses]

Levels Implementation{b] Linearized Implementation

Variable Multistep'® One-step
World prices:

U.S. food 0.9261922 0.9261927 0.9144747
R.O.W. food 0.9919922 0.9919928 0.9915167
U.S. manufactures  1.0088813 1.0088818 1.0094076
R.OW. manufactures 1.0019112 1.0019119 1.0020536
U.S. services 1.0195380 1.0195385 1.0204131
R.O.W. services 1.0009723 1.0009728 1.0010278
U.S. capital goods 1.0155291 1.0155296 1.0162866
R.O.W. capital goods 1.0013243 1.0013248 1.0014124

Disposable Income:
U.S. (0.66566%)
rROw.@ Zero
Relative Factor Returns: (2.6635%)
Utility of Consumption:

{0.66570%)

Zero
(2.6635%)

{0.74930%)

Zero
(2.7200%)

U.S. 1.0008319 1.0008319 1.0025373

ROW, 1.0004729 1.0004729 1.0004654
Aggregate Utility:

U.S. {e) (-0.03621%) {0.08280%)])

ROW. {e) (-0.008187%)}) (-0.01177%)
Walras Laio: 0.000000003 0.00000000 -0.00000006

(a)

(b}

(c)

(d)
(e)

The "Levels Implementation” results here were obtained by NCPLU (Preckel, 1988)
running in double prevision. The "Linearized Implementation" results were
obtained by GEMPACK (see Codsi and Pearson (1988) running in single precisiorn.

These results differ from those results reported in Hertel et al. (1991), Table 4 due to
the fact that those results are based on a simulation whereby the subsidy was
deducted fromn current consumption instead of disposable income.

The multistep solution was obtained by extrapolating on the basis of three steps,
where the first is 10 steps, followed by 20 and 40 step solutions.

The price of the RO.W. endowment has been chosen as the numeraire.

Aggregate utility indices are not strictly comparable due to the differential .
treatment of transfer payments in the utility function. In the linearized
implementation, "good will" enters the aggregate utility function explicitly.
However, in both cases, the value of the transfer remains constant in terms of the
numeraire (ROW endowment price). Thus the two equilibrium problems are
otherwise identical.
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standard "Johansen" approach, by which the initial equilibrium value weights

and elasticities in (1*} — (8*e} are treated as parameters. Consequently they
are not adjusted fo reflect the effect of changing relative prices, and are thus
inconsistent with the new equilibrium position. In contrast, the multi-step
implementation of the linearized model uses formulae (F1) — [F4) to update
values and shares as discussed in the previous section. Thus the new
equilibrium values and elasticities satisfy all of the accounting identities and
behavioural restrictions implied by neoclassical theory.

Comparison of the entries in the first two columns of Table 3 reveals
remarkable agreement between the levels, and linearized-multistep solutions
of the model. Differences in predicted price levels appear only in the seventh
decimal place, which is at the limit of the single precision arithmetic used to
produce the "Linearized Implementation" results in Table 3. In contrast, the
one-step implementation occassionally exhibits discrepancies in the second
digit. More importantly, the first two implementations agree exactly on their
evaluation of utility of consumption, based on the implicit CDE minimum
expenditure function. Unfortunately, the same cannot be said for the one-
step implementation. Since the model's initial equilibrium is undistorted,
the output subsidy introduces no measurable excess burden into a one-step
perturbationt of the model. This means that the one step solution overstates
disposable income, and hence also overstates utility. Indeed, this error is
large enough to reverse the direction of change in U.S. aggregate utility.
Furthermore, when converted to real income this is a nontrivial error
amounting to roughly $3 billion, or about six percent of the subsidy payments.

In summary, the evidence in Table 3 may be viewed as lending support
to both the "Johansen"” and levels schools of modelling. The advocates of
simple one-step matrix inversion of a locally linearized AGE representation
can look at the price discrepancies, and given the degree of uncertainty
about. model specification and parameters, they might pronounce the
answers acceplably close. "What we really care about is the direction and
relative magnitude of the changes." Meanwhile, advocates of the levels school
of modelling need only look at the utility predictions to confirm their worst
fears aboul the so-called "Johansen" modellers. The point of this paper is
that such altercations are no longer relevant. Convenient software permitting
algebraic implementation of either (1) — (8¢} or (1*) — (8e*) is now
readily available. The "linearizers" have no defense for not employing the
multistep procedures in order to obtain the true solution to the nonlinear
problem as posed by (1) - (8e). Similarly, the "levels” school of modelling can
no longer discount a model on the grounds that it is implemented via a
linearized representation. Provided the linearized representation is used as
the starting point for an algorithm which produces accurate (nonlinear)
results, it provides a solution to the same nonlinear equilibrium problem as
would be obtained via a levels formulation.

Systematic Sensitivity Analysis

It is well known that general equilibrium trade models in which prod-
ucts are differentiated by origin are quite sensitive to specified values for the
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Armington parameters which determine the ease of substitutability between
foreign and domestic products, and among different sources of foreign
products (Brown, 1987). Indeed this is the focus of the sensitivity analysis
paper by Harrison et al. (1991). The model presented above is no exception
to this rule. Since there is only one "foreign” source for each of the region's
imports, there is only one Armingtonr elasticity of substitution for each
product grouping in each region, i.e., ¢;. j e margins industries. In this
section we will use the methodology outlined at the end of Section IV in
order to examine the sensitivity of model results to perturbations in each of
these parameters individually, as well as simultaneous shocks io various

groupings of them.

The variable which we focus on is the rate of refurn to the U.S. primary
factor endowment. Since the foreign primary factor return is the numeraire
in this model, we are effectively focussing on the relative rate of return to
primary factors in the two regions. This variable is the key to achieving bal-
ance of payments equilibrium in the model. In effect it is the "real exahange
rate". If a given policy intervention reduces U.S. excess demand for R.O.W.
commodities, then an appreciation of this variable ppr > 0 is required to
restore equilibrium. This raises the relative price of U.S. goods and simul-
taneously increases total U.S. spending, thus eliminating the excess demand
and bringing the two regions back into balance. The magnitude of ppp re-
quired to reequilibrate the system following such a shock obviously depends
on the ease of substifution between U.S. and R.O.W. in both regions. The
larger these Armington elasticities, the smaller the required adjustment in
relative primary factor returns.

Table 4 reports the systematic sensilivity results derived by examining
the local sensitivity of the one-step results to perturbations in each of the
Armington parameters. Before discussing these numbers, several qualifi-
c%tsions are in order. First recall from Table 3 that the one-step estimate of
ppr overstates the true adjustment required (2.7200 per cent versus 2.6635
per cent) as reported in the first two colums of that table. This is because the
linearized model does not permit the R.O.W. share to increase as U.S. prices
rise. Thus the linearized model understates the own-price elasticity of
demand for U.S. products in the new equilibrium [(see F(2)]. A second point
to be made is that, while the perturbation represented by {(AF2) and {AB**) is
only strictly correct for infinitesimal changes, the shocks considered in Table
4 are rather more substantial. Thus this is a somewhat crude, but extremely
cheap method of assessing the model's sensitivity to the Armington para-
meters. All the numbers in this table were generated by inverting a single
matrix of slightly greater dimension than the basic model. Thus the
computational cost is far less than solving the levels representation even
once. Furthermore, implementation is sulfficiently straightforward to permit
routine application of this technique.

The first column of numbers in Table 4 reportsutgze equilibrium solution
to the local perturbation of the one-step outcome: dppp . The first row in the
table reports the case where no parameters are perturbed, so that dppF =0,



Mending the Family Tree: A Reconciliation of the Linearization and Levels Schools 29

Table 4

Sensitivity of One-Step Solution to Perturbations
in the Armington Parameters

Difference in Relative Revised Percentage

Nature of Primary Factor Returns Change in Primary
Perturbation Factor Return
T us* Us** Uus* us*
(do;) (dppp ) (Ppr =Ppr * dPpr)
None 0 2.7200 per cent
Doubling ofr, j)@:
(U.S.., food) 0.3615 3.0815 per cent
(U.S., mnfc.) -0.1407 2.5793 per cent
(U.S., svces) -0.1920 2.5280 per cent
(U1.S.., c.goods) =0.2514 2.4686 per cent
(U.S., all) -0.2226 2.4974 per cent
(R.O.W., food) 0.8070 3.5270 per cent
(R.O.W., mnfc) -0.1887 2.5313 per cent
(R.O.W., svees) -0.2288 2.4912 per cent
(R.O.W., cgds) —0.3069 _ 2.4131 per cent
(R.O.W., all) 0.0826 _ 2.8026 per cent
(Global, all} -0.1400 | 2.5800 per cent

(a) The value of the Armington elasticities of substitution in the original
model are as follows: food = 5, manufactures and capital goods = 3, and
services = 2,

(b) The results in this column are the estimated actual changes in the
original simulation result of 2.7200 per cent. Thus the value 0.3615 in
this column indicates that the one-step simulation result would change
from 2.7200 per cent to approximately 2.7200 = 0.3615 = 3.0815 per
cent.

and ng“ = pgff = 2.7200 per cent, as reported in the third column of Table

3. The remaining entries in Table 4 involve a doubling of the initial
Armington elasticity of subsitutiton. Because the policy shock involves a
subsidy onn U.S. food output, the first-round effects are determined in large
part by the elasticity of substitution between U.S. and R.O.W. food in two
regions. If this is increased, then the initial disequilibrium in transactions
between the two regions is exacerbated as U.S. food displaces R.O.W. food in
both regions. Given unchanged Armington parameters for other com-
modities, it takes a larger value of pgp to erase this increased excess demand
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for U.S. roducts Thus it is not surprising that increasing either

Us Us*
SrooD OT G‘FOOD results in a value of dppr > 0. Indeed, doubling both of these

parameters, while leavmg the remaining oJr s unchanged results in an
approximate value of ppF which is almost hall again as large as the initial

estimate.

Of course an increase in any of the nonfood Armington parameters

dampens p%sz since it is now easier to adjust to the regional imbalance
induced by the food subsidy. Indeed, the two changes are roughly offsetting
Thus a doubling of all Armington parameters, either in the U.S. or in R.O.W.,

or in both regions, causes a relatively small change in ppI.S— This is useful
information. Furthermore, in a very large trade model, where there are many
Armington parameters, results such as those in Table 4 would prove very
helpful in establishing an economical design for further, more accurate

sensitivity calculations.
VI. Summary and Conclusions

As reflected in its title, the objective of this paper has been to "mend the
family tree" of applied general equilibrium economics. More specifically, we
have sought to reconcile the linearization and levels schools of modelling.
Historically interesting prototypes aside, there is no such thing as a fully
linear general equilibrium model. Rather there are linearized and levels
representations of GE models, and either is a natural starting point for
solving the model; the numerical solutions obtained are, of course,
independent of the choice of starting point. There is no cogent reason for
distinguishing between classes of models by the manner in which their
members are represented. Of far greater importance is the economic
content of the model(s) in question. While the force of these observations is
immediately obvious, the historical lack of communication between the two
schools of modellers provides ample evidence of the need for such a

reconciliation.

Towards this end we have provided, side-by-side, both linearized and
levels representations of a fairly general trade model, together with a
comparison of the two based on a number of criteria of interest. We then
discussed issues of model implementation and solution. Of particular note is
the approach to solving the true nonlinear equilibrium problem using the
linearized representation of the model and a set of formulae for updating
model coefficients. A simple 2 region example served to illusirate the
equivalence of the two approaches.

In summary, this paper carries a message to both schools of AGE
modelling. To the "linearizers" we emphasize the point that there is no
longer any excuse for providing only "approximate” solutions to AGE models,
based on “Johansen method" matrix inversion. Most properly specified
models can be readily implemented in linearized form, yet solved for the true
nonlinear solution. Of course this calls for a complete specification of
preferences and technology so that it is clear how the model's elasticities vary
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as a function of prices. The disciplines of having to specify how the levels
data is updated (between steps of the multi-step solution process] and how
elasticities depend on this data ensure that modellers using a linearized
representation have a complete, nonlinear behavioural specification

underpinning their model.

We also carry a message to the levels school of modellers: from both a
theoretical and a computational point of view, the linearized approach to AGE
modelling is equally valid, provided the aforementioned disciplines are
observed. Furthermore, the linearized representation has some appealing
properties which make it an attractive alternative in many instances. These
include: a more straightforward representation of behavioral relationships,
indifference to implicit versus explicit representations of preferences and
technology, as well as the availability of inexpensive, local sensitivity analysis.

Most importantly we wish to point out that the two schools of AGE
modelling have a great deal in common. Both would benefit from greater

interaction.
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Appendix A Behavioural Parameters

Elasticity of (=) Transformation Substitution Expansion
Commodity Substitution [crj} Parameter {oas) Parameter [aH] Parameter (yH]
U.s. ROW. Us. ROW. us. ROW. US. ROW.
Food 50 50 2.030633 1.794214 (.B27078 0.543540 0.328013 0.680897

Manufacturing 3.0 3.0 2.345713 2.490010 0.415685 0.355754 0.572383 0.995484
Services 20 20 3.732480 3.468794 0864946 0.843377 1.0 1.0

Capial Goods 3.0 3.0 (b} (b)  (b) (b) (b) (b}

(@) These are the "Armington” elasticities of substitution used to combine foreign and domestic
products.

(b} These are not applicable.

(e} The elasticity of substitution among inputs used to create capital goods is unity.

Appendix B TABLO File _for the Trade Model

! Multiregion Trade Model With Updates. For Documentation see:
Hertel, T'W., J.M. Horridge, and K.R. Pearson,

"Mending the Family Tree: A Reconcilation of the
Linearization and Levels Schools of Applied General
Equilibrium Modelling”, Impact Project Preliminary
Working Paper, University of Melbourne.

This is referred to below as HHP. !

! Text between exclamation marks is a cormment !
! Text between hashes # is labelling inforamtion !

! SETS !

| Sets define relevant groupings of entities over which we will
be performing operations in the model. Subsets are defined
in order to facilitate summation over only a porticn of a diven
group, e.g. tradeable commodities. They will also be used later
on when we wish to condense the model in various ways, eg. to
generate an aggregate regional revenue function. By assigning
each element a name, we can later identify them/extract them

easily. !

SET REG # regions # (USA, ROW] ;

SET IND # industries # (prfactor, gdwill, ppf, cgds, mfood, mmnfc, msvces,
msavingsj ;

SET MARG_IND # margins industries # (mfood, mmmnfe, msvees, msavings) ,
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SET ENDW_IND # endowrnent industries # (prfactor, gawill ) ;

SET NEND_IND # nonendowment industries # (ppf. cgds. miood, mmnfc, msvees,
msavings} ;

SET COMM # commodities # {prfactor, gdwill, foodus, foodrw, mnfcus,
mnfcrw, sveesus, sveestw, cgdsus, cgdsrw, clood, crmifc,
csvees, csavings) ;

! note that only the traded goods which are dillerentiated by origin
(food. mmnfc, and svees}, need to be separately identified. Gdwill
is homogeneous (one region supplies it and the other purchases it.
The nontraded goods are identified by the market in which they are

produced or consurned. !

SET TRAD_COMM # traded commwodities # (gdwill, foodus, foodrw, mnfcus,
mnifcrw, sveesus, sveesrw, cgdsus, cgdstw);

SET WALR_COMM # excludes one good - mnfcus # (gdwill, foodus, foodrw,
mnfcrw, sveesus, sveesrw, cgdsus, cgdsrw) ;

SET NTRD_COMM # the set of all nontraded commodities # {priactor,
cfood, cmnfe, csvees, csavings) ;

SET HHLD_COMM # consumer commodities # (clood, emmfe,
csvees, csavings, gdwill) ;

SET CONS_COMM # consumption goods # (clood, emnfe, csvees )

SET NONC_COMM # hhild savings and goodwill and all other commodities #
{prfactor, gdwill, foodus, foodrw, mnfeus,
mnfcrw, sveesus, sveesrw, cgdsus, cgdsiw, csavings} ;

SET ENDW_COMM # endowment commodities # (prfactor, gdwill ] ;

SUBSET MARG_IND IS SUBSET OF IND :

SUBSET ENDW_IND IS SUBSET OF IND :

SUBSET NEND_IND IS SUBSET OF IND : 7

SUBSET TRAD_COMM IS SUBSET OF COMM ;
SUBSET WALR_COMM IS SUBSET OF TRAD_COMM :
SUBSET NTRD_COMM IS SUBSET OF COMM :
SUBSET HHLD_COMM IS SUBSET OF COMM ;
SUBSET CONS_COMM IS SUBSET OF HHLD_COMM ;
SUBSET NONC_COMM IS SUBSET OF COMM :
SUBSET ENDW_COMM IS SUBSET OF COMM :

! FILES

FILE BASEDATA # The file containing all base data for the economy. # :
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I'VARIABLES: These are divided into four groups -- percentage

changes in quantities, prices, taxes, and finally income and

utility. In GEMPACK, variables refer to those items which will be
changing endogenously with each Johansen solution. They are assigned
lower case labels to denote the fact that they are percentage changes. !

I quantity variables !

VARIABLE (all,j,INDj(all,r,REG] z{j,1)
# activity level of industry j in region r # ;

VARIABLE (all,i, COMM)(all,j,IND)(all,r,REG) gsli,j.1)
# supply of commodity i from industry j in region r # ;

VARIABLE (all,i, COMM]J{all,j,IND)(all,r,REG) qdli,j.m)
# demand for commodity i by industry j in region T # ;

VARIABLE (all.i,COMM]}{all,r REG) ghli,1)
# household demand for commodity i in region r # ;

VARIABLE walras_dem
# demand in the omitted market - should equal "walras_sup” # ;

VARIABLE walras_sup
# supply in the omitted market - should equal "walras _dem" # :
! price variables !

VARIABLE (all,i, COMM){all j,IND)(all,r,REG) ps{i,j.r)
# supply price of commodity i from industry j in region r # ;

VARIABLE (alli, COMM)(all,j,IND)(all,r,REG} pdiij.r}
# demand price for commaodity i by industry jinregion r # ;

VARIABLE (all,i,COMM)(all,r,REG) ph(ir)
# household price for cormmodity i in region r # ;

VARIABLE (ail,i, COMM)(all,r, REG} pmli.1)
# domestic price for good i in region r # ;

VARIABLE (allLi, TRAD_COMM) pw(i}
# world price of tradeable good i # ;
! tax variables !

VARIABLE (all,i, COMM)(all,j,IND)(all.r.REG) ts{i,j.r)
# tax on cormmodity i supplied by industry j in region r # ;

VARIABLE (all.i, COMMj(all,j,IND}(all,r. REG) td(i,j.1)
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# tax on commodity i demanded by indusiryj in region r # ;

VARIABLE (alli,COMM)(all,r.REG) thfi.r)

# tax on cornrnedity i purchased by housedholds in region r # ;

VARIABLE ({all,i, TRAD_COMM}all.r,REG) {i{i.r)

# border tax on good i in region r # ;

' income and utility !

VARIABLE (allT REG) y(r]

“# household income in region r # ;

VARIABLE {all,r,REG) uln)

# aggregate wtility of household in regionr # ;

VARIABLE {all,r,REG) ucin)

!

# utility of consumption for household in regionr # ;

BASE DATA

The base data are divided into four sections: base revenues/expendi-
tures at agent's prices, base revenues/expenditures at market prices,
and base revs/exps at world prices for all tradeable commodities,
followed by the technology and preference parameters. Since these are

-invariant for each solution of the model, they are termed coefficients.

Coelficients are assigned upper case labels to distinguish themn from
variables. The updating command indicates how the new level of the coef-
ficient will be computed based on the previous Johansen solution. Note that
the notation used in the update commands is a shorthand for total differen-
tials of these coeflicient values. Thus, w * v indicates that we want

to take the total differential of W * V, plug in the calculated

values of w and v, and add this to the base level in order to

obtain a revised value for this product. Of course the technology

preference parameters do not change at all and so require no update
statement. | '

base revenues and expenditures at agent's prices !

COEFFICIENT (all,i,COMM]){all,j IND){all,r REG) VSA(i,j.1)

! producer revenue from commodity i in industry j in region r ! ;

UPDATE {alli, COMM)({all,j,IND){all.r,REG)

VSA(Lj.r)= pslij.x) * gs(ij.o) .

COEFFICIENT (all.i,COMM){all,j,IND)}{all,r, REG) VDA j.1)

! preducer expenditure on commodity i in induslry j, region r ! ;

UPDATE (all,i, COMM](all,j,IND)(all.r,REG)

VDA(,j,r)= pdiij.0 * qd{i,j.1 ;
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COEFFICIENT (all,i,COMM]}[all.r.REG) VHA(LT
! household expenditure on commodity i in region ! |
UPDATE (all,i, COMM)j(all,r. REG])
VHAlir}= ph{i.y) * gh(i1) ;

! base revernies and expenditures at market prices !

COEFFICIENT (all,i,COMM)(all,j. IND}{all,r, REG) VSMiij.1)
! producer revenue from comumodity i in industry j in region r
valued at domestic market prices ! ;
UPDATE (all i, COMM](all,j, IND}all.r, REG])
VSM(Lj.0)= pmfi.n) * gs{ij.0 ;.

COEFFICIENT (all,i, COMM}{all j,IND){all,r,REG) VDMI(ij.r)
! producer expenditure on commodity  in industry j, region r
valued at domestic market prices !;
UPDATE (all,i, COMM)(all,j. IND}{all,r, REG])
VDM(i,j.r}= pm(i1} * qd{i,j.0 ;

COEFFICIENT (all,i, COMM)(all,r, REG) VHM(i,r)
! household expenditure on commodity i in region r
valued at domestic market prices ! ;
UPDATE fall.i, COMM}{all,r REG)
VHM(i,r)= pm(i,r) * gh(i, ;

! base revenues and expenditures at world prices !

COEFFICIENT (all,i, TRAD_COMM){allj,IND}{all., REG]} VSW[i,j,r)
! producer revenue from commodity i in industry j in region r
valued at world prices (tradeables only) !; '
UPDATE (all,i, TRAD_COMM]}(all,j,IND)(all.T.REG])
VSWIi,j.1) = pw(i * gsli,j.1) ;

COEFFICIENT (all,i, TRAD_COMMj(all,j,IND)(all,r, REG) VDWI(ij,r}
! producer expenditure on commodity i in industry j, region r
valued at world prices (tradeables only) ! ;
UPDATE {alL.i, TRAD_COMM](all,j,INDj}(all,r, REG}
VDWILi,j,1) = pwli) * qd(i,j.0) ;

COEFFICIENT (alli, TRAD_COMM])(all.r REG) VHWI[iz}
! household expenditure on commodity i in region r
valued at world prices {tradeables only) ! ;
UPDATE (all,i, TRAD _COMM](all.r.REG)
VHW(i,n)= pw(i} * gh{i,7} ;

! technology and preference parameters !
! consummer demand parameters !
COEFFICIENT (all.i.CONS_COMM){all,r REG] SUBPAR(,r)

! the substitution parameter in the CDE
minimum expenditure function ! ;
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COEFFICIENT (all,i.CONS_COMM]}(all,r,REG) INCPAR(i,r}
! expansion parameter in the CDE minimum expenditure

funection 1 ;
! technology parameters !

COEFFICIENT {all,i, COMM}{all,j, IND){(all.r,REG) TRNPAR(,j.T)
! the transformation parameter in the CDE
maxirmun revenue function ! ;

COEFFICIENT (allj.IND)(all,,REG) ESUB{.0)
! elasticity of substitution among inputs in
production | ;

! reading in the base data !

! data for the United States'!

READ (all,i, COMM](all,j,IND) VSA(i,j,"USA") FROM FILE BASEDATA HEADER "PRUA" ;
READ (all,i, COMM](all,jIND} VDA(,j,"USA") FROM FILE BASEDATA HEADER "PEUA" ;
READ (all,i, COMM) VHA(i,"USA") FROM FILE BASEDATA HEADER "HEUA" ;

READ (all,i, COMM)(all,j. IND) VSM(i.j,"USA") FROM FILE BASEDATA HEADER "PRUM"

READ (all,i,COMM){all,j,IND} VDM({i,j,"USA"} FROM FILE BASEDATA HEADER "PEUM"

READ (all,i, COMM) VHM({i,"USA") FROM FILE BASEDATA HEADER "HEUM" :
READ (all.i, TRAD_COMM](all,j,IND) VSW(i,j,"USA")
FROM FILE BASEDATA HEADER "PRUW" ;
READ (all,i, TRAD_COMM)(all,j,IND} VDW({ij,"USA")
FROM FILE BASEDATA HEADER "PEUW" ;
READ (all.i, TRAD_COMM]} VHWI(i,"USA")
FROM FILE BASEDATA HEADER “"HEUW" ;

READ (all,i, CONS_COMM] INCPAR(i,"USA"} FROM FILE BASEDATA HEADER "INUS" ;
READ (all,i, CONS_COMM) SUBPAR(i,"USA") FROM FILE BASEDATA HEADER "SUUS" ;
READ (all.i, COMM])(all,j,IND) TRNPAR(i.j,"USA"} FROM FILE BASEDATA HEADER

"TRUS";
READ (all,§.IND) ESUB(j."USA"} FROM FILE BASEDATA HEADER "ESUS” :

! data for the rest of the world !

READ {all,i, COMM)(all,j,IND) VSA{i,j,"ROW"} FROM FILE BASEDATA HEADER "PRRA" :
READ (all,i,COMM)j(all,j, IND) VDA(i,j,"ROW") FROM FILE BASEDATA HEADER "PERA" :

READ (all.i, COMM) VHA(i,"ROW"} FROM FILE BASEDATA HEADER "HERA"
READ (all,i, COMM)(all,j,IND) VSM(i,j,"ROW") FROM FILE BASEDATA HEADER "PRRM"

. READ (all,i, COMM)(all j.IND) VDM(i,j,"ROW"} FROM FILE BASEDATA HEADER "PERM"
READ (all,i,COMM) VHM(i,"ROW"} FROM FILE BASEDATA HEADER "HERM" ;

READ (all.i, TRAD_COMM){all j,IND) VSW(i,j, ROW")
FROM FILE BASEDATA HEADER "PRRW" ;
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READ (all.i, TRAD_COMM)(all,j,IND} VDW(i j,"ROW")
FROM FILE BASEDATA HEADER "PERW™
READ (all,i, TRAD_COMM) VHW(i,"ROW")
FROM FILE BASEDATA HEADER "HERW" :

READ (all.i,CONS_COMM) INCPAR(i,"ROW") FROM FILE BASEDATA HEADER "INRW" :
READ (all.i, CONS_COMM] SUBPAR(,"ROW") FROM FILE BASEDATA HEADER "SURW" :
READ (all.i, COMM){all,j,IND) TRNPAR(,j,"ROW") FROM FILE BASEDATA HEADER
"TRRW™;

READ (all,j,IND) ESUB(j, ROW") FROM FILE BASEDATA HEADER "ESRW" ;

! DERIVATIVES OF THE BASE DATA

! derivatives of the base data include computations of
household income, budget shares, and elasticities.

(The parameters needed to calculate the elasticities will be

read in at the point when they are required.) .
Again, since these are constant for each Johansen solution, they

are termed coefficients. !

! household income !

COEFFICIENT {all,r REG) INCOMEI(r)
! level of income in region ! ;
FORMULA  (all.r,REG)
INCOME(1) = sum{i, HHLD_COMM, VHA{i,1)) :

! budget shares !

COEFFICIENT (all.i, COMM){(all,j,IND)(all,r,REG} SI(i,j.1)

' ! revenue share of commodity i in industry j, regionr !
FORMULA {all.i. COMM){all,j, IND){all,r REG)

SI,j.r} = Vsalij.r) / sum{m,COMM,VSA(m,j.1)) ;

COEFFICIENT (all,i, COMM) (allj,IND}(all.r, REG) CI{i.j.1)
! cost share of commodity i in industry j, regionr ! ;
FORMULA (all,i, COMM)(all,j,INDj{all,r,REG)
CIlij.r) = VDA(,j.r) / sum{m,COMM,VDA(m,],1)} :

COEFFICIENT (all,i HHLD_COMM)(all,r,REG} BI(i.1)
!'budget share of commodity i in Tegion 1! :

FORMULA  (all,i, HHLD_COMM){all.r,REG)

BI(i.r) = VHA(.1) / sum(m, HHLD_COMM,VHA(m,1}) :

! checking the base data !
COEFFICIENT (all,j IND}{all,r,REG) PROF ITS(.1)

! This variable computes the sum of revenues minus
expenditures in each sector. This should be zero. !
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FORMULA {allj, IND}(all,z,REG)
PROFITS{j.r) = sum(i.COMM, VSA[ij.1) - VDA[L].1)) :

COEFFICIENT {(all,r, REG) SURPLUS{)
! This variable computes the excess of income (including

transfers and net borrowing} over expenditures lor
each region in the data base. It should be zero. 1

FORMULA (all T.REG)
SURPLUS{r) = sum(j,ENDW_IND, sum(i, ENDW_COMM, VSAlij.r)})

+ sumf(i, HHLD COMM, VHA[L, 1} - VHEM(i, 1))
+ sumfj,IND, sum{i, COMM, VSM(ij,r} - VSA(Lj.0))
+ sumf(j,IND, sumf{i, COMM, VDA(ij,r} - VDM(i,j, 0}
+ sum(i, TRAD_COMM, (VHM(i,1) - VHHW{i.r))
+ sum(j,IND, (VDM(i,j.1) - VDW{i,j,1})
- (VSMIi,j.1) - VSWIi,j.i)}
- sum{i, HHLD COMM, VHAIL5));

DISPLAY PROFITS ; DISPLAY SURPLUS ; DISPLAY SI ; DISPLAY CI ; DISPLAY BI ;

! elasticities !
! computing the elasticities !

COEFFICIENT (all,i, CONS_COMM){all,r, REG) DALPHA(,T)
! one minus the substitution parameter in the CDE
minitmum expenditure fimetion ! :
FORMULA {all.i, CON5_COMMj(all,r, REG)
DAIPHA(G, D) = (1 - SUBPARIi.T) ;

COEFFICIENT (all,i, COMM){all,j,IND){all,r, REG) SALPHA(Lj.1)
! one minus the transformation parameter in the CDE
maxiimum revenue {unction ! ; '

FORMULA (all,i,COMM](all,j, IND)(all.r, REG)

SALPHA(L,j.1) = (1 - TRNPAR( f.1)) ;

COEFFICIENT (alli,CONS_COMM])(all,r,REG} CONSHRI(i,1)
! the share in total consumption expenditure of
goodiinregionr !;
FORMULA  (all.i, CONS_COMM){all,r.REG)
CONSHR{i,1) = BIli,r})/sum(k,CONS_COMM, Bl{k.1}) ;

COEFFICIENT (all,i, CONS_COMM){all. k,CONS_COMM)(all,r, REG) AEP(i k.r)
! the allen partial elasticity of substitution between
goods i and kin regionr ! ;
FORMULA {all.i, CONS_COMM)(all k, CONS_COMM]}(all.r, REG}
AFP[ik, 1) = DALPHA(L 1) + DALPHA{k.T} -
sum(m,CONS_COMM, CONSHR{m.1} * DALPHAmM.1)} :
FORMULA {fall.i, CONS_COMM)(all.r REG)
AEP(i,ir) = 2.0 * DALPHA(LT) -
sum(m,CONS_COMM, CONSHR(mn.1} * DALPHA(mM.T)) -
DALPHA(LT) / CONSHR{,1} :
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COEFFICIENT (all,i, CONS_COMM)(all.,REG) COMPDEM(,1)
I' the own-price compensated elasticity of household demand !
FORMULA (all,i, CONS_COMMj)(all,r, REG)
COMPDEM(i.1) = AEP(i,i,r} * CONSHR[i,)

COEFFICIENT (all,i, CONS_COMM){all.r . REG) EY({i.r)
! the income elasticity of household demand for
good iregiony !;

FORMULA {all 1, CONS_COMM){all,T,.REG)

EY(i,r} = (sum{m,CONS_COMM, CONSHR(m.1} * INCPAR{m.T)) * [-1.0})
* (INCPAR(i,) * (1.0 - DALPHA(L,1) ,
+ sum(m,CONS_COMM, CONSHR{m,1} * INCPAR(m,1} * DALPHA[mM, 1))

+ (DALPHA(LT) - sum{m,CONS_COMM, CONSHR(m,1} * DALPHA(m.1))) :

COEFFICIENT (all,i, CONS_COMM)(all k, CONS_COMM)(all,r,REG} EP(i.k.D
!' the uncompensated cross-price elasticity of hhld
demand for good i wrt the kth price m regionr ! ;
FORMULA (all,i, CONS_COMM){all,k, CONS_COMM)(all,r,REG)
EP{ik1) = (AEP(ik,1) - EY{i,)) * CONSHR(k.1) :

COEFFICIENT (aIl.i,COMM)(all,k,COMM](aII,j JINDMallr REG) ES(ik,j.r)
I the compensated cross-price elasticity of
supply of good i wrt the kth price in industry
jofregionr I;
FORMULA (all,i, COMM)(all k,COMM)({all,j,IND){all,r REG)
ES(ikj.xr} = Si{k,j,r) *
(SALPHA(ij,r) + SALPHA(k,j.T)
- sum(m,COMM, Sl{m j,1) * SALPHA(m,j,1}});
FORMULA (all,i, COMM](all,j,IND)(all,r REG)
ES(.ij,1) = SI(i,j.0 *
2.0 * SALPHA(j,1)
- sum{m,COMM, SI(m,j.1} * SALPHA(m,j,1))
- SALPHAG,j,1) / SIGLj.0) ;

COEFFICIENT (all,i, COMM)(all,j,IND){(all,r REG) COMPSUP(,j,1)
!' the compensated own-price elasticity of
supply of good 1 in industry
jofregionr |;
FORMUILA (all,i,COMM)j(all,j.IND)(all,r, REG)
COMPSUP(,j.1) = ES(i.ij,1} ;

COEFFICIENT (all.i, COMM){all k, COMM)(all,j.IND}(all.r, REG) ED(ikj.1]
! the compensated cross-price elasticity of
demand for good i wrt the kth price in industry
jofregionr !;
FORMULA (all,1i,COMM)(all, k, COMMj(all,j,IND)(all,r, REG)
ED(ikj.1) = Cl{kj,1n) * ESUB{,0) :
FORMULA (all,i,COMM)(all,j,IND)(all,r,REG)
ED(i.ij.r} = (CIlj.1} - 1.0) * ESUB(.1) ;

' checking the elasticities !
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COEFFICIENT (all,r,REG) ENGELAGG()
! a check on the Engel aggregation condition for the
aggregate household inregionr ! :
- FORMULA  (all,r REG)
ENGELAGG(1) = sum(i, CONS_COMM, (Blli,1}/sum(m,CONS_COMM, BIim.1)})

*EXYlix);

COEFFICIENT (all,i, CONS_COMM]}(all,r,REG) COURNOT(.1)
! the rowsum for the ith row of the matrix of

uncompensated cross-price elasticities of hhld
demand for good i wrt the kth price in region
plus the income elasticity of demand.
This must equal zero if dernand is to be
homogeneous of degree zero in prices and income. ! ;

FORMULA  (all,i, CONS_COMM)(all,r,REG)

COURNOT(,1) = sum(k,CONS_COMM, EP(i k1)) + EY(i.1) ;

COEFFICIENT {alli, COMM)(all,j,IND}(all,r, REG) ROWSUMED{i,} 1)
! rowsum for the ith row of the matrix of compensated
demand elasticities for the jth industry in the
rth regiont !;
FORMULA (all,i, COMM]}{all,j IND}{all,r REG)
ROWSUMEDIi,j,r) = sum(k,COMM, ED(i.k,j.1);

COEFFICIENT (all,k,COMM]j(all,j.IND}(all,r, REG) COLSUMEDI(k j,1)
! cost share-weighted
colsum for the kth column of the matrix of compensated
demand elasticities for the jth industry in the
rth region !;
FORMULA (all,k, COMM])(all,j,IND}(all,r REG)
COLSUMED({k,j,1) = sum(i.COMM, CIfi,j,1) * ED(i kj,0));

COEFFICIENT (all.i, COMM)(all,j.IND)(all,r,REG) ROWSUMES(i,j.1)
I rowsum for the ith row of the matrix of compensated
supply elasticities for the jth industry in the
rihregion ! ; _
FORMULA (all,i,COMM)(all,j, IND){all.r. REG)
ROWSUMES(ij,1}) = sum(k,COMM, ES(ik,j,0);

COEFFICIENT (allLk, COMM]}(all,j IND)(all,r, REG) COLSUMES(k,j.1)
! share-weighted columnn sum for the
kth column of the matrix of compensated
supply elasticities for the jth industry in the
rth region !;
FORMULA (all k, COMMj(all,j,IND)(all,r, REG)
COLSUMES(k,j.r} = sumlii, COMM, SI(i,j.r) * Es{i.k,j,1l);

DISPLAY EY ; DISPLAY COMPDEM ; DISPLAY COMPSUP ; DISPLAY ENGELAGG :

DISPLAY COURNOT ;: DISPLAY ROWSUMED : DISPLAY COLSUMED :
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DISPLAY ROWSUMES ; DISPLAY COLSUMES :;

! EQUATIONS !

! The equations in this model pertain to three levels of indexation.

The first set involves behavioral relationships which apply at the

sectoral level. These determine sectoral supplies and demands,

both conditional on activity levels, as well as the zero profits

condition which determines overall activity level in a sector.

The second group of equations are region-specific. Because there

is only a single household in each region, there is a one-to-one

mapping between households and regions. These equations include

the household demands in a given region, the regional/hhld budget
constraint -- in the form of the CDE expenditure function evaluated

at the level of income available to the domestic household for consumption,
and market clearing conditions for the nontradeables.

The final group of equations pertain to the world at large. The first

of these is the market clearing condition for the tradeable goods. Due

to Walras' Law, we may exclude one of the model's equations. We

drop the market clearing condition for one of the tradeable goods

as specified above. This group of equations also contains the

price linkage equations which relate prices for a common commodity
across uses. In order to facilitate cross-referencing between with

the paper, comments also note the corresponding equation number in HHP. |

! the following equations must hold for all sectors !

EQUATION INDSUPPLIES
! Industry supply equations. When the industry in question
is not multiproduct, this is redundant, since supply and
activity level are identical. Equation (7a*) in HHP. !
(all,i, COMM]}(all,j,IND)(all,r, REG)
gs{i,j,r) = sum(k,COMM, ES(i,k,j.r} * psikj.n) + zG.0 ;

EQUATION INDDEMANDS
' Industry demand equations, HHP # {6*). !
(all,i,COMM}{all,j.IND}{all.r, REG)
qd(ij.r} = sum(k, COMM, ED{ikj.r) * pd(kj,r}) + z{.1) ;

EQUATION ZEROPROFITS
! Industry zero profits condition. This condition permits us to
determine the endogenous activity level for each of the non-
endowment sectors. The level of activity in the endowment
sectors is determined exogenously. Equation (4*) in HHP. I
(all,j, NEND_IND)(all,r, REG)
sum(i. COMM, SI{i,j.1} * ps(i,j,1)) = sum(i,COMM, CI{ij.0) * pd(i,j,0) ;

! the following equations must hold for all regions !
EQUATION REGIONALINCOME

! This equation computes regional income as the sum of
primary factor payments and tax receipts, HHP #(5%). !
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(all,r,. REG)
INCOME(1] * v(r}
= sum(i, ENDW_COMM, sum(j, ENDW_IND, VSA(ij.1) * (pslij.n) + gs(i,j.r)))
+ sum(i, HHLD COMM, (VHA(LD) * (phi{i,1) + ghli.1))) -
(VHM(ix) * (pmlt,1} + gh(i,r)})}
+ surn{i, COMM, sum(j,IND, (VSM(ij.1) * (pmli,7} + gs(i,j.0))} -
(VSA(L.r) * (pslij.1) + gslij.ol)
+ sum(i,COMM, sumf(j,IND, (VDA({,j.1) * (pd(ij.n) + qd(i,j.”)) -
VDM(,j.0) * (pmiLn + gd{ij.oih)
+ sum(i, TRAD COMM, {(VHMI(i,1] * (pm(i.n) + ghfi,r}) -
(VHWILLT) * (pw(i) + gh(in))
+ sum{i, TRAD_COMM, sum(j,IND, {VDM(i,j.r} * (pmii.y) + qdfij.ri) -
(VDWIL,j.1) * (pw(i) + qdli,j.0l))
+ sum(i, TRAD_COMM, sum(j,IND, (VSWI(ij,r} * (pw(i + gs(i,j.Th} -
(VSM(Lj.1) * (pmfir) + gs(ij.ol) ;

EQUATION BUDGETCONSTRAINT
! This equation forces the minium expenditure necessary to attain

a given utility level to equal income. It's only function here is
to permit utility to be computed endogenously rather than being
forced to evaluate the implicit function after the fact. HHP #(8d*) !
(all,r,REG)

sum(i, CONS_COMM, (CONSHR(L1} * phfi.i}}) +

(sumf(i, CONS_COMM, (CONSHRI(i,1) * INCPAR(L,1)) * uc(n)} = v{r);

EQUATION OTHERDEMANDS

. ! Household demands for other goods, i.e. savings and goodwill. HHP#(8b*) !
(all,i, NONC_COMM){all,r REG)

ghli,r) = y{r) - phii.1) ;

EQUATION UTILITY
! computation of aggregate utility for each region. HHP #(Sa*] !
(all,r, REG)
ufr) = [BI("gdwill".0) * qh('gdwill",1)]
+ [BI("csavings",r) * gh('csavings”.1]]
+ [sum{i, CONS_COMM, BI{i, 1)} * uc] :

EQUATION CONSDEMANDS
! Household demands for consumption goods in region r. HHP#{8e*}. !
{all,1, CONS_COMM}all,r.REG})
gh(i.r) = sum(k, CONS_COMM, EP(i,k.r} * ph(k.1)) + EY(i,1) * y[r)

EQUATION MEKTCLNONTRD
! This equation assures market clearing in the nontraded goods
markets in each of the regions. HHP#(1*).!
(all, i, NTRD_COMM])(all,r,REG)
sum(j, IND, VSMIi,j,1) * gs(i,j.1)
= sum(j,IND, VDM(1,j,0) * qd(i,j,r)
+ VHM({i.1) * gh(i,1) ;

! the following equations hold for the world as a whole !
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EQUATION MKTPRICES
! This equation links domestic and world prices. It holds only
for tradeable commodities. HHP#(3*). !
(all,i, TRAD COMM)(all,r.REG)
pmli,r} = i) + pwli} ;

EQUATION HHPRICES
! This equation links domestic and household prices.
It holds only for household goods. HHP#(3*). !
{all,1,COMM){all,r, REG)
ph(ir) = thii,n) + pmli,f) ;

EQUATION SUPPLYPRICES
! This equation links domestic and firm supply prices.
It holds for all goods. HHP#(3%). !
(all,i,COMM])(all,j,IND}(all,r REG)
pslij,0) = tsfij.0 + pm{iz) ;

EQUATION DEMANDPRICES
! This equation links domestic and finn demand prices.
I holds for all goods. HHP#(3%). !
{all,i,COMM)(all,j, IND)(all,r,REG])
pd(ij.r) = td(ij.r} + pmfin

EQUATION MKTCLTRD
! 'This equation assures market clearing in the traded goods markets.
Due to Walras Law we omtitt the last of these which is the US mnfcs
producer good. HHP#(2*). !
{all,i, WALR_COMM)

sum(r,REG, sum(j,IND, VSWI{ij,} * gs{i,j,n))) =

sum(r,REG, sum(j,IND, VDWI{i,j,r} * qd(i,j.1))) +

sum(r REG, VHW(i,r) * qh(i,n)} ;

EQUATION WALRAS D
I This is an extra equation which simply computes change in demand
in the omitted market. !
sum(r,REG, sum(j IND, VSW("mnfcus",j,r} )} * walras_dem =
sum(r.REG, sumf(j,IND, VDW("mnfcus"j.r) * qd("mnfcus”,j,0))
+ sutnfr, REG, VHW("'mmnfcus”,r) * gh('mnfcus” 1)) ;

EQUATION WALRAS_S
! This is an exira equation which simply computes change in supply
in the omitted market. !
sum(r,REG, sum(f,IND, VSW{"mnfcus" j,r) )) * walras_sup =
sum{r,REG, sum(j,IND, VSW("'mnfcus",j,r} * gs{"mnfcus”j.n)) ;
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