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Abstract: Chronic inflammation can lead to tumour initiation and progression. Vitamin B complex has
the ability to regulate the immune response and, therefore, inflammation but many of the mechanistic
and molecular processes involved in this regulation are still not fully understood. This study sought
to determine some of these processes by studying the effects of vitamin B2 (riboflavin) B6 (pyridoxine)
and B9 (folic acid) on un-differentiated pro-monocytic lymphoma cells in regard to their ability to alter
the proliferation, migration, apoptosis, cytokines and expression levels of programmed death ligand 1.
We show that vitamin B2, B6 and B9, on pro-monocytic lymphoma cells exerted an anti-tumorigenic
effect. This data could form the basis for future studies in using vitamin B supplementation to reduce
cancer cell growth in vivo.

Keywords: vitamin B complex; pro-monocytes; U937 cell line; riboflavin; pyridoxine; folate; vitamin
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1. Introduction

Chronic inflammation can lead to cancer via epigenetic change. Infection and irritation
instigating chronic inflammatory states, can produce environments that promote genomic lesions and
tumor initiation, activate oncogenes and cause dysfunction of tumor suppressors leading to cancer
development [1]. Genetic change as a result of inflammation effectively provides cancer cells with a
mechanistic means of survival. Current scientific thought on inflammation and cancer progression
centres on finding a means to dampen inflammation in order to prevent cancer development and
provide a possible means of treatment [2].

There is a clear association between inflammation and cancer development demonstrated by
numerous clinical and epidemiological studies. In fact, patients who suffer from inflammatory bowel
disease such as ulcerative colitis and Chrohn’s disease are 10 times more likely to develop colorectal
cancer [3–5], whilst cancers of the gastrointestinal tract, prostate and liver have been shown to originate
from sites of chronic inflammation [6–8].

There are also a number of studies in the literature describing the role of vitamin B in the regulation
of immune responses and inflammation [9–13]. Inadequate levels of certain B vitamins can drastically
alter immune response by effecting the production of nucleic acid and protein synthesis, inhibiting the
activity of immune cells and interfering with metabolic processes including methylation, serine, glycine
and purine cycles. Inefficient methylation can lead to hyperhomocysteinemia which causes systemic
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and vascular inflammation contributing to the pathophysiology of other diseases [14–17]. Many of the
mechanistic effects of vitamin B deficiency correlate with the properties of cancer development.

Current knowledge of B vitamins and inflammation predominantly revolves around the systemic
effects of vitamin B in deficiency states and the associated pathology of these deficiencies [10]. Much
evidence exists establishing the crucial role of B vitamins in immunity and it is well recognized that poor
nutrition impacts significantly on immune cells [12]. Globally, chronic malnutrition presents as the main
cause of immune deficiency and chronic diseases result from even marginal deficiencies [18]; vitamin B2,
B6, and B9 are some of the B complex vitamins which are important contributors of nutritional support
to the immune system. Deficiency of these can alter immune function considerably by disturbing nucleic
acid production and protein synthesis, impeding immune cell activity, interfering with metabolic
processes such as methylation and contributing to oxidative stress. Hyperhomocysteinemia is a result
of ineffective methylation which triggers systemic and vascular inflammation and contributes to disease
pathogenesis. Immune dysfunction at a cellular level can present as improper antigen presentation,
disturbed cytokine production, unmodulated autoimmune responses [19,20], disruptions in immune
cell function, and ineffective viral clearance [21]. Furthermore, vitamin B2 also plays a crucial role
within the immune system because of its association with mucosal associated invariant T cells which
play a significant role in autoimmune, inflammatory diseases and cancer [22].

The roles of B2, B6 and B9 in DNA and protein synthesis, cell maintenance and proliferation are a
vital factor when looking at how deficiency states can affect the immune system. Both cell mediated,
and humoral immunity is compromised in B vitamin deficiency states and the effects on immune cells
are varied and numerous. Supplementation of B vitamins has been shown to improve the immune
response in both animal and human models in many studies [23–29], however some studies have also
reported that over supplementation can also adversely affect immune function [16,23,30].

B vitamin deficiencies can occur co-currently and seem to be particularly relevant in certain
populations whereby dietary nutrition can limited by mitigating factors such as poor absorption,
metabolism, illnesses and dietary restrictions. B vitamins have limited tissue storage and depending
on the vitamin, can be depleted from the body as quickly as one week (B1, B2, B3, B5, B6, B7) to one
month or a year after dietary deficiency (B9, B12) [31].

Numerous studies within the literature verify links between vitamin B deficiency and cancer
through inflammatory processes. Vitamin B9 levels were found to be significantly lower and mean
homocysteine levels significantly higher in newly diagnosed cancer patients than in aged match
controls in one study, indicating that high homocysteine and low folate could be associated with lung
cancer, although additional studies would be required to support these findings [32]. Another study
involving breast cancer hypothesized that elevated homocysteine levels may have an effect on the
methylation of some specific genes that control breast cancer initiation and progression. Breast cancer
cell lines MCF-7 and MDA-MB-231 showed epigenetic modulations of RASS-F1 and BRACA1, as
a result of elevated homocysteine levels. Elevated plasma homocysteine levels are also correlated
with increased risk of colorectal cancer [33] whilst elevated levels of enzyme, PDXK, which facilitates
in the conversion of pyridoxine (a vitamin B6 precursor) into pyridoxal-5′-phosphate the bioactive
form of vitamin B6, indicated a good prognostic marker in patients suffering from non-small cell lung
carcinoma [34].

In contrast however, some studies have associated an over-supplementation of some B vitamins
in cancer progression. More recently it was noted that long-term supplementation of vitamin B12 in
a total of 77,118 patients was associated with a 40% increased risk of lung cancer in males but not
females in comparison with those who were not supplemented with B12. The study showed that B12
supplementation may in fact be harmful rather than chemo-preventative for lung cancer [35]. Another
study noted that high levels of B12 are associated with a threefold risk of prostate cancer [36]. However,
pooled data-based meta-analysis of vitamin B supplementation effects on the incidence of cancer
showed that vitamin B supplementation did not have an effect on cancer incidence [37]. Conflicting
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evidence on B supplementation and cancer leads us to a justification of this projects proposition that B
vitamin status and dose response is an important factor to explore.

B vitamin deficiencies can increase homocysteine levels which in turn can lead to oxidative
stress, DNA damage and a chronic state of inflammation leading to epigenetic change and subsequent
tumorigenesis [38]. Some B vitamins such as vitamin B6 have been indicated as anti-oxidant nutrients
and as such, exert a protective role against inflammation and cancer progression [39–41].

Monocytes are circulatory blood cells, which differentiate into macrophages or dendritic cells
at tissue sites. Macrophages and dendritic cells are specialized antigen presenting cells and process
and present antigens to T cells, and secrete cytokines [42]. Histiocytic lymphoma is an aggressive
non-Hodgkin’s lymphoma, a type of cancer that originates from cells of the immune system, specifically
of monocyte pro-monocytic blast origin. The relationship between inflammation, carcinogenesis and
vitamin B status is not completely understood and many of the mechanistic and molecular processes
involved in this association are yet unresolved. The principal goal in this study was to determine the
effect of supplementing un-differentiated pro-monocytic lymphoma cells with vitamin B2, B6 or B9
and we note altered effects on cell proliferation, migration, apoptosis, cytokines and inflammatory
marker expression, as well expression of PD-L1.

2. Results

2.1. Vitamins B2, B6, B9 Inhibit Pro-Monocytic U937 Cell Proliferation

The effects of vitamin B2, B6 and B9 on cellular proliferation of U937 pro-monocytic cells
was assessed using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole)
proliferation assay. All experiments were repeated at least 5 times in triplicate wells. Doses of
0.062 µg/mL, 0.031 µg/mL and 0.015 µg/mL of vitamin B2 (riboflavin), cell proliferation was similar
to that of control cells whereas as 0.125 µg/mL inhibition of cell proliferation was noted (p < 0.05).
Significant anti-proliferative effects were noted at doses 0.250 µg/mL–1.0 µg/mL (p < 0.0001) (Figure 1A).
These findings were verified by well photos (Figure 1B).

Incubation of U937 cells with vitamin B6 (pyridoxine) showed no anti-proliferative effects on day
3 however on days 4–6 the anti-proliferative effects increased significantly in a dose dependent manner.
On day 6, 1000 µg/mL, 500 µg/mL, and 250 µg/mL, showed the most inhibition (p < 0.0001), followed
by less but significant inhibition at 125 µg/mL (p < 0.01). No anti-proliferative effects of riboflavin at
15–62 µg/mL were noted (Figure 1C,D).

At high doses of vitamin B9 (folic acid; 250–1000 µg/mL) significant inhibition of cell proliferation
was noted on day 4 (p < 0.01) and days 5 and 6 (p < 0.0001). Although there was a trend of lower
proliferation on day 3, this was not significant (Figure 1E). At 125 µg/mL of folic acid concentration
there was less proliferation, but significant anti-proliferative effects were noted on days 3–6 (p < 0.05).
The anti-proliferative effects were specific to folic acid as the corresponding NaOH vehicle control
concentrations did not have an effect on cell proliferation (Figure 1E,G) These findings were confirmed
by well images (Figure 1F,H).
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Figure 1. (A,B), Effect of vitamin B2 (riboflavin) (C,D), vitamin B6 (pyridoxine) (E,F), vitamin B9 (folic 
acid) (G,H), NaOH control on U937 cell proliferation. Cells were incubated with increasing doses of 
vitamin B for 6 days in 96 well U bottom plates and analyzed by MTT assay. Absorbance readings 
were taken at 540 nm to assess for cellular proliferation compared to control well (0 μg/mL). 
Significance was established at p, 0.05, two-way analysis of variance (ANOVA) followed by Tukey’s 
multiple comparisons test and marked with asterisk (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 
Cells were viewed under an IX81 Olympus microscope at 4x magnification and photos taken at each 
concentration and control NaOH on day 6 of culture. 

Figure 1. (A,B), Effect of vitamin B2 (riboflavin) (C,D), vitamin B6 (pyridoxine) (E,F), vitamin B9
(folic acid) (G,H), NaOH control on U937 cell proliferation. Cells were incubated with increasing
doses of vitamin B for 6 days in 96 well U bottom plates and analyzed by MTT assay. Absorbance
readings were taken at 540 nm to assess for cellular proliferation compared to control well (0 µg/mL).
Significance was established at p, 0.05, two-way analysis of variance (ANOVA) followed by Tukey’s
multiple comparisons test and marked with asterisk (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
Cells were viewed under an IX81 Olympus microscope at 4x magnification and photos taken at each
concentration and control NaOH on day 6 of culture.
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2.2. Vitamin B Does not Induce Apoptosis or Cell Death

To determine whether the anti-proliferative and anti-migratory effects of vitamin B2, B6 and B9
were due to apoptosis or cell death, annexin-v assay was used which utilizes flow cytometry assay.
Quadrants were set based on untreated control cells with either propridium iodide (PI) or FITC alone,
or PI/FITC control staining (Figure 2). Q1 corresponds to early apoptosis (Annexin V FITC+/PI−)
Q2 corresponds to dead cells by apoptosis (Annexin V FITC+/PI+), Q3 corresponds to live cells and
non-apoptotic (Annexin V FITC−/PI−), Q4 demonstrates dead cells by necrosis or apoptosis (Annexin
V FITC−/PI+). Control non-vitamin B treated cells were mostly viable 93%) and showing background
levels of dead cells (Figure 2). The addition of vitamin B2, B6 and B9 250 µg/mL showed similar
live/dead cell distribution as control, hence no evidence of apoptosis or death by necrosis is noted
(Figure 2). Likewise, vitamin B2 and its vehicle control NaOH showed similar % of cell populations in
each quadrant. Data for the 3-day vitamin B treatment is shown; treatment for 6 days showed similar
effects (not shown).
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Figure 2. Annexin V-FITC/propridium iodide (PI) staining of undifferentiated U937 cells incubated 
with vitamin B. 1 × 106 of U937 cells treated with 0.25 μg/mL of B2 and 250 μg/mL of vitamin B6 and 
B9 for 72 h were used for analysis. Resuspended cells were incubated with Annexin V-FITC at 1:1000 
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Figure 2. Annexin V-FITC/propridium iodide (PI) staining of undifferentiated U937 cells incubated
with vitamin B. 1 × 106 of U937 cells treated with 0.25 µg/mL of B2 and 250 µg/mL of vitamin B6 and B9
for 72 h were used for analysis. Resuspended cells were incubated with Annexin V-FITC at 1:1000 for
15 min in the dark. PI at 0.5 µg/mL was used as a counterstain to differentiate necrotic/dead cells from
apoptotic cells. Shown in the figure are (A) controls, (B) vitamin B samples.

2.3. Vitamin B2, B6, B9 Inhibits Cell Migration of Pro-Monocytic Cells

Cell migration is evaluated via a number of different techniques such as microfluidic assays,
scratch assays and cell-exclusion zone assays. However, the boyden chamber assay is the most widely
accepted cell migration assay [39]. U937 pro-monocytic lymphoma cells were added inside the chamber
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and allowed to migrate through the porous membrane for 20–22 h. The number of cells that had
migrated through the membrane were stained and counted using a light microscope [39]. Vitamin B2
(0.125 µg/mL), significantly reduced the number of cells migrating through the membrane (p < 0.5).
Similarly, B6 (125 µg/mL, p < 0.05) and (250 µg/mL, p < 0.05), and B9 (125 µg/mL, p < 0.05), showed
inhibition of cell migration (Figure 3). These data correspond to the anti-proliferative effects exhibited
by vitamin B2, B6 and B9.
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Programmed death Ligand 1 (PD-L1) is an important checkpoint marker expressed by 
monocytes, macrophages, epithelial cells and cancer cells [40]. Expression of PD-L1 on cancer cells, 
has an immune suppression mechanism where cancer cells escape lysis by activated CD8+ T cells. PD-
L1 is commonly overexpressed on tumor cells and aids in their invasiveness [41]. Confocal 
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Figure 3. Effect on cell migration of pro-monocytic cells in the presence of (A) vitamin B2 (riboflavin),
(B) vitamin B6 (pyridoxine) and (C) vitamin B9 (folic acid) using Boyden chamber assay. Data presented
as mean +/− standard error of the mean of duplicate wells. Excel and Prism excel (Graph Pad Software,
La Jolla, CA, USA) were used to aid in the statistical analysis using students t-Test and * p < 0.05 was
considered significant.

2.4. Vitamin B2, B6 and B9 Decrease Expression of PD-L1

Programmed death Ligand 1 (PD-L1) is an important checkpoint marker expressed by monocytes,
macrophages, epithelial cells and cancer cells [40]. Expression of PD-L1 on cancer cells, has an immune
suppression mechanism where cancer cells escape lysis by activated CD8+ T cells. PD-L1 is commonly
overexpressed on tumor cells and aids in their invasiveness [41]. Confocal microscopy was used to
assess the effect of B vitamins on PD-L1 expression. U937 cells cultured with vitamin B2, B6 or B9
showed reduced expression of PD-L1 compared to control (p < 0.05) and to NaOH vehicle control
(p < 0.0001) (Figure 4). The number of tumor cells expressing PD-L1 were counted and fluorescence in
arbitrary units was measured. Excel and Prism excel (Graph Pad Software, La Jolla, CA, USA) were
used to aid in the statistical analysis and p < 0.05 was considered significant.
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vitamin B2 at 0.125 µg/mL and vitamin B2 vehicle control (NaOH) and untreated control. (B) Vitamin B6
at 125 µg/mL and untreated control, and, (C) vitamin B9 at 125 µg/mL and untreated control. (* p < 0.05,
*** p < 0.001, **** p < 0.0001

2.5. Vitamin B2, B6 and B9 Induce an Anti-Tumorigenic Cytokine Profile

A magnetic bead bioplex assay was used to evaluate the effect of vitamin B (B2, B6 and B9) on
cytokine secretion of promonocytic lymphoma U937 cells. Results are shown for vitamin B2, B6 and B9
as they showed significant anti-proliferative and migratory effects. Vitamin B2 significantly increased
the secretion of IL-10, IL-6 and granulocyte colony stimulating factor (GM-CSF) (p < 0.05) (Table 1,
Figure 5). Vitamin B6 also induced high levels of IL-10 (p < 0.001) and IL-8 (p < 0.001), and significant
lower levels of IL-1β (p < 0.001) (Table 1, Figure 5). Vitamin B9 (folic acid) showed higher levels of
IL-10 compared to control (p < 0.05) and significantly increased IL-8 secretion (p < 0.01). No other
cytokines measured significance. It is clear that B2, B6 and B9 significantly increase IL-10 and IL-8
cytokine secretion by U937 cells. B6 also decreases IL-1β and B2 increases GM-CSF levels (Table 1,
Figure 5).
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Table 1. Summary of cytokine secretion by promonocytic U937 cell line.

Vitamin Cytokine
IL-1β IL-2 IL4 IL-6 IL-8 IL-10 IFNγ TNFα GM-CSF

B2 - - - - increase increase - - increase
B6 decrease - - - increase increase - - -
B9 - - - - increase increase - - -Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 18 
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were collected and cytokines secretion analyzed by bioplex. Significance in relation to untreated 
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conditions. In fact, in apoptosis assays using annexin-V/PI staining, none of the B vitamins (B2, B6 
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Figure 5. U937 cells were treated with (A) 0.125 µg/mL of vitamin B2 and NaOH vehicle control, (B)
125 µg/mL and 250 µg/mL of vitamin B6 and (C) 125 µg/mL of vitamin B9 and NaOH vehicle control
for 3 days. Media and fresh vitamin B were replaced and cultured for a further 3 days. Supernatants
were collected and cytokines secretion analyzed by bioplex. Significance in relation to untreated control
is indicated by Asterisks (* p < 0.05, ** p < 0.01, **** p < 0.0001). Bioplex data for IL-1β, IL-2, Il-4, IL-6,
Il-8, Il-10, IFNγ, TNFα, and GM-CSF are shown.

3. Discussion

Vitamin B2 (riboflavin), B6 (pyridoxine), and B9 (folic acid) exert anti-proliferative and
anti-migratory properties to U937 cells in a dose-dependent manner. The cells grown in the presence
of either vitamin B2, B6 and B9 are healthy and viable, and only fewer cells grow under normal culture
conditions. In fact, in apoptosis assays using annexin-V/PI staining, none of the B vitamins (B2, B6 and
B9) induced apoptosis or cell death, suggesting that these B vitamins exert anti-proliferative/migratory
properties. Further research is required to understand the mechanism behind these properties. Vitamin
B2, is associated with energy production, anti-oxidant protection and homocysteine metabolism.
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Vitamin B2 deficiency is associated with growth retardation, anaemia, neurodegeneration and even
certain cancers [43]. In fact, riboflavin deficiency in HepG2 cells was recently shown to promote
cell proliferation and reduce cell viability [44]. In addition, vitamin B2 deficiency exacerbates iron
deficiency and increases gastrointestinal cell crypt proliferation [45]. Conversely, the addition of
riboflavin to lung cancer cell lines, leads to increased cell proliferation suggesting that riboflavin may
promote the progression of lung cancer [46]. A vitamin B6 analogue, B6PR, at low doses cultured with
the HUT78 cancer cell line has been shown to suppress cell proliferation and at high doses induces
selective cell death [47]. Likewise, pyridoxal phosphate (a bioactive form of pyridoxine) inhibits rat
pituitary adenoma cell lines even though the anti-proliferative effects were due to the apoptosis of
cells [48]. In mice bearing colorectal cancer, supplementation of vitamin B6 reduces the number of
tumors, cell proliferation and induces the expression of c-myc and c-fos proteins [49]. Similar to our
findings, pyridoxine did not induce apoptosis of colon cancer cells, thus pyridoxine suppresses colon
tumorigenesis by reducing cell proliferation [49]. Conversely, vitamin B6 supplementation into mice
did not inhibit cell proliferation of glial cells, but rather promoted cell proliferation [50]. Furthermore,
culture of colon cancer cell line, COLO-205, with folic acid (vitamin B9) inhibited cell proliferation
via G0/G1 cell cycle arrest and through activation of c-SRC mediated pathway and increased levels
of cyclin-dependent kinase inhibitor 1A, 1B and tumor protein p53 [51]. In addition, vitamin B9
supplementation to HCT116 and Caco-2 colon cancer cell lines reduced TGFβ secretion, induced
cancer cell proliferation, and reduced tyrosine kinase activity and epidermal growth factor receptor
expression [52]. The anti-proliferative and anti-migratory properties noted herein with vitamin B2, B6
and B9 are in accordance with previous published studies.

The potential mechanisms underlying the anti-proliferative and anti-migratory effects of vitamin
B2, B6 and B9 may include, angiogenesis, altered cytokine secretion, altered PD-L1 expression, oxidative
stress and nitric oxide synthesis. In fact, vitamin B2, B6 and B9 all increased the secretion of IL-8 and
IL-10 by U937 cells compared to controls, with B2 additionally increasing GM-CSF and B6 additionally
decreasing IL-1β. IL-8 an immune chemotaxis cytokine/chemokine correlates with angiogenesis,
tumorigenicity, cell proliferation, invasiveness, metastasis and its expression on cancer cells is linked
to poor prognosis [53,54]. Indeed, it has been shown that IL-8 increases proliferation of pancreatic and
breast cancer cell lines [55,56]. Based on this information, it is not clear why IL-8 is upregulated by
U937 cells in the presence of vitamin B2, B6, and B9 and the role of IL-8 expression by U937 cells is
warranted. However, given that IL-8 is highly secreted by activated macrophages, it may be likely that
the undifferentiated U937 cells are behaving more like macrophage cells rather than pro-monocytic
blast cell lymphoma and hence indicating an activation state of macrophages. Furthermore, IL-10
was also upregulated in the presence of vitamin B2, B6 and B9. IL-10 is a potent anti-inflammatory
(deactivates macrophages and monocytes) and immunosuppressive (inhibits antigen presenting cells
and T cells) cytokine. On the other hand, IL-10 also exerts immuno-stimulatory effects, in particular
to B cells, NK cells and CD8+ T cells [57]. Administration of recombinant (r), rIL-10 into cancer cells
in vivo results in tumor rejection [57], mainly due to its ability to stimulate CD8+ T cells. Indeed,
PEGylated rIL-10 (PEG-rIL-10; AM0010) increases tumor infiltrating CD8+ T cells four-fold in vivo,
and results in tumor rejection and long-term protection [42]. As such, rIL-10 has recently surfaced
as a treatment for intra-tumoral injection in cancer patients. In a dose escalation phase 1/1b trial
of AM0010 in 14 different cancer types rIL-10 activated immune cells (CD8+ T cells), increased
pro-inflammatory cytokines, decreased TGFβ, and induced partial and complete clinical responses [58].
At the 12th European International Kidney Cancer Symposium in Germany (21–22 April 2017) and
ARMO BioSciences’ press release, it was announced that AM0010 in combination with checkpoint
inhibitors induces better objective response rates and disease control of renal cell carcinoma patients in
a phase 2 trial [59]. A phase III clinical trial (ClinicalTrials.gov identifier: NCT02923921) in combination
with FOLFOX (folinic acid, 5-fluorouracil, oxaliplatin) chemotherapy is being conducted in patients
with metastatic pancreatic carcinoma. Given the anti-tumor properties of rIL-10, the increased secretion
of IL-10 by U937 cells in the presence of vitamin B2, B6 and B9 is likely to be one of the contributing
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factors to the anti-proliferative/anti-migratory effects noted herein. Moreover, vitamin B2 in addition
increased the secretion of GM-CSF. GM-CSF is involved in proliferation, differentiation and function
of myeloid-derived cells. Although GM-CSF has growth-promoting properties, it was noted over
30 years ago that GM-CSF inhibited the proliferation of U937 cells due to the activation of TNFα [60].
Consequently, rGM-CSF has been shown to increase the number of type-1 dendritic cells and is used
in patients with cancer either on its own as an immune stimulant or as a vaccine adjuvant leading
to anti-tumor responses [61,62]. Hence, the activation of GM-CSF by U937 cells in the presence of
vitamin B2, is likely to contribute to the anti-proliferative effects noted. Finally, vitamin B6 reduced
expression levels of IL-1β by U937 cells. IL-1β is known to promote tumor proliferation, angiogenesis,
metastasis, in a number of cancers [63]. In fact, in IL-1 knockout mice, the growth of murine melanoma
cell line was significantly reduced with no lung metastasis compared to wild-type mice [64]. As such,
anti-IL-1β monoclonal antibodies (i.e., canakinumab) and IL-1β blockers (i.e., rilonacept) have been
developed and show reduced cell proliferation, angiogenesis and metastasis of cancer cells in mice and
in humans [65,66]. Given the tumor-promoting properties of IL-1β, the consequent reduced expression
levels IL-1β by U937 cells in the presence of vitamin B6, is suggestive that this decrease may be a
contributing factor to the anti-proliferative effects noted by vitamin B6.

To further gain insights into the mechanisms involved in anti-proliferative and anti-migratory
effects of vitamin B2, B6 and B9, the expression levels of vascular endothelial growth factor-A (VEGF-A)
and PD-L1 were determined. VEGF-A is a signal protein produced by cells to promote the formation
of new blood vessels. Cancer cells express VEGF in order to grow (proliferate) and metastasize [67].
However, there was no significant alteration in intracellular expression levels of VEGF-A by U937
cells in the presence of vitamin B2, B6 and B9 (data not shown). As no major changes were noted to
VEGF-A, the expression levels of VEGF isoforms (i.e., VEGF121, VEGF145, VEGF165, VEGF189, VEGF206)
would give a more comprehensive analysis of the data; in addition to determining the levels of
hypoxia-inducible factor (HIF) as this stimulates the release of VEGF. In addition, the expression of
matrix-metalloporteinases-2, -9, involved in angiogenesis, cell proliferation and metastasis would
build upon the mechanisms of action of vitamin B2, B6 and B9 on U937 cells.

PD-L1 was significantly downregulated in the presence of vitamin B2, B6 and B9. PD-L1 is
a protein expressed on the surface of immune and non-immune cells. It serves as an immune
checkpoint marker where it binds to its receptor PD-1 expressed on activated T cells leading to
immune suppression [40,68–71]. Its increased expression on tumor cells leads to tumor progression
(proliferation) and metastasis, and its expression is dependent on TNFα, IL-1β, IFNγ via toll-like
receptors (TLRs) [72]. In fact, ovarian (ID8) and melanoma (B16) cell lines were transformed to express
high levels of PD-L1 or PD-L1 was silenced; PD-L1 promoted cell proliferation in vitro and in vivo,
whereas the silenced PD-L1 tumor cells resulted in slower proliferation rates in vitro and tumor load
in mice [73]. Thus, the decreased expression levels of PD-L1 in the presence of vitamin B2, B6 and B9
corresponds to the reduced proliferation of U937 cells that was noted.

There are a few limitations in this study that could be addressed with further research. The first of
these is that only one cell line was used. Other monocyte/macrophage cell lines should be used in
repeat experiments to confirm the findings, for instance cell lines such as, THP-1, ML-2, HL-60, Mono
mac6, RAW264.7, as well as dendritic cell lines T0525, JAWS II, KG-1 or MUTZ-3. A second limitation
is that only a 9-plex bioplex assay kit was used. More information may be gathered by using, in repeat
experiments, a 33-plex bioplex assay kit which would measure a wider array of cytokines as well as
chemokines. Furthermore, in relation to length of cellular incubation, only one time point was used
from the collection of supernatants for cytokine analysis. Other time points that were significant from
the proliferation assays could also be used to present a more in depth analysis.
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4. Materials and Methods

4.1. Cell Culture

The U937 cell line was isolated from a 37-year-old male patient with histiocytic lymphoma. U937
cells are commonly used to study the behavior and differentiation of monocytes. They are able to
be differentiated into monocyte/macrophages following stimulation with certain stimulants such as,
vitamin D3 [42]. U937 cells were obtained from Monash University Department of Immunology. U937
cells are immortal and allow for multiple passages without transformation; however, we ensured
to keep the number of passages to a minimum. U937 cells were cultured in RPMI 1640 media
supplemented with 2 nm. L-glutamine (Sigma-Aldrich, St Louis, MO, USA), 100 U/mL penicillin,
100 µg/mL streptomycin (Sigma-Aldrich, St Louis, MO, USA) and 10% heat-inactivated foetal bovine
serum (FBS; Sigma-Aldrich, St Louis, MO, USA) at 37 ◦C and 5% CO2. Culture media was changed
every 3–4 days and cells were passaged accordingly. Once 80%–90% confluent, cells were used
in experiments.

4.2. Preparation of Vitamin B Stocks

A stock solution of each Vitamin B was freshly prepared according to the manufacturer’s
instructions (Sigma, VIC, Australia) in either phosphate buffered saline (PBS) (Vitamin B6) or sodium
hydroxide (NaOH—Vitamin B2, B9). The corresponding concentration of vehicle control NaOH was
included. Each vitamin stock was filtered using 0.2-micron filters and further dilutions were made to
2 mg/mL in RPMI-1640 media, to allow for serial dilution of the working concentrations.

4.3. Proliferation of Pro-Monocytic Cells Using MTT

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) forms purple
formazan in the mitochondria of living cells in the reduction reaction, which takes place only when
mitochondrial enzymes are active and, therefore, conversion can be directly related to the number of
viable cells [74]. The absorbance of the purple solution can be quantified by measuring a wavelength
by a spectrophotometer. The amount of purple formazan produced by cells treated with vitamin B,
(vitamin B2, B6, B9) with the amount of formazan produced by untreated cells or control solvent,
determines the amount of cell death. Higher number of viable cells results in a greater amount of MTT
formazan formation which triggers an increase in absorbance. U bottom 96-well plates (1 plate for
each day of incubation) were seeded with 100 µL of titrated concentrations of vitamin B (1000 µg/mL,
500 µg/mL, 250 µg/mL, 125 µg/mL, 62.5 µg/mL, 31.25 µg/mL, 15.6 µg/mL and untreated control 0 µg/mL)
and 100 µL of cell suspension (at density of 1 × 104 cells/well) in triplicate for vitamins B6 and B9
and 1 µg/mL, 0.5 µg/mL, 0.25 µg/mL, 0.125 µg/mL, 0.62 µg/mL, 0.31 µg/mL, 0.15 µg/mL and untreated
control 0 µg/mL for vitamin B2). Untreated cells and vehicle control wells corresponding to each dose
of NaOH in the vitamin B2 and B9 wells were also used. The plates were incubated at 37 ◦C and
5% CO2 for three days. On day three of incubation, half the well volume was removed and replaced
with fresh media/Vitamin B. MTT assay was performed on days 3, 4, 5 and 6 of incubation to assess
cellular proliferation.

Cellular proliferation was assessed using a spectrophotometer (Bio-Rad microplate reader,
6.0) using wavelength 570 nm. Three-five independent experiments were conducted in triplicates.
Supernatants from each day were transferred to cryovials and stored at −80 ◦C for later use of cytokine
analysis using the Bioplex system.

4.4. Visual Assessment of Cell Proliferation

On incubation days, 3, 4, 5 and 6 plates were viewed under an IX81 Olympus microscope and
photos were taken of one triplicate of each concentration at 4×magnification. Photos and figures were
then collated for each vitamin, day and concentration.
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4.5. Cell Migration Assays

Cells were treated with vitamin B2 0.125 µg/mL, B6 125 µg/mL and 250 µg/mL or B9 125 µg/mL,
(corresponding with IC-50 amounts for 3 days after which fresh media and vitamin B added and
allowed to incubate a further 3 days. Controls included untreated and NaOH at corresponding doses
to the B vitamins dissolved in NaOH. Cell migration was performed using the Boyden chamber assay
8-µm pore size membrane filter inserts in 24-well tissue culture plates. The cells were trypsinized and
re-suspended in serum-free RPMI-1640 media at the density of 2 × 105 cells/mL. A total of 200 µL
of cells suspension was seeded in the upper chamber of the trans wells, and 600 µL of media into
the lower chamber. The chambers were incubated at 37 ◦C in a humid atmosphere with 5% CO2.
After 20–22 h, the non-migrating cells on the upper surface of the insert were removed and the cells
that migrated to the underside of the membrane were counted using a light microscope. Excel and
Prism excel (Graph Pad Software, La Jolla, CA, USA) were used to aid in the statistical analysis using
Student’s t-test and p < 0.05 was considered significant.

4.6. Apoptosis Assay

4.6.1. Annexin V FITC/Propridium Iodide (PI)

Changes in the plasma membrane and loss of membrane asymmetry are the amongst the earliest
indications of apoptosis. The translocation of the membrane phospholipid phosphatidylserine (PS)
from the inner to the outer membrane exposes PS to the external cellular environment. Annexin
V, having high affinity for PS binds to PS presenting cells and signals the beginning of membrane
degradation seen in the last stages of cell death caused by apoptosis or necrosis [75]. Using an
accompanying dye such as FITC helps to signal cells which are in the early stages of apoptosis. Viable
non-apoptotic cells are Annexin V negative and PI negative. Cell dead by apoptosis are Annexin
V positive and PI positive. Cells in early apoptosis are Annexin V positive and propidium iodide
negative while cells dead by either apoptosis or necrosis are Annexin V negative and PI positive.

4.6.2. Sample Preparation and Flow Cytometry

U937 cells (100 µL) at 1 × 106 cells/mL were co-cultured with 100 µL of vitamin B/RPMI media in
96 well plates for 3 days and 1 mL of U937 cells in 9 mL of vitamin B/RPMI media for 6 days at the
following concentrations. Vitamin B2-0.250 µg/mL and * 0.95 µg/mL, B6-250 µg/mL and * 190 µg/mL,
B9-250 µg/mL and * 120 µg/mL, NaOH-6.2 mM and 250 µM vehicle controls corresponding to the
amount of NaOH within the vitamin B well) or culture media alone. * Amounts with asterisk coincided
with IC-50 amounts calculated from previous MTT assay.

U937 cells, were harvested by centrifugation at 1200 rpm for 5 min at room temperature. The
supernatant was discarded, and the cells were washed twice in 200 µL of FACS buffer (PBS, 1 mM
EDTA, 2% foetal calf serum and 0.1% sodium azide) by pipetting. Cells were then re-suspended in
100 µL per well of Annexin V binding buffer with FITC Annexin V (BioLegend, San Diego, CA, USA)
at 1:1000 and 0.5 µg/mL of PI. Wells containing untreated, FITC and PI, PI alone, FITC alone were
set up as controls. Samples were transferred to FACS tubes and data were collected using BD FACS
cantoTM II cell analyser at medium setting; 30,000 events were collected. Cells were analysed using BD
FACS diva software. Results were displayed as percentages in quadrant boxes corresponding to the
data in Figure 2A.

4.7. Bioplex Cytokine Assay

The Bioplex human cytokine immunoassay is a highly sensitive and reproducible magnetic
bead-based assay which allows accurate measurement of low levels of human cytokines. The Bioplex
cytokine assay uses 8 µm magnetic beads coated with antibodies against an array of cytokines.
Cytokine assays were performed using a bead-based multiplex immunoassay (MIA, 9 Bio-Plex Panel
B, BioRad Laboratories Inc., Melbourne, VIC, Australia) that included the cytokines IL-1β, IL-2, IL-4,
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IL-6, IL-8, IL-10, IFNγ, TNFα, GM-CSF. Supernatant samples from day 6 of vitamin B culture were
run neat (day 6 was chosen as this is the day that showed the most effect of anti-proliferation). In
addition, 24 h-time point was used to collect supernatants for differentiated U937 cells stimulated with
vitamin B and cytokines assessed. Standard low photomultiplier tube settings were prepared with
“blank” negative controls in duplicate. Ninety-six-well plates were coated with beads, followed by the
addition of samples and standards and detection antibodies, then streptavidin-phytoerythrin as per
the manufacturer’s instructions. The beads were re-suspended and the fluorescence output read and
calculated on the Bio-Plex array reader (Bio-rad, Melbourne, VIC, Australia). Statistical analysis of data
included the mean and standard deviation (SD), as well as a two-way analysis of variance (ANOVA)
followed by a Sidaks multiple comparison test using GraphPad PrismTM (Graphpad Software, San
Diego, CA, USA). Significance was defined as p < 0.05.

4.8. PD-L1 Expression and Confocal Microscopy

Programmed death ligand 1 (PD-L1) is expressed by cancer cells as a way to escape T cell immune
responses. Recently, it was shown that there is a relationship between the expression of PD-L1
with proliferation and invasion of cells [41], hence, the expression of PD-L1 on U937 cells with or
without vitamin B treatment was determined. Confocal microscopy was used in order to visually
determine its expression on U937 cells. U937 cells were treated with vitamin B2 (0.125 µg/mL), B6
(125 µg/mL and 250 µg/mL), B9 (125 µg/mL) for 6 days. Controls included untreated cells and NaOH
at corresponding doses to the B vitamins dissolved in NaOH. U937 treated cells (100 µL) at 5 × 105

cells/mL were added to 96 well round bottom plates and washed 2 × 5 min with PBS. Cells were fixed
with 4% paraformaldehyde for 10 min. Cells were permeabilized for 15 min in 0.1% Triton X-100/PBS.
Non-specific binding was blocked using 10% donkey serum for 1 h at room temperature. Plates were
then washed twice for 4 min with 0.1% Triton/PBS. Cells were labelled with primary monoclonal
antibody PD-L1 (Abcam, Melbourne, Australia, ab210931) at 1:500 and incubated for 2 h at room
temperature. Cells were washed twice in 0.1% Triton X-100/PBS and incubated at room temperature in
the dark for 2 h. Secondary antibody Alexa Fluor 647-conjugated donkey anti-mouse at 1:250 dilution
(Abacus, JI715605150). After two washes with 0.1% Triton X-100/PBS, cells were incubated for 2 min
with DAPI washed and 2 small drops of cells were placed onto slides and left to dry. Slides were
mounted with fluorescence mounting media, cover slip applied, over the cells and clear nail polish
applied around the perimeter of the coverslip. Slides were labelled and left to dry wrapped in tin foil
in the dark overnight.

Images were captured on a Nikon Eclipse Ti multichannel confocal laser scanning system (Nikon,
Tokyo, Japan). Z-series images were acquired at a nominal thickness of 0.5 µm (512 × 512 pixels). The
numbers of U937 cells expressing PD-L1 markers were counted within eight randomly captured images
(total area size 2 mm2) per preparation at ×20 magnification. Image J software (National Institute of
Health, Bethesda, MD, USA) was employed to convert images from RGB to greyscale 8 bit then to
binary; particles were then analyzed to obtain the percentage area of immunoreactivity. Excel and
Prism excel (Graph Pad Software, La Jolla, CA, USA) were used to aid in the statistical analysis and
p < 0.05 was considered significant.

4.9. Data Analysis Using Excel and Prism Programs

Statistical analysis of MTT proliferation assays was performed using 2way ANOVA and Tukeys
multiple comparisons test. The mean of triplicate wells was considered significantly different when
compared to vehicle control groups if p < 0.05 in proliferation assays.
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5. Conclusions

In conclusion, it is clear that vitamin B2, B6 and B9 inhibits pro-monocytic cell proliferation
and migration which is not due to apoptosis or cell death. It is not clear what role IL-8 plays in the
anti-proliferative and anti-migratory effects, as it is generally believed that IL-8 is associated with
increased proliferation, migration and angiogenesis of cancer cells; the mechanism associated with
increased levels of IL-8 needs to be further elucidated. However, collectively, vitamin B2, B6 and B9
increased IL-10, GM-CSF and decreased IL-1β cytokine levels which are in accordance with reduced
cell proliferation and anti-tumorigenic properties based on other studies in the literature. In addition,
the decreased expression levels of PD-L1 supports the reduced proliferation and migration of U937
cells. The data give insights into the anti-tumorigenic properties of vitamin B2, B6 and B9 and could
form the basis for future studies in using vitamin B supplementation to reduce cancer cell growth
in vivo in animal models and in humans. Results of this study suggest that B2 B6 and B9 could be
recognized as potential anti-tumorigenic nutrients, although subsequent studies would need to be
completed to gain more insight into the mechanisms behind these anti-tumor effects. Future studies
may further illuminate some of these mechanisms by observing changes in gene expression of key
immune cells.
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