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Inequalities of Hermite–Hadamard type for
HH -convex functions

S. S. Dragomir

Abstract. Some inequalities of Hermite–Hadamard type for HH -convex
functions defined on positive intervals are given. Applications for special
means are also provided.

1. Introduction

Let I ⊂ R\{0}. Following [1] (see also [6]) we say that a function f : I → R
is HA-convex if

f

(
xy

tx+ (1− t) y

)
≤ (1− t) f (x) + tf (y) (1.1)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1.1) is reversed, then f is
said to be HA-concave.

If I ⊂ (0,∞) and f is convex and nondecreasing, then f is HA-convex,
and if f is HA-convex and nonincreasing, then f is convex.

If [a, b] ⊂ I ⊂ (0,∞) and if we consider the function g : [1/b, 1/a] → R,
defined by g (t) = f (1/t), then we can state the following fact.

Lemma 1 (see [1]). The function f is HA-convex (concave) on [a, b] if
and only if g is convex (concave) in the usual sense on [1/b, 1/a].

Therefore, as examples of HA-convex functions we can take f (t) = g (1/t) ,
where g is any convex function on [1/b, 1/a].

In the recent paper [5] we obtained the following characterization result
as well.

Lemma 2. Let [a, b] ⊂ (0,∞) and let f, h : [a, b] → R be so that h (t) =
tf (t) for t ∈ [a, b] . Then f is HA-convex (concave) on the interval [a, b] if
and only if h is convex (concave) on [a, b] .
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Following [1], we say that a function f : I → (0,∞) with I ⊂ R \ {0} is
HH-convex if

f

(
xy

tx+ (1− t) y

)
≤ f (x) f (y)

(1− t) f (y) + tf (x)
(1.2)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1.2) is reversed, then f is
said to be HH-concave.

We observe that the inequality (1.2) is equivalent to

(1− t) 1

f (x)
+ t

1

f (y)
≤ 1

f
(

xy
tx+(1−t)y

) (1.3)

for all x, y ∈ I and t ∈ [0, 1]. Therefore we have the following fact.

Lemma 3. A function f : I → (0,∞) is HH-convex (concave) on I if
and only if g : I → (0,∞), g (x) = 1

f(x) , is HA-concave (convex) on I.

Taking into account the above lemmas, we can state the following result.

Proposition 1. Let f : [a, b]→ (0,∞), where [a, b] ⊂ (0,∞). Define the
related functions

Pf : [1/b, 1/a]→ (0,∞) , Pf (x) =
1

f
(
1
x

) ,
and

Qf : [a, b]→ (0,∞) , Qf (x) =
x

f (x)
.

The following statements are equivalent:

(i) the function f is HH-convex (concave) on [a, b] ;
(ii) the function Pf is concave (convex) on [1/b, 1/a] ;
(iii) the function Qf is concave (convex) on [a, b] .

For a convex function h : [c, d]→ R, the following inequality is well known
in the literature as the Hermite–Hadamard inequality :

h

(
c+ d

2

)
≤ 1

d− c

∫ d

c
h (t) dt ≤ h (c) + h (d)

2
. (1.4)

For related results and references, see e.g. [4].
Motivated by the above results, we establish in this paper some inequali-

ties of Hermite–Hadamard type for HH -convex functions defined on positive
intervals. Applications for special means are also provided.
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2. The results

We have the following result that can be obtained by the use of the regular
Hermite–Hadamard inequality (1.4).

Theorem 1. Let f : [a, b]→ (0,∞) be an HH-convex (concave) function
on [a, b] ⊂ (0,∞). Then we have

f

(
2ab

a+ b

)
≥ (≤)

ab

b− a

∫ b

a

1

t2f (t)
dt ≥ (≤)

f (b) + f (a)

2
(2.1)

and
a+b
2

f
(
a+b
2

) ≥ (≤)
1

b− a

∫ b

a

t

f (t)
dt ≥ (≤)

af (b) + bf (a)

2f (a) f (b)
. (2.2)

Proof. Since f is HH-convex (concave) on [a, b] , by Proposition 1 we have
that Pf is concave (convex) on [1/b, 1/a] . By Hermite–Hadamard inequality
(1.4) for Pf we have

f

(
1

1/a+1/b
2

)
≥ (≤)

1

1/a− 1/b

∫ 1/a

1/b

1

f (1/s)
ds ≥ (≤)

f
(

1
1/b

)
+ f

(
1

1/a

)
2

,

which is equivalent to

f

(
2ab

a+ b

)
≥ (≤)

ab

b− a

∫ 1/a

1/b

1

f (1/s)
ds ≥ (≤)

f (b) + f (a)

2
. (2.3)

If we make the change of variable 1/s = t, then s = 1/t and ds = −dt/t2
and from (2.3) we get (2.1).

Since f is HH-convex (concave) on [a, b] , by Proposition 1 we also have
that Qf is concave (convex) on [a, b] . By Hermite–Hadamard inequality (1.4)
for Qf we have

a+b
2

f
(
a+b
2

) ≥ (≤)
1

b− a

∫ b

a

t

f (t)
dt ≥ (≤)

a
f(a) + b

f(b)

2
,

which is equivalent to (2.2). �

We use the following result obtained by the author in [2] and [3].

Lemma 4. Let h : [α, β] → R be a convex (concave) function on [α, β] .
Then we have the inequalities

0 ≤ (≥)
h (α) + h (β)

2
− 1

β − α

∫ β

α
h (t) dt ≤ (≥)

1

8

[
h′− (β)− h′+ (α)

]
(β − α)

(2.4)
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and

0 ≤ (≥)
1

β − α

∫ β

α
h (t) dt− h

(
α+ β

2

)
≤ (≥)

1

8

[
h′− (β)− h′+ (α)

]
(β − α) .

(2.5)
The constant 1/8 is best possible in (2.4) and (2.5).

We have the following reverse inequalities.

Theorem 2. Let f : [a, b]→ (0,∞) be an HH-convex (concave) function
on [a, b] ⊂ (0,∞). Then we have

0 ≥ (≤)
f (b) + f (a)

2
− ab

b− a

∫ b

a

1

t2f (t)
dt

≥ (≤)
1

8ab

(
a2

f2 (a)
f ′+ (a)− b2

f2 (b)
f ′− (b)

)
(b− a) ,

(2.6)

0 ≥ (≤)
ab

b− a

∫ b

a

1

t2f (t)
dt− f

(
2ab

a+ b

)
≥ (≤)

≥ (≤)
1

8ab

(
a2

f2 (a)
f ′+ (a)− b2

f2 (b)
f ′− (b)

)
(b− a) ,

(2.7)

0 ≥ (≤)
af (b) + bf (a)

2f (a) f (b)
− 1

b− a

∫ b

a

t

f (t)
dt

≥ (≤)
1

8

(
f (b)− bf ′− (b)

f2 (b)
−
f (a)− af ′+ (a)

f2 (a)

)
(b− a)

(2.8)

and

0 ≥ (≤)
1

b− a

∫ b

a

t

f (t)
dt−

a+b
2

f
(
a+b
2

)
≥ (≤)

1

8

(
f (b)− bf ′− (b)

f2 (b)
−
f (a)− af ′+ (a)

f2 (a)

)
(b− a) .

(2.9)

Proof. The first part in all inequalities (2.6)–(2.9) follows from Theorem
1.

Now, if we take the derivative of Pf (x) , then we have

P ′f (x) =

(
1

f
(
1
x

))′ = (f−1(1

x

))′
= −f−2

(
1

x

)(
f

(
1

x

))′
= −f−2

(
1

x

)
f ′
(

1

x

)(
− 1

x2

)
= f−2

(
1

x

)
f ′
(

1

x

)(
1

x2

)
.

Therefore we have

P ′+f

(
1

b

)
= b2f−2 (b) f ′− (b) =

b2

f2 (b)
f ′− (b)
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and

P ′−f

(
1

a

)
= a2f−2 (a) f ′+ (a) =

a2

f2 (a)
f ′+ (a)

and by the right hand side inequalities in Lemma 4 we get the corresponding
inequalities in (2.6) and (2.7).

If we take the derivative of Qf , we have

Q′f (x) =

(
x

f (x)

)′
=
f (x)− xf ′ (x)

f2 (x)
.

Therefore

Q′+f (a) =
f (a)− af ′+ (a)

f2 (a)
and Q′−f (b) =

f (b)− bf ′− (b)

f2 (b)
,

and by the right hand side inequalities in Lemma 4 we get the corresponding
inequalities in (2.8) and (2.9). �

Theorem 3. Let f : [a, b]→ (0,∞) be an HH-convex (concave) function
on [a, b] ⊂ (0,∞). Then we have

ab

b− a

∫ b

a

f (t)

t2
dt ≤ (≥)

G2 (f (a) , f (b))

L (f (a) , f (b))
. (2.10)

Proof. By the definition of HH -convex (concave) function, we have by
integrating on [0, 1] over λ, that∫ 1

0
f

(
ab

(1− λ) b+ λa

)
dλ ≤ (≥)

∫ 1

0

f (a) f (b)

(1− λ) f (b) + λf (a)
dλ. (2.11)

Consider the change of variable ab
(1−λ)b+λa = t. Then (1− λ) b+λa = ab

t and

(b− a) dλ = ab
t2
dt. Using this change of variable, we have∫ 1

0
f

(
ab

(1− λ) b+ λa

)
dλ =

ab

b− a

∫ b

a

f (t)

t2
dt.

If f (b) = f (a) , then∫ 1

0

f (a) f (b)

(1− λ) f (b) + λf (a)
dλ = f (a) .

If f (b) 6= f (a), then by the change of variable (1− λ) f (b) + λf (a) = s, we
have ∫ 1

0

f (a) f (b)

(1− λ) f (b) + λf (a)
dλ =

f (a) f (b)

f (a)− f (b)

∫ f(a)

f(b)

ds

s

=
f (a) f (b)

L (f (a) , f (b))
=
G2 (f (a) , f (b))

L (f (a) , f (b))
.

By making use of (2.11) we deduce the desired result (2.10). �
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We also have the following theorem.

Theorem 4. Let f : [a, b]→ (0,∞) be an HH-convex (concave) function
on [a, b] ⊂ (0,∞). Then we have

f

(
2ab

a+ b

)
≤ (≥)

∫ b
a

1
t2
f (t) f

(
abt

(a+b)t−ab

)
dt∫ b

a
f(t)
t2
dt

. (2.12)

Proof. From the definition of an HH -convex (concave) function we have

f

(
2xy

x+ y

)
≤ (≥)

2f (x) f (y)

f (x) + f (y)
(2.13)

for any x, y ∈ [a, b] .
If we take

x =
ab

(1− λ) b+ λa
, y =

ab

(1− λ) a+ λb
∈ [a, b] ,

then

2xy

x+ y
=

2 ab
(1−λ)b+λa ·

ab
(1−λ)a+λb

ab
(1−λ)b+λa + ab

(1−λ)a+λb
=

2 1
(1−λ)b+λa ·

ab
(1−λ)a+λb

1
(1−λ)b+λa + 1

(1−λ)a+λb

=
2 1
(1−λ)b+λa ·

ab
(1−λ)a+λb

(1−λ)a+λb+(1−λ)b+λa
((1−λ)b+λa)((1−λ)a+λb)

=
2ab

a+ b
,

and by (2.13) we get

f

(
2ab

a+ b

)
≤ (≥)

2f
(

ab
(1−λ)b+λa

)
f
(

ab
(1−λ)a+λb

)
f
(

ab
(1−λ)b+λa

)
+ f

(
ab

(1−λ)a+λb

) ,
which is equivalent to

f

(
2ab

a+ b

)[
f

(
ab

(1− λ) b+ λa

)
+ f

(
ab

(1− λ) a+ λb

)]
≤ (≥) 2f

(
ab

(1− λ) b+ λa

)
f

(
ab

(1− λ) a+ λb

)
,

(2.14)

for any λ ∈ [0, 1] .
If we integrate the inequality over λ on [0, 1] we get

f

(
2ab

a+ b

)[∫ 1

0
f

(
ab

(1− λ) b+ λa

)
dλ+

∫ 1

0
f

(
ab

(1− λ) a+ λb

)
dλ

]
≤ (≥) 2

∫ 1

0
f

(
ab

(1− λ) b+ λa

)
f

(
ab

(1− λ) a+ λb

)
dλ.

(2.15)
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Now, we observe that∫ 1

0
f

(
ab

(1− λ) a+ λb

)
dλ =

∫ 1

0
f

(
ab

(1− λ) b+ λa

)
dλ

=
ab

b− a

∫ b

a

f (t)

t2
dt

(2.16)

and ∫ 1

0
f

(
ab

(1− λ) b+ λa

)
f

(
ab

(1− λ) a+ λb

)
dλ

=

∫ 1

0
f

(
ab

(1− λ) b+ λa

)
f

(
ab

a+ b− ((1− λ) b+ λa)

)
dλ

=

∫ 1

0
f

(
ab

(1− λ) b+ λa

)
f

(
1

1
b + 1

a −
((1−λ)b+λa)

ab

)
dλ.

(2.17)

If we change the variable t = ab
(1−λ)b+λa , then we have∫ 1

0
f

(
ab

(1− λ) b+ λa

)
f

(
1

1
b + 1

a −
((1−λ)b+λa)

ab

)
dλ

=
ab

b− a

∫ b

a

1

t2
f (t) f

(
1

1
b + 1

a −
1
t

)
dt

=
ab

b− a

∫ b

a

1

t2
f (t) f

(
abt

(a+ b) t− ab

)
dt.

(2.18)

On making use of (2.15)–(2.18) we deduce the desired result (2.12). �

Remark 1. By Cauchy–Bunyakovsky–Schwarz integral inequality we have∫ 1

0
f

(
ab

(1− λ) b+ λa

)
f

(
ab

(1− λ) a+ λb

)
dλ

≤
(∫ 1

0
f2
(

ab

(1− λ) b+ λa

)
dλ

)1/2

×
(∫ 1

0
f2
(

ab

(1− λ) a+ λb

)
dλ

)1/2

=

∫ 1

0
f2
(

ab

(1− λ) b+ λa

)
dλ =

∫ b

a

f2 (t)

t2
dt.

(2.19)

Now, if f : [a, b] → R is an HH-convex function on [a, b] ⊂ (0,∞), then by
(2.12) and (2.19) we get

f

(
2ab

a+ b

)
≤

∫ b
a

1
t2
f (t) f

(
abt

(a+b)t−ab

)
dt∫ b

a
f(t)
t2
dt

≤
∫ b
a
f2(t)
t2
dt∫ b

a
f(t)
t2
dt
. (2.20)
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The following lemma is of interest as well.

Lemma 5. If f : [a, b]→ (0,∞) is HH-convex on [a, b] ⊂ (0,∞), then the

associated function Rf : [a, b] → (0,∞), Rf (x) = f(x)
x , is convex on [a, b] .

The reverse is not true.

Proof. Let α, β > 0 with α+ β = 1 and x, y ∈ [a, b].
By the HH -convexity of f we have

Rf (αx+ βy) =
f (αx+ βy)

αx+ βy
=

f

(
1
1

αx+βy

)
αx+ βy

=

f

(
1

αx 1
x+βy 1

y
αx+βy

)
αx+ βy

≤

1
αx 1

f(x)
+βy 1

f(y)
αx+βy

αx+ βy
=

αx+ βy

αx 1
f(x) + βy 1

f(y)

· 1

αx+ βy

=
1

α x
f(x) + β y

f(y)

.

(2.21)

By the weighted Cauchy–Bunyakovsky–Schwarz inequality we have(
α

x

f (x)
+ β

y

f (y)

)(
α
f (x)

x
+ β

f (y)

y

)
=

(
α

(√
x

f (x)

)2

+β

(√
y

f (y)

)2
)α(√f (x)

x

)2

+ β

(√
f (y)

y

)2


≥ (α+ β)2 = 1,

which implies that

1

α x
f(x) + β y

f(y)

≤ αf (x)

x
+ β

f (y)

y

for any α, β > 0 with α+ β = 1 and x, y ∈ [a, b] .
By (2.21) we have

Rf (αx+ βy) ≤ αf (x)

x
+ β

f (y)

y
= αRf (x) + βRf (y)

for any α, β > 0 with α + β = 1 and x, y ∈ [a, b] , which shows that Rf is
convex on [a, b] .

Consider the function f : [a, b] → (0,∞), f (x) = xp, p 6= 0. The
function Rf (x) = xp−1 is convex if and only if p ∈ (−∞, 1) ∪ [2,∞). Since
Qf (x) = x1−p is concave if and only if p ∈ (0, 1), by Proposition 1 we
have that the function f : [a, b] → (0,∞), f (x) = xp, is HH -convex if and
only if Qf is concave, namely p ∈ (0, 1). Therefore, Rf is convex and not
HH -convex if p ∈ (−∞, 0) ∪ [2,∞). �
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If we denote by CI [a, b] the class of all positive functions f for which
Rf is convex, then the class of HH -convex functions f : [a, b] → (0,∞) on
[a, b] ⊂ (0,∞) is strictly enclosed in CI [a, b].

We have the following inequalities of Hermite–Hadamard type.

Theorem 5. If f ∈ CI [a, b] , then we have

f
(
a+b
2

)
a+b
2

≤ 1

b− a

∫ b

a

f (t)

t
dt ≤ f (a) b+ f (b) a

2ab
, (2.22)

0 ≤ f (a) b+ f (b) a

2ab
− 1

b− a

∫ b

a

f (t)

t
dt

≤ 1

8

[
f ′− (b) b− f (b)

b2
−
f ′+ (a) a− f (a)

a2

]
(b− a)

(2.23)

and

0 ≤ 1

b− a

∫ b

a

f (t)

t
dt−

f
(
a+b
2

)
a+b
2

≤ 1

8

[
f ′− (b) b− f (b)

b2
−
f ′+ (a) a− f (a)

a2

]
(b− a) .

(2.24)

Proof. By the Hermite–Hadamard inequalities (1.4) for Rf we have

f
(
a+b
2

)
a+b
2

≤ 1

b− a

∫ b

a

f (t)

t
dt ≤

f(a)
a + f(b)

b

2

and the inequality (2.22) is proved.
We have

R′f (t) =

(
f (t)

t

)′
=
f ′ (t) t− f (t)

t2

and then

R′−f (b) =
f ′− (b) b− f (b)

b2
and R′+f (a) =

f ′+ (a) a− f (a)

a2
.

By Lemma 4 we have

0 ≤
f(a)
a + f(b)

b

2
− 1

b− a

∫ b

a

f (t)

t
dt

≤ 1

8

[
f ′− (b) b− f (b)

b2
−
f ′+ (a) a− f (a)

a2

]
(b− a)

and

0 ≤ 1

b− a

∫ b

a

f (t)

t
dt−

f
(
a+b
2

)
a+b
2

≤ 1

8

[
f ′− (b) b− f (b)

b2
−
f ′+ (a) a− f (a)

a2

]
(b− a) ,
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which are equivalent to the desired inequalities (2.23) and (2.24). �

3. Applications

Consider the function f : [a, b] → (0,∞) , f (x) = xp, on [a, b] ⊂ (0,∞).
Observe that Qf (x) = xp−1 is convex if and only if p ∈ (−∞, 1)∪ [2,∞) and
concave if and only if p ∈ (1, 2) . By Proposition 1 we have that the function
f is HH -convex (concave) on [a, b] if and only if Qf is concave (convex) on
[a, b] , namely p ∈ (1, 2) (p ∈ (−∞, 1) ∪ [2,∞)) .

We introduce the Lq-harmonic mean for q 6= 0,−1 by

Lq (a, b) :=


(
bq+1−aq+1

(q+1)(b−a)

) 1
q

if b 6= a,

b if b = a,

the logarithmic mean by

L (a, b) :=

{
b−a

ln b−ln a if b 6= a,

b if b = a,

and the identric mean by

I (a, b) :=

1
e

(
bb

aa

) 1
b−a

if b 6= a,

b if b = a.

If we set L0 (a, b) := I (a, b) and L−1 (a, b) := L (a, b) , then we have that the
function R 3q 7→ Lq (a, b) is monotonic increasing as a function of q. We also
have the inequalities

H (a, b) ≤ G (a, b) ≤ L (a, b) ≤ I (a, b) ≤ A (a, b) .

By making use of Theorem 1 we have for p ∈ (1, 2) (p ∈ (−∞, 1) ∪ [2,∞))
that

Hp (a, b)

G2 (a, b)
≥ (≤)L−p−2−p−2 (a, b) ≥ (≤)

A (ap, bp)

G2 (a, b)
, p 6= 0 (3.1)

and

A1−p (a, b) ≥ (≤)L1−p
1−p (a, b) ≥ (≤)A

(
ap−1, bp−1

)
. (3.2)

If we take p = −1 in (3.1), then we get

1

G2 (a, b)H (a, b)
≤ 1

L (a, b)
≤
A
(
a−1, b−1

)
G2 (a, b)

.

By Theorem 3 we have for p ∈ (1, 2) (p ∈ (−∞, 1) ∪ [2,∞))

G2 (a, b)Lp−2p−2 (a, b) ≤ (≥)
G2 (ap, bp)

L (ap, bp)
. (3.3)
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Observe that

L (ap, bp) =
bp − ap

p (ln b− ln a)
=

bp − ap

p (b− a)
· b− a

ln b− ln a

= Lp−1p−1 (a, b)L (a, b) .

By (3.3) we get that

Lp−2p−2 (a, b)Lp−1p−1 (a, b) ≤ (≥)
G2 (ap, bp)

G2 (a, b)L (a, b)
, (3.4)

for p ∈ (1, 2) (p ∈ (−∞, 1) ∪ (2,∞)) .
Now, consider the function f : [a, b] → (0,∞) , f (t) = t

ln t , on [a, b] ⊂
(1,∞). Then Qf (x) = x/ x

lnx = lnx is concave on [a, b] , therefore f is HH -
convex on [a, b] ⊂ (1,∞) . If we use the inequality (2.2), then we get the
well-known inequality

A (a, b) ≥ I (a, b) ≥ G (a, b) .

If we use the inequality (2.10) for f (t) = t
ln t , then we get

ab

b− a

∫ b

a

1

t ln t
dt ≤

G2
(
a

ln a ,
b

ln b

)
L
(
a

ln a ,
b

ln b

) . (3.5)

Since ∫ b

a

1

t ln t
dt =

∫ b

a

1

ln t
d (ln t) = ln (ln b)− ln (ln a) ,

and

G2

(
a

ln a
,
b

ln b

)
=

G2 (a, b)

G2 (ln a, ln b)
,

from (3.5) we have

G2 (ln a, ln b)L

(
a

ln a
,
b

ln b

)
≤ L (a, b)L (ln b, ln a) . (3.6)
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