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ABSTRACT

Intertemporal modelling is becoming increasingly important in general equili-
brium policy analysis. Issues such as ﬁatural resource managemént, pollution con-
trol, irvestment, the promotion of technical change and the accumulation of foreign
debt .all involve ‘-explicit intertemporal behavior and thus require intertemi:oral
models to address adequately. Applied researchers have been slow to adopt the
intertemporal paradigm because it can iinpose formidable computational require-
ments. In this paper we address this problem by presenting flexible, efficient new
software which can solve complex intertemporal models in a fraction of the time

required by conventional approaches.

Our infertemporal software is an extension of GEMPACK, a suite of general-
purpose comI;uter programs developed to streamline the implementation and solu-
tion of a wide class ‘of applied partiél or general equilibrium models. This paper
describes GEMPACK's new .intertemporal modelling capabilities which make it
straightforward for modellers to impIeinent and solve their models. Because GEM-

PACK operates on models written in a syntax similar to ordinary algebra, it is easy

. for researchers to revise their models whenever necessary.

In summary, this new software removes the computational impediments to .
intertemporal modelling, thereby allowing modellers to concenirate on the economics

of their models.
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GENERAL-PURPOSE SOFTWARE FOR INTERTEMPORAL MODELLING
by |

~ George Codsi, K.R. Pearson and Peter J. Wilcoxen!

1. INTRODUCTION

Intertemporal (or dynamic) models are those having equations linking variables
at different points in time. A very simple dynamic model is a single capital accumu-
lation equation giving next year's capitél stock as a function of this year’'s capital
stock and net investment. More complex models can include equations derived from
intertemporal optimization and may involve adaptive or rational expectations.? In all
cages, the dfstinguishing feature of a dynamic model is that it contains at least one
equation constraining how a variable evolves over time. Such intertemporal equations
will be either differential or difference equations aepénding on whether the model is
formulated in continuous or diécrete time. In this paper we describe how to use a
general-purpose ecénomic modelling software package, GEMPACK,? to irﬁplement
and solve a wide range of dynamic models. -We focus particular attention.on models
formulated in continuous time, although the methods we discuss are equéliy applica--

ble to discrete time models.

In Section 2 we show how continuous time models can be converted to discrete
time models by replacing derivatives by finite differences. GEMPACK allows flexibil-
ity in specifying the number of time instants and the gaps between them. By varying

1. The authors are at the Impact Centre, La Trobe University and the impact Centre, and Harvard
University, respectively.

2. For a detailed discussion of the theory of dynamic modelling and of numerical methods used to
solve dynamic models, see Wilcoxen (1989) or Chapter 5 of Dixon, et al. (forthcoming).

3, GEMPACK is a suite of modelling software which runs on PCs and most mainframes. It is
"described in Pearson {1988) and Codsi and Pearson (1988).
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the points modelled in this way, it is possible to obtain solutions to this discrete
problem which are as close as desired to the true solutions of the original continuous

time model; this is discussed in Section 7.

The theory and equations of a model are communicéted to GEMPACK simply
by preparing a text file containing a linearised representation of the eqﬁations. The
software is able to produce true solutions of poniinear models from this linearised
representation.* Sections 3 and 4 contain a desc.ription of the procedure for express-
ing intertemporal models in the syntax expécted by GEMPACK; Section 5 describes
how base case scenarios can be constructed. In Section 6 we illustrate our procedures

with a stylized model of forestry.

One feature of the method described here is that the whole system of equations
(including the intertemporal equations) is solved simultaneously. Hence the values
of all variables at ali time instants are found at once. (That is, they are not succes-
sively determined onertime instant at a time.) In particular the method makes 1o
real distinction between the intertemporal equations and the others; thus it works
well for models with any nufnber of intertemporal equations, and terminal conditions
that must be satisfied in the future are easily accommodated. The sparse matrix
methods used by GEMPACK make it feasible to solve the.resultiﬁg system of equa-

tions even when the number of time instants is quite large.

4. See Pearson (1991). Moreover, this is accomplished entirely by GEMPACK without the user
needing to write any model-specific programs or subroutines.



-3
2. DISCRETE APPROXIMATIONS FOR CONTINUOUS TIME MODELS

'For continuous time models, the first step in using GEMPACK is to replace any
time derivaﬁves with appropriate discrete ai:proximations.-" These approximations are
known as finite-difference formulae and are COII-Stl'l..lCted from Taylor series‘lexpah-
sions. Eor example, an approximation for a first derivative might be constructed as
follows. First, expand the function of interest, Say f . about a particular time { for an

adjacent time t +h: .
frhy = f@) + f O + 00D W

where f' is the derivative of f. h is a small step in time and O(h?) represents the

Taylor series terms of order h? and above. Rearranging (1) and dropping the higher-

. order terms shows that:

LOSRL®) = prgy @)

The left side of (2) is a finite difference approximation to the derivative of f
evaluated at time ¢. Since it was constructed using current and future values of f, it

is known as a forward difference.

To see how this works in practice, consider buildiﬁg a finite difference represen-
tation of the continuous time capital accumulation equation below, which links the

capital stock, K, gross investment, I, and the depreciaﬁon rate, 8:

5. This step {all of Section 2} is unnecessary for discrete time models.
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K'(t) = I{t) — BK(¢) : (3

where the prime symbol (') denotes a derivative with respect to time. Replacing K’

with a finite difference equation of the form shown in (2) gives the following:

A&(!i’!;}:ﬂt_l; I() - 3K(¢) @)

This can be rearranged to produce the expression below:
K(t+h) = hI(t) + (1-8R)K(t) (5)

When h is one year, (5) becomes the familiar discrete-time capital accumulation equa-
tion. For reasons which will become evident below, we will not assume that % is

always one.

3. EXPRESSING THE MODEL IN A FORM SUITABLE FOR TABLO

The heart of GEMPACK is TABLO, a progrém which translates models from
symbolic intb numerical form. TABLQ accepts input files containing a linearised®
: versibn of the model’s eql,{ations written according to a syntax which is very close to
that of ordinary algebra. Thus, once a discrete approximation lhas beeﬁ chosen’ for
the model, the next step is to linearise it. Once this has been done, the model can
be expressed in TABLO using several features designed for dynamic modelling.” In
6. In this paper we use Johansen’s percentage change linearisation (see Chapter 3 of Dixon et al.

(forthcoming)), but other linearisations are also'acceptable.
7. Dynamic modelling capabilities were first included with Release 4.2 of GEMPACK.
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particular, TABLO now allows variables and coefficients to be indexed by time, so it
is possible to write equations and formulae which involve variables at different points

in time.

One of the simplest equations that might appear in an dynamic model is an
expression which relates contemporaheous' variables and which must hold at all
- points in time. For example, a Cobb-Douglas utility function generates the following -

demand equation for good X at time ¢:

- aC) - | 7 ‘
X(t) PX(t) (6)

"where o is the exponent of X in the utility function, PX is the price of X, and C is -
the total value of consumption. Thus, demand for X at time ¢ depends on the price
of X at t and total consumption at ¢, but not on any variables at other times. The

linearised version of (6) is the following:

x(f) = c(t) — px(¢) @

“where we have used lower case letters to represent percentage changes in the

corresponding uppercase variables. In TABLO, (7) might be written:
EQUATION demand (all,t,alitime)_ x(t) = c(t) - px(t); (8)

where demand is the name of the equation. Variable x might be declared in the fol-

lowing fashion:
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VARIABLE (all,t,alltime) x(t);
with ¢ and px declared in a similar way.

Equa’tion (8) and th.e declax;ation of x illustrate the first ;:lifference between static
and dynamic models in TABLO: in dynamic models, variablés are subscripted by an
index of time, in this case {. One consequence of this is that a quantifier must now
be included in the equation statement to describe the ciomaiﬁ of t. In equation (8),
for example, ¢ is allowed to range over set alltime. Sets that are used as the dqrﬁai—n

of time indicies are called "intertemporal sets".

Equations involving addition or subtraction introduce an additional difference
between static and dynamic models in TABLO: some of the coefficients might need
to be subscripted by time. Consider the accounting relationship shown below

between savings, S{t), after-tax income, Y (¢), and consumption, C (.t):
5¢)=Y() - C) e
When linéarised, this eciuation has the form:
s(t) = Bytyy () — A-By@)e®) a0
where Bl.(t) is a share given by:

By(t) = L) - Ay
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In TABLO, (10) and (11) would be expressed as follows:

EQUATION eq2 (all,t,alltime)
s(t) = B1(e)*y(t) - (1-B1(e)X*c(t);
FORMULA (all,t,alltime) Bi(t) = Y(&)/8(t);

where BI is B, written in a form suitable for TABLO and Y (f) and 5{(t) are base case

data.

The second of the two expressions shown ;dbové describes how cde;fficient B1{t)
is to be calculated from base case data on Y(t) and S(t). It differs from its static
counterpart because Y and § are subscripted by time. This brings out an important

feature of dynamic models: the base case is an entire trajectory of the model over the
period of interest, not just a single equilibrium at a particular point in time. Put
another way, a dynamic model is linearised about an equilibrium trajectory, while a
static model is linearised about a single equilibrium point.® Since the ratio of YtoS
in the base case may change over time, the coefficient B should change as well.

Thus, the expression must be ap‘plied for each t in alltime.

Intertemporal mbdels typically contain two types of equations. Firstly there are
those relating variables at different points in time, such as (5) above, or containing a
derivative with respect to time (which reflects changes as time varies), such as (3)
above. Secondly there are those such as (7) and (10) above which only involve con-
temporaneous variables (and have no time derivatives). The first of these are the
ones that distinguish dynaﬁtic models from others, and we refer to them as "inter-
temporal" or "dynamic” equations. The ‘second can perhaps most accurately be

8. In Section 5 we will discuss how a base case can be constructed for a dynamic model.
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referred to as "intratemporal” equations; however, because of the similarity of this

word to "intertemporal”, we will also use "intraperiod” to describe these equations.

Like intraperiod equations, dynamic equations are quite easy to express in

TABLO. Consider the discrete-time capital accumulation equation given.below:

K(t+1) = I(t) + A-8)K(t)

(12).

This equation is just (5) with / is set to one. Converting this to percentage change

form prbduces the following;:
k(t+1) = Sy(t)i(t) + (1=Sq())k(2)
~ where 5,(t) is a base case share given by the expression below:

I
Silt) = K{t+1)

In TABLO, (13) might be written:

FEQUATION ka (all,t,fwdtime)
K(b+1) = B1(ty*1i{t) + (1-81(t))*k(t);

where S1(t) could be calculated using the expression:

FORMULA (all,t,fwdtime) S1(t) = I(t)/K(t+1);

(13)

(14)
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In these two equations the domain of t is a set called fwdtime, rather than all-
time. This new set contains each element of alitime whose successor is also in alitime
— that is, all ¢ for which t +1€alltime . In particular, fwdtime excludes the last point in

alltime since, by construction, alltime does not include the successor to that po'int.

4

. We will discuss al?time ‘and fwdtime in more deteilil in Section 4.
In translating dynamic models to TABLO, no particular difficulty is imposed by

forward-looking equations. Consider the equation below which defines the change

_ in human wealth over one year:
W'(t) = RW({I) — Y () ' . {15)

where W is human wealth, Y is labour income and R is the interest rate. If we
" replace the left term by a finite difference approximation similar to (2) and set the

step h equal to one, we obtain:
W(t+1) — W(t) = R(t)W(t) — Y(t) | (16)
which looks. somewhat more familiar in the form:
WEHD) = (HROWE - YE) 17)

Equation (17) can be linearised and converted to TABLO format in precisely the

manner used earlier for the capital accumulation equation.
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One further type of equation arises in dynamic modelling because certain vari-
ables are governed by special equations at particular points in time. For example, the
initial capital stock is usually known at the beginning of the simulation, so an equa-

tion like the following holds:
K(0) = K, ‘ (18)

where K, is the known (and exogenous) initial value of the capital stock. Following
the ﬁomenclature of differential equations, expressions like (18) are called "boundary
conditions”. Dynamic models will have one boundary condition for each dynamic
equation derived from a first-order differentiél or difference equation. If the original

differential eﬁuations are of higher order, more boundary conditions will be required.

Boundary conditions can take éeveral forms. In the simplést case, a boundary
condition might give the initial value of some variable in the model; equation (18) is
an -example. Iﬁ other circumstances, a more complicated equation may have to be
used. For example, a boundary ‘com.:l'ition for the human wealth equatidn in (15)

might be the following:

W(T) = %%l | . | (19)

where T is the largest time in the interval of interest. (This condition would apply
when T is large enough for the model to have essentially reached the steady state.)

In linearised form, (19) becomes:

w(T) = y(T) - r(T) _ (20)
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- This can be expressed in TABLO as:

EQUATION endcond (all,t,endtime) w(t) = y(t)-r(t);
where endtime is a set containing just one time instant, namely T.

Thus, dynamic models include three.types of equation that are not present'in
static models: intraperiod equations, dynamic equations, .ancl boundary conditioﬁs.
Intraperiod equations are fairly similar to those appearing in static models, except
that they hold at many points in time. Dynamic equations, on the other hand, are |
not similar to anything appeéring in static models because they explicitly relate vari-
ables at different points in time. Finally, dynamic models also include boundary con-
- ditions. With these kinds of equation in mind, we now discuss the sets describing

. the domain of ¢ in more detail.

4, ESTABLISHING THE DOMAIN OF THE TIME INDEX

Dynamic models_capturé behaviour over an interval of time. Without loss of
generality, we may represent this inte;yal by [0,T] where 0 is an. arbifrary starting
date and T is some later date. Often T will be very large, sometimes more than a’
hundred years. To simulate a model over a long period of time it is necessary to
divide up the original interval into a number of subintervals. The mathemaﬁcél rea-
son for this comes from the finite difference approxixﬁations introduced in Section 2,
but the intuition behind it is faifly clear: if we want to know how the model behaves
between 0 and T, we should expect to have to soive it at some intermediate points.
This is fhe motivation for defining the model’s equaﬁons over sets of points in time.

In the remainder of this section we will discuss these sets in detail.
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Replacing the model’s time derivatives with finite difference formulae produces
a system of equations that approximates the model near a particular point in time.
Put another way, each finite difference equation is a local approximation to one of
the original differential equatidns. These approximations are accurate to the order of
the difference formulae; equation (5), fdr exémple, is accurate to O(h). Thus, the
model’s numerical accuracy will depend heavily on the step size, h, used in con-
structing the différence formulae. ‘Since the énding date, T, is tyiaically Qery large,
rePresenting the entire interval with a éingle difference equation woﬁld usually pro-

duce a devastating amount of truncation error.

A concrete example makes this point clear. Suppose we _wére interestéd in
modelling an e'conomy over the next fifty years. If today’s investment and capital are
1 and' 5, respectively, and if the depreciation rate is 0.1, insefting those values into
(5) and setting h to 50 suggests that fifty years from now, the capital stock éhould be
30. The true answer, obtained by integrating the original differential equation and
assuming that investment is constant at 1 for the next fifty years, is very close to 10.
Thus, using a single step to represent the entire interval produces a terrible estimate
of the final capital stock. On the otherl hand, using today’s investment and capital to
compute tIll_e. capital stock next year (so h is equal to 1) would produce a veryrgood :
estimate: 5.5C when the true valﬁe is 5.48. Finite diffgrence approximations are ﬁery
useful over reasonably short intervals, but are not appropriate for long periods of

time.

However, truncation error can be minimized by breaking the interval of interest .
up into a sequence of adjoining subintervals.? Then, each subinterval can be assigned

9. See Wilcoxen (1989) for a more complete discussion of how this subintervals can be used to
minimize truncation error.



its own difference equation which will bnly hold over a fairly short period of time.
This, in turn, reduces truncation error. For example, if the period of interest were
[0,T], two equal subintervals could be used: [0,T/2] and [T/2,T]. Then, equation (5}

‘would be replaced by the following;:

K(T/2) = hI{0) + (1-8h)K(0) : - (21)

K(T) = _hI(%). + '(l—Bh)K(;ZI-) . (22)

Together, (21) and (22) approximate (5) over the interval '{O,T] with an order of accu-
racy O(T/2). Thus, by using two finite difference equations, trunéation error has
been reduced by about fifty percent. If T is large, as it often is in dynamic models,
ﬁsihg a step size of T/2 might still produce an unacceptable amount of truncation
error. In that case, more subihtervals would have to be used. If necessary, the solu-
tion can be made arbitrarily accurate by using a sufficiently large number of subinter-

vals.

In general, N édjoining subintervals will be defined by N-1 time instants
which we will call a "grid" of points. In the example above there are two subinter-
vals and the corresponding grid is {0, T/2, T}. In most dynamic models the presence
of intraperiod equations makes it necessary to be able to refer to each of the model’s
variables at each grid point. To facilit%tt‘e this in TABLO, we can define a special set
to represent the grid. This set can thei} be used to quantify declérations of variébles,
coefficients, formulae and equations, as alltime and fwdtime were in the examples

above.



-14 -
As we will discuss in Section 7, it can be very useful to keep the number of
intervals (and thus points) in the grid flexible. TABLO's ability to handle sets whose

size is defined at run time makes this particulaﬂy easy. A typical TABLO set

~ declaration for a grid with N intervals (and thus N +1 grid points) is:
SET (INTERTEMPORAL) alltime MAXIMUM SIZE 101 (p[0I-pIN1); (23}

Several features of (23) ﬁeed explanation. At the left, lthe set qualiﬁer "INTERTEM-
PORAL " instructs TABLO that certain arithmetic operations are allowed on the set; in
particular, that the expression f+1 (when t is an element of the set) is to be inter-
.preted as the successor to element . Moving to the right, the phrase "MAXIMUMl
SIZE 101" states that there will be up to 101 elements in alltime, although fhére may
be fewer. At the far right, the expression "(p[0]—p[N])" is an abbreviation for the set
of points {p0,p1,p2,..,pN}. N itself is an integer coefficient giving the number of
desired. time infervals_. It would have been declared prior to (23), possibly with the

statements below:

COEFFICIENT (INTEGER) N;
READ N FROM TERMINAL;

The second of these allows the user to specify the value of N interactively.

An important feature of (23} is tha.t it declares the grid without actually assign-
ing dafes to its points'. Instead it only gives the grid points symbolic names, such as
p0 and pI. This rﬁakes it easy to changg theldates associated with the grid points,
which is importaflt in obtaining acceptable numerical accuracy. With alltime defined

~ as shown 'inv (23}, a TABLO variable like x(¢) must be interpreted carefully. In
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particular, x(t) is not the value of x at time t since ¢ is only an index and is not a

" date in itself. Instead, x(¢) is the value of x at grid point number t. We will discuss

how actual dates are associated with grid points shortly.

It is often useful to declare subsets of the grid. For example, the set fwdiime
used in Section 3 is a subset of alltime éonsisting of the grid points in alliime whose
* successor is also in alltime. Thus, fwdtime is the domain of ¢ where t+1 is in alltir-ne.
-As a practical matter, fwdtime is the domain of ¢ where it is .possible to compute a
forward difference. Because finite difference formulae often involve forward differ-
ences, fwdiime is a very important set. It could be declared using the folloWiﬁg two

statements:

SET (INTERTEMPORAL) fwdtime MAXIMUM SIZE 100 (p[01-pIN-11);
SUBSET fwdtime IS SUBSET OF alltime;

These statements create a set éalled fwdtimé which consists of the first N elements of
alltime, pO through p[N-1/. This illustrates the role of stbolic names in set declara-

tions: they allow subsets to b_e expressed cleaﬂy and unambiguously.

A third set we find useful is the difference between alltime and fwdtime. Since

this is just the last point in alltime, we could call it endtime and declare it as follows:

SET (INTERTEMPORAL) endtime SIZE 1 ( p[N] );
SUBSET endtime IS SUBSET 0OF alltime;

This set is used for handling boundary conditions that apply at the terminal time.
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Actual dates can be associated with grid .points By reading them in from a data
file. Given a text file called "dates.dat" containing the desired dates, the following

TABLO statements would create an appropriate coefficient called date:

FILE (TEXT) time "dates.dat";
COEFFICIENT (all,t,alltime) date(t);
READ date FROM FILE time;

This approach allows the datés associated with grid points to be read in from a data
set in exactly the same Way that other data are read. This makes the model much
more ﬂexible than it would be if specific dates were coded into the TABLO file
directly. In particular, it facilitates changing the overall duration of simulations and
it allows the length of grid intervals to be varied. The latter feature is an important

means of obtaining accurate, solutions at minimum cost.10

When dates are read from a file, the step size between grid points can be calcu-

lated within TABLO. For example, a coefficient dt could be defined as follows:

FORMULA (all,t,fwdtime) dt{t) = date(t+1) -~ date{(t);

where date(t) is the date associated with grid point t. In this case, dt(t) gives the
time between .grid point ¢ and its successor t+1. In other words, di(t) gives the
length of the next grid interval. This new entity can be used instead of & in the finite

difference formula given in (2) to produce the expression below:

10. See Wilcoxen (1989).
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FEED=F () ~ frgpy 54
) ) . (24)
where we have adopted the convention of WRITING F(T) TO REPRESENT F(DATE(T)) and

f(t+1) to represent f(date(t+1)). We will continue using this notation for the

remainder of the paper.

Using a grid of unevenly spaced points means that care must be exercised when
dynamlc equations are expressed in TABLO form. Consider the sample capital accu-

mulation equation shown below:
K'(t) = 1¢) — 8K() (25
On an uneven grid, the finite difference version of this would be the following;:

Kt +1)—K(t
dr(t)

= I(t) — 8K(t) | ' (26)
Rewriting this slightly givesz

K(t+1) = dt (DI (E) + (1—8dt (DK () @7

The percentage change version of this can be expressed in TABLO as:

EQUATION cap k{t+1) = S1(t)*i(t) + (1-Si(t));kk(t-);
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where 51(f) is a share defined as follows:

_ AL | -
SO = Kuvn - @8)

Notice that the grid interval length dt (¢) appears in this expréssion..

5. CONSTRUCTING A BASE CASE

GEMPACK requires one solution of the model (an initial equilibrium} as a start- -
“ing point for its calculations. Other solutions are calculated and repofted as pertur-
bations from this original equilibrium. For a static model this initial equilibrium is a
data set showing the values of all relevant variables at one point in time. For an .
-intertemporal model, however; data is needed on the values of these variables at
every time instant covered by the model. We refer to this large collection of data as a
“base case; it can be thought of as a collection of dﬁta bases (one for each grid point} .
which saﬁsfies the (non]i_nea.r) equations of the model - both the intraperiod and the
dynamic equations. The coefficients of the. linearised equations of the model are cal-

culated from this base case data set.

Usually some of. these grid points w_iﬁ be in the future, so it will be impossible
to obtain the base case from historical _data. Ratﬁef, it will have to be constructed as
a solution to the model for a particular scenario of exogenous shocks. That is, a
guess must be made about the future path of exogenous variables and then a

corresponding solution to the model obtained. The difficulty of this depends on

what behaviour is required of the base case exogenous variables.
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];he casiest base case to construct, and the one that has dominated intertem-
poral modelling to date, is a steady state. In this approach the base case values of
future exbgenous variables are assumed to be constants.. Using these constants, the
initial data set is adjusted so that the model will replicate itself from yeér to year as
long as the exogenous variables remain at their original values. Thus, the base césé
consists of an arb.itrary string of future points in time which look just like the initial
period. Such a scenario is fairly easy to construct because it only requires obtaining a

steady state solution to the model. We discuss an example in Section 6.

A different sort of base case is needed ‘when future exogenous variables are
assumed to be constant at their initial levels (as in the steady state case), but the
model’s state variables, such as the capital stock, are not initially at their steady state
values. Intuitively, such a model will drift toward the stea&y state, approﬁching it .
asymptotically. For convenience, we will refer to this as a "disturbed-state” base case.
Finally, a third type of base case is needed when the exogenous variables are not
assumed.to be constant in the future. This situation is routine when the model is to
be used to generate counterfactual simulations during a historical period, so we will

refer to this class as "historical” base cases.

Both disturbed-state and historical base cases reqﬁire finding a full intertemporal
solution to the model. This appears to present a problem for GEMPACK because it is.
usually only used to solve for perturbations around a known solution. However
GEMPACK can be used to findl a base case by either of the. two procedures described
below. The first involves solving a static version of the model to find a steady state
solution to the intertemporal model and then returning the exogenous variables' to
their desired values. The second, which Was suggested by our colleague Mark Hor-

ridge, ‘involves adding slack variables to the intertemporal equations so that the
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initial data satisfies the modified equations. We have used this method with an

intertemporal version of ORANI and believe it may prove easier to use in general

than the first method.

M

First, a set of changes in exégenous vatiables is found which would make the
initial 'equiliBrium a steady state. This step, in other words, findsrexogeno'us‘
variables for which the observed economy data would be a steady state. Tl'llis
can be accomplisﬁe'd by solving a static version of fhe model in which all deriQa—
tives are set to zero and the corresponding exogenous variables are endogen-
ized. Once thé steady state has beeﬁ obtained, it can be used as the base case
for an intertemporsll simulation in which the exagenous variables are returned
to their true values. Tﬁe solution to this experiment will be the true base case

of the model. '

Begin with a data base which is known to be a solution of the intrapeﬂod equa-
tions of the model at one grid point. (This is just a data set for the underlying
static model.} Now consider the full data set obtained by replicating this one
data set to all grid Ipoints. This will satisfy all intraperiod equations but usually
not the intertemporal ones. Tb overcome this problem, add a slack variable to
each intertemporal equa'tion. For examplé, the éapital accumuiatién equation

(12) above could be written:

ke+1)=(10) + a-8K @) JFO)

where F(t) is the new slack variable. The full data set is a solution of the modi-
fied model (consisting of the intraperiod equations and the modified intertem-

poral ones) since values of the slack variables satisfying the modified equations
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can easily be calculated. Of course we need a solution of the original (unmodi-
fied) equations. To obtain this, simply car.ry out a simulations with fhé modi-
fied mode! in which the slack variables (which are naturally e.xogenous in the
modified model) are forced to their désired values. (For example, F(t) above |
would i)e forced to 1.) The new solﬁtion.of the modified model is the desired
solution of the original equations. In carrying out this simulation with the modi-
fied model, other e>:<0genous variables of the model can also be given shocks to

_bring them to the desired values if a historical base case is required.

. Of course, with either method it will be important to know that the base case pro-
duced is an accurate solution to the original nonlinear equations of the model.
" Accordingly, all simulations referred to above should be carried out using the multi-

step features of GEMPACK in order toavoid linearisation errors.

6. EXAMPLE: A SIMPLE MODEL OF FORESTRY

We now present a simple intertemporal model of forestry to provide a concrete
illustration of the principles discussed so far. In order to focus attention on the most
important aspécts of building the model in GEMPACK, we have deliberately based
this model on a highly stylized description of foreé'try. This is for exposition only; a

more sophisticated and realistic model could easily be built.

| Consider a firm faced with the following optixﬁizaﬁon problem. It owns a plot of
land on whic_h G new, fully-grown trees appear' e&ch year. ‘The g.rowth rate G is
exogenous and does not depend on the firm’s behaviour, nor on the number of trees
already present. If_not: cut down, the trees accumulate into a stock S(t} ét time t.

However, the firm can fell trees and sell them for price P(t) at time . Suppose the
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firm fells trees at a rate F (t) at time ¢ and the rate of expenditure on tree felling is

C(S,F). Then the firm earns short run profit at the rate m(t) given by

w(t) = (t)F(f) — CSEFE)

Finally, suppose the firm wants to choose the path of future felling rates in order to

maximize the present value of its short run profils. Thus, the firm solves the follow-
ing optimal control problem:

o«

max [( PE — C(S,F))e ™ dt

(30)
subjectto S’ =G — F (31)
where r is the interest rate, assumed to be exogenous and constant over time
The first order conditions for this problem can be shown to be the following
A = rA+Cg (33)
§$'=G - F (34)

where A is a multiplier, the prime symbol (') denotes a derivative with respect to

time, and Cp and Cg represent aC/9F and 8C/85, respectwely

"11. See Wilcoxen (1989) or Kamien and Schwartz (1981) for a discussion of how thesc CO[‘IdlthnS are
derived.
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The remaining step in formulating the model is to choose a functional form for
C. For simplicity, we assume that costs are proportional to the wage rate, to the rate
of tree felling and to the ratio of the felling rate to the total stock. If the wage rate is

- given by W, the cost function is then:
C = 0FW(3) \ (35)

where 0 is a parameter. Using this expression, it is straightforward to show from

(32} that the optimal felling rate is given by the expression below:

_ (PHy-ApNSE) - ' ‘
Ft) = 20W (t) | ©6)

Inserting this into the first order conditions (33) and (34) above gives the model’s .

equations of motion:

f oy (PAR (A
x. rA e _ (37)

s'=c - E2NE (38)

These equations summarize the behaviour of our forestry firm. To solve them
numerically we next construct an appropriate finite difference approximation. Recall

the forward difference expression in equation (24):

FU+1D)—f () o . ‘
D £(t) (39)
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Applying this expression to the model's equations of motion produces two finite

difference equations:

MEED=AE) _ ) - (POME (40)
dt{t) - AW -

SED-50) _ ¢ _ (PO-A)SE) W
at (6) T 20W () :

These expressions can easily be converted to percentage change form. Using (40) as

an example, the first step is to rearrange it slightly to obtain:

o _ (P ()= MDY
M) = (L dt DN dt ) SO @)

Translating (42) into 'percentage change form gives the expression below:12
N(E+1) = Sy () + Sy0 ) 2:So(t)p (1) +2-S (X (1) —w(t)) (43)

where X' is the percentage thange in A and coefficients 5;—5, have the following

defintitions:

_ (A+r-dt))yn) . .
Sit) = A(E+1) - @
Sylt) = 1-5,0) - 5)
__P(®) ' '
ey @

12. See Impact Project (1988) or Chapter 3 of Dixon, et al. (forthcommg) for details on how equations
are converted into percentage change form.
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Sqlt) = 1-8,4(t) | @y

To complete the forestry model we need to add two boundary conditions to the
equations of motion. The first of these is very intuitive: we require that the solﬁtion
begin at the original stock of trees. The second condition we impose. is that model
mﬁst arrive at its steady state by the terminal date of the simulation.!® This can be
implemented by requiring that A'=0 at T. Thus, the boundary conditions add the fol-

lowing two equations to the model:

S) = S, - (48)

NTY=0 - (49)

where 5, is the original stock of trees. Equation (48} is trivial to convert to percen-
tage change form and can be implemented simply by making the pefcentage change
in the initial stock of trees exogenous. Equation (49) can best be implemented by

insérting_it into (37) and converting the result into percentage change form to give:
RAT) = —w(T) + 254T)p(T} + 25T (T) (50)
We assumed the interest rate is constémt, so it does not appear in (50).

This leads naturally to an important point about steady state base cases for the
model. In steady state solutions, all derivatives are zero, so from (37) and (38), we

13. See Wilcoxen (1989) for a more detailed explanation of boundary conditions and an argument
justifying this particutar choice. :
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have:

— - (P=AP ©(51).
0=r) o0 (51)

s~ (P-NS E 52
0=0 20W . _ 62)
Calculating a steady state base case for the model means finding values of
F,P,W,G A, and 5 satisfying (51), (52) and (36) given r and 0.. We can choose three
of these independenﬂy and use (51), (52) and (36) to compute the others. The most -

natural exogenous variables are P, W and G, so for our sample model we have set:
r.=.0..05, 9=10, P=24, W=1, and G=100 | | (53)
which gives:
h=i8, $=1000/3, and F=100 ‘ (54)
These values are a steady state and can be used as Ehé base case of the model.

To formulate the model as a TABLO Inpuf file, we follow the proéedure
described in Sectionr4.1-4 First we define the model’s ihtertemporal sets. We choose
fo keep the number of grid intervals flexible, as advocated in Section 4, so we allow
for N _gﬁd poiﬁfs. Thus, we begin the file with the declaration of N, followed by the

14. The full TABLO Input file for this model is shown in Appendix A. In this section we discuss
several of the file’s most important features.
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statement that its value will be read from the terminal. Following that, alltime,
fwdiime and endtime are defined in terms of N. The relevant statements (see Section ‘

4) are as follows:

COEFFICIENT (INTEGER) N;
READ N FROM TERMINAL;

SET (INTERTEMPORAL) alltime # all time periods #
MAXIMUM SIZE 101 ( plol - plIN] );

SET (INTERTEMPORAL) fwdtime # domain of fwd diffe #
MAXIMUM SIZE 100 ( p[0] - pIN - 1] ); '

SET (INTERTEMPORAL) endtime # ending time #
'S8IZE 1 ( p[N] );

SUBSET fwdtime IS SUBSET OF alltime;
SUBSET‘endtime I8 SUBSET OF alltime;

The next step is to associate specific u:latesif_i with each of the grid points. If these
dates are stored on a text file they could be read using the TABLO instructions

below:

FILE (TEXT) time;
COEFFICIENT (all,t,alltime) year(t);
READ -year FROM FILE time;

We can calculate the difference between consecutive dates (which will be used in fin-

ite difference approximations where df (t) appears), as shown:

COEFFICIENT (all,t,fwdtime) dt(t);
FORMULA (all,t,fwdtime) dt(t) = year(t+l) - year(t);

These differences can only be computed when both year (t) and year (t + 1) are known,

so they are only defined on the subset fwdtime, not on alltime. An example of file
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time is shown later in this section.

Next we declare the model’s variables. These are all interpreted as percentage

changes from the base case.

VARIABLE (all,t,alltime) p(t)
VARIABLE (all,t,alltime) w(t)
VARIABLE (all,t,z2lltime) lam{t)
VARIABLE (all,t,alltime) s(t)’
VARIABLE (all,t,alltime) g(t)
VARIABLE (all,t,alltime) f(t)

price of trees

-

wage rate

« me

shadow value of capipal
stock of trees

.

.

growth rate

% % H % O® W
w o% % % o B

-

felling rate

Following this we give instructions which establish the base case. Ordinarily, we
would expect to need to "know tﬁe values of the parainéters r and 8 and the base
case values of all 6 variables (P,W,G,F [LAM, and §) at each grid point. 'fo distin-
guish these base case-valués from the variables with the same names (but different
interpretations) we add "_B", for "base case”, to each name. For this modgl, it turns
out that we only need the base case values G_B, P_B, LAM_B and §_B and that we
do not need to know the value of 8 (although its value is needed to calculate the base
values). We declare the parameter  and the 4 coefficients, declare a text file basedata
to hold the base case values of these, and give instructions to read the required base

case values. The TABLO statements are shown below:



-29 .

COEFFICIENT r ; FORMULA r = 0,05 ; . :

CDEFFICIENT {all,t,alltime) G_RB(t) # Base values of G(t)
COEFFICIENT (all,t,alltime) P_B(t) # Base values of P(t)
CUEFFICIENT (all,t,alltime) LAM_B{(t) # Base values of LAMBDA (t)
COEFFICIENT (all,t,alltime) S_B(t) # Base values of S5(t)
FILE (TEXT) basedata ; . S

READ G_B ° FROM FILE basedata ;

READ P_B FROM FILE basedata ;

READ LAM_B FROM FILE basedata ;

READ S_B FROM FILE basedata ;

# O#

Now we comé to the equations. For each equation we must declare the coeffi-
cienis occurring in it, give formulae for calculating their values from the base case
values, and finally write the equation itself. For equation (43) - the percentage

change form of (33) - we have the following:

COEFFICIENT (all,t,fwdtime) Si(t);
COEFFICIENT (all,t,fwdtime) S2(t);
COERFFICIENT (all,t,alltime) S3(t);
COEFFICIENT (all,t,alltime) S4{t);

FORMULA (all,t,fwdtime) S51(t)=[1+dt(t)+*r]l*+LAM _B(t) /LAM_B(t+1);
FORMULA (all,t,fwdtime) S2(t)=1-81(t);

FORMULA (all,t,alltime) S3(t)=P_B(t)/[P_B{t)-LAM B(t)];
FORMULA (all,t,alltime) S4(t)=1-83(t);

EQUATION di (all,t,fwdtime) lam(t+1)=81(t)*lam(t) +
82(t)=*( ~w (L) +2+ (83 () *p(t)+84 (t)*1am(t)) );

Notice that §1(t) and S2(t) are only defined over fwdtime since they relate to for-
ward differences, while S3(f) and S54(t) are defined over alltime. Similar TABLO
statements are required for the other equations and for the steady state boundary

condition.
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Finally, in order to calculate multi-step solutions accurately we need to include
instructions on how the base data is updated after a simulation. This eliminates
approximation errors that would be present if we calculated just the Johansen (1-
step) solution. To update the four base case coefficients we add the following state-

ments to the TABLO Input file:

UPDATE (all,t,alltime) G_B(t)

= g(t)
UPDATE (all,t,alltime) P_B(t) = p(t) ;
UPDATE (all,t,alltime) LAM_B(t) = lam(t) ;
UPDATE (all,t,alltime) S_B(t) = st}

Each rule shows how the perce.ntage. change results on the right hand side are to be
used to upﬁate Vthe base case variable on the left. For e_xample, the first rule states
that the updated value of G_B(t) is equal to the olcl value of G_B(t) multiplied by
(1+g(t)/100), where g(t) is the percentage change in G at time !. Each of the subse-

quent rules has a similar meaning.

To coﬁplete the model, the temaining step is to prepare the data files. First
consider file time, which gives the dates associated with the model’s grid points.
Suppose we are interested in simulating an 80 year period using 20 grid intervals, all
of the same length. In t-his case, N would be 20 aﬁd the years could be taken as

{0,4,8,...,80}.1% File time would then contain the following two lines:

1 20 (year values)
048121620242832364044485256606468727680

15. The years could just as easily have been defined as {1990 1994,1998,...,2070}, or according to any
desired pattern.
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The first line indicates that the data being described (in this case year) is a one-

dimensional array of length 20. The second line contains the actual data.

The other file we must provide is basedata, which contains the base case values '
of G_B, P_B, LAM B and .S_B._ If we use thé steady state values given in {53) and
(54) above, this would contain 2 lines for each coefficient, as shown below ("21*100"

is an abbreviation understood by GEMPACK to mean 100 written 21 times):

1 21 (G_B valuesr)

21%100

121 (P_B)
‘21%24

1 21 (LAM_B)
21*18

1 21 (S_B)
21%333.3333

- Together, the TABLO file in Appendix A and the two data_ files just presented
form a complete implementation of the forestry model. We conclude this section
with a brief remark on how results from the model might. be interpreted. Suppose we
run a simulation usiﬁg the grid and base case values given above and obtain values
of 10, 6.3 and -5 for the first: three components of fhe variable f(¢) '(the percentage
change in the felling réte). These are percentage changes frc&n the base case, which
is 100 at each grid point. Thus these results méan that the felling rate increases from
100 to 110 at year 0, increases from 100 to 106.3 ét year 4, and decreases from 100 to

- 95 at year 8.
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7. NUMERICAL ACCURACY

The numerical accuracy of finite difference formulae is discussed in detail in
Wilcoxen (1989), but a few further remarks are in order here. In particular, it is eésy |
to estimate  the numerical accuraéy of models implemented m GEMPACK, and to
increase that accuracy when neéessary. The truncation error introduced by finite

difference formulae can be controlled to whatever degree is required.

Assessing the accuracy of a particulﬁr solution can be accomplished by simulat-
ing the expenment a second time using a grid that i is twice as dense as the original.
Since truncation error is O(h) (when forward differences are used}, the error at each
point in the solution should decrease by about fifty percent on the double- dens:ty
grid. Thus, the difference in the results between the two simulations gives a fairly

good measure of the error.

If the error is unacceptably high, any of the measures described in Wilcoxen
(1989} may be taken: the grid deﬁsity can be increased _uniformly, grid spacing may
| be rearranged, or different finite‘differéncerformulae may be used which are accurate
‘to higher order. In addition, several simulations at different grid densities can be
combined using Richardson’s extré\polation to construct a solution that is more accu-

rate than any of them in isolation.1®

Finally, it is imporfant to consider how the number of grid points, N, affects the
computer time needed to solve ajparticular model. The overall size of an intertem-
.pbral model (the numbers of equations and variables) is proportionalrto the number
N of grid points. If an existing static computable general équilibrium (CGE) model is

16. Richardson's extrapolation is described in Birkhoff and Rota (1978).
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converted to an intertemporal model, the number of equations and variables in the
intertemporal version will be approximately the number in the static version multi-
plied by N {since each variable and most equations in the static model get an exira ¢

subscript).

This makes it clear that the computational costs. of wGrking with an intertem-
- poral model are considerably greater than those for the associated static CGE model.
Two parts of these cdsts_ need to be distinguished. Firstly, it is necessary to convert
the symbolic equations to numerical form. This involves calculating all the shares
from the base data, and the cost is réughly proportional to N Secondly, there is the
cost of doihg an LU decomposition. (see Duff (197‘7).) 6f a matrix of size K xK where
K is the number of endogenous variables. Usually this cost is proportional tq K3, so
(since K is proportional to N) if there are 10 grid poinfs this cost would be multiplied
by 1000 from that of the stati¢c model. Such a cost inc'rease would be an enormous

problem.

Howevér, our initial empirical experience is that the LU decomiaosition cost only
increases approximately in proportion to N rather than N?3. This is because most of
the equations in an intertefnporal CGE model are intraperiod equatial)ns. The prelim-
inary reordering of the equations and variables done by‘ the Harwell sparse matrix
routine MA28 (see Duff (1977}) used by_GEMPACK- automatically detects the associ-
ated pattern in the matrix and is then able to break the whole problem into approxi-
mately N subproblems each of size K XK. This efficienﬁy feature of MA28 is thus
very important for keeping the costs of intertemporal model solving within manage-

“able bounds. Our conclusion is that to a first order of approximation, total computin.g '

costs are proportional to the number of grid points.
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Finally, also. note that the condensation facilities in GEMPACK can be used to

_reduce the size of an intertemporal model actually solved. This is another way of

‘keeping computing costs within bounds.

8. CONCLUSION

In Surﬁmary, the extended version of TABLO allows a W_ide variety of dynamic
models to be formulated and solved within GEMPACK. This includes, but is not
limited to, the perfect fdresight models of intertemporal optimization cﬁrrently popu-
lar in macroeconomics.'- Numerical accuracy can be measured and controlled to any
extent desired. The most difficult step in implementing a model is constructing the

base case. However, there are straightforward methods available to create base cases

of arbitrary corﬁplexity. Thus, the extended version of TABLO provides a versatile

and convenient method .of building dynamic models.
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A. Appendix: A TABLO File for the Forestry Model

In this appendix we present a completé TABLO Input file implementing the

forestry model discussed in Section 6.

TREES.T 1.52 )
23 Nov 88 (PIW) and 01 Mar 91 (KRP)

A simple intertemporal model of forestry as described in
"General-Purpose Software for Intertemporal Modelling"
by George Codei, K.R. Pearson and Feter J. Wilcoxen

(Start from an arbitrary base case)
{(Updates included to allow multi-step simulations)

COEFFICIENT (IﬁTEGER) N;
READ N FROM TERMINAL;

SET (INTERTEMPORAL) alltime # all time periods # MAXIMUM SIZE 101
¢ plol - pIN1 );
SET (INTERTEMPORAL) fwdtime # domain of fwd diffe# MAXIMUM SIZE 100
" ({ plo] - pw - 11 3; - . '
SET (INTERTEMPORAL) endtime # ending time # SIZE 1 ( pIN] ) ;

SUBSET fwdtime IS SUBSET OF alltime;
SUBSET endtime IS SUBSET OF alltime;

VARIABLE (all,t,=2lltime) p(t) # Price of trees #
VARIABLE (all,t,alltime} w(t) # wage rate : #
VARIABLE (all,t,alltime) lam(t) # shadow value of capital #
VARIABLE (all,t,alltime) s{t) # stock of trees : #;
VARIABLE (all,t,alltime) g(t) # growth rate - #

# #

VARIABLE {all,t,alltime) £(t) felling rate



COEFFICIENT r  ; FORMULA r = 0.05 ;
| Theta is not needed here 1

COEFFICIENT (all,t,alltime) G_B(t) # Base values of G(t) #;
COEFFICIENT (all,t,alltime) P_B(t) # Base values of P(t) #;
COEFFICIENT {(all,t,alltime) LAM_B{t) # Basé values of LAMBDA(t) #;

¥,

COEFFICIENT (all,t,alltime) 8_B(t) # Base values of. 8(t)
"FILE (TEXT) basedata ; -

READ G B - FROM FILE basedata ;

READ P_B FROM FILE basedata ;

READ LAM_B FROM FILE basedata ;

READ S_B FROM FILE basedata ;

e e e e e e e e e e e m—m—— e
t  Updates

e e e ——— e ——————
UPDATE (all,t,alltime) G_B<{t) = g(t) H

UFDATE (all,t,alltime) P_B(t) = p(t) H

UPDATE (all,t,alltime) LAM_B(t) =
UPDATE (all,t,alltime) S_B(t) = a(t)

FILE (TEXT) time ;
COEFFICIENT (all,t,alltime} year(t);
READ year FROM FILE time ;

COEFFICIENT (all,t,fwdtime) dt(t);
FORMULA (all,t,fwdtime) dt(t) = year{(t+l) - year(t);

COEFFICIENT (211,t,fwdtime) S1(t);
COEFFICIENT (all,t,fwdtime) S2(t);
COEFFICIENT (all,t,alltime) S3(t);
COEFFICIENT (all,t,alltime) S4(t);

! The following are text equations (44-47) !

FORMULA (all,t,fwdtime) S51(t) (1+dt(t)*rl+*LAM_B(t) /LAM_B(t+1);
FORMULA (all,t,fwdtime} S2(t) = 1-81(t);

" FORMULA (all,t,alltime) 83(t) P_B(t)/[P_B(t)-LAM_B(t)};
FORMULA (all,t,alltime) S4(t) = 1-83(t); '



_,39;

EQUATION di ! text equation (43) | (all,t,fwdtime)
‘lam(t+1) = Sl(t)*lam(t)+82(t)*( —w () +2% (83 () *p (L) +84 (L) *lam (L)) )

COEFFICIENT (all,t,fwdtime) SE(%);
COEFFICIENT (a;l,t,fwdtime) g6(t);
COEFFICIENT (all,t,fwdtime) B7(t);

FORMULA (all,t,fwdtime) B5(t)
FORMULA (all,t,fwdtime) S8(t)
FORMULA (all,t,fwdtime) S7(t)

8_B(t)/8_B(t+1);
dt(t)*G_B(t)/8_B(t);
1-85(t)-86(%);

" EQUATION d2 ! text equ#tion (41) linearised ! (all,t,fwdtime)
s(t+1) = S5(t)*a(t) + SB8(L)*g(t)
+ 87C¢e)*( s(t) + 83(t)*p(t) + B84(e)+*lam(t) - wit) );

Boundary conditions

1. Initial stock condition imposed by setting s{0) exogenously.
This allows simulations to be run in which the initial forest
stock changee.

2. Equation d1 [text equation (87) with lam constant]

EQUATION b2 (all,t,endtime)
lam(t) = -w(t)+2+( 83(t)*p (L) +54(t) *lan(t) p

EQUATION el (all,t,alltime)
(L) + w(t) = s(t) + 83(Ld)*p(t) + 84(t)+*lam(t) ;



