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-'SPARSE MATRIX METHODS FOR COMPUTABLE GENERAL
EQUILIBRIUM MODELS OF THE JOHANSEN CLASS

by

K.R. Pearson and Russell J. Rimmer*

1. INTRODUCTION

The equations of a cqmputab]e'genera]'equilibrium‘(CGE) wodel

may be written as

F(Z) = 0, B ‘ (1.1)_
where F is, in general, a nonlinear function. CGE models of the Johansen
class are solved by first 1inearizing F, near a known solution of (1.1),

in terms of percentage changes in the variables Z. (1.1) is then replaced

by the matrix eguation
Dz = 0, | - 1.2)

‘where z is a vector of perceniage changes and D is an mx n macrix. In
general

n>m .,
so that values for (n - m) components of z must be set exogenously, and

(1.2) may be solved to obtain values for the remaining m quantities. When

z ‘has been partitioned into. a vector z,, consisting of exogenous



components, and ‘a vector z, of components to be determined from {1.2),

then (1.2) may be written as

Az, = -Bz (1.3)

1 2

where A is an m x m matrix, z; s mx 1, Bismxp (p=n-m and zzlis

1

p x 1. In the case of the ORANI' model of the Australian economy a system

of equations {1.3) with
m~ 300 and p ~ 300

must currentiy be so]ved.2 For models of this size computation of
solutions absorbs large amounts of computer time, and our aim is to make
significant reductions in these times. In this paper we discuss ways of

accomplishing this.

Qur first recommendatipn is to avoid matrix inversion when
solving large systems of Tinear equations. Instead, techniques known as
"LU methods" should be preferred. Section 2 is devoted to a discussﬁon\of
thesé techhiques which only take about 25 per cent of the CPU times used
by inversion methods. Further CPU savings may be possible by using sparse

matrix methods. We outline how this is done in section 3.

Sparse matrix packages save CPU time by ignoring zeros when
performing matrix operations, and so the fewer nonzeros in A then the
greater will be the savings. As the packages-operate on nonzeros only,
then only the nonzero entries of A need to be stored.'Consequent1y, if the
proportion.of nonzeros in A is low then significant savings in time and
storage will be'accomplishéd. To some extent these savings are offset by

the need to store the row and column position in A of each nonzero



element, and fhe need to check the positions of these entries often
throughout a'compufation. For a mafrix with a high proportion of nonzeros
these overheads will erode the savings made by ignoring the zeros in A. As
we report in section 4, thfs was found_to be the case when the Harwell
Laboratories sparse matrix package3- was appiied to randomly generated
matricee of the size and sparsity of ORANI, where the percentage of
nonzeros is around 50 per cent. However, randomly generated matrices are

unlikely to have the special structure that ORANI displays.

- In section 4'we'¢ompare the performance_of the Harwell code
with that of two other algorithms - neither of which distinguishes between

zero and nonzero elements - in solving (1.3) for:

(a) randomly generated matrices A of different dimensions,
| with. the density of'nonzeros'being either 10 per cent or
50 per cent; “
“and ‘ .
(b)  matrices generated by the stylized "Johansen,4'M0.5 and
 ORANI models. o

A significant feature of our fesuits is that therHarweIl_code.so}ved ORANI
more quickly than either of the other algorithms - a result wﬁich could
not have been anticipated from the results for randomly generated
matrices. This suggéste that by moving to a version of the matrix A for
ORANI which contains less than 10 per cent nonzeros, and has an even more
structured pattern of zeros, it may be possible to obtain further savings
of computer resources. But more importantly it may be possible to save
con51derab1e research and computing time 1n the deve]opment of Johansen

style models by using sparse matr1x methods



To see this, consider for a moment the evolution of the ORANI
model from the system of mény mi1iions of equations, as described in
chapter 3 of DPSV, into a coltection of about 300 equatmns6 to be so]ved
numeri¢a11y. To obtain a system of this size, the’ approach of the bu11ders
“of ORANI was tolfind a sub-matrix of A-]B giving the response of sefected
endogenous variables (1.e.5 cbmponents of Z in.(1.3)) with respect tor
those var1ab1es in 22 which afe to be varied by a particular user. This
involved eliminating a large number of quant1t1es and prices from the
original ORANI equations, and absorb1ng many others into composite
variables. Because there -was a"1arge amount of elementary algebraic
manipulation to be performed, the reduction to a final system with m~ 300
was performed in two stages7. First, the ORANIVequations were reduced to a
condensed system with m - 2635 and n = 6087. 8 Each coefficient that
appears in the_condensed system has a clear economic 1nterpretat1on, and
so the fokmation of equations in this system can be checked eas11y Even
with m = 2635 this condensed form of ORANI was stilil too large for (1.3)
to be solved conveniently using standard routines, so a second round of
eliminations was undertaken to form the finé1 system with -ﬁ ~ 300,
Unfortunate1y, the coefficients in the system resu1t1ng from this second
stage are not so easily interpreted, and cons1derab1e eTfort was expended
in getting the computer implementation of this round of eliminations
correct. Indeed .this absorbed a great deal of research time and also
cons{derab1e computing resources, all of which could have been avoided if
a sparse matr1x package had been used to solve the condensed system, for
 which the matr1x A in (1.3) has less than 10% of its entries nonzero. This
is currentfy being attempted by the authors using a VAX 11/780 computer.

Qur plans for further work in this area are discussed in section 5.



The rest of the paper is organized as follows. Section 2 is
devoted to a discussion of the number of ar1thmet1c Operat1ons requ1red to
solve systems of 11near equat1ons u51ng d:fferent methods. The implica-
tions of sparsity in the matrix A of. these systems is taken up in section
3. In sect1on 4 we compare the performance of the Harwell sparse matrix
package ‘and twc other rout1nes in trials on the systems of equat1ons
obtained from three economic ‘models, as well as using systems where the

coefficients appearing in the equations were generated randomly,



2. SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS

Once the choice - of exogenous variables has been made, the
equations of a computable general equilibirum model in the Johansen class
can be represented by equation (1.3). From this equation it follows that

the matrix of elasticities of the model satisfies

AX = -B, . (2

4

th ehdogenous

‘where the (1,j)th entry of X is the'elasticity of the i
-variable with respect to the .jth _exogenous variébie. When X has been
computed, the solution z, of (1.3) for a given set of exogenous shocks z,

is obtained from
zy = Xz, . | (2.2)

In {2.2) X is mxp and Z, is px 1 so that the product of X with 2
involves mp multiplications and m{p - 1) = mp - m additions. When m and p
are roughly equal, and are large, the_number of operations required to
obtain z, from (2.2} is about Zmz, For ORANI computations, we can assume
that m~ p~ 300. However, the number of operations invo?véd in solving
(2.1} for X is likely to bg an order of magnitude greater thaﬁ 2m2, and so
wi]} use a significantly greater slice of computer time. In this section
we {nvestjgate three approaches to calculating X in (2.1), or, more
acéurate1y, to calculating the columns Xj of X as the solution of each of

the p problems



whererBj is the'jth co]umn of B. Use of (2.3) exploits the fact that for
the numerical a]gor1thms d1scussed here there is no need to repeat the
entire algorithm whenever ‘the right hand side of (2.3) changes. For

example, subpose-that (2.3) is solved by

(1) inversion of A ,
and

1

(2)  formation of -A” B

Clearly A need only be inverted once, as solutions‘for all vectors

B],...,Bp can be obtained by repeating step (2) p times.

2.1 So]ution of (2.3) hy'first ihvertingIA

PRRCS

a7 mighi‘be computed from the rule

A1 = adj(A)/det(A) , | (2.4)

where adj(A) is the adjoint matrix'of A, and det{A) is the determinant of
A (assumed'nonzeko') Each. of the m@ entries in adJ(A) is obtained by
evaluating the determ1nant of an (m = 1) x (m - 1) matrix. Therefore

evaluation of A” -1 from (2. 4) involves around 2m? (m!) operat1ons when mis.
| large. The number of operations, and therefore the time, required to
invert A can be reduced by employ:ng other methods, as we will see in
section 2.5. (Indeed we will see that explicit calculation of A™! is

unnecessary when solving (2.3).)

2.2 Gaussian elimination and back substitution

Gaussian elimination is Just an orderly process for the



elimination of unknowns from a system of equations,_and_this technique is
used to transform A into an upper triangular matrix with nonzero diagonal
elements. To illustrate this process consider the following system of

linear equations:

2x] + 4x2 - 2x3 = 6 - {2.5}

n
(g% ]
e
no
(=]
o

Xy +72x2 + 5x3

Ay + Xy - 2x3 = 2 ' (2.7)

This system may be re-written in tabular form as

Xy Xy . Xg € B perin

2 4 -2 1 6 1

1 2 5 1 2 2 Tableau 1 ,
4 v -2 2 3

where column perm is used to record the location in the tableau of each of
equations (2.5) - (2.7). In this first tableau (2.5) is located in row 1,
- (2.6) is Jocated in row 2, and (2.7) is located in row 3. Now use equation
(2;5) to eliminate:the_variab]e X1 from‘eqUations (2.6) and (2.7), that
is, use row 1 in the tableau to producé zeros in rows 2 and 3 of column 1.
To this end multiply row 1 (i.e., equation (2.5) by % and subtract it from
Y oW 2‘(i.e.; equation (2.6)). Similarly, mulviply row 1 by 2 and subtract
the result from row 3. when-thése operations have been performed the

tableau becomes:



X Xy  Xg _5 B1 perm
i
. . ] -
2 . 4 -2 i g 1
_____ 1 : : B
0 ' 0 6 ! -1 2 Tableau 2 ,
f t .
0o} -7 2 i -0 3

Two featdres of this second tableau should be noticed..

(i)

(i)

First, the ce]]s below pos1t1on 1 1n column 1 no longer
conta1n useful 1nformat1on So we m!ght as well use them
to store the numbers used to ,mu1t1p1y. row .1 when
e11m1nat1ng x],from rows Z-énd 3.'TheSe constantS-are
called the multipliers, and fhey Jwi]l be used again

later.

The entry fn row 2, column 2 is ﬁow zero._AS our aim is
to produce an upper trianguiar matrik -wiih nonzero
entries along s diagonai, this is a prob]em.‘.The
solution is to interchange rows 2 and 3. That fhfs
interchange has taken 'place' is recorded in colﬁmn _
“perm", where the entries in rows 2 and 3 of this ¢olumn

have also been interchanged. Now the tableau is:

X3 %o X3 ; B} perm
: : :
2 4 -2 1 6 1
“ I
2~ -7 2 1 -10 3 Tableau 3 .
} 0. 6 | -] 2
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Usually the next step is to reduce the éntries in cb}umn_z below row 2 to
~zero. In the‘eiample this is the same as eliminating xéfrom'the equation-
COrfeSponding to Arow 3 - but this has already occurred. So for this
exampie 'the Gaussian elimination 15 'comp1e:e, énd tableau 3 may be

translated into the three equations:

2x) + 4xy - 23 = 6 - '_ - (2.8)
- Txy + 2%y = -10 ' | (2.9)
bx; = -1 '... . (2.10)

To obtain a solution of the original system of equations we

appeal to the following theorem:
Rébeated'app1ication of the operations used above, namely,

(i) . interchage of rows,
and |

(i1) addition of a multipie of one row to another,
will transform the system of equations (2.3) into

™, =C; », o (2.11)

where T is upper triangular, and where any solution of (2.11) 1is a
solution of (2.3) and vice versa. Therefore in the example the Cqmponents
of the-so1ution vector may be obtained in the order X4, X5 and Xy from
(2.10), (2.9) and (2.8) respectively. This calculation is known as "back

substitution".



n

Suppose now that (2.3) has been solved by Gaﬁssian elimination
and back substitution in the case'j = 1. To solve (2 3) when J 22,35 ..4p
there is no need to go through the entire e11m1nat1on again. Rather,
knowing the multipliers (stored in ' the lower diagonal entries as they were
caiéu]ated in the example) and the pivoting strategy (i.e., the conténts
~of the column veCtor perm'in the examplej, the operations applied to B1

may be re-constructed and performed on Bj to obtain a vector Cj,where
TX., = C. _ J=2,3,...,p .

The-algorithm which computes Cj is called "forward substitution". Hence,
for j=2,3,...,p (2.3) can be solved by applying the forward substitution
algorithm followed by back substitution. |

To illustrate the method of "forward substitution" suppose

that we want to solve (2.5) - (2.7) when the right hand side of this

(3]
4 )

£
{

equation is

indd

In‘pfoducing-tableau 3 the first.row of the table was not a]tefed and so
the initial entry in column 82 of tabieau 3 is Just the f1rst eniry in the-
new rxght hand side 62 . Next, recall that rows 2_anq 3 were permuted to
obtain the final tableau. This information is given by column "perm" of
tableau 3 where position 2 of perm contains the value.3; and posftion 3
.conta1ns the value 2. Now re-order the entries 82 accord1ng to th1s scheme

s that row 2 of 82 conta1ns the va1ue 4. To f1nd the "multiplier"
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(namely, 2’ appiied to row 1 to obtain row 2 of the final tableau from row
g;of the initial tableau, Took in column 1 of row 2 of the final tableau.

Therefore the new entry in poSition 2 of column‘B2 in tableau 3 is
4 - 2(3) = -2

Similarly, the new entry in position 3 of column Bé in tableau 3 is now

1-3(3) -0(4) = -% ,

where the coefficient 0 in the third term on tha ieft hand side is the
multiplier which was implicitly applied to row 3 of tableau 2 to obtain
row;g of the final tableau from'rowzg of tableau 2. The zero multfp]ier_is
located in cb1umn=£ of row 3 of the final tableau. (This zero appeared in
coiumn:g of row § as a result of 1nterch&nging rows 2 and 3 in moving froﬁ

tableau 2 to tgbieau 3.}

2.3 Operation counts for Gaussian elimination, and forward and backward
substitution. .

‘The results in this section are well known; we rely on page

129 of Conte and de Boqr (1972).

The number of operations required to calculate the multipTliers
used in the Gaussian elimination and to obtain the upper triangular mairix
T is

%.m3 +% mé - m mulciplications and divisions

and
m{m - 1) additions.
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It takes m divisions, m{m ~ 1)}/2 multiplications and m(m - 1)/2 additions
to perfbrm the back substitution algorithm for (2.3). The forward
substitution techniqué takes the same number of operations excépt that no
divisions are required. So together forward substitution and back
substitution involve approximately

m2 multiplications and divisions

and
mim - 1) additions .

Therefore the combined forward and backward substitution methods involve

as many additions as does Gaussian eliminacion. More important though is
the fact that forward and backward substitutions involve only mz‘
multiplications and divisions while Gaussian elimination requires more

than %ma muitiplications and divisicns. That is, the combined forward and

backward substitutions take an order of magnitude less operations than

Gaussian elimination.

2.4 LU decomposition of A

An LU decomposition is an algorithm which factors a square
matrix into the product of a lower (L) and an upper {(U) triangular matrix.

- If A can be decoﬁposed as
A = LU
~then the solution of AX = B can be obtained by first solving the problem

LY = B | - (2.12)
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and secondly, with Y computed, solving

wo=vy . o (2.3)

Solution of (2.13) corresponds to the "back substitution” process used to
solve (2.3) after A had been reduced to an upper triangular matrix} Also,
solution of (2.12) corresponds to the "forward substitution" algorithm

used to solve (2.3) for j=2,3,...,p.

The triangular matrices L and U can be generated by perfdrming
Gaussian elimination on A. For example, consider the matrix A generated

from the system of equations (2.5) - (2.7) with rows 2 and 3 interchanged:

2 4 -2
A= a1 2| . O (2.14)
1 2 s

Now Gaussian elimination produces tableau 3 above. So define L to be the
-matrix whose lower diagonal elements are the mu1tipliers'used To produce

tableau 3, and whosé diagona] elements are unity. That is,

1 0 O
L = 2 1 0
3 0 1

The matrix U is just the remaining entries in the first three columns of
tableau 3, which are the coefficients of thé'upper triangular system (2.8)

- {2.10). So, - ' .
_2}
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Cé]cﬁ]ation of the product LU verifies that

( Voo R ( |
1 ) 0 [2 4 2 . 2 4 -2

LU 0 -7 2| =14 1 22| = A,

Il
ro
et
o

5,0 1 {o 0 6 1z 5
\ J/ N

It should be clear that this LU factorization, known as the Doolittle

decomposition, 1involves as many operations in solving (2.3) as does

Gaussian elimination with backward and forward substitution.

Another LU decomposition which is frequently used is the Crout

decomposition. The only difference from the Doolittle is that now U has

all diagonal entries equal to 1 but L has_arbitraryrdiagoné1_entries. For

the matrix A given above in (2.14),

by 0 0| 1, vy 2 4 -2
W = | &, 0] [0 1 Upsl = [4 1 -2
£y Ly Lag] 00 1 1oz s
Hence
[ _ iy A -2}
‘i Y12 Y 2 4 -2
i Bt LarYiaialss =41 -2 (2.15)
fa falpttn fnligttalaats | ’]

The entries in L and U can be determined by equating coefficients on each
side of (2.15). This can be done in an orderly way by first finding one
column of L and then the corresponding row of U; then the next column of L

and row of U, etc. For our example,
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: Col 1 of L : £,,=2, .32}=4 and f31=1
Row 1 of U : U]2=4/£Ti=4/2%2: aﬁd Uy3=-2/£14==1 (requires £,,#0)
Col 2 of L : 322=1—£2]U]2=1-8=-7. and £3é=2-£3IU]2=2-2 =0

.ﬁow 2of U: U23=('2-£2]U]3)/£22?('2+4)/('7)=‘é/7 (requifes £22f0)

| Col 3 of L : 153=5-£é1U]3—£%2U23=5+1-0=6

Therefore,

A]gorithms for the Crout decomposition use essentially the
same number of operations as the Doolitile decompos.itibn.9 We use a Crout

algorithm in section 4.

2.5  Theoretical comparison of methods

' Suppose'we wish to solve p‘syStems

ij = -Bj : J=] ,2,-;.,p

for a fixed m xm matrix A, with p different right hand sides B1,...,Bp'
(each m x1). We have two basic alternatives. :
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(1 Form an LU decomposition of A and thén, for each
j=1,2;...,p,_so1ve.f0r Xj_by'using fbrward'and backward substitution. It
doesn't really matter whether'we use the Doolittle decomposition {obtained
from Gaussian elimination) or the Crout decomposition as they invo]vé

essentially the same number of operations.

(2)  calculate A"} in the quickest poésib1e way and then for

each j=1,2,...,p, calculate

Method 1 (LU method)

As we have seen in section 2.3,

1) the'LU decomposition takes about %m3 multiplications and

divisions, and
(ii) each of the p forward and backwards substitutions takes

me mzltiplications and mém - 1) additions.

Thus the total number of multiplications and divisions for this LU method

~is about

13 ?
3 .

Method 2 (Invert method)

(i) Calculation of A™'. One of the best ways to do this is
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to first use Gaussian elimination to make A upper

'triangular { about ‘]37 ins

and then, for each k=1,2,...,m, find the k

multiplications and divisions)

th
column Yk

of A’ by solving AY, = e where e is the mx1 column
vector with 1 in the k*" row and zeros elsewhere. (This
is in effect solving the matrix equation AY = I where I
is the mx m indentity matrix.) Solution of.each problem

2

AYk = ék requires m mu]iiplications (see secvion 2.3)

and so this method of ca]cu]ating'A"] uses about

1.3 2 m3

+ m. =
-3-m m.m

-

multiplications and divisions.;(CIearly this is vastly
better than the 2m2m! operations using (2.4) in section
2.1).

1

(i) Ca]cu]étion of -A Bj. It is easy to see that, for each

¢ multiplications and m(m -

J=1,2,...,p this involves m
1) additions, which 1is exactly that required for the

forward and backward substitution in (ii) of Method 1.

Thus the fota] number of multiplications and divisions for Method 2 is

about

-§H13 + pmz

Comparison  Clearly an LU method is superior to tThe Invert method since

the latter requires ébbut m3 extra multiplications and divisions (which is

~ just the number required to calculate A™) explicitly ).
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This comparison is seen most starkly when p is very small
' 2

compared to m. Then we can ignore pm“ and so

LU uses about %—m3 3

~ while

Invert uses about % m3

In this cése we would expect Invert to take about 4 times as fong as LU.

- This is borne out by our tests in section 4.

The moral of section 2 is:

Use -an LU method when

solving linear equations.
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3. WHEN A IS SPARSE

Matrices with many zero entries are said to be sparse. When A

is sparse the best method for solving'

AX = B g (3.1)

is still one bf_the LU methods (Doolittle or Crout) discussed in secvion
2. But now it is poss1b1e to reorganize the code to make two k1nds of
sav1ngs, firstly in storage requ1rements and secondly in CPU Time, by

eliminating unnecessary operations such as multiplying 0 by O.

3.1 Storage savings

When an mx m matrix A is stored in the usual way it takes an

2

amount of memory equal to that occupied by m® real numbers in the

computer. This is called storing A in full mode.

- When A is sparse, however, there is no point in using up space
with the many entries equal to zero. It is only necessary to store the
nonzeros. The simplest way of storing A in sparse mode is to store tche

nonzero entries in a one dimensibna] array containing
A(1), A(2),...,A(NZ) (3.2)

and, because we no longer have the double array A(I,Jd) and so don't know
yet in which row and column each entry occurs, we need also to store two

integer arrays

IRN(1), IRN(2),...,IRN(NZ)
ICN(1), ICN(2),...,ICN(NZ) ,
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where entry A{I) is in row IRN(I).and column ICN(I). This requires only
.stbrage for 3NZ numberé (where NZ is the total numbef'of nonzeros in A}.
If, for example, A is 100 x 100 and has 90 per centkbf its entries zero
then NZ = 1000. Thus sparse mode requires only 3000 places of store while

full mode requires 1002 = 10000 places.

In practice, in code for sparse matrices, there are other
storage overheads besides the arrays IRN and ICN above. But they are

generally of small size compared to 3NZ.

3.2 Savings in operations and CPU time

Consider Gaussian -elimination applied to a 10 x 10 sparse

matrix A whose first two rows are

The first operation  is to eliminate X4 from the second equation by
replacing R2 {i.e., row 2) by'Rzﬁ- 2R this requires 10 ca1cu1at1ons (one

for each column), 6 of which are the calculation of
0' - 2(0) 5
which is rather wasteful.
In sparse mode, there wou]d 0n1y be 3 entries in row 1, némeiy
in columns 1, 5 and 10. The code would be organized S0 that the only

-changes to row 2 would be made in these co]umns Thus only 3 calcuTations

would be done.
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This example shows one other feature of sparse code. In A the
entry in row 2, column 10 is zero and so it is not held in the array which

contains

A(1),...,A(NZ)

But after the elimination of rx] from the second equation, this entry
becomes nonzero {equal to -4). This is handled in sparse code by increas-

ing NZ by 1, and then setting
A(NZ+1) = -4, IRN(NZ+1) = 2, ICN(NZ+1) = 10

Accordingly sparse code must allow for the _number- NZ of nonzeros to
increase.(or, pérhaps, decrease). The storage space allocated for thé
arrays A, IRN and ICN must be big enqugh initially to provide room for the
greatest number of nonzeros occurring at any stage in the decompqsition of

A.

3.3 Examples of savings with sparse code

We quote below two examples from Tabie 5.1 of Duff (1987)
~which show the'differénces between sparse and full code in storage, number
of multiplications, decomposition time and time for computing the solution

once the LU decomposition is known:



Size of A
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199 x 199

363 x 363

Number of nonzeros (initially) 701 3279
Storage Futl - 39601 131769 -
o Sparse 6485 .- 13353
Multiplications Full 2626800 15943928
Sparse 3455 4769
Decomposition time Full 5033 29580
Sparse 250 613
Solution Time Full 77 457
Sparse 10 23

-Cleariy very big savings can be made.when the matrix A is as

sparse as those in the examples above.

3.4 Keeping the number of nonzeros to a minimum

The storage and CPU savings for sparse matrices are only

preserved if the matrix remains sparse as it is decomposed.

Just because a matrix A 1is sparse doesn't mean that other

matrices associated with it (e.g. its inverse) will be'sparSe. For _examp]e10 _

0)

{2 5 0
c 4 0 3
A =
- 0 0o 3 7
4 1 2 3

is fairly sparse but its inverse
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(.0.238  0.205 -0.246  0.369 ]
0.295 ~-0.082 0.098 -0.148
0.918 -1.033 0.639 -0.459

-0.393  0.443 -0.131  0.197 |

is full.

Sparse:codes must be careful to ensure that.as much sparsity
as possible is retained during decomposition. Each step of the-decomposj—
tion involves 1ook1ng at One equation, say equation i, and using it to
express one‘varioble, say varioble X33 in terms.of the others and then
making this substitution in the other equations. This is called pivoting
at position (i,j). (In section 2;2, tableau 2 is obtained from tableau 1

by pivoting'at_position (1,1).)'

In practice the pivots need not be taken in a fixed order.
Sparse code usually chooses pivot,order so as to keep the number of new
nonzero entries as small as possible subject to obtaining a solution of

the desired accuracy.

The example below shows how varying the order of pivots can

change the number of nonzeros. Consider

(1 2 3 &)
| 1 0 0

+= w [\~
.O
—
(e ]
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If we-pivot at position (1,1) we need to replace R2 (i.e., row

2) by Rz --_ZR1 (i.e., multiply each entry in row 1 by 2 and subtract

element-wise from row 2), R3 by'Ré - 3Ry, and Ry by R4.f 4R;. This Teads

 to

- e e o

1 t |
Co =)} (93]

3 4
-6 -8
-8 -12)
~12 15

)

Since the multipliers 2,3,4 would be stored.where the zeros are in column

1, this leads from a sparse A to a full matrix in one hit.

—But'look at what happeﬁs if:we pivot in a different order,

First pivot at (2,2),

3

4

\

[ -3
N 2

and then pivot at (3,3)‘and

2

0

giving
0 3 4]
1 0 of
0 1 o0
00 )

(4,4) giving

0 4}
0 0
10
0 1

)
0 0]
0 0
1 0
0o 7

'Ri - 2R

2
R-I’— = 3R3
RT - 4R4
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Hith_this pivoting order, A remains spafse to the end.

Choosing pivots in various orders leads to.an LU decomposition'
not of the original A but of the matrix obtained from A by permuting the
order of rows and columns accordingly. In the example aboye wiih the
second pivoting ordef, row 1 and column 1 would be permuted to row 4 and

column 4 so that we end up with an LU decomposition of A permuted to

1 0 o 2y [1 0o 0o o
o 1 0 3 o 1 0 o |0 1 0 3
A, = -
L 0o 0o 1 4 o o 1 0| |0 0o 1 4
2 3 4 1] |z 3 4 1} |0 o o -2
Ly | U,

A rough estimate of the number of nonzeros introduced by

pivoting at (i,j) is the product of r, and s

j ., where r. is the number of

J i

-Vnonzeros in row i and sj i; the number of nonzeros in column j. In many
sparse codes'(inc1uding the Harwell code used in section 4), of all the
possible pivots, the one chosen is one for which this product (;al]ed the
Markowitz count) is smallest (subject to a numerical Stability criterion).

We refer the interested reader to Duff (1977} fdr_details.
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COMPARISON OF THREE METHODS FOR SOLVING AX = B

4.1 Preliminaries

We have carried out tests on three methods for soTving AX = B,

where A is a sparse mxm matrix, B is mxp and X, the solution matrix, 1s

also mx p. The methods used are described in sect1ons 2 and 3 of this

paper s0 here we give them abbrev1ated names which will be used in the

rest of the paper, and describe briefly the code used in each case:

(a)

(b)

and

{c)

Spérse This consists of applying subroutine MAZB]].

from the Harwell Laboratories Tibrary. MA28 was written
specifica11y for the'purpose of solving sparse linear

systems. It forms the Doolittle decomposition of A;

Crout -A_code based on the routine UNSYMSOL]Z was used

in this phase to produce the Crout LU decomposition of

A. This routine stores A in full form;

Invert Here the matrix A was inverted {using Gaussian

elimination as described in section 2.5) with the code
currently employed to solve the ORANI model. This code

stores A in full form.

Each method involves two stages:
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(1) A is transformed into another matrix. In the case of the
Sparse and Crout methods this is an LU decomposition of
"A; for Invert, AT is computed. In tables 4.1 and 4.2

this stage is labelled "Transform A";
and

(2) Using this transformation of A, the system AX = B is
solved. For the Sparse and Crout methods this is done by
~ forward and.backward substitution; and for Invert it is

_done by calculating A ls.

In constructing Tables 4.1 and 4.2 we were interested in
matrices which ﬁere sparse. To distinguish between very sparsé matrices
(that is, those having only a few nonzero entries) and less sparse

matrices {i.e, mairices with more rnonzeros) we use the term density.

The density of. a matrix is the ratio of the number of nonzero

entries to the total number of entries of the matrix.

- Thus, if A is mxm and has T nonzeros then the density of A is

|

For example:

is 50% dense ;
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and is 20% dense.

OOQNO
O o W o o
o B O O o

LU o O o o
O o o o

The resulis reported in Tab}es 4, 1 and 4.2 for the Sparse,
Crout and Invert a1g0r1thms are CPU times measured in seconds on a VAX
11/780 which was running under version 3.2 of the VMS operating systcem.
_This is a paged virtué] memofy.machine, and when the results for .Tables
4.1 and 4.2 were pfoduced, the-syé;em allocated us hp to 120 pages of

physical memory.

4.2 © Results for randomly generated matrices

A random number generator was used to obtain floating point

number; whose 51gns -and magn1tudes were random, but were w1th1n bounds

- 1mposed by us, and to locate them randomly in square matr1ces A of either

10% or 50%. density. The latter density was chosen because this is aboux
the density of the matrix A givén by ORANI; the former was chosen because
this is approximately the density of the matfix A obtained from the ORANI
condensed system. In Table 4.1 we give compdter execution times associated
with the solution of (2.1) for these random A matrices using each of the
three methods. Separate execution times are given for ﬁse 6f the méthod
Sparse with matrices having distinct densities, as Sparse decomposes a
very sparse'A much more quickly than a 1ess.sﬁarse A. For the Crout and

Invert methods, we would not expect the times to be different for
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different densities (since they use full mode). This was confirmed by our

tests and so for each size of matrix we give only one figdre for thése

techniqueé in Table 4.1.

The conclusions that may be drawn from Table 4.1 are:

(i)

(ii)

(111)

(iv)

Invert is‘by far the worst of the three algorithms,
especially for the "Transform A": stage. This is
consistent with the discussion of inVersion in section

2.5.

Sparse performs much better at 10% density than at 50%
density. | | |

For' randomly generazed matrices hav1ng 10% dens1ny,
Sparse is comparab]e w1th Crout. Indeed, in this case,
Sparse ‘is’ s]1ght1y worse than CrOUt in the transform '

phase, but is substant1a11y quicker in the solve phase.

' The 1atter saving would be . more significant if the

number of columns in B were greater because the solve

time 1is proportional to ‘the number of columns of B.

~ When éo]ving ORANI, B matrices: with more than 100

columns are often encountered.

For randomly generated matrices with 50% density, Crout

~ performs significantly better _fn the transformrstage‘

than does Sparse.
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4.3 Results for computable general équi]ibrium models

Table 4.2 gives the execution times required to solve three
CGE models of the Johansen class via the Sparse Crout and Invert methods

The models solved by these methods were:

(1) The ORANI model of the Australian economy. ORANI is a
disaggregated model which distinguishes 230 commodities (115 domestically
ﬁ?odubed and 115 imported),.113 industries, 9 types of labour, 113 types
of capital, 7 types of agriéultural land, and includes detailed modelling
of marginsi'industries.- GRANI 'é11ows for multi-product induszries and
mu}ti-inddstry products. 'Substitut{on is allowed between domestic and
imported goods in response to relative price changes, betﬁeen factors of
production in response to Changes in relative factor rewards, and between
the products bf the industries within the multi-product group in response
to relative price changes. The prime reference for this model is DPSV
(1982). Here we considér the.fiﬁa1 syétem for ORANI with a choice of

4exogenous variables close to that given in Table 23.3 of‘DPS.V.13

(2) The m1n1ature version (MO) of ORANI. MO is.a'two
sector model des1gned to clarify the main ideas of ORANI. To quote its

1‘nven1:or‘s14

: "It recognises only one type of Tabour ... [and it] fails to
mode? margins ... It uses a fictional data,baéé and overly restrictive
specifidations of various 'substitutibn possibilities. Nevertheless [its
- inventors] feel that it is a useful model of a model". We solved this

- model for the‘eCOnomic_envircnment given in DPSV, Section 6, pp. 32-37.

(3)  The stylized Johansen model. This is a small pedogogical

device consisting of seventeen equations. (See Dixon (1978)).
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The conclusions which can be drawn from Table 4.2 are:

(1)

(i1)

The figures for the stylized Johansen and MO models are

consistent with the conclusions reached in section 4.2.

Notice that MO is less dense than the stylized model,

. and accordingly, Sparse compares more favourably with

Crout for MO than for the stylized Johansen system.

The - surpr1se (after ‘the f1gures given in Table 4.1 for
a 250><250 matrix A) is ‘that, even though ORANI is over"'
50% dense, Sparse is a little quicker than Crout for
this model. Obviously the randomly generated matriéeﬁ
of'section 4.1 are not gdod predictors of the exééhtion‘
times which can be obtained with Sparse and Crout for
tﬁe-system'Ax =‘B generatéd by ORANI. fhé feétﬁre of
the Harwell routine MA28 responﬁib]e_'for thié:is a
preliminary step in which the rows and columns of A are

re-arranged to produce the matrix:

.—"k

29
J

where A],is 245 ;245, 2,a3, RELPTY are scalars and the top right hand

corner is a zero matrix.
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By operating on ‘this matrix Sparse is able to 'produce a 'Doolittle
decomposition more quickly than CroUt, as the Harwell code only needs to

decomposé the partition A].

(i1i) As for the randomly generated matrices Crout takes
near]y ‘three times as 1ong for the so]ve stage With,"

- say 300 exogenous:var1ab1es (which is a_typ1cal number

for ORANI), the solve time would be about 120 seconds

Tor Sparse and around 330 seconds for Crout. In th1s

- case Sparse significantly outperforms Crout.

" 4.4 ComparTSGn of VAX 11/780 t1mes with those_g1ven in Table 34.1 of _
DPSV .

Ta51e 34.1 of DPSV gives execution times for each step in the
| solution procedure for ORANI implemented on the CSIRONET Cyber 76 machine.

As essentially the same code was used to invert ORANI on this Cyber 76 as
on the VAX 11/780, we may compare the execution time given for this step
in Table 34.1 with the corhesponding transformation of A reported in Tab}e
4.2. On the Cyber 76 formation of the inverse of A reduire$-35 seconds.
This is about 17 (i.e., 591/35) times faster than for the VAX. This
difference méy presumably be attributed to differences -in the two

environments.

We would expect to obtain ratios of around the same magnitude
for the CPU times involved in execution of the Sparse and Crout methods.

Based on the t1mes in row 3 of Table 4.2, the Sparse method would require
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“about 5 (i.e.,88.9/17) seconds to transform the matrix of the ORANI final
sysfém on the Cyber 76, while the Crout technique would take approximately
6 (i.e., 102/17) seconds. This is about one sixth of the time taken to

transform A on the Cyber 76 using Invert.
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5.  PLANS FOR FURTHER EXPLORATION

The concluﬁions reached above must be regarded as preliminary
in nature, and will possibly need to be modified after further work. In
what follows, we briefly touch on several topics which, as yet, we have
investigated only a little, or not at all. These seém to us to be relevant
to the cdnstructionfof efficient and practica1 procedures for the solution

of Johansen type models. We propose four areas for future researth.

(1)  We need to make othér'compakisons between Sparse and -
Crout for systems arising from CGE models of the Johnasen type. We will do
tests on other 273 x 273 matrices obtained from ORANI for different'

economi¢ environments.

(2) The final ORANI system-fS'obtained by elimination of
variables from the condensed system (see DPSV, section'34) for which the A
matrix is_ovér 2000¥ 2000. we expect'this matrix to be less dense than the
273 8273'vérsion ﬁnd that, éccording1y, Sparse should be more efficient.
For thé reaéons indicated-ear1ier in this paper, we .regard this as fhe

most important area for future work.

(3)  The relative accuracy and stability of Sparse and Crout
are obviously important. In Sparse, one chooses a parameter u with

15 The closer is u to 1, the more accurate the solution becomes

O<u «1.
but the decomposition time increases, since the number of new nonzero
entries is likely to increase. Our results in section 3 were computed with

u = 0.1 (recommended by Duff). With u = 0.1 we have found SparSe gives
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Tess accurate solutions than Crout. We will experiment with increasing u
to see how much this improves accuracy (a good thing), and how much it

1ncreases CPU time (a bad thing).

(4) A feature of ORANI is the flexibility that users have.in
be1ng able to select d1fferent sets of exogenous variables. At present ‘the
mode] is completely re- soived for each new exogenous select1on Certainly -
' when only a small number of variables are interchanged on the lists of
'endogenous _anc exogenous variables, it seems likely cthat, inscead of
re-solving fhe system, fhé new solution can be obtained directly from the.
old .solution (by using a simple Tinear i:;f'a‘nsf'onnan:1'on).]6 We plan wo

investigate theu efficiency and stability of this variable _sﬁapping

technique, and hope to incorporate it as a furcher user option in ORANI.
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NOTES

' The authors are indebted to Brian Parmenter and Peter Dixon for
‘their careful appraisals of an earlier version of this paper.

The ORANI' model 1is described in. Dixon, 'Parmenter, Sutton _and

Vincent {1982) (hereafter, referred to as DPSV).

The number of exogenous variables in a partition of the final’ ORANI
system is much larger than 300 (see DPSV, section 44). However, in
the typical ORANI computation many of these are set to zero. Only
the columns of D' corresponding to the non-zero exogenous variables
need to be included explicitly in B in the computations. :
See Duff (1977).

See Dixon (1978).

See DPSV, Chapter 2.

The actual number of equations can be reduced below 300. .See
footnotg'zz, DPSY, p. 228. o : o B

The reduction to the final system is described in DPSV, secfibns 31
and 32. : S o

See DPSV, Tables 32.1 and 32.2, pp. 211-221.
See SteWart'(1973), p;'léﬁ.

Daniels (1978), pp. 35-36. |

Duff (1977) describes the operation of MA28.

%NSYM?OL' was written by Bowdler, Martin, Peters and Wilkinson
1971). - o

The differences are that p and iR were not exogenous in our tests,
but aB and fp were. See DPSV, Tables 23.2, 23.3 pp. 136-141 and
pp. 143-144

See DPSV, p. 9.
Duff (1981}, Section 2.

DPSV, Section 36.



