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Inequalities of Hermite—-Hadamard type for
HH-convex functions

S. S. DRAGOMIR

ABSTRACT. Some inequalities of Hermite-Hadamard type for HH-convex
functions defined on positive intervals are given. Applications for special
means are also provided.

1. Introduction

Let I ¢ R\{0}. Following [1] (see also [6]) we say that a function f : I — R
is HA-convex if

zy
Ny, ) s0-0@ =+t (1)

for all x,y € I and t € [0,1]. If the inequality in (1.1) is reversed, then f is
said to be HA-concave.

If I C (0,00) and f is convex and nondecreasing, then f is HA-convex,
and if f is HA-convex and nonincreasing, then f is convex.

If [a,b] C I C (0,00) and if we consider the function ¢ : [1/b,1/a] — R,
defined by ¢ (t) = f (1/t), then we can state the following fact.

Lemma 1 (see [1]). The function f is HA-convex (concave) on [a,b] if
and only if g is convex (concave) in the usual sense on [1/b,1/a).

Therefore, as examples of HA-convex functions we can take f (t) = g (1/t),
where g is any convex function on [1/b,1/al.

In the recent paper [5] we obtained the following characterization result
as well.

Lemma 2. Let [a,b] C (0,00) and let f,h : [a,b] — R be so that h(t) =
tf(t) fort € [a,b]. Then f is HA-convex (concave) on the interval |a,b] if
and only if h is convex (concave) on [a,b].
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Following [1], we say that a function f : I — (0,00) with I C R\ {0} is

HH-convex if
zy f@) [y
f < ) < 1.2
wa(-ny) ST 0w+ 2
for all x,y € I and ¢ € [0,1]. If the inequality in (1.2) is reversed, then f is

said to be HH-concave.
We observe that the inequality (1.2) is equivalent to

(mt) gt e 1 (1.3)
fl@) " fy) f(m)

for all z,y € I and t € [0,1]. Therefore we have the following fact.

Lemma 3. A function f : I — (0,00) is HH-convex (concave) on I if

and only if g: I — (0,00), g(x) = f(lx), is HA-concave (convex) on I.

Taking into account the above lemmas, we can state the following result.

Proposition 1. Let f : [a,b] — (0,00), where [a,b] C (0,00). Define the
related functions

Py :[1/b,1/a] — (0,00), Pf(x):f(ll)’
and
Q :lab] = (0.00), Qs () = .

The following statements are equivalent:

(i) the function f is HH-convex (concave) on [a,b];
(ii) the function Py is concave (convex) on [1/b,1/a];
(iii) the function Qy is concave (convex) on |a,b].

For a convex function & : [¢,d] — R, the following inequality is well known
in the literature as the Hermite—Hadamard inequality:

C d C
h< ;d>gdic/c h(t)dtgh();h(d). (1.4)

For related results and references, see e.g. [4].

Motivated by the above results, we establish in this paper some inequali-
ties of Hermite-Hadamard type for HH-convex functions defined on positive
intervals. Applications for special means are also provided.
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2. The results

We have the following result that can be obtained by the use of the regular
Hermite-Hadamard inequality (1.4).

Theorem 1. Let f : [a,b] — (0,00) be an HH-convex (concave) function
on [a,b] C (0,00). Then we have

2ab ab [° 1 f®) + [ (a)
H(25) 2 0% [ apgae= @ O3 e

a+b —aj, t2f(t)
and
ot ot ) af (0) +bf (a)
IR ol O S @

Proof. Since f is HH-convex (concave) on [a, b], by Proposition 1 we have
that Py is concave (convex) on [1/b,1/a]. By Hermite-Hadamard inequality
(1.4) for Py we have

f( 1 >z<q Lo ) ()

- - —d <
axifs “a=1/b Jip Fjs)™ = 2 ’

which is equivalent to

2ab ab Va1 f(b)+ f(a)

If we make the change of variable 1/s = ¢, then s = 1/t and ds = —dt/t?
and from (2.3) we get (2.1).

Since f is HH-convex (concave) on [a,b], by Proposition 1 we also have
that Q¢ is concave (convex) on [a, b] . By Hermite-Hadamard inequality (1.4)
for Qf we have

a _b
atl / fioRio]
f(“&“’ “ T b—al, f() N 2

which is equivalent to (2.2). O

\ \/

We use the following result obtained by the author in [2] and [3].

Lemma 4. Let h: [a, 5] = R be a convex (concave) function on [a, ] .
Then we have the inequalities

o B
o< o) )—;h(ﬂ)_ﬁia/ h(t)dtg(z)é[h',(ﬁ)—hﬁr(a)] (B—a)

(2.4)
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s o
0= @) gy [Cnwa-n(*5E) <@ 0 - @) - a).

(2.5)
The constant 1/8 is best possible in (2.4) and (2.5).

We have the following reverse inequalities.

Theorem 2. Let f : [a,b] — (0,00) be an HH-convex (concave) function
on [a,b] C (0,00). Then we have

0>(<)f(b)+f(a)_ ab /b Lo

> (< 9 b—a ), t2f (1) (2.6)
> (<) o < 0 15" (b)>(b_ ) |
> (S) g f2()+ f2()* a),
ab b 2ab
OZ(S)b_a/ath < =1 2
1 2 (2.7)
Z(S)8ab<f2() - <) (b)>( "
()+bf() 1
0> (<)% 2/ (a) f (b) a f()d (2.8)
(b) — b (b) f(a)—af/ (a)
> ()< 3 ( F2(b) - f? (a)+ > o
and
1 by aTer
02—/ o™ (“3%) (2.9)
1/ f(b)—bf (b a) —afl (a
>3 (P ) 0o

Proof. The first part in all inequalities (2.6)—(2.9) follows from Theorem
1.

Now, if we take the derivative of Py (x), then we have
0= (4g) - (- Q) = Q) ()
()2 GG

Therefore we have
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and
p' L\ 9, / _ a? /
AW =a"f (a)f+ (a) = me)ﬂr (a)
and by the right hand side inequalities in Lemma 4 we get the corresponding
inequalities in (2.6) and (2.7).
If we take the derivative of @)y, we have

2 (o) = <f($x)>/: [ @) —af! ()

/2 (x)
Therefore
fla) —af (a) / f(b) —bf’ (b)
Q' ;(a) = and Q_,(b) = )
=) N0
and by the right hand side inequalities in Lemma 4 we get the corresponding
inequalities in (2.8) and (2.9). O

Theorem 3. Let f : [a,b] — (0,00) be an HH-convex (concave) function
on [a,b] C (0,00). Then we have

ab [P f(t) G*(f (a), f (b))
e [ < o) T (210

Proof. By the definition of HH-convex (concave) function, we have by
integrating on [0, 1] over A, that

| ab L f @i
/of<(1—/\)b+)\a>d/\§(2)/o N0 @™

Consider the change of variable (17/\“)% =t. Then (1 - A)b+Xa = a?b and

(b—a)d\ = ‘Z—zbdt. Using this change of variable, we have

! ab _ab b ()
/0 f<(1—)\)b+)\a>d)\_b—a/a T At

If f(b) = f(a), then
L f @) B
| a7 @

If f(b) # f (a), then by the change of variable (1 — X) f (b) + Af (a) = s, we
have

L f(a) f () _ f@f®) [f9ds
/o<1— i = ( b>/f

NFO+ M@ " Fla) ) Sy s
_ f@f0) _G(f(a).f ()
L(f(a),f®)  L(f@).f®)

By making use of (2.11) we deduce the desired result (2.10). O
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We also have the following theorem.

Theorem 4. Let f : [a,b] — (0,00) be an HH-convez (concave) function
on [a,b] C (0,00). Then we have

b1 ab
2ab fa t72f (t) f( a+b)f ab) dt
@+ .fa 42 dt
Proof. From the definition of an HH-convex (concave) function we have
2zy 2f (z) f (y)
S ( ) <(> 2.13
er3) P 1w 219
for any z,y € [a, b].
If we take
. ab - ab € [a,b]
T A Nbta YT A Nara %
then
ab ab ) 1 . ab
2zy (1 Nbtra - T-Nat b “T=NbtAa ~ (T-N)atrb
ab ab - 1 1
Ty T=Nbira T T=Narne  (T-Mbtra T T Naixb
1 ab
200 e T T-Nat % _ 2ab
(I=Nat+Mb+(1=NbtAa  ~ g+ p’

(T=Nbra) (I=N)atAb)
and by (2.13) we get

2ab 2f ((kﬁiﬂa) f ((14‘3%“1))
H(25) <@ LI
¢ f () + f ()

which is equivalent to

o) [ (i) 4 (o)

= (2)2f <(1 AC;bea) / ((1 ;)Liﬂb)’

for any A € [0,1].
If we integrate the inequality over A on [0, 1] we get

(o) [/ (=5 A)bﬂ)‘l“/olf((l—;;baﬂb)@]

01f< b+Aa>f((1—;;l;+Ab) dx.
(2.15)

(2.14)
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Now, we observe that

/olf(u—fﬁh) d“/olf@l—fﬁbbm) “
ab [?

t)

/Olf <(1—)\0)d;)+)\a> / ((1—)\C;ba+)\b> ax

B olf <(1—AC)Lbb+Aa> / <a+ b— ((1aE A) b+ )\a)> ax (2.17)

! ab 1
_/0 f(wz)f(“l_(u—ww)d*

ab

(2.16)

and

If we change the variable t = (1_/\”)%, then we have

1 ab 1
/0 ! ((1 —)\)b—i—)\a) ! ( +1_ ((1—/\)11)>+/\a)> dA

1
b
ab ("1 1
= —— | Zfrf | +—— | dt (2.18)
b_a/a tzf()f<é+é%>
ab b1 abt
= = | St f|———)dt
b—a/a t2f( ) ((a—l—b)t—ab)
On making use of (2.15)—(2.18) we deduce the desired result (2.12). O

Remark 1. By Cauchy-Bunyakovsky—Schwarz integral inequality we have

/01f<<1—;>bb+xa>f<<1—;;ba+Ab> ‘”
<(f (=i ™)
([ <>>
- [ 7 (s o= [

Now, if f : [a,b] — R is an HH-convex function on |a, b] (0,00), then by
(2.12) and (2.19) we get

b a
f( 2ab ) < fa t%f( )f (m) dt - fab f2(t)dt
a+b) — f; ft(Qt)dt = fa t(z)dt

(2.19)

(2.20)
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The following lemma is of interest as well.

Lemma 5. If f : [a,b] — (0,00) is HH-convex on [a,b] C (0,00), then the
associated function Ry : [a,b] — (0,00), Ry (z) = %, is convex on [a,b] .
The reverse is not true.

Proof. Let a, f > 0 with o+ =1 and z,y € [a, b].

By the HH-convexity of f we have

F (o + By) f<ﬁ> (Z

R p— p— p—
7 (az+ By) ax + By azx + By ax + By
1
az - +By i~ 2.21
f(zi+BZf(y) B ar + By ' 1 ( )
= 1 1
azx + By T + By ar By
1

_T _y -
@ TP
By the weighted Cauchy—Bunyakovsky—Schwarz inequality we have

(o5 oyt) (22452 9) < (o (f25)

v\’ f(ﬂC)2 MQ
) ) () ()

> (a+0)* =1,
which implies that

z 1 ; SOéf(%)Jrﬁf(y)
for any «, 8 > 0 with a4+ =1 and z,y € [a,].
By (2.21) we have

[ (x)

X

; Bf;y) — aR; (z) + ARy (y)

for any o, 8 > 0 with a + = 1 and z,y € [a,b], which shows that Ry is
convex on [a, b].

Consider the function f : [a,b] — (0,00), f(x) = 2P, p # 0. The
function Ry (z) = 2P~! is convex if and only if p € (—o00,1) U [2,00). Since
Qs (¥) = x'7P is concave if and only if p € (0,1), by Proposition 1 we
have that the function f : [a,b] — (0,00), f(z) = P, is HH-convex if and
only if @y is concave, namely p € (0,1). Therefore, R is convex and not
HH-convex if p € (—00,0) U [2, 00). O

R (ax + By) < «
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If we denote by Cr[a,b] the class of all positive functions f for which
Ry is convex, then the class of HH-convex functions f : [a,b] — (0,00) on
[a,b] C (0,00) is strictly enclosed in Cy [a, b].

We have the following inequalities of Hermite-Hadamard type.

Theorem 5. If f € Cy[a,b], then we have

fﬂzb__b_a/mf it < )b:J(), (2.22)
ng()ng /‘f
P o) f(b> -t (223)
= 8 [ b2 a2 } (b—a)
and
Lfrrw ()
0< dt —
S boa / ' E (2.24)
[ﬂiw —f@)_ﬁi@a—fmq<h_®
=3 b2 a2 '

Proof. By the Hermite-Hadamard inequalities (1.4) for Ry we have

atb b fla) 4 f(b)
T —a 2

and the inequality (2.22) is proved.

We have ! /
min = (5) < FOF0
and then
(Db — f(b " (a)a —
R/—f(b):f()be() and Rg_f(a): +( )ZQ f(a)
By Lemma 4 we have
ke 2 S AN ()
0<L 2 : _b—a " t dt
1[f (b)b—f(b) f —f
Sg[ ()b2 (0) +(a)32 (a)}(b_a)
and
Ui, f()
Ogb—a/a " dt — aTﬁb
" (b)b—f(b | -
S;[f_()bQ 0 _f@e f<a>}(b_a>,
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which are equivalent to the desired inequalities (2.23) and (2.24). O

3. Applications

Consider the function f : [a,b] — (0,00), f(x) = 2P, on [a,b] C (0,00).
Observe that Qf (z) = 2P~ is convex if and only if p € (—00,1)U[2, 00) and
concave if and only if p € (1,2). By Proposition 1 we have that the function
f is HH-convex (concave) on [a, b] if and only if @ is concave (convex) on
[a,b], namely p € (1,2) (p € (—o0,1) U[2,00)).

We introduce the L,-harmonic mean for ¢ # 0,—1 by

1
patl_qa+l\q .
Lq (CL, b) = <m> if b 7& a,

b if b =a,
the logarithmic mean by
b—a :
L ((I b) .— { Inb—Ina if b 7& a,
’ b ifb=a,

and the identric mean by

(gl;)bl“ it b+ a,
if b =a.

I(a,b):=

S o=

If we set Lo (a,b) := I (a,b) and L_4 (a,b) := L(a,b), then we have that the
function R 3¢ — L, (a, b) is monotonic increasing as a function of ¢. We also
have the inequalities

H (a,b) < G(a,b) < L(a,b) <I(a,b) < A(a,b).

By making use of Theorem 1 we have for p € (1,2) (p € (—o0,1) U[2,00))
that

HP (CL,b) —p—2 A(apabp)
—— L >()LP > (L) =" .
G2 (CL, b) - (—) L—p—2 (CL, b) - (—) G2 (CL, b) , P 7& 0 (3 1)
and
AP (a,b) > (<) L0 (a,b) > (<) A (@07 (3.2)
If we take p = —1 in (3.1), then we get
1 1 A (ail, bil)

< <
G? (a,b) H (a,b) — L(a,b) = G?*(a,b)
By Theorem 3 we have for p € (1,2) (p € (—o0,1) U [2,00))

G (aP, b?)

G? (a,b) L2~3 (a,b) < (>) T ar )
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Observe that
—aP —aP _
L (a?,bP) = bP —a :bp a?  b—a
p(lnb—Ina) p(b—a) Inb—Ina

= L)"1 (a,b) L (a,b).

By (3.3) we get that

G? (aP, bP)
G2 (a,b) L (a,b)’

L5 (a:0) L7y (a,0) < (2) (3.4)
for pec (17 2) (p € (_007 1) U (27 OO)) :

Now, consider the function f : [a,b] = (0,00), f(t) = 1, on [a,b] C
(1,00). Then Qf (z) = =/ = Inx is concave on [a, b], therefore f is HH-
convex on [a,b] C (1,00). If we use the inequality (2.2), then we get the
well-known inequality

Aa,h) > 1(a,b) > G (ah).
If we use the inequality (2.10) for f (t) = %, then we get

Int>
bo[b 1 G? (1%, i
a / dtﬁ (na lnb). (3'5)
b—a ), tint L(%, b
Since
b b1
) tlntdt /a lntd(nt) n(lnbd) —In(lna),
and

e bY__Gab)
’ G2 (lna,Ilnb)’

from (3.5) we have

a b

Ina’ Inb

G%mmm@L< >§Lmﬁﬂxmam@. (3.6)
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