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ABSTRACT 

The focus of this thesis is developing optical fibre Bragg grating (FBG) pressure 

sensors with enhanced sensitivity for use in a low (gauge) pressure range (0 - 50 

kPa) together with understanding observed non-linear behaviour. To appreciate 

the behaviour of FBG sensor spectra, it is necessary to understand geometrical 

and material properties of FBGs. The thesis is an in-depth investigation of the 

behaviour of FBGs including their manufacturing and fabrication process details. 

A new computational approach has been introduced to simulate FBG structures 

based on how the FBG fabrication process produces changes in refractive index. 

There are various numerical analysis methods existing for analysing fibre Bragg 

grating structures and their spectral properties. Although computation design and 

simulations are used extensively in engineering problems, current computational 

approaches do not combine FBGs formation and their resultant spectra. In this 

study, this has been addressed by developing a simple Finite Element Analysis 

(2-D) model using the Wave Optics module in COMSOL Multiphysics simulation 

software. The 2-D model was developed considering the phase mask method 

commonly used to fabricate FBGs. It simulates a complex grating structure which 

is useful for manufacturers and researchers. The 2-D model then creates a unit 

cell of a grating structure which is able to be implemented within an optical fibre. 

The model allows users to decide the length of the grating by selecting the 

number of unit cells required. By changing the geometrical parameter of a unit 

cell of the 2-D phase mask structure, it was possible to demonstrate formation of 

complex grating structures. There have been many studies reported for ideal 

gratings; however, much less attention and research has been given to the 

spectra produced by these complex FBG structures. Therefore, this study 

specially focuses on complex grating structures and their spectral behaviour. The 

developed 2-D model successfully reproduced observed complex grating 

structures arising with the use of multiple phase masks orders, with theoretically 

acceptable results for the spectrum produced. Furthermore, the 2-D model of the 

phase-mask method was also able to produce tilted gratings by changing the 

incident angle of light on the phase mask. Therefore, this FEA approach provides 

insight into not only complex FBG structures but also tilted FBGs using a simple 
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computational tool which will be useful in further research to understand the 

behaviour of a variety of FBG structures. For this study, material properties of 

standard single mode fibre (SMF-28) was considered. However, the model is able 

to simulate any optical fibre used in FBG fabrication by changing the material 

properties.  

The thesis also considers the understanding of FBG pressure sensors and 

observed non-linear behaviour. Therefore, a thorough literature review was 

carried out to find the influence of structural and material properties of optical 

fibres and FBGs which is believed to be the cause of non-linear behaviour. It 

investigates in depth the birefringence effect on fibres due to point load and 

distributed load on FBGs using the Structural Mechanics and Wave Optics 

module in COMSOL software. Many research studies have employed a plane 

strain assumption for structural mechanics problems; however, they do not clearly 

explain the true nature of FBGs under stress generalized strain. This study 

overcomes that problem by introducing proper mathematical equations to 

develop 3-D behaviour in a 2-D computational model. The behaviour of a 

distributed load on FBGs was discussed in detail with the help of the 

computational model. It provides new information about an asymmetric peak 

produced as a result of birefringence effects.  

The research proposes a new FBG uniform pressure sensor using a 2-D 

computational model. It was designed in simulation by adding a polymer material 

to the cladding of an SMF-28 by reducing the cladding diameter. In this study, 

polymers of PDMS and PTFE were chosen to further investigate the pressure 

enhancement in the suggested pressure range. The results show similar 

pressure sensitivity for both materials. Both materials are highly capable of 

enhancing pressure sensitivity in the range of 0 – 50 kPa. The suggested 

pressure range is most suitable for biomedical application. The positive results of 

the current study lend credibility for using the envisaged sensor for commercial 

use.  
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CHAPTER 1:  Introduction 

1.1 OVERVIEW 

The invention of fibre optic wire or “Optical Waveguide Fibres” by Corning Glass 

researchers in 1960 has had a tremendous impact on global communication as 

it revolutionized the telecommunications industry. Fibre optics is a major industry 

and today it plays a key role in modern day life such as long-distance telephone 

service, internet and use in health care services. The invention of the fibre-optic 

gyroscope in 1976 led fibre optic sensor explorations for the next ten years 

(McLandrich & Rast, 1978). Commercialization of optical fibres provides more 

components for other uses which have led to the opportunity for their use as 

sensors in many field applications. Since then various ideas have been 

suggested and techniques have been developed for many measurands and 

applications. According to statistics presented at OFS-15 (Optical Fibre Sensors 

Conference held in Portland, Oregon, USA 2002), strain and temperature are the 

most highly studied measurands, with fibre Bragg grating (FBG) sensors 

becoming increasingly popular. According to statistics of OFS-22, FBG sensors 

had the highest number of patent issued among optical fibre sensors (Kersey, 

2012). Figure 1.1 illustrates FBG sensor popularity, as derived from an industry 

survey (Patent Insight Pro, 2011).  

 

Figure 1.1:  Patent data accepted in (Patent Insight Pro, 2011) shows the differentiation 
in terms of number of patent issued of distributed sensing approaches, Bragg grating 
and interferometric sensors (Kersey, 2012) 
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FBG sensors have attracted a considerable amount of interest in a vast range of 

applications due to their wavelength-encoded character and linear response to 

changes in various measurands (Hill & Meltz, 1997; Othonos & Kyriacos, 1999). 

Figure 1.2  shows the annual investment in fibre optics sensors including FBG 

sensors from 2011 - 2016. It shows 20.5% (from $1.34 to $3.39 billion) of 

estimated annual growth rate of fibre optics sensors, which further signifies their 

importance (Electronicast, 2012; Méndez, 2007). 

 

Figure 1.2: Fibre Optic Sensor Global Consumption Market Forecast (Values in $ 
Billions) (Electronicast, 2012) 

1.2 WHY OPTICAL FIBRE TECHNOLOGY? (OPTICAL BASED METHOD 

AND ADVANTAGES) 

The major concern of any sensor device is their production, performance and 

addressing of issues which are relevant for their intended applications. Their 

capacity depends on sensor characteristics, the external environment, and 

physical characteristics of the instrument, safety, performance, installation and 

maintenance, type of use, signal conditioning and price. In this context, optical 

fibre has become a potential candidature for sensing applications largely due to 

its high sensitivity, small size, light weight, price, material properties and sensing 

capabilities. Other main advantages of fibre optics sensors are chemical 

passivity, high temperature tolerance, immunity to electromagnetic interference 

(EMI) and long life with possibility of use in a harsh environment. Many 

researchers have undertaken studies to identify the advantages of optical fibres 

and their possible applications in many different fields over conventional 

electronic and electric sensors. Today optical fibre sensors are largely applied in 
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chemical, biological, aviation, healthcare, automation industries, illustrating how 

it has been valuable and a promising technology for industrial applications 

(Annamdas, 2012). 

Fibre optic sensors can be categorized into extrinsic and intrinsic sensors 

(Othonos & Kyriacos, 1999). Extrinsic sensors are mostly used in harsh condition 

where most of the other sensors are unable to operate. In these sensors, fibre is 

used as an information carrier but the interaction between the light and the 

quantity of the measurement takes place outside of the fibre itself.  This means 

the transducer is external to the fibre; hence, these sensors are called extrinsic 

sensors. They are mostly used in industry to measure rotation, vibration velocity, 

displacement, twisting, torque and acceleration. In contrast, intrinsic sensors 

behave differently where the optical fibre becomes the sensing element itself by 

keeping the propagating light inside and which experiences modulation when the 

fibre is subjected to pressure, strain or temperature variation. These sensors are 

used to measure intensity, phase, polarization, wavelength or transit time of light. 

The simplicity of intrinsic sensors has attracted many industries like, aviation, civil 

engineering for physical measurements.  

Currently available fibre optic sensors can be mainly classified into four major 

categories based on the operating principle:  

1. Intensity  

2. Phase (interferometric) 

3. Polarization  

4. Wavelength  

Their advantages and disadvantages for pressure sensing are discussed below. 

Major disadvantages of intensity-based sensors are fibre loss, power fluctuation 

of the power source and large hysteresis. In the current market, there are three 

types of interferometric pressure sensors utilised for pressure measurement; they 

are:  Mach-Zehnder, Michelson and Fabry-Perot. Among them, the first two 

sensors are mostly considered for acoustic pressure sensing. However, all of 

them are limited in their application in commercial use due to the small 

photoeleastic effect, thermal instability or polarization fading (effects for fringe 
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visibility). The next sensor type are polarization-modulated fibre optics sensors, 

which were not successful in pressure sensing in hazardous conditions due to its 

bulk size. Hence, all three sensor types have been limited in commercial use due 

to the issues above. However, the fourth sensor type, namely FBG sensors which 

are based on wavelength/spectrum modulation have been attractive to many 

industries due to their ability to overcome the aforementioned issues and offer 

specific advantages. FBG sensors and their advantages will be discussed below. 

1.3 WHY FIBRE BRAGG GRATING (FBG) PRESSURE SENSORS? 

Pressure measurement is vital in many industrial applications: aviation, bio-

medical, oil and gas are some of them. Many sensors have been commercialized 

for pressure measurements from extreme vacuum (10-12 Pa) to explosion (10+12 

Pa), the latter implying a flammable or harsh environment in some fields of 

application. In this range, optical fibre sensors have been identified as a potential 

solution for use as pressure sensors (Pinet, 2011) due to properties which are 

outlined in section 1.2. 

Optical fibre photosensitivity was first discovered in germanium-doped silica 

optical fibres when an optical fibre core was exposed to a periodic pattern of 

ultraviolet (UV) light by Hill and co-workers (Hill, 2000; Hill et al., 1993). During 

the exposure to UV light, there was some intensity of light back-reflected which 

increased with time. Spectral responses confirmed the reflectivity was a result of 

a periodic modulation of the photo-induced refractive index change created along 

the core of the optical fibre. This triggered a new class of in-fibre component, now 

known as a Fibre Bragg Grating (FBG). The resultant central wavelength of back 

reflected light of a FBG depends on the effective index of refraction of the core 

and the grating periodicity. When a FBG experiences strain or a temperature 

change the effective index of refraction and grating periodicity are also affected. 

As a result, the changes of these two physical parameters have provided a means 

to measure temperature and strain variations. FBGs have hence emerged as a 

favourable sensing element owing to their potential use in measuring strain, 

temperature and pressure. 

The main advantage of FBG sensors is their unique wavelength-encoded nature, 

as noted in Section 1.1 When an FBG experiences temperature, tension, bending 
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compression and impact, its material and physical properties change such as 

refractive index and grating length, with the Bragg condition providing the 

reflection wavelength of light launched into the fibre. Therefore, FBGs have 

become more popular in pressure, strain and temperature measurement. Their 

versatility, reliability and ease of embedding in a variety of structures make their 

use possible in smart structure applications. Moreover, the size of these sensors 

has been carefully considered and developed for biomedical application. FBGs 

are also popular in applications like robotics due to resolution, sensitivity and 

dielectric properties and multiplexing capability. 

FBG sensors are popular not only for one parameter sensing but also multi- 

parameter sensing such as strain and temperature. Many sensors have been 

reported for multi-parameter sensing such as strain and temperature 

measurement simultaneously using pairs of FBGs operating at two different 

wavelengths (Brady et al., 1997; Echevarria et al., 2001) or using two different 

types of FBGs (Shu et al., 2002). A multi-axis strain sensor has been reported for 

multidimensional strain measurement such as transverse and longitudinal strain 

sensing using FBGs inscribed in birefringent optical fibre (Udd et al., 2002; Udd 

et al., 2000)   

Although FBG sensors are more popular among optical fibre sensors a few 

drawbacks can be identified (Mihailov, 2012). First, the lifetime of these sensors 

which has been questioned when exposed to harsh environments. It has also 

been reported that degeneration of material and physical properties has 

occurred, especially in high temperature and pressure environments. Two more 

disadvantages are the possible need for compensation due to cross sensitivity 

between temperature and strain and inability to replace them if they are damaged 

especially for embedded sensors. However, the most critical issue of these 

sensors in pressure measurement is low sensitivity over a wide pressure 

measurement range and thus a difficulty in applying them in a very low (gauge) 

pressure range as elaborated on below. This has limited their application in low 

pressure measurement which is characteristic of important fields such as the 

environment, sport and biomedicine.   
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Although FBGs are potential candidates for pressure sensors, some drawbacks 

have been identified. FBGs inscribed in bare silica fibre exhibit a linear response 

over a large pressure range (0-70 MPa) but their sensitivity is low due to their 

material properties (Othonos & Kyriacos, 1999). Fibre is made of glass, which is 

less stiff than metal but stiffer than plastics, having a high Young’s modulus and 

low Poisson’s ratio. Although the pressure response is linear at high pressures, 

at moderate pressure (< 0.2 MPa) it is difficult to measure due to the very low 

sensitivity (Hill & Meltz, 1997). Furthermore, the response has been observed to 

become non-linear (Bal et al., 2011; Lawrence et al., 1999). Modification of the 

physical properties of optical fibre by application of a suitable coating has been 

pursued by many authors, including for improving their response to external 

pressure, as noted by Giallorenzi et al. (1982). Thus, having considered the 

above issues, the main objective in this research is to investigate the behaviour 

of FBGs at moderate (gauge) pressures (0 – 0.5 atm, i.e. 0 - 50 kPa) when an 

optical fibre is coated with a polymer material, since this should improve their 

pressure response, by lowering the Young’s modulus and increasing their 

Poisson’s ratio. This will include studies of various polymer materials as fibre 

coatings and noting how this affects the sensitivity of FBG pressure sensitivity in 

each case. 

1.4 MOTIVATION AND SIGNIFICANCE 

A variety of pressure sensors have been developed investigating various ranges 

of pressures from very low to extremely high. But the cost of pressure sensors 

and their failure in some field applications have questioned their reliability and 

extended operation. Therefore, developing new methodologies and techniques 

to produce optimum devices is a necessity for current and future industrial 

requirement. Investigation of optical FBGs for sensing applications significantly 

contributes to producing more low cost, highly sensitive, durable and reliable 

devices. However, some material properties of optical fibres limit their application 

in pressure sensing. Due to this reason, the proposed research focuses on 

gaining a greater understanding of and thereby improving the performance of 

FBG sensors with different coatings in pressure sensing applications, at 

moderate gauge pressures. To achieve this, it is necessary to understand FBGs 
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spectra, their behavior under pressure and the effect of coating materials. 

Therefore, the main objectives of the study can be stated as follows: 

• Model FBGs structures and their spectra using Finite Element Analysis (FEA) 

methods  

⎯ Analyze their spectra for better understanding of their relationship with the 

underlying FBG complex refractive index variation; 

• Model FBGs with different polymer coatings using a FEA method to identify 

suitable materials for enhancing the pressure sensitivity at moderate pressures 

⎯ Compare the results with existing literature to confirm efficacy of the findings 

in simulations. 

As an example, Table 1.1, shows that for the medical fields of urology, neurology, 

gastroenterology and ophthalmology, the pressure range of interest is between 0 

– 30 kPa. Therefore, the pressure range under consideration (0 - 50 kPa) is highly 

applicable in these fields. 

Table 1.1:  Collection of exemplary standards for medical pressure analysis  
(Poeggel et al., 2015) 

 

Table 1.2 lists the research already reported for fibre optic sensors in biomedical 

applications and highlight the possible area for further developed FBG-based 

sensors. In the field of neurology, a Fabry Perot interferometer (FPI) has been 

reported but there has not reported any application of a FBG sensor yet, and the 
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pressure range of 0 – 50 kPa is of interest. There are a limited number of 

publications that have been published in the areas listed in Table 1.2, showing 

the potential for the sensor investigated in this study using computational design. 

Consequently, there is significant motivation to explore the feasibility of 

developing a FBG pressure sensor for the 0 – 50 kPa range. This thesis achieves 

that objective by developing a COMSOL model to test the effectiveness of using 

a polymer coating on a standard glass fibre with an embedded FBG. 

Table 1.2: Medical areas and the research impact on FBG based sensors 
 (Poeggel et al., 2015) 
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CHAPTER 2:  Optical Fibres, FBGs and FBG fabrication 

2.1 OVERVIEW 

This chapter focuses on optical fibres, their operational characteristics including 

waveguide modes related to different wavelengths. It also provides a detailed 

insight into light propagation through optical fibres and the resultant number of 

waveguide modes. It deeply discusses fibre Bragg gratings (FBGs), their 

classification, fabrication methods and the theory of their operation including their 

spectra.  

2.2 OPTICAL FIBRE AND ITS PROPERTIES  

An optical fibre is a light guiding structure which enables light to propagate from 

one end to the other end of the structure. The phenomenon of light propagation 

occurs due to its material and geometrical properties. An optical fibre’s 

geometrical representation with cylindrical shape of layers is shown in Figure 2.1. 

These cylindrical layers are made of either glass or plastic material which has 

different dielectric properties that allow light propagation. 

 

(a)                                                      (b) 

Figure 2.1:   Schematic diagram of (a) end view and (b) side view of an optical fibre - x, 
y and z show the direction of axis of the fibre which is used throughout the study                        

The centre of an optical fibre is called the core and has higher refractive 

index ( 𝑛1)  than the cladding layer ( 𝑛2). As a result, light is confined in the core 

area of the structure.  When a light beam is incident on the fibre–air interface with 

x 
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an angle θ, as shown in Figure 2.2, it propagates through the structure as it 

experiences total internal reflection at the core-cladding interface. 

 

Figure 2.2: Schematic diagram of transmission of a light ray in an optical fibre 

At the core-cladding interface the critical angle (𝜑𝑐) is given by Equation 2.1.  

sin φ
c
=

n2

n1

 
Equation 2.1 

The amount of light propagating through the structure depends on the light beam 

characteristics at the air-fibre interface, as not all rays will be coupled into a 

guided mode of the optical fibre. Therefore, it is necessary to determine the 

Numerical Aperture (NA), which measures the light gathering capacity.  

At an air-fibre interface, if there is no surface irregularity and surface roughness, 

the NA is determined by the refractive indices difference between core and 

cladding areas, where the maximum value of sinθ for a ray to be guided, 

corresponding to φ
c
,  is given by the following equation:  

sin 𝜃𝑚𝑎𝑥 = NA =√n1
2-n2

2 
Equation 2.2 

The coupling efficiency of launching light into propagating modes in the fibre 

depends on the NA; the smaller the NA the smaller the acceptance angle. Hence, 

coupling with a small NA requires careful consideration of optical components 

and precise mechanical positioning and alignment of the optical fibre. In contrast, 

a larger NA has a larger acceptance angle which can be easily aligned with the 

fibre and it is more effective in light gathering. However, in situations where the 

incident angle is larger than arsin (NA), the light is not guided through the core 

n1 

n2 
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properly and the loss of light will be high. This can be reduced by using lenses to 

ensure the light beam is directed into the acceptance cone of the fibre. 

The transmission of light along the optical fibre can be explained by a set of 

Maxwell’s equations in electromagnetic theory. These describe the behaviour of 

optical fibre including its properties such as absorption, attenuation and 

dispersion. The behaviour of a transmitted wave is described by modes which 

represent the distinct waveform transmitted through the fibre according to its 

geometrical structure, material properties and existing boundary conditions. Fibre 

modes can be categorized into two types: radiation modes and guided modes. 

Radiation modes carry energy out of the core and disappear while the guided 

modes carry energy and information along the fibre. The guided modes have 

particular mode profiles due to their electric (E) and magnetic (H) field 

configuration during the light propagation. Generally, there are two types of 

modes existing in planar and cylindrical waveguides. They are TE and TM modes, 

where E and H are zero along the propagation direction. In addition to those 

modes in cylindrical waveguides, hybrid modes (where E and H are non-zero in 

the direction of propagation) occur as a result of skew ray propagation. In 

telecommunication-grade optical fibres, the relative refractive index difference 

𝛥 ~ 0.003, with 

𝛥 =
𝑛1 − 𝑛2

𝑛1
 

Equation 2.3 

Therefore, it satisfies the weak guidance approximation where the relative 

refractive index difference 𝛥 ≪ 1 (Gloge, 1971). Under the weak guidance 

condition, longitudinal fields are very small compared to transverse components. 

Therefore, it is assumed that the fibre modes are transverse and linearly polarized 

in one direction, which is called a linearly polarized (𝐿𝑃𝑙𝑚) mode. The optical 

properties of 𝐿𝑃𝑙𝑚 modes (Gloge, 1971) and its propagation constant can be 

obtained by solving eigenvalue equations (Snyder & Love, 2012). Figure 2.3 

shows the electric field intensity profile with their electric field profile of the lowest 

four 𝐿𝑃𝑙𝑚 modes (Ma, 2009; Poole et al., 1994). 
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Figure 2.3: Electric field of lowest 12 modes of corresponding LP modes in step index 
fibre (Ma, 2009). 

Depending on the number of modes guided through a particular fibre, it can be 

categorized into single mode or multimode. Single mode fibre supports one 

guided mode (𝐻𝐸11) whilst multimode has more than one mode. The number of 

modes guided through the structure depends on the operating wavelength (𝜆), 

radius of the core (𝑎) and numerical aperture (𝑁𝐴). If these parameters are 

known, the number of modes through the structure can be determined 

considering the normalized frequency V, which is defined by  

𝑉 =
2𝜋𝑎

𝜆
𝑁𝐴 

Equation 2.4 

Figure 2.4 depicts the allowed guided modes by showing the normalized 

propagation constant (𝑏) which can be calculated by Equation 2.5 and Equation 

2.6, as a function of V in each case; 

   𝑏 =
𝑛̅ − 𝑛2 

𝑛1 − 𝑛2
 

Equation 2.5 

𝑛̅ = 𝛽 𝑘0 ⁄  Equation 2.6 

where 𝑛̅, 𝛽 and 𝑘0 are the mode index, the propagation constant and the free 

space wave number, respectively. 

According to Figure 2.4, only the HE11 mode exists for 𝑉 < 2.4 which is known as 

the fundamental mode of the fibre. In contrast, there are more modes for 𝑉 > 2.4 

and those fibres are called multimode fibres. 
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Figure 2.4: Normalized frequency (V) Vs normalized propagation constant (b) (Keck, 
1981). The vertical line applies to (⅔)λB for SMF-28 fibre (assuming λB =1550 nm). 

Many types of fibres have been produced in various core and cladding diameters, 

from the range of nm to mm. Among them Corning SMF-28 is widely used around 

the world and all work in this thesis employs SMF-28. The properties of SMF-28 

are listed in Table 2.1 and Table 2.2. Its behaviour is related to its V number as 

discussed using Figure 2.4. 

Table 2.1: Properties of SMF-28 fibre 

Single Mode Fibre, Corning SMF-28 

Coating diameter 245 ± 5 µm Numerical aperture 0.14 

Cladding diameter 125 ± 1 µm Effective group index of refraction 1.4677 @ 1310 nm 

Core diameter 8.2 µm Effective group index of refraction 1.4682 @ 1550 nm 

Core-clad concentricity ≤ 0.5 µm Refractive index difference 0.36 % 

Cladding non-circularity ≤ 1 % Mode field diameter @ 1310 nm 9.2 ± 0.4 µm 

Zero dispersion wavelength 1312 nm Mode field diameter @ 1550 nm 10.4 ± 0.5 µm 

Source: www.corning.com/opticalfiber 

 

 

 

 

http://www.corning.com/opticalfiber
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Table 2.2: Physical and material properties of SMF-28 (FEA simulation) 

2.3 FIBRE BRAGG GRATINGS  

2.3.1 PHOTOSENSITIVITY 

A Bragg grating is a result of a permanent periodic index of refraction modulation 

in the core area of an optical fibre due to UV exposure. This modulated index of 

refraction of the core depends on the wavelength and intensity of the light source 

and the properties of the optical fibre. The phenomenon of a permanent refractive 

index change is called photosensitivity. As noted in Section 1.3, it was first 

observed when 488 nm laser light was launched to an optical fibre core (Hill et 

al., 1993).  Initially, it was believed photosensitivity occurred only for UV exposure 

on a fibre with high concentration of germanium dopants in the fibre core. Later 

photosensitivity was observed in fibres with different core dopants showing that 

this phenomenon is not solely dependent on germanium. Europium (Hill et al., 

1991), cerium (Broer, Cone & Simpson, 1991) and erbium-germanium (Bilodeau 

et al., 1990) are also used as dopants instead of germanium. Although it is not 

the only material for photosensitivity, germanium-doped fibre is the most common 

material for fabricating devices utilizing photosensitivity. However, the 

mechanism of photosensitivity is not fully understood.   

There are some theoretical explanations proposed, based on experimental and 

material arrangements that address the mechanism of photosensitivity. As  

photosensitivity depends on the wavelength and the intensity, it was suggested 

that the phenomenon is associated with a two photon mechanism which showed 

a strong periodic structure with square of light intensity (Lam & Garside, 1981). 

Later, Meltz, Morey & Glenn (1989) introduced a transverse writing technique 

which uses direct excitation at a wavelength of 240 nm and it was more 

Parameter Symbol Value 

First strain-optic coefficient 𝑝11 0.121 

Second strain-optic coefficient 𝑝12 0.270 

Young’s modulus E 73.1GPa 

Poisson’s ratio ν 0.17 

First stress-optic coefficient B1 -0.65×10-12 m2/N 

Second stress-optic coefficient B2 -4.2×10-12 m2/N 

Reference temperature TRef 1000 0C 

Room temperature TR 20 0C 



  

15 
 

successful in FBG fabrication. The defect centres in germanosilicate glass are 

the cause of the absorption band occurring at  the excitation wavelength of 240 

nm (Hosono et al., 1992; Hosono, Kawazoe & Nishii, 1996; Nishii et al., 1995), 

which was explained by using the  Kramers-Kronig relations (Russell et al., 1991). 

The concept of the photo-induced index changes due to a germanium oxygen 

vacancy defect in germanium doped fibre was changed after realizing that 

dopants other than germanium could exhibit photosensitivity. It appears that the 

mechanism of photosensitivity is a function of photochemical, photomechanical 

or thermochemical processes and depends on fibre type, wavelength and 

intensity  (Othonos & Kyriacos, 1999).  

Discovery and understanding of the photosensitivity mechanism was further 

established by improving the photosensitivity by up to two orders of magnitude 

by hydrogenation of fibre core prior to UV illumination (Atkins et al., 1993; Lemaire 

et al., 1993). Since then various methods have been reported to enhance the 

photosensitivity such as flame brushing, co-doping and staining. Among them, 

hydrogen loading has become a more common and popular method to enhance 

photosensitivity. 

In hydrogen loading, hydrogen molecules diffuse into the fibre core when the fibre 

is soaked in hydrogen gas at 20 – 75 0C under pressure from ~ 20 to more than 

750 atm (typically 150 atm). This treatment can increase the index of refraction 

by up to 0.01 permanently. In addition to fabricating FBGs in germanium silicate 

fibres, this method allows FBG inscription in germanium free fibres. Also, it helps 

to diffuse hydrogen out of unexposed fibre sections by minimizing (leaving 

negligible) absorption losses at the optical communication windows. FBGs 

treated with and without hydrogen confirm the mechanism of index change 

depends on the interaction between dopant and hydrogen molecules and UV 

exposure conditions (Lemaire et al., 1993). In hydrogen loaded fibres, 

temperature has significant impact on the growth of refractive index (Atkins et al., 

1993). 

Another method of enhancing photosensitivity is the flame brush technique which 

offers advantages compared to hydrogen loading, as the increase of 

photosensitivity is permanent. It can achieve this in 20 minutes through 
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repeatedly brushing a flame fuelled with hydrogen and a small amount of oxygen 

while reaching a temperature up to 1700 0C. However, the high temperature 

makes the fibre weaker and affects the long-term stability of the fibre.  This 

method makes the core highly photosensitive by diffusing the hydrogen into the 

core very quickly and reacting with germanosilicate glass. In hydrogen loading, 

the hydrogen diffuses out and the fibre loses its photosensitivity. Compared to 

hydrogen loading, flame brushing can increase the photosensitivity of optical fibre 

by a factor greater than 10. However, both hydrogen loading, and flame brushing 

use the same techniques to enhance the photosensitivity. For this, they produce 

germanium oxygen deficient centres (GDOCs) as a result of a chemical reaction 

with hydrogen which is responsible for the photosensitivity. 

As mentioned in the beginning of this Section, not only germanium but also 

europium (Hill et al., 1991), cerium (Broer, Cone & Simpson, 1991) and erbium-

germanium (Bilodeau et al., 1990) exhibit photosensitivity; however, none of them 

shows photosensitivity strongly like germanium. Germanosilicate fibre has shown 

that it can have enhanced photosensitivity via additional various co-dopants. In 

particular, co-doping with boron has shown an increase of index change 

approximately 4 times larger compared to pure germanosilicate fibres (Williams 

et al., 1993). According to the experimental results, it was suggested that adding 

boron to the fibre doesn’t enhance the photosensitivity by forming GDOCs as was 

the case for flame brushing and hydrogen loading. It is more likely due to the 

breaking of wrong bonds by UV light through photo-induced stress relaxation 

(Williams et al., 1993). Dianov et al. (1997) reported photosensitivity from 

germanosilicate fibre co-doped with nitrogen using a surface-plasma chemical-

vapour deposition technique. They observed a larger photo induced refractive 

index change for nitrogen co-doped fibre treated with hydrogen loading compared 

to nitrogen free fibre. The resultant high photosensitivity in nitrogen doping is as 

a result of GODCs formed in the glass. 

2.3.2 CLASSIFICATION OF FIBRE BRAGG GRATINGS 

There are many types of fibres and distinguishing them after FBG writing is a 

complex issue. Therefore, FBGs are categorized based on the photosensitivity 

and writing conditions such as continuous (CW) wave or pulsed wave, laser 
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power and wavelength. The following table shows the latest categorization of 

FBGs and their properties.  
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Table 2.3: Types of FBGs, their characteristics and properties ((Canning, 2008)) 
Grating 

type 
Previous label 

(s) 
Characteristics Thermal resistance Applications 

Type I 

Type I Type I 

Simple grating writing in photosensitive doped fibres, mainly 
germanosilicate, including doped photonic crystal fibres [20]. Red shift in 

Bragg. Contributions from defect polarizability changes and structural 

change or densification. Latent sensitisation behaviour, crucial for grating 
growth, observed [21]. Stresses usually increase with irradiation – 
depends on fibre history   

Stable to ~320 ℃ Telecomm, sensing,  
bio-diagnostics, 
lasers 

Type In 
Type IIa, 

negative index 
gratings 

Characteristic curve usually onsets after type I grating growth rolls over. 
Onset determined by fibre drawing history, composition, presence of  H2, 
optical intensity, applied stresses and hypersensitisation of stresses [22]. 
Density change taken over by dilation. Blue shift in Bragg, or no shift, 

usually observed. Under continued exposure at high intensities, increased 
strains despite equilibration, can lead to eventual fracturing and type IH-
like damage 

In GeO2 doped fibres, 
stable between 500- 
800 °C, depending on 
preparation and length 
required duration 

High temperature, 
sensing, lasers 

Type IH Type I (𝐻2) 

Superficially similar to type I gratings but significantly enhanced index 
change in the presence of H2, large red shift in Bragg, Formed defect and 

hydrogen species give rise to polarizability changes which accounts for 
bulk of index change. Formation of OH at high temperatures enhances 
photosensitivity [23]. Stress increase of type I gratings is mitigated by OH 
dilation and through hydrogen bonding within the network.  

< 320 ℃ for GeO2 doped 
optical fibres, improved in 
non-germanosilicate fibres 
and when using shorter 
writing wavelength (e.g. 
193 nm). 

Telecomm, sensing,  
bio-diagnostics, 
lasers (most 
commonly used 
gratings) 

Type 
IHp 

Type Ia 

With continued exposure bulk index change keeps rising although index 
modulation is overall small. Very large red shift in Bragg (> 10 nm, > 

10
-2

 index change is possible). Similar properties to type In gratings 
suggests anisotropic stress equilibration through anisotropic OH formation 
occurs [25]. 

Up to 500 ℃ in GeO2 
doped fibre 

Sensing, lasers 
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Type 
IHs 

Hypersensitised 

When initial seed exposure (either laser, thermal, or solar) is used to lock 
in the initial sensitisation phase of H2 loaded fibres superior grating 
performances and more linear characteristic curves can be obtained [26-
32]. Type In gratings possible in H2 hypersensitised fibre [24].  

No post-annealing 
required. Up to 500 ℃ 
stability, possibly more 
depending on host and 
preparation. In P2O3 
doped fibres useful 
operation up to 600℃ 
obtained. 

Telecomm, complex 
devices, long term 
temperature 
sensing, lasers 
(especially 
optimising gain), 
industrial fabrication 
based on linearised 
grating growth 

Type Id 
Densification 

gratings 

Usually written just below the damage threshold of the glass. Enabled 
grating writing in single-material structured optical fibres [17], as well as 
the first DBR and DFB photonic crystal fibre lasers with no GeO2 but 

instead Al2O3 in the core [33-35] 

Varies depending on the 
host composition and host 
thermal history. Can 
exceed 300-400 ℃. 

Sensing, lasers, 
structured fibre 
devices 

Type II 

Type II 
Type II, 
damage 
gratings 

Gratings produced with intensity exceeding damage threshold of the glass 
leading to fracturing, void formation and/or filamentation. Using ultra short 
pulses with high peak intensity cascade ionisation and plasma generation 
and expand the events involved with change. Femtosecond gratings 
recently shown to fall into this category [36].  

> 1000 ℃ [37] 
independent of host. 

Moderate to high 
power fibre laser 
operation depending 
on dopant, ultra-
high temperature 
sensing 

Regenerated gratings 

Type R 
Regenerated 

gratings 

Gratings produced after annealing out type I gratings, usually regenerated 
at temperatures > 500 ℃. Very new configuration with significant potential 
for optimisation. Similarities with type II gratings although reflectivities are 
weak and therefore comparable losses and scattering not observed. Can 
be repeatedly cycled to very high temperatures with no degradation.   

> 1000 ℃ stability is 
related to softening point 
of core glass [47]. 

Ultra-stable grating 
operation, sensing 
or lasers 



  

20 
 

2.4 THEORY OF FIBRE BRAGG GRATINGS 

As shown in Figure 2.5, the simplest Bragg grating is a periodic modulation of the 

refractive index along the core in a single mode fibre. These gratings are called 

uniform gratings due to their constant periodic planes which are perpendicular to 

the direction of light propagation. At each grating plane a fraction of propagating 

light scatters and as a result, the scattered light could transmit or reflect at grating 

planes. If the reflected rays are out of phase, they cancel each other due to 

destructive interference. When the reflected light rays from each grating plane 

are in phase, the reflected wave constructively interferes and back-reflects 

satisfying the Bragg condition. To satisfy the Bragg condition, requires both 

energy and momentum conservation. Energy conservation is given by the same 

amount of incident and reflected radiation as follows: 

ℏ𝜔𝑓 = ℏ𝜔𝑖 Equation 2.7 

where h is Planck’s constant (ℏ = ℎ/2𝜋) and 𝜔 is angular frequency (= 2𝜋𝑓) 

 

Figure 2.5:  Transmission and reflection spectra due to FBG                      

Momentum conservation is given by the combination of incident (𝒌𝒊 ) and grating 

wave vector (𝑲) which is equal to that of the scattered radiation (𝒌𝒇), as follows: 

𝒌𝑖 + 𝑲 = 𝒌𝑓 Equation 2.8 

The diffracted wave vector has an equal and opposite sign to the magnitude of 

the incident wave vector, and the direction of the wave vector K is normal to the 

grating planes with a magnitude of 2𝜋 𝜆⁄ ; hence, Equation 2.8 changes to 

Equation 2.9  

2 (
2𝜋𝑛𝑒𝑓𝑓 

𝜆𝑚
) =

2𝜋

𝛬
 

Equation 2.9 

 

Rearranging of Equation 2.9 is given by Equation 2.10:  
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𝜆𝑚 =
2𝑛𝑒𝑓𝑓 𝛬

𝑚
 

Equation 2.10 

where 𝜆𝑚is the reflected wavelength of order m = 1,2,3…, 𝜦 is the grating period 

(𝛬𝑝𝑚 2)⁄  and 𝑛𝑒𝑓𝑓 is the effective mode index of the fibre. For a single mode fibre, 

the only mode propagating is LP01. When m = 1, therefore, the equation above 

(Equation 2.10) becomes Equation 2.11. 

𝜆𝐵 = 2𝑛𝑒𝑓𝑓𝛬 Equation 2.11 

𝜆𝐵 is well known as the Bragg wavelength which relies on the main reflection of 

the gratings and the resulting condition is called the first order Bragg condition. 

2.4.1  FBG FABRICATION METHODS 

There are number of FBG fabrication methods that have been reported for 

standard and complex gratings in optical fibres since 1978 (Hill, 2000): Bulk 

interferometer (Meltz, Morey & Glenn, 1989), the phase mask method (Hill et al., 

1993), point by point writing (Malo et al., 1993), the Lloyd mirror interferometer 

(Limberger et al., 1993) and prism interferometer (Kashyap et al., 1990) are the 

best known. Among them, interferometric methods and phase mask methods 

have become more popular than others. The interferometric method uses a beam 

splitter to split the single UV beam and allow these beams to interfere at the fibre 

as shown in Figure 2.6 (a), while the phase mask method uses a continuous or 

pulsed source on a periodic phase mask (diffraction grating) to expose UV light 

as a periodic pattern on the optical fibre to fabricate FBG, as shown in Figure 2.6 

(b). 
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Figure 2.6:  Optical system for interferometric inscription of FBGs (a) transverse 
holographic method and (b) phase mask method 

In this thesis, the focus is FBG writing using a periodic phase mask in accordance 

with manufacturing details, as it is the most common method of FBG fabrication 

(and the assumed fabrication method for FBGs considered in this work). As 

shown in Figure 2.6 (b), the phase mask consists of lines and spaces, which are 

called diffractive gratings, arranged in a periodic manner. The periodic line and 

space (grating) is defined based on the FBG pattern which will be created in the 

silica fibre. When the UV light is incident on the phase mask, at each slit, the light 

is diffracted and forms an interference pattern as it is composed of an infinite 

number of gratings. As a result, it induces a periodic modulation of refractive 

index in the core area of photosensitive fibres, which is called a Bragg grating.  

The history of diffraction gratings expands long back to 1785 when American 

astronomer David Rittenhouse explained diffraction of light using a simple grating 

having strung hairs between very fine screws of brass (Loewen & Popov, 1997). 

In the early years, gratings were produced manually by scratching a blank 

substrate using a ruler. However that method was not popular as it was very 

expensive, time consuming and also had poor resolution of a power spectrum of 

low intensity (Harrison, 1949). However, it only became practical from the early 

stage of 1800’s with the reinvention of diffraction grating using grating ruling 

engine by Joseph von Fraunhofer. He later discovered the absorption lines in the 

solar spectrum using fine gratings which are now known as Fraunhofer lines. 

Demand for the gratings so produced was increased due to the use of 

spectroscopy. Some of those problems were mentioned, addressed by the 

grating ruled engine designed by incorporating temperature control and kinematic 
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isolation by Henry A. Rowland (1848-1901), who is known as the “father of 

modern diffraction grating”, and his successor at Johns Hopkins University. Their 

ruling engines produced most of the gratings (up to 7.5 inches (19.05 cm) in 

length) needed for the scientific community for nearly 50 years (Harrison, 1949). 

Then Michelson (1852-1930), was successful in producing larger gratings (10 

inches) and improved resolution than Rowland’s. Most of the grating ruling 

engines’ problems such as error in the ruling motion and resolution were solved 

by Harrison and his team as their engine was equipped with interferometric 

position feedback control. It has become the standard practice in modern ruling 

engines since 1955 (Harrison & Loewen, 1976) . 

Although precise gratings were produced successfully there were number of 

obstacles of using grating ruling process. It was very time consuming due to its 

slow process (i.e. takes months to complete the gratings) and consequently it 

became more expensive. The lifetime of the tools of ruling engine left some 

doubts about the possibility of using them for lengthy writing procedures. The 

mechanical engine ruling process was also required environmental and vibration 

isolation (Loewen & Popov, 1997). Production of reflection gratings by the use of 

ruling engines was not successful due to the failure to produce high efficiency 

transmission gratings.  

The concept of lithographic methods for gratings fabrications by Michelson has 

opened a new era for the fabrication industry. Today his Interference Lithography 

(IL) method is a widespread tool for grating fabrication. In the IL method, two 

coherent beams of light interfere in photoresist and produce fringe patterns 

consisting of high and low intensities of light, as shown in Figure 2.7. 

 

Figure 2.7: Optical system for Interference Lithographic method 

These fringes turn into grating lines after wet development. Then this grating line 

structure is transferred into a substrate permanently by a chemical process called 
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chemical etching. The process of IL was later improved with the development of 

lasers and high-quality resist. There are number of advantages of using this new 

technique. The fabrication process is very fast compared to the ruling method 

and produces all the grooves simultaneously in a single exposure. It improves the 

quality of the groove profile; hence, it increases the performance with high 

diffraction efficiency. As it uses light for fabrication, the system becomes static. 

Therefore, there are no spectral defects and environmental issues as reported in 

the ruling method. It has become a more powerful tool for fabrication as well as 

more economical as it has been used in conjunction with semiconductor 

technology over the past decades. Today, the combination of semiconductor 

technology, etching technology and holographic technology are capable of 

producing high quality and high efficiency transmission gratings. 

This study has used the fabrication of FBG pattern using fused silica transmission 

gratings. Two methods are used to fabricate the fused silica in the manufacturing 

process: 

1. Grating patterning in photoresist: Two methods can be used to patterning 

gratings in photoresist: conventional holographic method and holographic 

stepper method. The conventional holographic method uses two coherent 

collimated light beams that interfere at the photoresist area which is on a 

fused silica substrate. With the light exposure, the grating profile is 

developed in a photoresist (polymer), as shown in Figure 2.8. The other 

method is a combination of holographic method with semiconductor 

technology which is capable of producing high quality gratings with low 

production cost. The advantage of this method is the use of a semi-

conductor material instead of polymer materials, which are more stable.  
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Figure 2.8:  Image of 400 nm grating in photoresist Transfer the photoresist grating 
pattern into substrate (fused silica) - (Chen & Schattenburg, 2004)  

2. Transfer the photoresist grating pattern into substrate (fused silica) - In this 

method, the grating pattern is produced by means of available methods to 

produce a grating pattern as described above. The produced grating 

pattern is then transferred into bulk fused silica, as shown in Figure 2.9, 

by semiconductor etching technology. The advantages of using fused 

silica as the substrate are due to its very low absorption of light, dielectric 

property and the ability to use it in harsh environmental conditions. 

  

 
 
 
 

Figure 2.9: Image of Scanning Electron Microscopy of 400 nm grating in fused silica 
(Buchwald, 2007)  

2.4.2 THEORY OF FBG FABRICATION TECHNIQUE BY A PHASE MASK 

As shown in Figure 2.9, the phase mask is a one-dimensional (1-D) array of a 

periodic-relief pattern of period ∧pm which is etched into fused silica. In the 

manufacturing process, it is designed to supressed the zeroth and higher orders, 

except ±1 orders, while maximizing these in order to produce standard FBGs with 

grating period λpm/2. Figure 2.10 shows the arrangement of a phase mask to 

produce a first order diffraction pattern and its fringe patterns on optical fibres at 

normal incidence. Figure 2.10 (a) shows a standard FBG produced by 
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interference of ±1 orders while Figure 2.10 (b) shows a FBG formed by 

interference of number of diffraction orders including ±1 orders. 

 

Figure 2.10: FBG writing method using phase mask (a) Interference of first order 
diffraction behind phase mask by forming a uniform grating structure (b) Interference of 
higher orders diffractions including zeroth order by forming a complex FBG structure 

2.4.3 INDUCED BRAGG PERIOD, INDEX OF REFRACTION CHANGE AND 

REFLECTANCE 

As this project considers only FBG fabricated using the phase mask technique, 

the essential features of the technique will be presented. A uniform or ideal 

grating as shown in Figure 2.5 is a result of the interference of ±1 order diffracted 

beams of an ideal phase mask. In uniform gratings, the grating period becomes 𝛬 

which is half of the phase mask period (𝛬𝑝𝑚). However, if FBGs were fabricated 

using multiple phase mask orders, the grating structure becomes complex, as 

further discussed in the next section. 

A Bragg grating is a periodic refractive index change in the core of the optical 

fibre. In a uniform grating (Figure 2.5), the induced index change is periodic. If 

the core index of refraction is 𝑛𝑐𝑜, the refractive index profile of FBG can be 

expressed by Equation 2.12. 

𝑛(𝑧) = 𝑛𝑐𝑜 + 𝛥𝑛 (1 + 𝑐𝑜𝑠 (
2𝜋𝑧

𝛬
)) 

Equation 2.12 

Where 𝛥𝑛 and 𝑧 is the amplitude of the average perturbation of refractive index 

and distance along the fibre longitudinal axis, respectively. The uniform periodic 

index change relates to Equation 2.12, and is illustrated in Figure 2.11. 
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Figure 2.11: The induced index changes along the longitudinal axis of fibre core to a FBG 
- the colour spectrum shows variation of index change in FBG region 

2.4.4 GRATING FORMATION WITH MULTIPLE PHASE MASK ORDERS 

The ideal phase mask is designed to produce uniform FBGs patterns suppressing 

zeroth order diffraction and maximizing first order diffraction. As already noted 

the zeroth order is not fully suppressed; a few percent (3%) transmits while each 

of the first orders has nearly 35% of total transmitted power. Therefore, the 

resultant FBG pattern is not purely uniform as it results from the superposition of 

multiple interference patterns. Various studies have been conducted 

experimentally and numerically to investigate the contribution of other orders in 

addition to the first orders. Dragomir et al. (2003) used Differential Interference 

Contrast (DIC) microscopy to obtain non-destructive images of Type I FBG 

fabricated using the phase mask method.  These images confirmed the formation 

of a complex structure that is due to the interference of various diffraction orders. 

These results are depicted in Figure 2.12 and Figure 2.13 in which Dragomir 

(2004) and Rollinson et al. (2005) reported DIC images of FBGs.   
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Figure 2.12: DIC images of the fibre core containing Bragg grating, recorded for two 
different fibre orientation (a) the images was taken from a direction parallel to the writing 
UV laser beam and (b) after rotating 90 degrees from (a) (Dragomir, 2004) 

 

Figure 2.13: DIC microscopy images of FBG in core region of Type 1 fibre at different 
orientation to the writing beam (a) Images of fibre orientation is perpendicular to the 
writing beam (b) Images of fibre orientation is parallel to the writing beam (c) schematic 
diagram of writing technique and image planes orientation to the writing beam (d) 
Schematic diagram of (b) showing the interleaving planes belongs to index modulation 
of Ʌpm and Ʌpm/2; ZT is Talbot length (Rollinson, 2012) 

Although it is said that the zeroth and higher order are suppressed to maximize 

the first orders it is impractical to eliminate them entirely in the manufacturing 

process. Generally the phase masks for FBG fabrication manufactured with 

zeroth order transmit less than 3% of the diffracted waves, while first orders 
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transmit more than 35% each and the rest of the transmission is via the other 

possible higher orders (Othonos & Kyriacos, 1999). The possibilities of fringe 

formation by other orders except ±1 orders have resulted in concern about how 

fabrication processes could impact on spectral properties. Investigation of the 

real structure of FBG patterns have been reported via various approaches such 

as: numerical analysis (Dyer, Farley & Giedl, 1995; Kouskousis et al., 2013; Mills 

et al., 2000; Tarnowski & Urbanczyk, 2013), experimental analysis (Rollinson et 

al., 2005) and microscopic analysis (Dragomir et al., 2003; Goh et al., 2014; 

Kouskousis, 2009; Yam et al., 2009). These analyses show how the existence of 

a complex FBG structure is as a result of the contribution of multiple orders and 

their interference. Figure 2.14 shows the modelled refractive index variation in 

the fibre core obtained by Kouskousis et al. (2013) considering interference of 0 

- ± 4th orders. According to these analyses, it was observed and confirmed that 

the complex structure includes multiple periodic structures at certain distances 

from the phase mask which is due to the Talbot effect (discussed in the 

subsequent paragraph). Although the existence of complex FBG structures and 

how these relate to the resultant spectrum has been considered, there is need 

for more extensive modelling to improve our understanding. 

 

Figure 2.14: Modelled intensity variation in the core area of the fibre due to contribution 
of multiple diffraction orders from phase mask fabrication (Kouskousis et al., 2013) 

As shown in Figure 2.13 (b), the complex structure contains replicates of 

structures at multiples of defined distances from the phase mask due to the Talbot 

effect, which was discovered by Talbot in 1836. This effect has also been 
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observed in atom optics. As a result of the fundamental Fresnel diffraction effect, 

it has gained a great attention over wide range of applications such as real time 

data acquisition, generation of ultra-high speed tuneable pulse source, 

determination of dispersion parameters of optical fibre links and a number of 

spectroscopic techniques (Chavel & Strand, 1984; Chen & Azana, 2005; Guigay 

et al., 2004; Liu, 1988a, 1988b; Mehta et al., 2006). As a result of near field 

diffraction and when a plane wave transmits through periodic structure, the 

resultant wave-front replicates the periodic structure at a certain distance. That 

distance is called the Talbot length  (Talbot, 1836). The phenomenon of a self-

imaging distance was first defined in theoretically by Rayleigh (1881) as given by: 

𝑍𝑇 =
𝜆

1 − √1 − 𝜆2 𝛬𝑝𝑚
2⁄

 
Equation 2.13 

Later he simplified Equation 2.13 considering the relation between 𝛬𝑝𝑚 and 𝝺 

(when wavelength is considerably small); the result was Equation 2.14 as given 

below: 

𝑍𝑇 =
2𝛬𝑝𝑚

2

𝜆
 

Equation 2.14 

Measurement of the Talbot length using the equation above became popular and 

position of Talbot planes were calculated using Fresnel-Kirchhoff diffraction and 

Fourier optics. However, the difficulty of measuring all Talbot planes became a 

disadvantage of this methodology. That was overcome by Latimer (Latimer, 

1993a, 1993b, 1993c) by introducing these patterns as a multiple-slit diffraction 

pattern produced by conventional mechanism instead of Fourier images of the 

gratings.  

Investigation of the Talbot effect has been further established with finite element 

analysis and scalar theory analysis of Fresnel-diffraction. Those analyses provide 

the information of the amplitude and phase. The experiments and simulation were 

performed to investigate the effect of exposure condition of laser confirming the 

deviation of the expected grating structure due to the contribution of other orders 

(Dyer, Farley & Giedl, 1995). Direct imaging of Talbot patterns using tapered 

optical fibre to the tip by Mills et al, who first used an imaging technique, has 
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further confirmed the theoretical models based on diffraction theory (Mills et al., 

2000). They also explained the reason to have repeated lengths is a result of the 

interaction of individual diffraction orders. Mills’ further work on scanning the 

intensity pattern along the optical fibre produced results that were compatible with 

X-ray diffraction theory, which is used to describe the electric pattern field behind 

the phase mask. According to his explanation, the Talbot length has been 

simplified, as in Equation 2.15, when the numbers of diffraction orders are small: 

𝑍𝑇 =
2𝜋

[(𝑘2 − 𝑚2𝐺2)1/2 − (𝑘2 − 𝑛2𝐺2)]
 

Equation 2.15 

where 𝑚 and 𝑛 are integers representing the diffraction orders  𝑚 < 𝑛, and G is 

the unit reciprocal lattice vector which can be calculated using  2π Λpm⁄  of the 

phase mask with periodicity Λpm. 

2.4.5 INDUCED REFLECTANCE AND SPECTRAL CHARACTERISTICS 

The reflectivity of a grating which has constant modulation amplitude and period 

was explained using coupled mode theory by Lam and Garside (1981). Using 

coupled mode theory, which is more popular for describing the behaviour of 

Bragg gratings, they obtained quantitative information about the spectral 

dependence and diffraction efficiencies of FBGs. Therefore, the reflectivity of a 

uniform Bragg grating can be expressed by  

𝑅(𝑙, 𝜆) =
𝛺2𝑠𝑖𝑛ℎ2(𝑠𝑙)

∆𝑘2𝑠𝑖𝑛ℎ2(𝑠𝑙) + 𝑠2𝑐𝑜𝑠ℎ2(𝑠𝑙)
 

Equation 2.16 

where 𝑅(𝑙, 𝜆) is the reflectivity of a Bragg grating which is a function of wavelength 

𝜆  and grating length 𝑙. ∆𝑘 and 𝑘 are the detuning wave vector and propagation 

constant, which are given by 𝑘 − 𝜋 𝜆⁄  and 2𝜋𝑛0 𝜆⁄   respectively. 𝛺 is the coupling 

coefficient and is given by Equation 2.17: 

𝛺 =
𝜋𝛥𝑛

𝜆
𝑀𝑝 

Equation 2.17 

where 𝑀𝑝 is the power confinement factor of the fibre core and it is expressed as: 

𝑀𝑝 = 1 − 𝑉−2 Equation 2.18 



  

32 
 

where V is the normalized frequency of the fibre as given by Equation 2.4. ‘s’ can 

be obtained by the following equation as 𝛺 and ∆𝑘 are already known: 

 𝑠2 = 𝛺2 − 𝛥𝑘2 Equation 2.19 

At the Bragg wavelength, ∆𝑘 becomes zero. Therefore Equation 2.16 can be 

written as   

𝑅(𝑙, 𝜆) = 𝑡𝑎𝑛ℎ2(𝛺𝑙) Equation 2.20 

where 𝑙 is the length of FBG which was inscribed in an optical fibre as previously 

shown in Figure 2.5. 

As the reflectivity is a function of grating length, an increase of the grating length 

increases the reflectivity. Reflectivity is also dependent on the coupling constant. 

Therefore, an increase of the induced index change increases the reflectivity. 

When broadband light propagates through the fibre having a uniform FBG, the 

resultant reflection peak or transmission dip is observed at the same λ, as shown 

by Figure 2.15 (a), and Figure 2.15 (b), respectively. 

 

Figure 2.15: Reflection (a) and transmission (b) of uniform Bragg grating 

At half of the maximum of reflectance or transmittance, the grating spectral width 

is defined as the Full Width at of Half Maximum (𝜆𝐹𝑊𝐻𝑀), and can be calculated 

using (Othonos & Kyriacos, 1999). 

𝜆𝐹𝑊𝐻𝑀 = 𝜆𝐵𝑠√(
𝛥𝑛

2𝑛𝑒𝑓𝑓
)

2

+ (
1

𝑁
)

2

 

Equation 2.21 
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where 𝜆𝐵, 𝛥𝑛, 𝑛𝑒𝑓𝑓 and 𝑁(= 𝐿𝐹𝐵𝐺 𝛬⁄ ) are the Bragg wavelength, amplitude of the 

induced RI of the fibre, effective mode index and number of grating planes 

respectively. 𝑠 is 1 for strong grating with reflectivity close to 100% and 0.5 for 

weaker gratings. Here 𝑠 is assumed as 1 for simulations. 

Therefore, in single mode operation where V < 2.405 there is only one reflection 

peak expected. However, the observations of more reflection peaks other than 

the expected peak have been reported. In 1993, it was first reported by Xie et al. 

(1993) and they reported the second order reflection at (1/2)𝜆𝐵 together with first 

order reflection from fibre Bragg gratings written in germanosilicate fibres doped 

with various dopants. It was suggested that the second order reflection is a result 

of a saturation effect.  In 1997, the second order Bragg reflection at (⅔)𝜆𝐵 and 

the other reflections at shorter wavelengths were reported by Hill & Meltz (1997). 

Due to saturation effects, the refractive index variation along the core flattened 

with time of pulse exposure by changing the sinusoidal variation. The sharper 

transmission dips at wavelengths of 1535, 1030, 770 and 629 nm produced using 

a phase mask of grating period 1.06 𝜇m were observed and reported by (Malo et 

al., 1993), providing compelling evidence to the existence of other harmonics. As 

the phase masks are designed to maximize the first order diffraction by inscribing 

the FBG planes with half of the phase mask period, the authors suggested that 

the extra reflections are the result of photo imprinted grating with a period of the 

phase mask. The microscopic images of Type II gratings showed that the gratings 

with period equal to the phase mask period is in good agreement with the above 

suggestion (Rollinson, 2012). Smelser, Grobnic & Mihailov (2004) analysed the 

interference pattern formed by a phase mask of grating period 3.212 𝜇m using a 

pulsed IR source. The resultant spectrum showed the spatial separation of first 

orders from the zeroth and second orders is 1.3 mm, further evidence to the 

existence of other harmonics orders. Yam et al. (2008)  also observed the growth 

of a number of peaks at  (⅔)𝜆𝐵 as a function of time using a chirped FBG. He 

also suggested that the resultant peak at  (⅔) 𝜆𝐵 is due to properties of phase 

mask. Rollinson (2012) also reported the existence of other harmonics according 

to the results obtained for an experiment conducted using Type I and II gratings 

which were written using the phase mask technique. She investigated the various 

FBGs inscribed in different fibre types under different writing condition using the 



  

34 
 

phase mask method. The results also showed how the phase mask properties 

result in more harmonics than expected.  

2.5 SUMMARY 

The main purpose of this chapter was to introduce optical fibre, FBGs and their 

characteristics. It discussed the requirements for light propagation in a single 

mode fibre and demonstrated a number of modes could arise for propagating 

light due to normalized frequency value, behaving as a multimode or single mode 

fibre. Furthermore, it discussed FBG structures, their spectral characteristics and 

the formation of FBGs in an optical fibre due to the photosensitivity effect. It then 

described the history of the formation and evolution of the concept of FBGs. The 

chapter then described newer classifications of fibre Bragg gratings due to their 

thermal resistance and characteristics compared to older classifications. This 

was followed by a discussion of the theory of fibre Bragg gratings, the Talbot 

effect and FBG spectra in detail using proper equations. Finally, an extensive 

review was given to literature findings of complex grating considering the 

experimental evidence and analytical data obtained. 

The theoretical and experimental description in this chapter inform the modelling 

of complex FBG structure using phase mask method in single mode fibre SMF-

28 in Chapter 4 and further investigate the Bragg grating periods, number of 

harmonics and their strength, saturation effect and resultant spectra at different 

wavelengths.  
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CHAPTER 3:  Pressure measurement using FBGs 

3.1 OVERVIEW 

The main focus in this chapter is the use of FBGs as pressure sensors describing 

those reported to date and their limitations. The various ways in which pressure 

may be exerted on an optical fibre such as uniform pressure and transverse 

compressive load, is discussed. It also provides a detailed literature review into 

the cause of non-linear behaviour in such sensors due to birefringence effects 

and the effect of material properties on pressure sensitivity. It explains in detail 

the sensitivity measurement techniques with the help of the appropriate 

equations which lead to FEA modelling in Chapter 5.  

3.2 FIBRE BRAGG GRATING PRESSURE SENSORS 

Pressure can be exerted on a FBG as a uniform pressure, or via transverse 

compressive load, longitudinal tensile force or longitudinal compressive force. 

Pressure sensing can be mainly categorized into direct sensing using a bare 

FBG, and indirect sensing by embedding the FBG into a suitable material (Xu et 

al., 1993; Yunqi et al., 2000). Many methods have been investigated to improve 

pressure sensitivity. Additionally, mechanical amplifiers have been introduced 

using force summing devices including a glass bubble house (Xu, Geiger & 

Dakin, 1996) and a piston-based system (Correia et al., 2010). In a piston-based 

system, the applied load transfers the load onto the fibre as an axial strain 

that changes the properties of the FBG, which is well known, as strain or load 

sensors have been investigated extensively (Hill & Meltz, 1997). In contrast, 

Zhong et al. (2015) demonstrated an inflated long period fibre grating inscribed 

in a pure-silica Photonic Crystal fibre (PCF) for high sensitivity gas pressure 

sensing applications. They identified the method used is a way to a promising 

gas pressure sensor in which the achieved pressure measurement range was up 

to 10MPa.  

Table 3.1 summarizes the pressure sensitivity of FBG-based sensors on bare or 

polymer coated fibres and mechanical or force multipliers reported by various 

authors, expressed as nm of Bragg wavelength shift per MPa, for the indicated 
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ranges. The cause of sensitivity variation in Table 3.1 is further discussed in 

upcoming sections. 

Table 3.1: Summary of FBG-based pressure sensors, in order of pressure sensitivity for 
bare/polymer coated/mechanical/force multipliers 

FBG Type/Novelty |Sensitivity| 
nm/MPa 

Range (MPa) Authors 

Bare/Polymer 
coated 

Standard/bare 0.003 0 - 70 (Xu et al., 1993) 
Polymer 
coated/temperature and 
pressure 

0.08 0 - 10 (Liu et al., 2000) 

Polymer 
coated/aluminium 
cylinder 

5.28 0 - 0.44 (Zhang et al., 
2001) 

Polymer coated/copper 
cylinder 

4.09 0 - 0.44 (Liu et al., 2007) 

Standard/polymer filled 
casing 

8.7 0 - 0.276 (Ahmad et al., 
2008) 

Long period grating 0.051 0 - 0.1 (Bock et al., 
2007) 

Photonic crystal fibre 2.65 0 - 0.6 (Yan, Ferraris & 
Reynaerts, 2011) 

Photonic crystal fibre 9.08 0 - 0.1 (Yan et al., 2010) 

Mechanical/ 
Force 

Multipliers 

Standard/bare/integrated 
diaphragm 

0.001-0.003 0 - 70 (Allwood et al., 
2015; Huang et 
al., 2014; 
Pachava et al., 
2014; Vorathin et 
al., 2018b; Zhao 
et al., 2018) 

Polymer 
coated/temperature and 
pressure 

0.08-0.75 0 - 10 (Bhowmik et al., 
2015) 

Polymer 
coated/aluminium 
cylinder 

5.28 0 - 0.44 (Vorathin et al., 
2018a) 

FBG and metal bellows 9.06 0- 40 (Pachava et al., 
2015) 

FBG and a Bourdon tube 6.69 0-100 (Srimannarayana 
et al., 2014) 

3.2.1 UNIFORM PRESSURE 

In 1993, the first in-fibre grating high pressure sensor was reported by (Xu et 

al.). They observed a 0.22 nm shift in the wavelength reflection peak at 70 MPa 

of uniform pressure on bare fibre, having a sensitivity of 3 pm/MPa. It showed a 

low sensitivity response at high pressure, and therefore the suitability of FBGs 

for lower pressure sensing applications was questioned. It was also suggested 

that temperature compensation was required to correct for temperature changes 

in the grating (Xu et al., 1993). Since an enhanced pressure sensitivity is highly 

desirable, a glass-bubble house was introduced as a mechanical amplifier. It 

enhanced the pressure sensitivity, reducing the thermal crosstalk by more than 

a factor of 4 by having similar thermal expansion coefficients for the fibre grating 
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and the glass bubble, although the pressure range was reduced. The pressure 

sensitivity became 20 times the value for bare fibre, i.e. about 0.4 nm 

wavelength shift at 14 MPa (Xu, Geiger & Dakin, 1996). In both instances they 

observed a linear behaviour of the wavelength shift against applied pressure (0 - 

14 MPa (Xu, Geiger & Dakin, 1996) and 0-70 MPa (Xu et al., 1993).  

Other methods have also been investigated. For example, Bock investigated a 

high pressure polarimetric sensor by using birefringent optical fibre which 

measured up to 200 MPa, but also identified that temperature drift was a major 

drawback of the sensor in enhancing pressure sensitivity (Bock, 1990). To 

improve sensitivity, several techniques such as dual grating techniques (James, 

Dockney & Tatam, 1996) and dual wavelength techniques (Xu et al., 1994) have 

been proposed to separate thermal effects from mechanical effects. In a dual 

grating technique, two FBGs in different diameters, which had close Bragg 

wavelengths were placed on either side of the splice and was able to measure 

temperature and strain independently. In the dual wavelength technique, two 

different wavelengths were observed by using a superimposed fibre grating. The 

ratio of those wavelengths was able to provide the strain and temperature 

successfully.   

Low gauge pressure measurement, i.e. near 2 atm (200 kPa), becomes more 

challenging according to the literature. Bal et al. (2010) conducted experiments 

below 1 atm and observed a 0.004 nm wavelength shift due to a pressure change 

from 1.9 to 3 kPa. Furthermore, they suggested that the wavelength shift can be 

enhanced by a specialised coating material even though the wavelength shift is 

small. They investigated the pressure response up to 12 kPa for different FBG 

lengths and noted that the length of the FBG and the strength of the index of 

refraction modulation did not affect the pressure sensitivity. Ultimately they 

recommended the FBG to be used for low pressure measurements even though 

the graph for wavelength shift vs. applied pressure was non-linear (Bal et al., 

2010). Additionally, Bal et al. (2011) observed non-linear responses below 2 atm. 

These non-linear responses are not understood and require further research.  

According to Bal et al. (2011) and Bock (1990) this could be a result of the way 

in which the FBG is suspended in the pressure chamber. In other work, Hsu et 

al. (2006)  used a temperature compensation strategy via biomaterial coating 
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which produced axial strained on a FBG when subjected to uniform elevated 

pressure with a linear response below 3 atm.  

3.2.2  TRANSVERSE COMPRESSIVE LOAD 

Extensive research has been conducted on the effect of transverse load on FBGs 

in which some experiments have shown induced birefringence at higher loads 

(Abe et al., 2003; Correia et al., 2007; Correia et al., 2010; Doyle et al., 2002; 

Mastro, 2005; Wagreich et al., 1996). Birefringence occurs when the light 

propagates anisotropically through the material due to the existence of two 

indices of refraction. The induced birefringence effect in FBGs inscribed in 

standard fibres was first investigated by Wagreich et al. (1996), with up to 90 N 

loads on a 2.5 cm length of low birefringence FBG. As the load was increased 

up to 40 N, broadening of the reflection spectrum was observed. Above 40 N, 

the reflection peak in the spectrum of the FBG was split into two. It was noted 

that the applied stress causes a difference in the wavelength in the x and y 

directions due to the magnitudes of the stress-optic coefficients and the 

Poisson’s ratio of the silica fibre (Wagreich et al., 1996). Mastro (2005) reported 

that the wavelength shift of FBGs can be measured with great sensitivity when 

an optical fibre is loaded in the axial direction. However, the reflection spectra 

of FBGs undergo broadening and splitting due to the induced birefringence 

when it is loaded from an off-axis direction. Thus, broadening and splitting of FBG 

signals create problems for tracking an actual spectral peak (Mastro, 2005). 

Birefringence occurs intrinsically in polarisation maintaining optical fibre, due to 

the manufacturing process. FBGs in such fibres exhibit two independent spectral 

peaks without experiencing external forces (Doyle et al., 2002; Mastro, 2005). 

(Abe et al., 2003) observed broadening and then splitting of one of the spectral 

peaks into two when the load increased but it was unclear why this did not occur 

for both peaks. Furthermore, Udd et al. (2000) reported that an undistributed load 

causes peak splitting of the reflection spectrum. They showed that the separation 

of peaks widened as the load increased, whereas Abe et al. (2003) showed the 

opposite. However, Bjerkan, Johannessen & Guo (1997) observed non-

linear responses in the region above 0.5 N/mm in the graph of wavelength 

change vs. applied force; the birefringence effect was linear up to 0.5 N/mm 
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for specific coating materials, whereas it was nonlinear with different coating 

materials at higher loading. Lawrence et al. (1999) observed the same response 

at higher load levels when the angle of the applied load was not aligned with 

the intrinsic polarization axis of the fibre. They suggested that the nonlinearity 

may have been caused by the rotation of the polarization axis due to the external 

loading although bifurcation of the reflection spectrum was not reported 

(Lawrence et al., 1999). Barlow & Payne (1983) have shown that  the  

wavelength  dispersion  of  the  stress-optic coefficient  can  affect  birefringent  

fibres  and devices significantly. Paul et al. (2005) showed that the wavelength 

responses of FBG-based strain sensors are highly dependent on the 

pressurizing media, its configuration and the contact conditions. 

3.3 REFRACTIVE INDEX VARIATION AND STRESS VARIATION WITH 

PRESSURE 

Mastro (2005) studied the stress and the changes in the index of refraction in 

the x and y directions under transverse load in ordinary fibres. The study noticed 

stress changes were dependent on the load point where the stress is higher at 

the points closer to the load and lower at the points further from the load point. 

At the same time, Mastro (2005) observed changes of refractive index along the 

same axis. More Bragg wavelengths were observed rather than a single 

wavelength, which is due to broadening and then splitting of the FBG spectra. 

This investigation was wholly based on transverse load at a single point, and 

hence further research is required to explore multiple axis loading scenarios. Abe 

et al. (2003) reported that the splitting of the spectrum was caused by the 

variation of stress and the index of refraction in the birefringent fibres. Espejo 

& Dyer (2007)  showed that the stress is higher at the edges of the FBG and 

lower in the centre due to the bending effect. Furthermore, Wade et al. (2011) 

investigated the effect of bending on FBG spectra, showing a clear shift of 

wavelength when they are bent into different diameters. They suggested that the 

structure of the refractive index may depend on bending; hence further 

investigations are required. In addition, there are some significant effects on the 

variation of refractive index and strain when FBGs experience axial and radial 

pressures (Chuang et al., 2010; Shang & Lin, 2010). These axial and radial 
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pressures affect the accuracy of measurements of axial strain and refractive 

index changes; this also warrants further investigations (Shang & Lin, 2010). 

3.4 MATERIAL PROPERTIES 

The fibre optic material plays a key role in determining pressure sensitivity; two 

ways in which this occurs have been identified. One is to use a polymer coating 

on a silica fibre, while the second uses a polymer as the core material. It has 

been reported that the low pressure sensitivity of bare glass fibre can be 

improved by a factor of 40 by coating the fibre with a polymer of low bulk 

modulus, but the observed enhancement was only 30 (Hill & Meltz, 1997). 

Bjerkan, Johannessen & Guo (1997) noted that the coating material caused a 

non-linear response at higher loads. Moreover, Gianino & Bendow (1981) 

reported that there was difficulty in applying a uniform diametral stress (load or 

force to the point where a material object is split in half) to a fibre that had a 

coating. However, it was stated that a uniform diametral stress can be applied on 

the FBG by using a thin hermetic coating. As an alternative, Prabhugoud & 

Peters (2007) proposed that the performance of FBG sensors can be improved 

by reducing the cladding diameter. 

Toroghi et al. (2006) reported that the pressure response increased while the 

temperature response decreased, when a fibre is coated with a thick layer of 

polymer. It was shown that the effect of pressure and temperature depends on 

the selection of polymer coating, polymer material and geometrical parameters 

(Toroghi et al., 2006). To enhance the pressure sensitivity, the coating material 

requires a low Young’s modulus and low Poisson’s ratio of the polymer material 

(Shang & Lin, 2010). The study of Bennett, El-Sherif & Froggatt (2001) has shown 

that a greater sensitivity to transverse load occurs when a FBG is embedded in 

a low bulk modulus epoxy. It was also stated that a repeated transverse load on 

an embedded FBG decreases the sensitivity of the signal due to the degrading 

interface between the material and the epoxy. Due to the epoxy matrix, stress 

acts on a FBG in all directions rather than a single point. Therefore, the FBG 

Bragg wavelength was shifted during transverse loading by changing the index 

of refraction and periodicity. It has also been shown that the response of the FBG 
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signal depends on the core geometries and numerical apertures of FBGs 

(Bennett, El-Sherif & Froggatt, 2001).  

Polymer optical fibre (POF) FBGs have gained interest for sensing applications, 

as its low Young’s modulus with higher strain creates a much higher sensitivity 

than for silica fibres (Peng, 2002). In addition, polymer optical fibres, exhibiting 

high fracture toughness, high deformation, large yield strain, high flexibility in 

bending and potential negative thermo-optic coefficient, have several advantages 

over silica fibre. It has been stated that the sensitivity can be improved by 22% 

compared to that for silica fibre for the same Bragg wavelength (Peng, 2002). 

However, FBGs in polymer fibre can be erased by thermal exposure, the 

reason for which is not yet understood (Liu, Liu & G.D., 2005; Peters, 2011). POF 

gratings were subjected to considerable strain which showed their potential as 

strain sensors due to their large wavelength tunability that arises from the 

properties of the polymer (Xiong et al., 1999). Yuan et al. (2011) observed a  

linear response of the wavelength shift without peak splitting at high loadings 

and higher temperatures without hysteresis. They suggested that the high 

material loss (high attenuation) could be overcome by using short lengths of POF 

or microstructured POF in future applications. 

Another issue is that some of the reported material values for Young’s modulus 

and Poisson’s ratio of silica optical fibres vary widely when comparing 

experimental values with theoretically calculated values. As already noted, the 

first in-fibre FBG high pressure sensor was reported by Xu et al. (1993). They 

measured a −1.98 × 10−6 /MPa fractional wavelength shift in the wavelength 

reflection peak for up to 70 MPa of uniform pressure. However calculated 

theoretical magnitudes of the fractional wavelength shift using accepted 

mechanical parameters of optical fibres are significantly larger  (Bertholds & 

Dandliker, 1988; Hocker, 1979); better agreement has been reported (Budiansky 

et al., 1979), but in this case the Poisson’s ratio was about 50% greater than the 

accepted value (El-Diasty, 2000). The following table lists the calculated 

fractional wavelength shift based on the material values that have been reported, 

showing the need for better understanding of material values. 
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Table 3.2: Reported material values for the silica fibre and the calculated pressure 
sensitivity 

 
Quantity 

 
Symbol 

 
(Hocker, 

1979) 

 
(Bertholds & 
Dandliker, 

1988) 

 
(Budiansky et 

al., 1979) 

 
(Leduc et al., 
2013) 

Young’s modulus E (GPa) 70 70 62 75.3 

Poisson’s ratio 
   0.17 0.16 0.24 0.19 

Effective refractive 
index 

effn
 1.465 1.465 1.460 1.447 

First strain optic 
coefficient 

11p
 0.121 0.113 0.130 0.113 

Second strain optic 
coefficient 

12p
 0.270 0.252 0.280 0.252 

Pressure sensitivity 

PB

P









(/MPa) 

−2.74
× 10−6 

 −3.28 × 10−6  −2.22 × 10−6  

−2.92 × 10−6 
 

 

3.5 BRAGG WAVELENGTH MONITORING; EXPERIMENTAL AND 

THEORETICAL 

The basic operation of FBGs is based on a wavelength shift due to a change in 

material and physical properties when subject to pressure, strain, temperature, 

etc. (Kersey et al., 1997). As FBGs are a spectrum filter when a broad band of 

light propagates through the fibre by virtue of the Bragg’s condition a narrow 

spectrum is reflected, whilst the rest is transmitted. The transmitted or reflected 

spectrum can be monitored by a wavelength monitoring system such as an 

optical spectrum analyser (OSA). Figure 3.1 illustrates the wavelength monitoring 

system of FBGs sensors. 

 

Figure 3.1:  Schematic diagram of typical FBG sensing system 

As mentioned in Section 1.3 the Bragg grating wavelength depends on the 

effective index of refraction and the periodicity of the grating. Any material and/or 



  

43 
 

physical property changes result in a wavelength shift from the initial value. 

Hence the sensitivity of the FBGs is defined via the related parameter (e.g. 

pressure, temperature). For example, the grating spacing and the index of 

refraction changes if an optical fibre undergoes thermal expansion. Strain effects 

such as longitudinal or transverse strain affect the fractional change in the grating 

pitch due to physical elongation of the sensor. It induces stress, thereby changing 

the index of refraction which could lead to birefringence in the two eigenaxes of 

the fibre core. When FBGs experience elevated pressure, the grating pitch is 

compressed and this changes the Bragg condition.  

The relationship between a change in the Bragg wavelength due to strain, stress, 

temperature and uniform pressure is discussed below. 

The strain or temperature, 𝑇𝑓  response relative  to a reference temperature, 𝑇0
𝑓
  

of the Bragg wavelength along the x- and y- eigenaxis when light propagates 

along the z direction in unbounded optical fibre  has been described by the 

following equations (Sirkis, 1993). 

  𝜆𝐵𝑥 = 𝜆𝐵𝑥
0 {1 + 𝑆𝑧

𝑓
−

1

2
𝑛0

2[𝑝11𝑆𝑧
𝑓

+ 𝑝12(𝑆𝑧
𝑓

+ 𝑆𝑦
𝑓

)] + 𝜉𝑇𝑓}  Equation 3.1 

𝜆𝐵𝑦 = 𝜆𝐵𝑦
0 {1 + 𝑆𝑧

𝑓
−

1

2
𝑛0

2[𝑝11𝑆𝑧
𝑓

+ 𝑝12(𝑆𝑧
𝑓

+ 𝑆𝑥
𝑓

)] + 𝜉𝑇𝑓}  Equation 3.2 

Where 𝑝11 and 𝑝12 are the first and second strain optic coefficients for parallel and 

perpendicular stresses respectively. 𝜆𝐵𝑥
0  and 𝜆𝐵𝑦

0  are denoted for Bragg 

wavelengths for the x and y directions without strain variation at the reference 

temperature 𝑇0
𝑓

. The superscript, f, indicates that the strain and temperature refer 

to the optical fibre. The thermo-optic coefficient is represented by 𝜉 and 𝑆𝑖
𝑓
 (i = x, 

y, z) are the strain component along the x, y and z axes. 

When stress is applied to an isotropic material, the indices of refraction in the 

plane of polarization change, and hence the material becomes anisotropic. The 

change in refractive index due to stress is derived from Equation 3.1 and Equation 

3.2 and is given by Equation 3.3 and Equation 3.4 as follows: 

(𝛥𝑛𝑒𝑓𝑓)
𝑥

= −
𝑛0

3

2𝐸
{(𝑝11 − 2𝜐𝑝12)𝜎𝑥 + [(1 − 𝜐)𝑝12 − 𝜐𝑝11](𝜎𝑦 + 𝜎𝑧)}  Equation 3.3 

 (𝛥𝑛𝑒𝑓𝑓)
𝑦

= −
𝑛0

3

2𝐸
{(𝑝11 − 2𝜐𝑝12)𝜎𝑦 + [(1 − 𝜐)𝑝12 − 𝜐𝑝11](𝜎𝑥 + 𝜎𝑧)}  Equation 3.4 
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Where 𝐸 and  𝜐 are the Young’s modulus and Poisson’s ratio of the fibre and 

𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 are the stress components in the x, y and z direction respectively 

and 𝜎𝑥 and 𝜎𝑦 are given by the following Equations: 

𝜎𝑥 =
2𝐹

𝜋ℎ𝐷
 

Equation 3.5 

𝜎𝑦 =
6𝐹

𝜋ℎ𝐷
 

Equation 3.6 

Where F is the applied force, D is the diameter of optical fibre and h is the length 

of the stress plane. 

When a load is applied such as a point load or edge load on low or non-

birefringent single mode fibre in the transverse direction, the fibre will be 

deformed by reducing the fibre diameter along the applied directions while 

increasing the length in the perpendicular direction.  Hence, stress is induced due 

to strain changes. Due to this induced stress the index of refraction is changed 

which causes a birefringent effect in the fibre. The change in wavelength along 

the 2 eigenaxes due to transverse strain is given by the following equations 

(Wagreich et al., 1996): 

𝛥𝜆𝐵𝑥 = −
1

2
𝜆𝐵𝑥𝑛0

2(𝑝11𝜀𝑥𝑥 + 𝑝12𝜀𝑦𝑦) 
Equation 3.7 

𝛥𝜆𝐵𝑦 = −
1

2
𝜆𝐵𝑦𝑛0

2(𝑝11𝜀𝑦𝑦 + 𝑝12𝜀𝑥𝑥) 
Equation 3.8 

Where 𝜀𝑥𝑥  is the strain along the x and 𝜀𝑦𝑦 is the strain along the y direction. The 

plane strains along both directions can be calculated using Hooke’s law. 

𝜀𝑥𝑥 =
1 + 𝜐

𝐸
(𝜎𝑥𝑥(1 − 𝜐) − 𝜐𝜎𝑦𝑦) 

Equation 3.9 

𝜀𝑦𝑦 =
1 + 𝜐

𝐸
(𝜎𝑦𝑦(1 − 𝜐) − 𝜐𝜎𝑥𝑥) 

Equation 3.10 

In summary, these equations can be used to calculate stress (Equation 3.5, and 

Equation 3.6) and strain (Equation 3.9 and Equation 3.10) manually. Hence 

wavelength shifts (Equation 3.7 and Equation 3.8) and refractive indices can be 

calculated. As the analysis in this thesis is carried by using FEA, the stress and 

strain values are directly imported from the simulation without manual calculation. 

Therefore the wavelength shift was calculated using Equation 5.6 and Equation 

5.7, as presented in Chapter 5.  
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When a FBG is subjected to uniform pressure, the wavelength shift can be 

calculated using Equation 3.11 (manually). 

𝛥𝜆𝑃 = 𝜆𝐵 [−
(1 − 𝜐)

𝐸
+

𝑛2

2𝐸
(1 − 2𝜐)(2𝑝12 − 𝑝11)] ∆𝑃 

Equation 3.11 

A FEA model has been developed to analyse the pressure sensitivity by using 

strain variation in the axial and radial direction. Hence the wavelength shift was 

analysed using Equation 5.10 (see Chapter 5) instead of using Equation 3.11.  

3.6 SUMMARY 

This chapter focused on an understanding of the behaviour of a FBG based strain 

sensor and considered how pressure sensitivity of uniform pressure sensors may 

be enhanced. At the beginning of the chapter, a discussion was given on the 

history of FBG based pressure sensors and different techniques applied to 

measure pressure sensitivity of FBGs. It then continued to discuss the effect of 

different ways that pressure may be exerted on fibres such as transverse load 

followed by a report of non-linear responses of certain sensors and stress and 

refractive index variation on the fibre due to applied pressure. Lastly, the material 

influence was considered for the discussion and its effect on FBG sensors was 

further explained. It further explained the calculation of Bragg wavelength 

changes due to stress, strain and refractive index changes, which underpin the 

FEA model described in Chapter 5.   
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CHAPTER 4:  Finite Element Analysis (FEA) 

4.1 OVERVIEW 

The core objective of this chapter is to provide information on Finite Element 

Analysis (FEA) modelling of optical fibres, fibre Bragg grating structures and their 

spectrum using the wave optics module in the software package COMSOL 

Multiphysics simulation software. FEA is performed to determine the occurrence 

of modes in single mode fibre (SMF-28) for comparison to establish its usefulness 

in solving optical waveguide problems. This chapter will mainly investigate the 

behaviour of complex FBG structures using spectral FEA and FFT analysis to 

compare with theoretical, simulated and previously reported experimental results. 

In supporting FEA modelling, this will discuss and provide in detail: 

• The selection of coordinate systems for 2-D and 3-D geometric modelling 

• The selection of materials and their properties 

• Physics setup 

• Mesh arrangement 

• Study setup and 

• Analysis methodologies 

4.2 WHY FINITE ELEMENT ANALYSIS (FEA)? 

Today, computer aided FEA software has become a key component in most 

engineering fields such as production markets, to design products for consumer 

demand and needs, weather forecasting in meteorology, infrastructure 

development such as building and bridge designing in civil engineering, vehicle 

and aircraft production to analysis problems such as crash investigation, heat 

transfer, fluid mechanics and material flow. The main advantage of the FEA 

method is using numerical methods to solve complex problems as most of the 

problems can’t be solved analytically using numerical equations. In production 

markets FE modelling is more popular due to cost effectiveness, time 

management, effective design capability, inexpensive in materials used, safe 

under extreme operating conditions and so an actual test might be unnecessary. 
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There are number of FEA software packages: examples include COMSOL, 

ANSYS, NASTRAN and ADINA available in the current market for different 

purpose in research and engineering fields. For this study, the analysis was 

performed using COMSOL software. 

COMSOL is designed to address real-world problems in engineering and 

scientific fields. These problems are a combination of different sciences. 

COMSOL is Multiphysics software which has different scientific modules such as 

acoustic, fluid flow, structural mechanics, chemical reaction, heat transfer, wave 

optics, mechanics, etc... Therefore, it provides more opportunities for users to 

address a problem by combining the required physics modules, making it easier 

and more creative over other available software. The user has complete control 

of their design; this is other major advantage of the software. The recent use of 

software in NASA applications has proven the advancement of the software in 

engineering applications (Kanakaraj, Lhaden & Karthic, 2015; Rivera et al., 2010; 

Starinshak, Smith & Wilson, 2008). Therefore, the advancement in the software 

lead to use FEA in this project to save effort in useless or unrewarding 

experiment, and that avoided by undertaking a laborious program of fibre coating 

exercise (Zheng, 1986). 

In this study COMSOL Multiphysics software with the structural mechanics 

module and the wave optics module was used for structural mechanics and optics 

simulations. The wave optics module was used to model normal FBG patterns to 

understand the grating formation produced by a phase mask and its reflection 

spectra. This will help to improve the quality of the phase mask in the 

manufacturing process and help researchers and engineers in employing the 

behaviour of its resultant FBG and its spectrum for sensing purposes. For 

pressure sensing, to enhance the sensitivity, different polymer coating materials 

have been analysed with the help of the structural mechanics module in 

COMSOL. Finally, the structural mechanics and wave optics modules were used 

for multiphysics simulation to study and confirm the nonlinear behaviour of strain 

and pressure sensing, which have been reported experimentally.  
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4.3 INTRODUCTION (HISTORY) OF FINITE ELEMENT ANALYSIS (FEA) 

The FEA is a numerical method of solving problems of engineering and applied 

science using partial differential equations. The era of FEA began with introducing 

the concept of spatial discretization for the solution of a torsion problem by the 

New York University mathematician, Professor R.L. Courant, in 1941 (Pelosi, 

2007). Courant introduced discretization by a set of triangles which he addressed 

as “elements”. In 1956, Ray W. Clough, Jr. who introduced the term “finite 

element”, and his colleagues from University of California, published FEA as a 

natural extension of matrix analysis (Clough, 1980). Later, they applied the FEA 

method for creating a plate structure for aircraft in the aerospace industry 

successfully. It grew from the aerospace industry to structural engineering areas 

as a useful solution for problems where analytical solutions cannot be obtained 

with such complicated geometries, dissimilar material properties and loading, etc. 

In the electrical engineering field, FEA design was first reported in the 1960s 

(Pelosi, 2007). The interest in using FEA for modelling in optical fibre technology 

was reported since 1986 (Zheng, 1986). FEA has become more popular and a 

practical and technical tool in conjunction with the development of digital 

computers since 1960. Today, FEA computational software applications can be 

found in various engineering fields such as mechanical, aerospace, civil, and 

automotive and they are finding a broader range of uses in analysing heat 

transfer, electromagnetic fields, fluid flow, acoustics, biomechanics, etc. 

4.3.1 FINITE ELEMENT ANALYSIS (FEA) 

FEA is a computational technique for performing analysis of boundary value 

problems. These boundary value problems such as electromagnetic, fluid flow, 

structural mechanics, and thermodynamics can be expressed by combining the 

governing equations (e.g. differential equations) and boundary conditions as 

shown in Figure 4.1. 

 

Figure 4.1: Representation of Boundary Value Problem 
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The boundary conditions can also be represented by mathematical equations. 

Although boundary value problems can be represented by a number of equations, 

the problem arises with solving those equations manually due to their complexity. 

It can be obtained by approximating the solution by using FEA. FEA uses a set 

of simultaneous algebraic equations to represent the problem as follows. 

 

 
Equation 4.1 

To clarify, an example of equation is given here: if the action is a force or pressure 

and the properties are physical properties of geometry and material properties, 

then the behaviour is calculated using this information. As the property and action 

are known, the behaviour can be evaluated, simplifying to the following equation 

which is produced by a matrix inversion method. 

 

Equation 4.2 

However, the solving of the above equation becomes more difficult when it is 

applied on the entire geometry of a complex structure. However, this complex 

analysis can be turned into a simple analysis with the use of FEA. FEA is a 

volume discretization method that divides the whole problem (object, Figure 4.2 

(a)) into an equivalent system of many smaller units or body parts which are called 

finite elements (e.g. Figure 4.2 (b)). The shape of these elements mostly depends 

on the dimension of the original object. The dimensions of the original object can 

be 1-D, 2-D or 3-D. If it belongs to a 1-D domain, the element can be represented 

by a line. In a 2-D problem, the element shapes become triangular or rectangular 

shapes, whereas in a 3-D situation, the element shapes are tetrahedral blocks, 

rectangular blocks or triangular prisms (pentahedron). These elements are 

interconnected with another two or more elements at points, which are called 

nodes or nodal points, and boundary lines or surfaces, as shown in Figure 4.2.  
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Figure 4.2:  Schematic diagram of volume discretization method in FEA (a) the object 
which represent the problem (b) the object is divided into number of small units which is 
called elements (c) elements are a combination of points and lines or surfaces 

At every node, the field variables, which are explained as dependant variables of 

differential equations, must be calculated. The field variables over an element are 

interpolated by a polynomial equation. In connecting nodes, each adjacent 

element shares the degree of freedom which is equal to the product of the number 

of nodes and the values of field variables. The final result for a desired study will 

be given by obtaining a set of simultaneous algebraic equations on each element 

of the problem to be solved and summing over the entire volume.  

In FEA, the computational space, called the model domain, is divided into a finite 

number of subdomains. There are number of advantages of using subdomains. 

Subdomains can represent complex geometry and different material properties 

more accurately. They will divide the original problem into a smaller set of 

problems; hence the problem can be configured in a way so that more information 

is collected. This will lead to solving the problem easily as FEA software is 

capable of mesh generation and have programmes with in-built algorithms. Then 

equations are applied to each subdomain related to the problem analysis and will 

sum over the entire mesh which is decided considering the domain structure.  

In general, there are three major processes in FEA. They are pre-processing, 

solution and post processing. In pre-processing, a Finite Element model is built 

by the user. Then numerical analysis is conducted using computers to find 

solutions, which is the second phase. At the finish a user can see the results by 

viewing on the screen or printing which is called post processing step. The 

following flow chart illustrates the FEA process (see Figure 4.3). 



  

51 
 

   

Figure 4.3: Flow chart of FEA process 
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Although FEA is the most popular method for solving complex problems some 

issues have been identified. FEA produces only an approximate solution and not 

the exact solution; therefore, inherent errors exist. Those errors may have 

occurred during FEA formulation or FEA while computing. Also, the mistakes 

made by users such as: defining the wrong element type, inconsistent unit use, 

and insufficient boundary conditions can be disastrous in field applications. 

Therefore, particular care has to be given to minimize the errors so that, optimum 

results can be obtained for the analysis of any field problem. 

In this study, FEA has been performed targeting two main aims. They are:  

1. Computational modelling of FBG refractive index patterns using multiple phase 

mask orders and analysis of their spectra at various wavelengths. 

2. Computational modelling of the pressure sensitivity of an FBG within an optical 

fibre having different coating materials, and to obtain an optimum coating 

material based on the results 

4.4 FINITE ELEMENT ANALYSIS OF MODES IN OPTICAL FIBRES AT λB, 

2λB AND (⅔)λB 

Single mode fibre SMF-28 has been chosen for simulation and experiment for 

this study. The properties of SMF-28 fibre considered are listed in Table 2.1. In 

order to confirm the mode propagating through this single mode fibre, FEA 

analysis was performed using the values in Table 2.2: Physical and material 

properties of SMF-28 (FEA simulation).  

A 2-D cross section of a fibre end-face has been considered to observe the 

allowed modes in the fibre, as shown in Figure 4.4. Refractive indices of cladding 

(1.4447) and core (1.4504) are introduced (values derived using Table 2.1) and 

wavelength of operation was set to 1550 nm (𝜆𝐵 ). The computational result was 

undertaken in COMSOL software, using mode analysis, under study node. The 

model has followed Step-index Fibre simulation in COMSOL (COMSOL Inc, n.d.).  
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        Figure 4.4: End face of optical fibre of SMF-28 and its mesh diagram 

The same analysis was performed to find the number of modes in SMF-28 by 

changing the wavelength to 2𝜆𝐵 and (⅔)𝜆𝐵 . In the first two cases (𝜆𝐵 , 2𝜆𝐵 ), the 

calculated V values are 2.1561 and 1.0780 respectively. Therefore, they satisfy 

the single mode condition (𝑉 < 2.405). At (⅔)𝜆𝐵  the V value is 3.2341 (𝑉 >

2.405), which was previously shown as a vertical red line in Figure 2.4. Therefore, 

it should behave like multimode fibre allowing more modes to propagate: i.e. 4 

modes are expected. The analysis results for different wavelengths are given a 

brief description in the following sections. 

4.4.1 MODES AT λB AND 2λB  

To analyse the number of modes guided through SMF-28, a cross section of the 

x-y plane (end view of optical fibre), as shown in Figure 4.4, was created. 

According to Maxwell’s equations, the wave propagation in the z direction is be 

given by 

  𝑬 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑬(𝑥, 𝑦)𝑒𝑗(𝜔𝑡−𝛽𝑧) Equation 4.3 

where 𝜔 is the angular frequency 

An eigenvalue equation for the electric field E is obtained by deriving the 

Helmholtz equation (Equation 4.4) which is solved for an eigenvalue of 

wavelength (Equation 4.5) 

𝛻 × (𝛻 × 𝐸) − 𝑘0
2𝑛2𝑬 = 0 Equation 4.4 

𝜆 = −𝑗𝛽 Equation 4.5 
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For a confined mode, there is no energy flow in the radial direction. Therefore, as 

expected, in the cladding region (see Figure 2.1), there is an evanescent field as 

shown in Figure 4.5, in which the electric field is observed to decay exponentially 

in the ±x-direction.  

 

Figure 4.5: Electrical field profile across optical fibre for a guided mode   

To satisfy mode propagation in the core region, the following conditions are 

required 

  𝑛2  < 𝑛𝑒𝑓𝑓 < 𝑛1 

where   𝑛𝑒𝑓𝑓  is the effective mode index and is given by  

  𝑛𝑒𝑓𝑓 =
𝛽

𝑘0
 

Equation 4.6 

Simulations were carried out for different wavelengths.  The results, such as 

effective mode indices and mode shapes at different wavelengths, are discussed 

below. 

Firstly, the two surface graphs (Figure 4.6 (a) and Figure 4.7 (a)) show the 

fundamental propagation mode within the fibre in terms of the electric field E(x,y) 

for λB and 2λB, respectively. The corresponding line graphs (Figure 4.6 (b) and 

Figure 4.7 (b)) represents the intensity variation across the fibre, at (x, 0) in each 

case.  

(n2) 

(n1) Ex

E 

x 
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Figure 4.6: (a) Electric field variation of HE11 in the fibre surface and (b) Intensity variation 
along z direction across fibre core (b) at λB  

According to Figure 4.6 (a), the effective mode index is 1.4473 at 𝜆𝐵, with most of 

the light confined to the core region. Figure 4.6 (b), showing a line graph of 

intensity variation across the fibre, also shows the concentration of light only in 

the core region, and resembles Figure 4.5. The simulation result provides only 

one value for the effective mode index; hence, it confirms the guidance of one 

mode (HE11) at 𝜆𝐵 . 

 

Figure 4.7: (a) Electric field variation of HE11 in the fibre surface and (b) intensity variation 
along z direction across fibre core at 2λB 

 

For the wavelength 2𝜆𝐵, the effective mode index was obtained as 1.44504 which 

is less than the value at 𝜆𝐵 . As given in Figure 4.7 (a), the electric field 

normalization diagram shows that the light is not only travelling through the core 

region but also in the cladding area. Figure 4.7 (b), shows a significant increase 
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of optical power within the cladding area, compared to the results obtained for 𝜆𝐵 . 

Similar to 𝜆𝐵 , there is only one effective mode index value given for 2𝜆𝐵 ; hence, 

at this wavelength there is also just one mode propagating (𝐻𝐸11). 

4.4.2 MODES AT ⅔λB   

Four modes were obtained, and the surface diagrams (Figure 4.8 to Figure 4.11) 

show the electric field normalization and their electric field (Ex) component in each 

case. 

 

Figure 4.8: Electric field variation of HE11 in the fibre surface and electric field variation 
along x direction across fibre core at (⅔)λB 

 

Figure 4.9: Electric field variation of TM01 in the fibre surface and electric field variation 
along x direction across fibre core at (⅔)λB  
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Figure 4.10: Electric field variation of TE01 in the fibre surface and electric field variation 
along x direction across fibre core at (⅔)λB 

 

Figure 4.11: Electric field variation of HE21 in the fibre surface and electric field variation 
along x direction across fibre core at (⅔)λB 

According to the simulation, the given effective mode indices are 1.44859, 

1.44607, 1.46075 and 1.446068, for these modes (𝐻𝐸11, 𝑇𝑀01, 𝑇𝐸01 and 𝐻𝐸21) 

propagating in the optical fibre. Therefore, at (⅔)𝜆𝐵 , an optical fibre behaves like 

a multimode fibre allowing more than one mode to propagate. The following 

diagram (Figure 4.12) shows the field variation across the fibre (along the x 

direction) for each of these modes. The results confirm that the light is guided 

through the core with some penetration into the cladding region in each case. 
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Figure 4.12: Electric field variation of each mode in the fibre surface x direction across 
the fibre core at (⅔)λB 

4.5 COMPUTATION MODELLING OF FBG AND THEIR SPECTRA  

This will be focused on the simulation of FBG refractive index patterns according 

to the phase mask details given in Section 2.4.2. The resultant intensity variation 

at different sections of the core line will be discussed and FFT analysis will be 

performed to obtain the periodicies along the fibre core (Section 4.6). Finally, 

simulations are performed to find the reflectivity (as discussed in Section 2.4.5) 

and number of peaks produced at different wavelengths when broadband light is 

propagating through it (Section 4.7). Thus, computational modelling was 

performed via:  

1. FEA on complex FBGs formation by illumination of a phase mask by UV light 

2. FEA on wave spectrum produced by the complex FBG (obtained in (1)) 

 

 

Cladding core 

boundary 
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4.5.1 FEA ON COMPLEX FBG FORMED BY PHASE MASK UNDER UV 

ILLUMINATION 

The computational modelling was undertaken by considering the real scenario of 

FBG fabrication using the phase mask method. In order to achieve that, the 

parameters of the phase mask given by manufacturers have been chosen 

compatible with the experimental results reported by Kouskousis (2009) and 

Rollinson (2012). So the complex FBG structure is simulated using an UV laser 

which is operated at 244 nm wavelength ( 𝜆 ) with 106 mW of operating power 

(Pin) and a 1 mrad beam divergence (𝜃). The following physical parameters of 

the phase mask, as shown in Figure 4.13, were used to model the phase mask 

structure in accordance with manufacturing details. 

                     

Figure 4.13: Schematic diagram of phase mask structure  

The parameters (provided by Ibsen Photonics) of phase mask structure are listed 

in Table 4.1: 

Table 4.1: Parameters and values for the simulation* 

* Grating profile is the shape of the grating grooves (rectangular, sinusoidal, trapezoidal, 
etc.) and it is assumed that the grating profile is rectangular for this modelling 

As shown in Figure 4.13, the phase mask consists of equally spaced multiple 

grooves. When a laser beam is incident on the phase mask, it will diffract and 

Parameter Value 

Grating period (d) (the distance between equally spaced grating grooves 

or lines depth 

1066 nm 

wavelength (𝜆 ) 244 nm 

Refractive index of air (na) 1 

Refractive index of fused silica (nb) 1.488 (Equation 4.10) 

Etch depth (the height of the grating grooves) 250 nm 

Duty cycle (given by: line width/grating period) 44% 

Line width of phase mask (the width of grating groves) 4.6904×10−7 m 

Height of silica substrate 100 µm 

Height of the core of fibre 8.2 µm 

Height of the cladding of the fibre 125 µm 
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separate into discrete multiple beams. Simultaneously, the separated beam will 

be dispersed by the gratings, satisfying Equation 4.7. 

𝑚𝜆 = 𝛬. (𝑠𝑖𝑛𝜃𝑖 + 𝑠𝑖𝑛𝜃𝐷) Equation 4.7 

Where 𝑚, 𝜆, 𝛬, 𝜃𝑖 and  𝜃𝐷  represent the m’th order of diffraction, wavelength of 

illumination, grating period of phase mask, incidence angle of illumination and 

diffraction angle of illumination of m’th order respectively (refer Figure 4.14 for 

diagrammatic representation). 

 

Figure 4.14:  Schematic diagram of beam splitting at phase mask with respect to the 
angle of incident 

When the angle of incidence is normal to the phase mask, as shown in Figure 

2.10, Equation 4.7 simplifies to Equation 4.8. 

𝑚𝜆 = 𝛬 × (𝑠𝑖𝑛𝜃𝐷), 𝑚 = 0, ±1, ±2, ±3 … … … . . , ±𝑛 Equation 4.8 

  

If  𝜃𝐷 → 900, 𝑠𝑖𝑛𝜃𝐷 → 1      Hence, 

          |𝑚𝑚𝑎𝑥| = 𝛬/𝜆 Equation 4.9 

 

The above equation (Equation 4.9) can be used to calculate the largest possible 

diffraction order which exists because of phase mask diffraction. The resultant 

interference pattern produced by the diffracted light of TE illumination will be 

discussed in subsequent sub-sections. 

a) Physical domain of the model 

The model has been formulated using the Wave Optics module of COMSOL. The 

2-D cross section in Figure 4.15 represents the scenario of FBG fabrication using 
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the phase mask method.  Phase masks consist of an array of gratings. Modelling 

of an exact phase mask is a time and memory consuming task due to the large 

number of individual gratings required to produce interference patterns in a three-

dimensional (3-D) domain using computer software. Therefore, 2-D modelling of 

the phase mask structure was constructed as if it were an array of 1-D gratings. 

Although an optical fibre is a cylindrical object, previous studies have applied 2-

D cross sections and confirmed no significant variation for results (Tarnowski & 

Urbanczyk, 2013). A unit cell of gratings within a phase mask was devised for the 

model. It was assumed that a laser beam of 244 nm wavelength was incident on 

a fused silica grating of refractive index 1.488. The refractive index value was 

calculated using Equation 4.10 when the etched depth and incident wavelength 

are known.  

𝑑. (𝑛 − 1) = 𝜆/2 Equation 4.10 

Where 𝑑, 𝑛 and 𝜆  are etch depth, refractive index of fused silica and wavelength 

of the incident beam, respectively (Kashyap, 1999). 

The computational design considers parameters and values as shown in Table 

4.1. The propagated beam through a unit cell diffracts and then interferes behind 

the phase mask, resulting in a complex FBG pattern, as discussed in Section 

2.4.2. For all calculations, the axis of the optical fibre was placed 72.5 µm away 

from the phase mask, as shown in Figure 4.15, in accordance with typical 

experimental arrangements, which optimises the interference pattern in the fibre 

core. The 10 µm air gap ensures that no damage to the phase mask structure 

can occur through contact with the fibre. 
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Figure 4.15:  Schematic diagram of FBG writing process using phase mask method for 
a unit cell 

b) Mathematical Model 

The wave optics module in COMSOL software uses Maxwell’s vector wave 

equations to solve electric and magnetic field problems. Hence the current study 

applies Maxwell’s equations in each node of the Finite Element model. The 

governing equations of the model are given by Equation 4.11 and Equation 4.12. 

𝛻 × 𝜇𝑟
−1(𝛻 × 𝑬) − 𝑘0

2 (𝜀𝑟 −
𝑗𝜎

𝜔𝜀0
) 𝑬 = 0 

Equation 4.11 

  
 

𝑘0 = 𝜔√𝜇0𝜀0 Equation 4.12 

where µ,𝜀, 𝜎, 𝜔, 𝑘, 𝐸 are permeability, permittivity, conductivity, angular frequency, 

wave number and electric field amplitude respectively. In this study, it is assumed 

that  𝜇𝑟
−1 = 1, 𝜎 = 0,  𝜀𝑟 = 𝑛2  with 𝑛 being the refractive index of the material.  
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Maxwell’s equations have been solved for each sub domain which consists of 

different but linear refractive indices. Hence Equation 4.11 converts to the 

equation: 

𝛻 × (𝛻 × 𝑬) − 𝑘0
2 𝑛2𝑬 = 0 Equation 4.13 

According to Equation 4.13, the refractive index in each domain has a real value, 

i.e. there is no electromagnetic loss in the subdomains. This study has been 

performed for a TE polarized wave, and hence Ex and Ey become zero throughout 

the geometry and only Ez is needed to solve for Ez which can be achieved by 

solving for the out of plane vector. As shown in the physical structure (Figure 

4.15), the model domain is a combination of 7 subdomains. Therefore, it is 

necessary to introduce proper boundary conditions to complete the mathematical 

model. 

c) Boundary conditions 

As mentioned in Section 4.5.1 (b), the mathematical model cannot be completed 

without boundary conditions. It is necessary as well as critical for any computer 

simulation. There may be several boundary conditions existing; however, they 

can be mainly categorized into two categories such as common boundary 

conditions and unique boundary conditions. Introduction of boundary conditions 

provides exact formulations of equations and the correct solution for the chosen 

computational methods, and the selection of boundary conditions is discussed 

below. 

There can be many common boundary conditions pertaining to Electromagnetics 

(EM) problems. Among them, the perfect electrical conductivity (PEC) and perfect 

magnetic conductivity (PMC) are the most common in many EM studies. In PEC, 

the material electrical conductivity is infinite, and is given by Equation 4.14. In 

contrast, in PMC, the material magnetic conductivity is infinite, and is given by 

Equation 4.15.  

𝑛 × 𝑬 = 0 Equation 4.14 

𝑛 × 𝑯 = 0 Equation 4.15 
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Having such a boundary condition in a simulation is an advantage as it speeds 

up the computational model by simplifying it with reduced mesh sizes. It also 

simplifies the material interaction and thereby reduces the calculation time. As 

this study was only considering electric fields, the PEC boundary condition was 

chosen.  

Simplifying a model using common boundary conditions is not sufficient 

sometimes. It is also necessary to introduce unique boundary conditions like 

periodic boundaries to further simplify the model. These can be implemented 

based on a geometrical model and the type of study of which has to be included 

such as thermodynamics, optics, structural mechanics, etc. In this study a unit 

cell of a phase mask has been modelled by applying a periodic boundary 

condition, which is called a Floquet boundary, to the side of unit cell instead of 

modelling an array of unit cells, as shown in Figure 4.16. The Floquet periodicity 

is used to evaluate the phase shift between the boundaries along the direction of 

periodicity (e.g. x direction for this model) as it dictates that the solution on one 

side of the unit is equal to the solution on the other side multiplied by a complex 

value-phase factor. Applying this periodic condition reduces the model size 

enormously, leading to the saving of memory and computational time.  
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Figure 4.16: Schematic diagram of boundary conditions on the model, inside of dashed 
line will be used to show the relevant mesh in Figure 4.18 

The other key component of this simulation is the introduction of a port boundary 

condition which allows electromagnetic energy to enter or exit from the model. As 

shown in Figure 4.16 the port transmits the incident wave from the air domain to 

fibre cladding domain which is called an output port. At the incident port and 

output ports, it is necessary to set the values for the parameters, as shown in 

Table 4.2. 
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Table 4.2: The calculated and defined parameters for the simulation 
 Input port (IP) Output (Exit) port (EP) 

Power (P) Pin (in) 0 (out) 

Incident angle Alpha (𝛼) beta=asin (na×sin(alpha)/nb) 

Refractive index of 
media 

1(na) 1.4447 (RI of cladding of fibre-nb) 

Port type Periodic Periodic 

Operating frequency f0 = 
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 (𝑐) 

𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ (𝜆)
 f0 =

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 (𝑐) 

𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ (𝜆)
 

Magnitude of the 
electric field  

|𝐸𝑧| = √2 ×
𝐼0

𝑛𝑐𝜀0
, 

 

|𝐸𝑥| = 0, |𝐸𝑦| = 0 

|𝐸𝑧| = √2 ×
𝐼0

𝑛𝑐𝜀0
, 

|𝐸𝑥| = 0, |𝐸𝑦| = 0 

Where ‘n’ is the refractive index of each medium which is used to calculate 

magnitude of the electric field in Table 4.2 and 𝐼0 is the input laser intensity which 

is given by  

𝐼0 =
𝑃𝑖𝑛

𝜋 × 𝑟𝑏
2 

Equation 4.16 

where rb is the beam radius of the input laser beam, and given by  

𝑟𝑏 = 𝑃𝑖𝑛/(𝜋 × 𝜃 × 0.5) Equation 4.17 

As the port only considers the input power and directions of the wave 

propagation, it is not compulsory to calculate the magnitude of the electric 

field  |𝐸𝑧|.  Hence, any arbitrary value can be used in |𝐸𝑧| while the other two are 

zero.  

The next step is to calculate the number of diffraction orders due to the scattering 

effect in each port. According to the defined values given to each port, the 

diffraction orders can be calculated using scattering (S) parameters. S-

parameters are the coefficients of a scattering matrix which originates from 

transmission line theory. They are used to formulate the transformation properties 

in terms of transmission and reflection of electromagnetic waves and defined in 

terms of transmitted and reflected voltage waves. This phenomenon is widely 

used in RF/microwave applications as those devices involve different ports. As 



  

67 
 

these ports are connected with match loads, there is no reflection in any port. If 

the device consists with j ports, the S-parameters are given by  

𝑆 = [

𝑆11 ⋯ 𝑆1𝑗

⋮ . . ⋮
𝑆𝑗1 ⋯ 𝑆𝑗𝑗

] 

Equation 4.18 

The voltage reflection coefficient at port 1 is 𝑆11 while 𝑆21 gives the voltage 

transmission coefficient from port 1 to 2 which will be later used to calculate the 

power transmission coefficient of an optical fibre. Therefore, reflection and 

transmission at any port can be calculated using S terms. Calculation of the 

transformation coefficient using the above method becomes invalid for the phase 

mask model as it uses high frequency. Therefore, it uses electric field values 

instead of voltage to define the S-parameters using an eigenmode expansion of 

the electromagnetic field. It converts the electric field pattern on a port to a scalar 

complex number corresponding to voltage in transmission line theory by 

assuming that the electric field pattern of fundamental modes on each port are 

known and the fields are normalized in the port cross section with respect to the 

integral of power flow through it. Hence the S-parameters of input  (𝑆11) and exit 

port  (𝑆21), as shown in Figure 4.17, can be calculated using Equation 4.19 and 

Equation 4.20. 

 

 

Figure 4.17: Schematic diagram of S-parameter  

𝑆11 =
∫ ((𝑬𝒄 − 𝑬𝟏). 𝑬𝟏

∗ )𝑑𝐴1𝑝𝑜𝑟𝑡1

∫ (𝑬𝟏. 𝑬𝟏
∗ )𝑑𝐴1𝑝𝑜𝑟𝑡1

 

Equation 4.19 

𝑆21 =
∫ (𝑬𝒄. 𝑬𝟐

∗ )𝑑𝐴2𝑝𝑜𝑟𝑡1

∫ (𝑬𝟐. 𝑬𝟐
∗ )𝑑𝐴2𝑝𝑜𝑟𝑡1

 

Equation 4.20 

Here 𝐴1and 𝐴2 represent the area of each port and the computed electric field 

represented by Ec consists of excitation plus reflected electric field. To visualize 

S21 
S11 
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the resultant electric field of the interference pattern of diffraction orders in the 

physical domain it is necessary to define the mesh through the domain properly. 

d) Finite Element Analysis 

Meshing of any structure depends on the shape of the physical structure, 

behaviour of their boundaries and the physics being applied. Therefore, care has 

to be taken to mesh a structure to optimise the outcome. The mesh size should 

be not greater than one eighth of the wavelength in the medium in order to resolve 

all wave details through the domain, and so a maximum triangular mesh size of 

one-tenth of the wavelength was stipulated. Figure 4.18 shows the part of the 

domain with its defining mesh in the phase change area. 

                                        

Figure 4.18: Mesh diagram of the FEA domain around phase change area in Figure 4.16 

The analyses were performed considering the variation of the incident angle at 

constant frequency. Therefore, parametric analysis was used to introduce the 

variation of incident angle from 0 degree to 0.1 deg. It is necessary to solve a 

simulation by considering the size of the design model. Therefore, a solver is 

required to choose in terms of memory and time efficiency. For this study, 

PARDISO solver under direct solver was selected to speed up the simulation by 

reducing the solution time. 
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e) Analysis (Post processing) 

The computed result from the software can be analysed to visualize the intensity 

variation across the physical structure using the following equations: 

The intensity of a transverse electromagnetic wave, I, is given by: 

𝐼 =
𝐸𝟎𝐵𝟎

2𝜇0
 

Equation 4.21 

〈𝑺〉 is the time average Poynting vector, which is given by: 

𝑺 =
𝑬 × 𝑩

𝜇0
 

Equation 4.22 

∴     𝐼 =〈S〉 

 

Equation 4.23 

Therefore, the intensity variation across the entire domain is calculated using the 

time average Poynting vector which is given by  

〈𝑺〉 =
1

2
𝑅𝑒(𝑬 × 𝑯∗) 

Equation 4.24 

The evaluated intensity data in the core area of the fibre will be exported into the 

next model to analyse the spectrum of a complex fibre Bragg grating structure, 

as discussed in Section 2.3.1, the intensity pattern generated by the phase mask 

becomes “photo-imprinted” in the fibre core as refractive index changes.   

4.5.2 FEA ON WAVE SPECTRUM PRODUCED BY COMPLEX FBG 

STRUCTURE 

The intensity variation exported from the proceding simulation is used to create 

the complex FBG structure in SMF-28. Therefore, the refractive index variation in 

the core area is changed according to the following equation: 

𝑛 = 𝑛𝑐𝑜𝑟𝑒 +  𝛼𝐼 Equation 4.25 

Where 𝑛, 𝑛𝑐𝑜𝑟𝑒, 𝛼 and 𝐼 are refractive index value of core, initial refractive index 

value of SMF-28, intensity modulation factor and normalized intensity produced 

by the phase mask, respectively. Though some studies were conducted 
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considering saturation effect due intensity with time, this study was carried out 

without it, as it produces similar results (Kouskousis, 2009).  

The theory of a FBG spectrum was discussed in Section 2.4.5 together with the 

analysis result of phase mask and FBG spectrum. However, it is necessary to 

create the physical domain of the optical fibre to simulate the FBG spectrum; 

hence, it is given a detailed description below. 

(a) Physical domain of SMF28 

The model is built up using the same version of the wave optics module in 

COMSOL. A 2-D cross section of SMF28 can be modelled using the parameters 

shown in Table 2.1 and assuming that the FBG consists of 1000-unit cell of 

gratings along the core area of the optical fibre, as shown in Figure 4.19. It also 

shows the parameters considered for the modelling of the physical structure. 

 

Figure 4.19: Schematic diagram of FBG structure in SMF-28, and parameter values used 

(b) Mathematical model and boundary conditions 

The same mathematical equations for electromagnetic wave propagation 

mentioned before (Equation 4.19 and Equation 4.20) will be used to evaluate the 

wave propagation in each domain. Each domain has real refractive index values; 

therefore, there is no electromagnetic loss in the domains. In the physical 

domains, light guidance through the structure is introduced by port boundary 
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conditions. An optical fibre can guide a light beam from one place to another 

along its core axis satisfying total internal reflection. Therefore, the wave 

propagating in the structure satisfies port boundary conditions as it allows a wave 

to propagate through from one end (input) to other end (output) of any structure 

as shown in Figure 4.20.  The same port boundary condition is used to evaluate 

the effective mode indices by selecting a numeric port condition. Hence the 

expected Bragg wavelength is calculated to introduce the operating frequency. 

Once the operating frequency and effective refractive index are known the 

frequency range is defined to visualize its spectrum using a parametric sweep 

under study node together with frequency domain study. (Parametric sweep is 

used when a set of frequencies has to be analysed instead of a single frequency).   

                                     

Figure 4.20: Diagram of boundary conditions for light propagation through a FBG 

(c) FEA of wave spectrum analysis 

The meshing technique for the above structure is completely different to the 

previous model as the core consists of a number of periodic unit cells in the area 

of the FBG. Although the combined unit cells are periodic, the material variation 

of the unit cell is complex. The mapped mesh is selected in order to visualize the 

complex structure and obtain the reflection spectra. Under mapped mesh, a 

distribution function is selected to define the mesh along the boundaries and 

avoid unnecessary mesh due to the large number of boundaries. Therefore 20 

mesh elements were defined per grating period along the x-direction and 82 mesh 

elements (height of the core ×10) along the height of the core in each unit cell. 

As the wave propagates through the core area, a similar number of meshes 

accounts for the cladding area. The mesh distribution in the cladding area and 

core of two-unit cells are shown in Figure 4.21. 
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Figure 4.21: Mesh diagram of optical fibre 

The frequency domain analysis performs a boundary mode analysis for the input 

and output ports. A parametric sweep is performed to observe the spectrum 

variation along the expected Bragg wavelength (𝜆𝐵  ). PARDISO solver under 

direct Solver was selected to compute the simulation. Once the simulation is 

completed, reflectance and transmittance will be evaluated. The absolute value 

of S parameters is used to evaluate the spectral properties, as it allows a power 

flow calculation through port in light in a guiding structure, as mentioned in 

Section 4.5.1(c). The same approached is used to analyse the spectrum at   

(⅔)𝜆𝐵 and 2𝜆𝐵  . “As the focus was on obtaining reflectivities, calculated via power 

values, there was no need to explicitly determine the z-component of electrical 

and magnetic fields”. 

4.6 FFT ANALYSIS OF THE DIFFRACTED DISTRIBUTION INTENSITY OF 

HIGHER ORDER PHASE MASK AND FEA OF REFLECTION SPECTRA 

AT DIFFERENT WAVELENGTHS 

4.6.1 NORMAL INCIDENCE OF THE LIGHT ON PHASE MASK 

The main focus on this section is to present the modelled intensity variation in the 

fibre core and, since this produces change in refractive index, to then determine 

the various harmonic components existing in the refractive index profile along the 

fibre core, their positions and Talbot length (calculated using the intensity 

distribution produced by modelling the phase mask method). Thus, the modelled 

intensity was converted to a RI profile. The profile was used to model FBG 

spectra. In order to observe those harmonics and their grating periods, a 1 mm 

FBG length was considered for analysis which was modelled by phase mask 
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method as mentioned in Section 2.4.2., i.e. with orders up to ±4. According to the 

fabrication method, the simulated FBG pattern shown in Figure 4.22 was obtained 

assuming a 1066 nm phase mask period with 1.488 index of refraction at 244 nm 

wavelength, and which is incident normal to the phase mask (fibre core axis 

placed 72.5 µm away from the phase mask). 

 

Figure 4.22: Simulated intensity spectrum along the fibre core using phase mask method 
(red and yellow lines represent the line scans along the fibre core and Talbot length 
respectively) 

For analysis purposes, the intensity distribution produced in a 10 𝜇m × 1000 µm 

region was considered in a fibre core in which the unit pixel size of 0.0076 µm. 

This, as expected, is a complex structure as discussed in Section 2.4.2. Analysis 

of this structure in Figure 4.22 was undertaken in a fashion similar to (Kouskousis 

et al., 2013). To obtain the harmonic components and grating periods associated 

with the intensity distribution fast a Fourier transform (FFT) was performed by 

extracting line profiles of intensity distributions along the fibre core x, for 3 values 

of y, namely -71, -71.75 and -73.35 µm as shown in Figure 4.22 (dashed lines in 

red colour). These intensity profiles are shown in Figure 4.23, Figure 4.25 and 

ZT 
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Figure 4.27 and the corresponding FFT results are given in Figure 4.24, Figure 

4.26 and Figure 4.28. 

4.6.2 FFT ANALYSIS AT DIFFERENT POSITION OF INTENSITY VARIATION 

ALONG THE CORE OF THE FIBRE 

A- (I) Intensity variation at -71.00 µm 

  

 Figure 4.23: Line profile of intensity distribution at -71.00 µm along the fibre core 

A- (II) FFT analysis at -71.00 µm 

  

Figure 4.24: Evaluated harmonics using FFT for intensity distribution of Figure 4.23, i.e. 
line scan at -71.00 µm 

  

 

(a
u
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B- (I) Intensity variation at -71.75 µm 

 

Figure 4.25: Line profile of intensity distribution at -71.75 µm along the fibre core 

B- (II) FFT analysis at -71.75 µm 

 

Figure 4.26: Evaluated harmonics using FFT for intensity distribution of Figure 4.25 i.e. 
line scan at -71.75 µm 

 

 

 

(a
u
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C- (I) Intensity at -73.35 µm 

 

Figure 4.27:  Line profile of intensity distribution at -73.35 µm along the fibre core 

C- (II) FFT analysis at -73.35 µm 

 

Figure 4.28: Evaluated harmonics using FFT for intensity distribution of Figure 4.27, i.e. 
line scan at -73.35 µm 

According to all of these FFT analyses, the line scans indicated periodicities of 

1.063 ± 0.0038 µm, 0.5318 ± 0.0038 µm, 0.3546 ± 0.0038 µm, 0.2658 ± 0.0038 

µm, 0.2128 ± 0.0038 µm, 0.1773 ± 0.0038 µm and 0.1520 ± 0.0038 µm. 

(a
u
) 
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Therefore, the expected harmonics and their associated wavelengths were 

calculated using Equation 2.10, and are given in Table 4.3. The resultant 

strengths related to the line scans are recorded in Table 4.4. 

Table 4.3:  Results of spectral components of SMF-28 for simulated FBG patterns: 
evaluated grating periods using FFT analysis and their harmonics, fraction of period 
compare to the phase mask period, calculated wavelength using Equation 2.10 and ratio 
of calculated wavelength to Bragg wavelength 

Harmonic m 

Periods in x, FFT 
analysis 

(±0.0038µm) 

Fraction of 
phase mask 

period 
(1.066µm) 

Calculated 
wavelength (µm) 

Calculated 
wavelength/ Bragg 

wavelength 

1 1.0630 ~1 3.0806 ± 0.0110 2.00 

2 0.5318 ~ (1/2) 1.5412 ± 0.0055 1.00 

3 0.3546 ~ (1/3) 1.0276 ± 0.0037 0.67 

4 0.2658 ~ (1/4) 0.7703 ± 0.0028 0.50 

5 0.2128 ~ (1/5) 0.6167 ± 0.0022 0.40 

6 0.1773 ~ (1/6) 0.5138 ± 0.0018 0.33 

7 0.1520 ~ (1/7) 0.4405 ± 0.0016 0.29 

        

Table 4.4: Results of diffracted efficiency of harmonics for different line scans and the 
expected efficiencies according to the manufacturer information 

Harmonic m 
FFT strength (%) at -71 

µm 
FFT strength (%) at -

71.75 µm 
FFT strength (%) at -

73.35 µm 

1 9.86 3.33 0.03 

2 0.35 33.62 33.86 

3 1.05 0.26 1.04 

4 18.93 4.84 4.37 

5 1.53 0.10 0.54 

6 0.31 0.14 0.25 

7 0.42 0.11 0.15 

According to the FFT analysis, the most dominant grating period is clearly the 

half of the phase mask period which is produced by ±1st orders. However, for the 

line scan at -71 µm, the 1st and 4th harmonics were more dominant while 3rd and 

5th gave a contribution to the diffracted pattern. At -71.75 µm, although the 2nd 

harmonic was more dominant there is a significant contribution from 1st and 4th 

harmonics.  Similarly, at -73.35 µm the 4th harmonic gave a significant 

contribution to the intensity spectrum while the 2nd harmonics became more 

dominant. Therefore, this FFT analysis confirms the existence of other harmonics 
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other than those due to the phase mask when a fibre core is placed 72.5 µm away 

from the phase mask in the FBG writing process. For normal FBGs, the 2nd 

harmonic is dominant while others are suppressed. For complex FBGs, 2nd 

harmonic is dominant but other orders have significant contribution to the FBG 

pattern. Kouskousis (2009) and Kouskousis et al. (2013) have reported significant 

contribution of other orders except 2nd harmonic in result with the saturation effect 

of 30 % and 70 %. According to the result at 30 % saturation, the contribution of 

zeroth order to 5th order, strength of 2nd harmonic are decreased while 1st, 3rd, 4th, 

5th and 6th harmonics are significantly increased. The result of FFT analysis for 

FEA analysis without a saturation effect shows similar behaviour in Table 4.4. In 

there, 4th harmonics become more significant after 2nd harmonic. 

As discussed in Section 2.4.4 diffraction pattern exhibit a repeat distance known 

as the Talbot length , with each pair of orders exhibiting a particular value that 

can be calculated using Equation 2.15, and these are provided in Table 4.5. 

Figure 4.22 exhibits a distinct periodicity of ~ 3 µm across the fibre core, and this 

Talbot length is consistent with the calculated value of  ~ 4.88 for beating between 

±1 and ±2 diffraction orders (given in Table 4.5) since Equation 2.15 refers to 

diffraction pattern in free space. These FEA results are in  good agreement with 

the experimental result of Rollinson (2012) and the analytic work of  Kouskousis 

(2009), and confirm that the ±1 and ±2 diffraction orders determine the Talbot 

length since they are the dominant orders. 

Table 4.5: Calculated Talbot length (in free space) of the diffracted pattern produced by 
the phase mask with period of 1.066 µm, index of refraction of 1.488 and wavelength at 
244 nm. 

Harmonic (m) Harmonic (n) Talbot length (µm) 

0 1 13.77 

0 2 3.38 

0 3 1.45 

0 4 0.77 

1 2 4.48 

1 3 1.62 

1 4 0.82 

2 3 2.55 

2 4 1.00 

3 4 1.66 
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4.7 SPECTRAL ANALYSIS OF FIBRE BRAGG GRATINGS PATTERNS 

The main focus in this section is to show the use of the FEA generated RI pattern 

for a FBG pattern (based on phase mask technology) to obtain the resultant 

reflection spectrum of the FBG. In order to obtain the reflection spectra of the 

FBG pattern, FEA was developed, as mentioned in Section 4.5.2. The analysis 

was performed for the same FBG pattern at different wavelengths to investigate 

the behaviour of the simulated FBG spectra. 

a) Reflection spectrum at λB 

For the FEA purpose, intensity spectrum (Figure 4.22) was implemented on SMF-

28 was converted to an RI variation (see Figure 4.29).  

 

Figure 4.29: FBG pattern was obtained using phase mask technique, the colour line 
represents the refractive index value of FBG pattern 

To observe the reflection spectra of FBG pattern, 1.066 mm (1000 unit cells) of 

grating length was considered. According to the simulation result in Figure 4.30, 

the Bragg peak was observed at 1.5446 ± 0.0010 µm. Therefore, the calculated 

Bragg wavelength is also in good agreement with the simulated result as it 

became 1.5446 ± 0.0014 µm which was given by the Bragg equation (Equation 

2.11) and the FFT analysis result in Table 4.3 (1.5412 ± 0.0055). The resultant 

reflectivity of the Bragg peak from simulation is 0.0769 ± 0.0025 while the 



  

80 
 

calculated reflectivity using Equation 2.20 became 0.0776 which shows good 

agreement between theoretical and simulation results. The calculated normalized 

frequency is 2.1424 and it’s under single mode operation as V is less than 2.4. It 

also showed by the existence of a single effective refractive index of 1.449. 

 

Figure 4.30: Simulated FBG reflection spectrum at λB for complex FBG pattern of Figure 
4.29, obtained by phase mask method      

b) Reflection spectrum at 2λB 

The same parameters in Table 2.1 were used to simulate the reflection spectrum 

of the FBG structure (Figure 4.29) when the operating wavelength is at 2λB.  The 

resultant spectrum of FEA is shown in Figure 4.31. According to the results, the 

reflection peak is observed at wavelength of 3.0861 ± 0.0010 µm  in simulation is 

in good agreement with the calculated result of 3.0861 ± 0.0029 µm using 

Equation 2.11 and value 3.0806 ± 0.0110 µm which is given by FFT analysis 

(Table 4.3). The normalized frequency V is 1.0723 which is less than 2.4, hence 

at the operating wavelength of 2λB, the optical fibre behaves as a single mode 
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fibre. It is also confirmed by the effective index of refraction (neff) produced by the 

simulation. There is only one value for neff and it is 1.4475. According to Figure 

4.31, the resultant reflectance value is 0.00032 ± 0.00001 and it is in a good 

agreement with the calculated value 0.00034 using Equation 2.20. 

 

Figure 4.31: Simulated FBG reflection spectrum at 2λB, obtained for complex FBG 
pattern                    

c) Reflection spectrum at ⅔ λB 

The same parameters are in Table 2.1  were used to simulate the reflection 

spectrum of FBG structure (Figure 4.29) when the operating wavelength is at 

(⅔)λB. The resultant spectrum obtained via FEA is shown in Figure 4.32. 

According to the results, the reflection peaks are observed at wavelengths of 

1.0298 ±0.0010, 1.0284 ±0.0010 and 1.0265 ±0.0010 µm which is in good 

agreement with the calculated results of 1.0301 ± 0.0010, 1.0286 ± 0.0010 and 
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1.0267 ± 0.0010 µm using Equation 2.11. The calculated normalized frequency 

V is 3.2123 which is higher than 2.4, hence at the operating wavelength of (⅔)λB, 

the optical fibre behaves as a multimode fibre. It is also confirmed by the number 

of effective indices of refraction (neff) produced by the simulation. There are three 

strongest values for neff and they are 1.4496, 1.4474 and 1.44473. According to 

Figure 2.4, there ought to be 4 effective mode indices for (2/3)λB, except that HE21 

and TM01 have the same index value. Likewise, the simulation provided only 3 

effective mode indices, confirming that 2 of the modes have the same index.  

 

Figure 4.32: Resultant FBG reflection spectrum at (⅔)λB by complex FBG pattern 

The experiments conducted for type I and IIA FBGs by Rollinson (2012)  

observed 2 transmission peaks at 1025.6 and 1026.5 nm for type I and 3 

transmission peaks for type IIA FBGs at 1025.9, 1027.3 and 1028.5 nm (at (⅔)λB). 

The results obtained at (⅔)λB by FEA analysis is in good agreement with the 

experimental results.   
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4.8 SUMMARY 

This chapter discussed details of FEA theory, its history and benefits of using it 

for computational modelling.  This chapter mainly focused on introducing Finite 

Element Analysis on fibre modes, FBG structure and its spectra. 

FEA were first used to confirm the well-known behaviour of optical fibre; the 

simulation was performed at different wavelengths to observe the number of 

modes that could arise. For wavelengths at 𝜆𝐵  and 2𝜆𝐵  (V < 2.405), the analysis 

results show the only propagating mode is 𝐻𝐸11 and so it is a single mode fibre. 

However, under the same condition applied to wavelength at (⅔)𝜆𝐵  (V > 2.405), 

the results produced four modes, i.e. there is multimode behaviour. The analysis 

results are also in good agreement with literature findings (Figure 2.3 and Figure 

2.4) which show the mode scenarios at different normalized frequency (V). In 

every FEA simulation, effective mode index values were in between core and 

cladding refractive index values. Simulation results suggested that the light wave 

is more confined in the core region in situations where the effective mode index 

value is closer to the core refractive index value (1.4504). 

New computational models were developed to create FBG structures and their 

spectra. To develop a computational model, first, the FBG structure was 

developed by considering the manufacturing process. It considered the phase 

mask method for FBG fabrication and developed a simple 2-D tool to create the 

same scenario as the manufacturing process. For the developed model, as 

shown in Fig 4.15, a small air gap was assumed in between the phase mask 

structure and the optical fibre to optimise the interference of a number of 

harmonics whilst avoiding possible damage to the phase mask structure by 

contact with the optical fibre. A gap of 10 µm was used in all calculations (as used 

in typical experimental arrangements). The effect of varying the gap size was 

investigated by  Kouskousis et al. (2013) who simulated the interference pattern 

for different air gaps. They showed that if the gap is bigger, only the +/-1   order 

harmonics occur and the resultant grating has a single Bragg wavelength, but this 

may be weakened due to the limited coherence length of the writing beam. If the 

gap is small (but non-zero), a complex RI distribution results which produces 

Bragg reflections at multiple wavelengths (Rollinson et al., 2005).  



  

84 
 

The resultant spectrum plots were produced by the software depending on the 

FEA developed. Resultant spectra of simulation are not smooth as the theoretical 

results depend on the mesh size and wavelength spacing specified. However, 

the results given by the simulation agree very well with the theoretical results. 

The diagrams were plotted by the software for the limited number of values 

thereby leading to patterns, such as in 4.30, that are not smooth. 

The developed model is able to create various FBG structures such as first order 

gratings, complex grating and a tilted grating as shown in Figure 4.33 (simulated 

by using COMSOL) by changing dimensions of phase mask and incident angles. 

The fringe pattern on a unit cell produced by the phase mask was imprinted on 

fibre structure by importing and using an array method to create the same pattern 

on the fibre. Using this method, the length of the FBG can be defined and 

controlled for the required purposes. 

 

Figure 4.33: Tilted FBG pattern obtained by phase mask method 

The chapter provides analyses of complex grating structure via a FFT analysis to 

find the number of harmonics, its grating period and expected efficiencies etc. 

The analysis identified that the complex structure could be used to analyse the 

spectrum and compared this with the number of modes observed at different 

wavelengths. The results of simulated spectra were observed and identified and 

shown that they were in good agreement with the results of the number of modes 

observed in a single mode fibre by FEA analysis.    
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In the literature, several analytical and experimental analyses have been reported 

for interference pattern associated with complex Bragg grating structures (Dyer, 

Farley & Giedl, 1995; Kouskousis et al., 2013; Mills et al., 2000). Tarnowski & 

Urbanczyk (2013) modelled wave spectrum to explain effect of tilt waveguide on 

multiple order phase mask. In that work, the interference pattern was produced 

using a numerical simulation that was converted into a refractive index 

modulation within the core of the fibre. The reflected spectrum of the FBG 

inscribed was analysed using COMSOL. Recent studies of apodized FBG 

formation using the phase mask method with varying duty cycle using numerical 

methods shows the effect of positioning of the fibre core on reflection efficiencies 

(Osuch & Jaroszewicz, 2017). In the proposed model, duty cycle and the position 

of the fibre can be changed easily; hence, calculated the reflection efficiences. 

The 2-D model of computational design for complex Bragg grating structure using 

phase mask method has not been reported as yet. Hence, this method is unique 

producing first order, higher order grating or tilted gratings simply ajusting its 

parameters and dimensions. The same model can be easily used for spectral 

analysis. The results produced by the study further validated the compatiblity of 

the results with other anticipated theoretical results and reflected the advantage 

of a FEA model over analytical methods. 
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CHAPTER 5:  Finite Element Analysis on pressure sensitivity 

(Computational design) 

5.1 OVERVIEW 

The main focus in this chapter is the use of FEA to seek solutions for existing 

issues with optical fibre pressure sensors as discussed in Chapter 3 including 

related strain sensors and identifying the potential ways to enhance their 

sensitivity. To achieve that Finite Element Analysis models will be introduced 

considering different scenarios for coating fibres with selected polymers to 

enhance the sensitivity. The result analysis will be compared with the limited 

existing literature for verification purposes. As a result, a new sensor 

configuration will be suggested for a low (gauge) pressure range for future use. 

5.2 PRESSURE EXERTIONS ON FBGS 

There have been many research studies for pressure sensing on fibre Bragg 

gratings as discussed in Chapter 3; however, most of them are only concerned 

with standard gratings. Although there have been many experiments on FBGs 

sensitivity for high pressure, as noted in that chapter, few experiment have been 

reported for low (0 – 200 kPa) (gauge) pressure. For example, Bal et al. (2011) 

have reported  different responses for various FBGs and different fibre types, for 

up to 200 kPa. Since this work raised several questions, more research is 

required to understand the behaviour of complex gratings at low pressure. 

Pressure and force exerted on an optical fibre can be categorised into 3 forms. 

They are: 

• Transverse compressive (point and distributed loading) - Figure 5.1 (a) 

(The length of the object increases while it is deformed) 

• Tensile and compressive strain - Figure 5.1 (b) 

(The length of the object increases when it’s under tensile force and it 

decreases under compressive force)  

• Uniform pressure - Figure 5.1.(c) 

(The pressure exerted by a fluid at equilibrium at a given point in the same 

medium) 
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Figure 5.1: Possible forms of pressure exertion on an optical fibre (a) Transverse 
compressive load, (b) Tensile and compressive strain, (c) Uniform pressure  

5.3 FEA ON POINT LOAD AND DISTRIBUTED LOAD 

For bare FBGs, the pressure exertion due to a point load and a distributed load 

can be represented on a 2-D cross section, as shown in Figure 5.2. 
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 Figure 5.2: Schematic diagram of 2D cross section of point load (a) and distributed load 
(b) on FBG 

According to Figure 5.2 (a), the cross section of a fibre exerts a point load on two 

sides. Strain and shape variations due to a point load are very small. Therefore, 

in computational modelling, plane strain was assumed, and the contact is 

assumed as frictionless. When a load is applied on fibre, a stress variation is 

created within the fibre core. Due to this stress variation, the index of refraction 

is changed. These refractive index changes can be calculated using Equation 3.3 

and Equation 3.4 for the given photo-elastic constants. 

5.3.1 FEA FOR UNIFORM PRESSURE 

For a uniform pressure situation, the scenario as depicted in Figure 5.3 is 

considered.  

                      

 

 

 

 

 

Figure 5.3: Schematic diagram of a 3-D cylindrical fibre (a) and simplified (2-D cross 
section) view of the same FBG due to axial symmetry (b) 

For uniform pressure sensing, the cross section of a fibre (Figure 5.3 (b)) is 

considered for computational domain in axi-symmetric coordinates. Ideal, or 
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standard, gratings (Figure 2.5 in Chapter 2), are considered for simulation, and 

different coating materials are considered to enhance the pressure sensitivity.  

5.3.2 PHYSICAL DOMAIN OF THE MODEL 

The model was developed using the Structural Mechanics and Wave Optics 

module of COMSOL. The computational modelling has been undertaken by 

considering the real scenario of pressure exertion by an FBG as shown in Figure 

5.1. Pressure sensitivity analysis using FEA methods can be obtained using 2-D 

or 3-D simulations. However, 3-D simulations take a long time to complete and 

require high RAM capacity as it solves structural mechanics and optics problems 

at the same time. Also, for simulation purposes, it is better to have the simplest 

model rather than one that is complicated. Therefore, a 2-D cross section of a 

FBG was considered for pressure sensitivity analysis. Although a fibre is 

cylindrical, previous studies have applied 2-D cross sections in Cartesian 

coordinates and confirmed no significant effect for the result (Prabhugoud & 

Peters, 2007).   

For this study, the physical and material parameter of an optical fibre, SMF-28 is 

considered for modelling and simulations (see Table 2.2). First, a fibre without 

coating is considered. To simplify the simulation, a fibre end face is created 

considering its symmetry along the x and y directions, for point load on a FBG 

(see Figure 5.2 (a)). For distributed loading, the structure is created assuming the 

load is transferred via compact glass plates (see Figure 5.2 (b)). For uniform 

pressure, axi-symmetric coordinates were chosen as shown above in Figure 5.3 

(b). For each case appropriate boundary conditions and constraints were chosen 

to perform the simulation. 

5.3.3 MATHEMATICAL MODEL 

For all cases, the mathematical model uses the Wave Optics and Structural 

Mechanics Modules in COMSOL version 5.3. The Wave Optics Module is mainly 

used to calculate the propagating modes in a fibre. Modelling and evaluating 

these modes at various wavelengths has been fully discussed in Section 4.4. 

However, these modes were calculated without any excess pressure. To 

understand the effect on a mode due to elevated pressure, it is necessary to 
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implement the refractive index profile in the fibre with pressure exerted. For a 

point load and distributed load, this has been done by using a linear stress-optical 

relation using the COMSOL Multyphysics module guide. A relation between 

stress and refractive index can be written using tensor notation as follows: 

 

Equation 5.1 

where ∆𝑛𝑖𝑗 , 𝑛0, 𝐼𝑖𝑗, 𝐵𝑖𝑗𝑘𝑙and 𝑆𝑘𝑙 are the refractive index tensor, index of refraction 

of a stress-free material, identity tensor, stress-optical tensor and stress tensor, 

respectively. 

Equation 5.1 can be further simplified due to parameter symmetry where 𝑛𝑖𝑗  and 

𝑆𝑘𝑙 are symmetric. 𝐵𝑖𝑗𝑘𝑙 =  𝐵𝑗𝑖𝑘𝑙 and 𝐵𝑖𝑗𝑘𝑙 = 𝐵𝑖𝑗𝑙𝑘  are symmetric. Due to the 

reduced number of parameters, the model considers independent parameters 

𝐵1 and 𝐵2 only when non-diagonal parts of 𝑛𝑖𝑗 are neglected. The simplified 

stress-optic relation can be given by the following equation. 

⌊

∆𝑛𝑥

∆𝑛𝑦

∆𝑛𝑧

⌋ = − ⌊
𝐵1 𝐵2 𝐵2

𝐵2 𝐵1𝐵2

𝐵2 𝐵2𝐵1

⌋ ⌊

𝑆𝑥

𝑆𝑦

𝑆𝑧

⌋ 

Equation 5.2 

When 𝑛𝑥 = 𝑛11, 𝑛𝑦 = 𝑛22, 𝑛𝑧 = 𝑛33, 𝑆𝑥 = 𝑆11, 𝑆𝑦 = 𝑆22  and 𝑆𝑧 = 𝑆33 the equation 

further translates to the following: 

𝑛𝑥 = 𝑛0 − 𝐵1𝑆𝑥 − 𝐵2(𝑆𝑦 + 𝑆𝑧)

𝑛𝑦 = 𝑛0 − 𝐵1𝑆𝑦 − 𝐵2(𝑆𝑥 + 𝑆𝑧)

𝑛𝑧 = 𝑛0 − 𝐵1𝑆𝑧 − 𝐵2(𝑆𝑥 + 𝑆𝑦)

} 

Equation 5.3 

The tensor analysis is only performed for the domain which has an index of 

refraction value. The refractive index in each domain has a real value (i.e., there 

is no electromagnetic loss in the subdomains). The above tensor analysis will be 

used for mode analysis and predicts the birefringent effect under a post 

processing step on point load and distributed load fibres. Therefore, it is 

necessary to introduce the solid mechanics interface. In each model point load, 

distributed load and uniform pressure are introduced in different domains. In solid 

mechanics, the plain strain approximation is used to compute the stress variation 
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on the fibre. However, the plane strain simulation does not represent the real 

behaviour under applied load. This can be minimized by introducing generalized 

strain along the z direction. Assuming strain is varying linearly on the x-y cross 

section, the out of plane strain 𝜀𝑧 along the z direction is implemented using this 

equation: 

𝜀𝑧 = 𝑒0 + 𝑒0𝑋 + 𝑒2𝑌 Equation 5.4 

where 𝑒0, 𝑒1and 𝑒2 are mathematical coefficients which are used for introducing 

strain 𝜀𝑧 with an extra degree of freedom under Global equations in COMSOL. 

To implement a 3-D effect, the stress-strain relationship including a thermal effect 

for linear isotropic material is introduced under global equations.  

A relation between generalized stress-strain in three directions can be introduced 

into a 2-D simulation by considering Equation 5.5. 

𝑆𝑥 = 𝑆11 = 𝐷11(𝜀𝑥 − 𝜀𝑡ℎ) + 𝐷12(𝜀𝑦 − 𝜀𝑡ℎ) + 𝐷13(𝜀𝑧 − 𝜀𝑡ℎ)

𝑆𝑦 = 𝑆22 = 𝐷12(𝜀𝑥 − 𝜀𝑡ℎ) + 𝐷22(𝜀𝑦 − 𝜀𝑡ℎ) + 𝐷23(𝜀𝑧 − 𝜀𝑡ℎ)

𝑆𝑧 = 𝑆33 = 𝐷13(𝜀𝑥 − 𝜀𝑡ℎ) + 𝐷23(𝜀𝑦 − 𝜀𝑡ℎ) + 𝐷33(𝜀𝑧 − 𝜀𝑡ℎ)

} 

 
Equation 5.5 

    
𝜀𝑥 = 𝜀11 = 𝜕𝑢 𝜕𝑥⁄

𝜀𝑦 = 𝜀22 = 𝜕𝑣 𝜕𝑦⁄
} →Strain variation along x and y direction 

            𝐷11 = 𝐷22 = 𝐷33 = 𝐸(1 − 𝜐) (1 + 𝜐)(1 − 2𝜐)⁄

𝐷12 = 𝐷23 = 𝐷31 = 𝐸𝜐 (1 + 𝜐)(1 − 2𝜐)⁄
} →D is material stiffness 

        𝜀𝑡ℎ = 𝛼(𝑇 − 𝑇𝑟𝑒𝑓) → Thermal induced strain 

where, 𝐸 is Young’s modulus of a material and 𝜐 is the Poisson’s ratio. For point 

load and distributed load, the equation above is implemented under Global 

equations to calculate the stress generalized by the strain.  

When stress variations and index changes (Equation 3.3 and Equation 3.4) are 

known within the fibre cross section, wavelength changes can be calculated along 

the x and y direction using the following equations. 

(∆𝜆𝐵)𝑥 = −
(𝑛𝑒𝑓𝑓)

3
𝛬

𝐸
× {(𝑝11 − 2𝜐𝑝12)𝜎𝑥 + [(1 − 𝜐)𝑝12 −

                       𝜐𝑝11](𝜎𝑦 +   𝜎𝑧)} +
2𝑛𝑒𝑓𝑓𝛬

𝐸
× {𝜎𝑧 − 𝜐(𝜎𝑦 + 𝜎𝑥)}          

 
Equation 5.6 
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(∆𝜆𝐵)𝑦 = −
(𝑛𝑒𝑓𝑓)

3
𝛬

𝐸
× {(𝑝11 − 2𝜐𝑝12)𝜎𝑦 + [(1 − 𝜐)𝑝12 −

                        𝜐𝑝11](𝜎𝑥 + 𝜎𝑧)} +
2𝑛𝑒𝑓𝑓𝛬

𝐸
× {𝜎𝑧 − 𝜐(𝜎𝑦 + 𝜎𝑥)}  

 
Equation 5.7 

 

where 𝑛𝑒𝑓𝑓 is the effective index of refraction of stress free material, E is the 

Young’s modulus of the fibre, 𝜐 is the Poisson’s ratio, 𝑝11 and  𝑝12 are the 

photoelastic constants and 𝜎𝑥,𝑦,𝑧 are normal stress.  

The results of wavelength changes in the x and y directions can be used to predict 

the broadening of spectra or the possibility of a birefringent effect. The resultant 

wavelength change produced by the simulation will be discussed in Section 5.4. 

To implement these equations and solve them it is necessary to introduce proper 

boundary conditions for point load and distributed load models. 

When a material is subjected to a uniform pressure, it tends to deform in every 

direction. The strain induced refractive index change is due to the photo-elastic 

effect and it is given by  

∆ (1
𝑛𝑖𝑗

2⁄ ) = 𝑝𝑖𝑗𝑘𝑙𝜀𝑘𝑙 
Equation 5.8 

where 𝑝𝑖𝑗𝑘𝑙  are components of the photo-elastic tensor and 𝑖, 𝑗, 𝑘 and 𝑙 are 

integers.  

When a FBG is subjected to uniform pressure, wavelength changes can be 

calculated manually by Equation 3.11. To analyse the wavelength changes due 

to uniform pressure, the following conditions were introduced to the FEA model 

to complete the mathematical model.  

For computational modelling of uniform pressure sensing, cylindrical coordinates 

were chosen. For an optical fibre, when a strain is isotropic in the cross section, 

the effective index changes are given as follows (Equation 5.9): 

∆𝑛𝑒𝑓𝑓

𝑛𝑒𝑓𝑓
= −

𝑛𝑒𝑓𝑓
2

2
[(𝑝11 + 𝑝12)𝜀𝑟 + 𝑝12𝜀𝑧] 

Equation 5.9 
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The radial strain is 𝜀𝑟 (= 𝜀11 = 𝜀22)  and axial strain is 𝜀𝑧 (= 𝜀33) due to the 

symmetry of the structure. Hence, the Bragg wave length change due to strain 

and effective mode index change is given by Equation 5.10:  

∆𝜆𝐵

𝜆𝐵
= −

𝑛𝑒𝑓𝑓
2

2
(𝑝11 + 𝑝12)𝜀𝑟 + (1 −

𝑛𝑒𝑓𝑓
2

2
𝑝12) 𝜀𝑧 

Equation 5.10 

This equation will be used to calculate the wavelength change due to uniform 

pressure on the FBG structure. The fibre material is less sensitive to the pressure 

due to the high Young’s modulus and Poisson’s ratio. To enhance the pressure 

sensitivity, it could be coated with a polymer material to improve the material 

properties as discussed earlier for plain fibres (Section 3.4). To implement these 

mathematical steps, it is necessary to introduce proper boundary conditions to 

complete the mathematical model.                                                                        

5.3.4 BOUNDARY CONDITIONS 

There are different boundary conditions involved in each case, due to significant 

differences in the pressure fields. These conditions will be discussed separately 

as follows. 

I. First, the point load case is considered. The following Figure 5.4 shows 

the computational domain of the end face fibre.  

 

Figure 5.4: Schematic diagram of computational domain for point load (a) and mesh 
diagram (b) 

II. The next step is to consider distributed loading on the fibre. To apply load 

evenly on the fibre, two glass plates are placed on the top and the bottom 

of the fibre as shown in Figure 5.5.  

Force 

X=0 

Y=0 
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III. For uniform pressure sensing (see Figure 5.6), firstly a bare fibre is 

considered and secondly the fibre is uniformly coated with a polymer. 

 

Figure 5.5: Schematic diagram of computational domain for distributed load on an optical 
fibre (a) and boundary conditions (b) 

 

Figure 5.6: Schematic diagrams of bare fibre (a) and polymer coated fibre (b) 
experiencing uniform pressure in cylindrical coordinates 

Once the computational domain is defined, the introduction of boundary 

conditions is required. These boundaries should consider transferring the applied 

load into the fibre and avoid unnecessary twisting or rotating of the fibre. This can 

be done by the Solid Mechanics interface under physics in COMSOL modules. 

For analysis, different mathematical conditions, parameters and boundaries were 

considered.  

For each case, plain strain is selected assuming deformation of the structure is 

negligible. A linear elastic material was selected, and the temperature was set to 

20 0C. For point load, as shown in Figure 5.4 (a), equal force was applied on 

opposite directions. To avoid unnecessary movement in the x and y direction, a 

Fibre core 
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point prescribed displacement was introduced on 4 main points on the fibre. For 

this study, a 1 mm length of fibre was selected for the simulation. 

For a distributed load on a fibre, the load was applied on the glass plate and the 

pressure transferred on a 1 mm long fibre, although it is not shown in the 

schematic diagram. To apply the load (L) on the top of the glass plate, a boundary 

load was added. The boundary load is allowed to define the direction and the total 

force on the glass plate. These loads should not disassemble the whole structure. 

Therefore, contact boundaries were introduced in between the top and bottom 

plates to act as one piece of structure, as shown in Figure 5.5 (b). To avoid 

rotation and twisting of the structure, rigid motion suppression was selected for 

the bottom of the structure. To avoid unnecessary computational time and 

structure movements, domain prescribed displacements were introduced to the 

top of the plate considering moving vertically down only. Point prescribed 

displacements were also introduced to implement fibre movement while applying 

load.  

The boundary conditions mentioned above will provide exact formulations of 

equations and correct solution to the chosen computational methods in solid 

mechanics. The solution of the Solid Mechanics interface should transfer into the 

Electromagnetic wave, frequency domain interface and solve them using proper 

equation by introducing appropriate boundary conditions in selected domains. 

The mode analysis was performed for a fibre end face only. Therefore, it was 

selected in the domain of the fibre core and cladding only. In the selected 

domains, electric fields are solved for three vector components vector for the full 

field. The wave equations are solved by implementing the following parameters 

and conditions under the wave equation node (see Figure 5.7). 
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Figure 5.7: Screen shot of wave equation is set under electromagnetic wave, frequency 
domain in COMSOL 

For uniform pressure sensing, computational domains were created for bare fibre 

and polymer coated fibre with different lengths and thicknesses. To keep the 

structure from unnecessary movements, a point fixed constraint was introduced 

under Solid Mechanics, as shown in Figure 5.6. A prescribed boundary constraint 

was introduced to the top edge of the structures, allowing radial direction 

movements only. It is assumed that the whole structure is under the uniform 

pressure, which causes squeezing of the structure. To analyse the pressure 

sensitivity on the structure with different loads (L), a stationary study was 

performed using a parametric sweep under the study node which allows varying 

boundary loads. 

After the above steps, meshing of the domains was required to visualize the 

resultant stress field and electric field. This is obtained by defining the mesh 

through the domain properly. 

5.3.5 FINITE ELEMENT ANALYSIS 

In these models, there are different domains with different physics problems. To 

solve these problems, it is required to introduce the appropriate mesh to optimise 

the process. For point loads, previously Figure 5.4 (b) showed the meshing on 

the fibre. The point load model was solved by applying different loads on a 

fibre.  A suitable calculation of the stress variation on a fibre requires a finer mesh 



  

97 
 

on the fibre, as a discontinuity of stress pattern would have occurred if an 

incorrect size and shape of mesh had been selected. By ensuring that the 

maximum size of the triangular mesh was one-tenth of the wavelength in the 

medium, the optical wave propagation through the domains was determined to 

the required level of detail. Figure 5.8 shows the meshing of the entire structure 

for a distributed load. Accordingly, the top and glass plates have different mesh 

compared to the end face of the fibre. The load is applied and transferred through 

the top plate. The bottom plate holds the fibre structure and stops unnecessary 

rotation. In the end face of the fibre, the refractive index is changed due to stress 

variation. To view these all scenarios, it was necessary to mesh the end face of 

the fibre finely and other boundaries accordingly. In the end face, the maximum 

size of the triangular mesh is defined as one-tenth of the wavelength in the 

medium in order to resolve the wavelength finely through the domains. Glass 

plates were meshed using mapped mesh method and considering the condition 

chosen. 

    

Figure 5.8: The domains of distributed load with its defining mesh  

The analysis was performed by adding different loads to the glass plate. 

Therefore, parametric analysis was used to introduce the variation of load from 0 

to 75 N. To solve structural mechanics and optics problems, stationary and mode 

analysis were chosen under study node. For point load, an extra parametric 

solver was introduced to analyse the stress coupling effect and vice versa. For 

distributed loads, another parametric sweep was added to calculate the strain 

generalized effect compared to the plain strain effect. To solve a simulation more 

time and memory efficiently, PARDISO solver was selected. It helps to speed up 

the simulation by reducing the solution time. 
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Triangular mesh was introduced to analyse the uniform pressure on bare and 

polymer coated fibre, as shown in Figure 5.9. The number of meshes were 

dependent upon the material types and the pressure experienced. Pressure has 

been created varying from zero to 70 MPa on bare fibre and up to 10 MPa in 

polymer coated fibre to compare with the literature. To analyse (gauge) pressure 

sensitivity up to 50 kPa, the geometrical structure has been changed. Stationary 

solver was used under parametric sweep and PARDISO solver was chosen 

under direct solver. 

 

Figure 5.9: Mesh diagram on the uniform pressure sensing on bare fibre 

5.3.6 ANALYSIS (POST PROCESSING) 

The main purpose of this point load and distributed load simulations is to observe 

the birefringent effect due to an external load. To observe the birefringence, it is 

necessary to solve the effective mode indices. This was achieved by adding 

Global evaluation under derived values in the result section (computational 

simulation). To plot the wavelength changes due to an added load, point 

evaluation was added to the same section. The axis of the core was selected 

under data set for the point evaluation. In uniform pressure sensing, the pressure 

sensitivity was analysed with the aid of equations and simulation results. 

5.4 RESULT FOR POINT LOAD AND DISTRIBUTED LOAD SIMULATION 

The main aims of this section are to understand the behaviour of single mode 

fibre with applied load, especially the birefringent effect. To observe the 

birefringence effect with applied load, the computation simulation was conducted 

with the load (L) changing from 0 to 50 N for a point load and up to 70 N for 

distributed load on simple FBGs.  
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5.4.1 EFFECTIVE MODE INDICES CHANGE WITH TEMPERATURE AND 

POINT LOAD 

Figure 5.10 shows the load dependency of effective mode indices for two different 

temperatures. The first graph (a) represents the simulation performed under 

same temperature, 20 0C. The next graph (b) shows the effective mode variation 

when the reference temperature is 1000 0C. In both graphs, the effective 

refractive index (ewfd.neff-neff in FEA) values were given for without stress-optic 

relation (no-coupling) and with stress-optic relation (plane strain). In Figure 5.10, 

ewfd.neff (1) and ewfd.neff (2) refer to the two different effective refractive indices 

values simulated with and without stress-optic relation.     

 

Figure 5.10:   Effective mode index variations, with and without stress-optic relations 
when reference temperature is 20 0C (a) and 1000 0C (b) 

According to Figure 5.10 (a) and (b), the effective mode index remains constant 

(1.4473) without any coupling. However, under plane strain assumptions with 

zero load, the effective mode index becomes 1.4475 at 1000 0C (Figure 5.10(b)). 

Further, for the plane strain calculations for both temperatures, both of the 

effective mode indices change with increasing load. The ewfd.neff (1) index 

decreases with increasing load until it reaches the cladding refractive index value 

(1.4447 at 20 0C as noted in Section 4.4) at 40 N. It is clear in Figure 5.10 that 

one effective mode index (ewfd.neff (1)) changes significantly with the load, whilst 
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other (ewfd.neff (2)) showed minimal change; hence, ewfd.neff (1) is effective for 

the analysis of a point load. 

Depicted in Figure 5.11 is the effective index mode of stress generalized strain 

(calculated using the proper mathematical equations discussed in Section 5.3.3) 

for 1000 oC. The index value of 1.4473 at zero load differs slightly from the plane 

strain mode index. Both show a significant change in the trend after 40 N, with 

the plane strain being constant and the other showing a reversal of the trend. 

Therefore, the effective mode index value 1.4473 can be selected as the proper 

value for the initial mode index for further calculations. 

                       

Figure 5.11: Effective mode variation with plain strain and generalized plain strain when 
reference temperature is 1000 0C 

The sudden change in the behaviour of the effective index at 40 N is due to the 

change from the SMF28 optical fibre no longer supporting a guided mode. Clearly 

the software (COMSOL) shows great utility, as it is able to track the behaviour of 

the mode from being guided to unguided. To understand the behaviour of the 

effective mode index at 40 N compared to other applied loads, the power flow 

time average (intensity) along the z direction was plotted (see Figure 5.12) at 

various loads to see the how the optical mode changed from the usual pattern 

(Figure 4.6). 
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Figure 5.12: Power flow across modes across end face of the fibre. 

Figure 5.12 shows that there is a significant change to the intensity distribution 

across the fibre after 40 N. Before 40 N, most of mode is a single narrow curve, 

confirming it is confined within the core area of the fibre. Above 40 N, it broadens 

significantly, and splits into two curves, showing it is no longer propagating as a 

single mode in the core area of the fibre. It shows increase of intensity variation 

in the range of 40 to 50 N. The mode variation from zero loads to 50 N can be 

observed by plotting the mode on the end face of the fibre. The following figure 

shows the mode fields at 0, 20 and 40 N. 
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Figure 5.13: Power flow variation on the end face of the fibre due to 0 N (a), 20 N (b) and 
40 N (c) 

Figure 5.13 clearly shows the birefringence effect at 40 N. At smaller loads, it is 

visible that the mode shapes are not changing; however, after 40 N it starts to 

change in the x and y directions with the effect of refractive indices change. This 

phenomenon has led to birefringence. This has also been indicated in Figure 5.12 

with intensity variation formed after 40 N. After 40 N, the resultant effective 

refractive index value and cladding refractive index values are similar. Therefore, 

above a 40 N load, the SMF28 fibre is no longer behaving as a single mode fibre, 

and so the optical field changes significantly, as clear in Figure 5.12.  

 Figure 5.14 shows the stress variation in each direction due to applied point load 

whereas Figure 5.15 shows the stress variation in the middle of the fibre along 

the y-direction. 

(a) (b) 

(c) 
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Figure 5.14: Stress variations along x (a), y (b) and z direction (c) and along the middle 
of the fibre as shown in red line (d) 
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Figure 5.15: Stress variations in the x (a), y (b) and z direction (c) and in the middle of 
the fibre line as shown in (d) 

Figure 5.14 and Figure 5.15 show the symmetrical stress variation on horizontal 

and vertical directions on the fibre cross section. Therefore, birefringence on a 

point load fibre shows the symmetrical behaviour as shown in Figure 5.12 and 

Figure 5.13 (c). Although this shows symmetrical behaviour, some experimental 

results showed a non-symmetric spectrum peak due to the birefringence effect 

as noted in Section 3.2.2. These non-symmetrical shapes were observed in 

distributed load fibres. In the next section the distributed load will be considered 

more realistically in application practically compared with point loads. It will further 

investigate the reasons behind these non-symmetrical shapes. 
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5.4.2 BEHAVIOUR UNDER A DISTRIBUTED LOAD 

To understand the behaviour of distributed load on fibres, the computation 

domain was created, as shown in Figure 5.5. The load was applied on the top 

glass plate and varied from 0 N to 75 N. Previous simulations for point load were 

considered up to 50 N; however, this has been extended up to 75 N to provide 

more information. Similar to previous simulations, stress generalized strain was 

considered only to avoid plain strain conditions. Figure 5.16 shows the resultant 

effective mode index variation due to a distributed load due to generalized plain 

strain along the z direction. 

Figure 5.16: Graph of effective mode index variations with applied load for distributed 
load fibre 

According to the above figure, the initial effective mode index without any force 

is 1.4473 which is similar to the effective mode index given for the point load 

simulation. Similar to the mode index variation due to a point load, the effective 

mode index decreases steadily with applied load until 40 N and then there is a 

sudden change in trend including a slight increase due to the unguided behaviour 

of SMF28 fibre after 40 N. The following figures confirm this, showing the power 

flow (intensity) along the z direction for different loads at the end face of the fibre 

(Figure 5.17) and their power flow across the centre of the fibre (Figure 5.18). 
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Figure 5.17: Intensity variation on the end face of the fibre with different loads 

 
Figure 5.18: Intensity of all effective mode values along z direction 

Figure 5.18 shows a circular mode until 40 N and above after 40 N, double shapes 

appear. These mode shapes are not symmetrical compared to the intensities 

related to the mode shapes formed by a point load (Figure 5.12). In the same 

figure (Figure 5.18), at 45 N, the shape of the left side intensity related to the 

mode shape is broader than the right and the maximum height is lower compared 

to the right. When the distributed load is increased up to 75 N, it becomes narrow 

and the intensity related to the mode shape height increases. This is evidenced 

by many experiments conducted to understand the birefringence effect with the 

distributed load. The spectrum produced by loaded fibre has shown the change 

wave spectra from linear to curve, broadening or splitting in various studies (Bal, 

2010; Wagreich, 1996), which can be explained due to the birefringence effect. 
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To understand this behaviour, the stress profile in each direction is discussed 

below (in conjunction with Figure 5.19 and Figure 5.20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: Stress variations along x (a), y (b), z direction (c) along middle of the fibre 
as shown in red line (e) and relevant effective mode index for different loads (d) 

 

 

 

 

(a) (b) 

(c) 

(d) 

(e) 
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Figure 5.20: Stress variations along x (a), y (b), z direction (c), along middle of the fibre 
as shown in red line (d) and, relevant effective mode index for different loads 

These figures show the stress variation in the vertical and horizontal directions in 

the fibre. In Figure 5.19, the stress variation along x and y direction is symmetrical 

similar to the point load graph in Figure 5.14. But, the stress variation along the z 

direction is non-symmetrical in Figure 5.20 (c) compared to point load graphs in 

Figure 5.14. In point load graphs, the initial stress variation along the z direction 

is zero whereas for the distributed load, none of them are zero at the centre of 

the fibre. The stress variation in the vertical direction shows a non-symmetrical 

graph for the distributed load the while the point load shows vice versa. It can be 

assumed to be due to the result of contact surfaces. When comparing the stress 

graph with distributed load graph it is clear that the stress variations are different 

(a) (b) 

(c) 

(d) 
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to one another which has led to non-symmetrical mode shape in the distributed 

load fibre.  

Birefringence is a result of non-uniform induced refractive index change due to 

stress change. The index of refraction change due to stress effect can be 

calculated using Equation 3.3 and Equation 3.4 with the help of simulation results. 

Birefringence in the centre of the fibre was calculated using refractive index 

change in the x and y directions using simulation results. The refractive index 

changes and birefringence in the centre of the fibre due to distributed load are 

shown in Figure 5.21. 

 

 

 

 

 

 

 

 
Figure 5.21: Index of refraction changes in (a) x and y directions are calculated using 
equations and simulation results (b) birefringence, in the centre of the fibre 

The simulation results were also used to calculate wavelength changes and 

resultant wavelength in each direction for an FBG. These results are shown in 

Figure 5.22 where Figure 5.22(a) shows the wavelength change due to the stress 

effect and Figure 5.22(b) the resultant wavelength. The wavelength difference at 

40 N is nearly 3 nm and 5.5 nm at 75 N. All these results are simulated assuming 

the thickness of the glass plate was 1 mm. 

 

 

 

(a) (b) 
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Figure 5.22: (a) Bragg wavelength change in x and y directions and (b) Bragg wavelength 
in x and y directions for a distributed load  

5.5 RESULTS OF UNIFORM PRESSURE SENSING 

The analysis is based on the computation domain given in Figure 5.6 (a) and the 

simulation is performed for simple grating assuming the structure deforms 

uniformly in both radial and axial directions. 

5.5.1 BARE FIBRE 

 The following graphs (Figure 5.23) show the stress variation and strain variation 

in the centre of the core. 

 

 

 

 

 

 

Figure 5.23: Graph of radial axial and radial strain (a) and stress (b) vs pressure 
The strain graph (Figure 5.23 (a)) shows a similar variation for axial and radial directions 
while the stress graph (Figure 5.23 (b)) shows the same pressure exertion on the core 
and cladding of the structure. The resultant wavelength shift is plotted using Equation 
5.10.  

(a) (b) 

(a) (b) 



  

111 
 

Figure 5.24 is given to show the wavelength shift over the range of 70 MPa gauge 

pressure. 

                                               

 

 

 

 

 

 

 

 

 
Figure 5.24: Pressure vs wavelength shift 

When the Bragg wavelength is 1550 nm, the above graph shows -0.285 nm 

wavelength shift at 70 MPa. It is assumed that there is no thermal effect for the 

experiment. To compare the results with the literature, first and second strain-

optic coefficient are considered as 0.121 and 0.270. The effective mode index 

becomes 1.4622 and Young’s modulus is 73.1 GPa. The calculated pressure 

sensitivity can be presented by the Equation below: 

∆𝜆𝑝

𝜆𝐵∆𝑃
= −2.64 × 10−6/𝑀𝑃𝑎 

Equation 5.11 

The above simulation result is close to the result provided by Hocker (Table 3.2), 

and confirmed the result produced by simulation is accurate. Table 3.2 shows 

similar result by other researchers but as noted parameter values were chosen 

differently. 

5.5.2 POLYMER COATED FIBRE  

Next polymer coated fibre was considered, for comparison with the article 

published by Yunqi et al. (2000). They coated silica fibres in a cube of 

polycarbonate and was able to produce 30 times higher pressure sensitivity than 
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that of Xu et al. (1993). The  material properties given in Table 5.1 were 

considered to verify this simulation for the selected polymer (Yunqi et al., 2000). 

In the simulation it was assumed to be embedded in a polycarbonate cylinder 

instead of a cube. The simulation was performed assuming there is no thermal 

effect. Two coating layers were introduced for adding different materials together 

or discern whether there is any effect due to the thickness of the coating layer. 

Table 5.1: Material properties of selected polymers 

For 

each 

simulation, the bulk modulus (B) and shear modulus have been introduced under 

material properties, using the following equations: 

𝐵 =
𝐸

3(1 − 2𝜐)
 

Equation 5.12 

𝑆 =
𝐸

2(1 + 𝜐)
 

Equation 5.13 

In polymer coated fibres, pressure is applied up to 10 MPa. The following graph 

(Figure 5.25) shows the wavelength shift with the relevant pressure until 10 MPa.  

 

 

 

 

 

 

 

Figure 5.25: (a) Wavelength shift Vs pressure and (b) 2D cross section view of structure 
deformation due to pressure experience (b) 

  Silica Polycarbonate  

Young’s modulus (E) 73.1 GPa 3.5 GPa 

Poisson’s ratio (𝞾) 0.17 0.35 

Density 2203 kg/m3 1190 kg/m3 

 Coefficient of thermal 
expansion 

0.55 × 10−6/K 0.55 × 10−6 

(a) 
(b



  

113 
 

According to Figure 5.25 (a), the calculated Bragg wavelength pressure 

sensitivity is: 

∆𝜆𝑝

𝜆𝐵∆𝑃
= −6.19 × 10−5/𝑀𝑃𝑎 

Equation 5.14 

The above result is very close to the experiment result (−6.25 × 10−5) produced 

by Yunqi et al. (2000). The following graphs (Figure 5.26) show the strain and 

stress variation along the axial and radial directions for the above simulation. 

 

 

 

 

 

 

 

Figure 5.26: Strain (a) and stress (b) variation along axial and radial directions on the 
centre of the fibre 

These graphs show that the strain and stress variation along the axial and radial 

directions are not equal, in contrast with the bare fibre that showed both variations 

are equal in the axial and radial directions in Figure 5.23. In polymer coated fibre, 

the strain and stress variation in the axial directions are higher than in the radial 

direction.  

As the above simulation showed good agreement with previous work with 30 

times more sensitivity than bare fibre, further simulations were undertaken using 

different polymers as coating materials to determine the pressure sensitivity 

under 0.1 MPa. Therefore, the following materials (Table 5.2) have been 

considered for the coated material to apply for similar simulations.  

 

 

(a) (b) 
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Table 5.2: Material properties of PTEF and PDMS 
  PTEF 

(polytetrafluoroethylene) 

PDMS 

(polydimethylsiloxane) 

Young’s modulus (E) 0.4 GPa 750 kPa 

Poisson’s ratio (𝞾) 0.46 0.49 

Density 2200 kg/m3 970 kg/m3 

 Coefficient of thermal 
expansion 

100 × 10−6/K 9 × 10−4/K 

The first material shows a high Young’s modulus and high Poisson’s ratio while 

the second shows low Young’s modulus and high Poisson’s ratio. Figure 5.27 

shows a linear pressure variation of the Bragg wavelength up to 100 kPa (~ 1 

atm) for both materials. Among them PDMS shows more sensitivity than PTEF. 

Among the two graphs, the first graph shows a linear relationship for PTFE while 

the second graph shows non-linear relations for PDMS. The behaviour of PDMS 

on second graph has been verified by Cooksey & Ahmed (2016).  

 

 

 

 

 

 

 

 

Figure 5.27: Experiment results of (a) wavelength shift vs pressure graph for PDMS 
(Cooksey & Ahmed, 2016), (b) simulation results for wavelength shift vs pressure for 
PDMS and PTFE 

PDMS shows similar behaviour under pressure in Figure 5.27 (a) and (b). To 

calculate and compare the pressure sensitivity of selected polymers, second 

graph (Figure 5.27 (b)) has been chosen. The following table shows the pressure 

sensitivity of each material considered. It is assumed that the PDMS behaves 

linear under pressure up to 100 kPa. 

 

(a) 
(b) 
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Table 5.3: Pressure sensitivity of selected materials 
 Silica (Bare) Polycarbonate PTFE PDMS 

∆𝜆𝑝

𝜆𝐵∆𝑃
(/MPa) 

−2.64 × 10−6 −61.9 × 10−6 −148.4 × 10−6 −451.6 × 10−6 

The last two materials in Table 5.3 show 55 times and ~170 times high sensitivity 

than bare fibres. Those two materials clearly can be used in pressure sensing at 

less than 100 kPa but non-linear behaviour of PDMS has to be addressed. 

However, when comparing the thermal coefficient of each material, the thermal 

expansion coefficient of PDMS is 7 times higher than PTEF. Although these 

simulations were performed without any thermal effect, PDMS can be 

recommended mostly for further studies. Density-wise PTFE looks more 

acceptable although it has less sensitivity compared to PDMS. PDMS and PTFE 

based sensors has already been reported. Therefore, further investigations were 

performed by reducing pressure and thickness of the material. As PDMS coatings 

are commercially available but limited to 100 𝞵m, the thickness of the fibre coating 

was set to 100 𝞵m for both materials. The maximum pressure is set up to 10 kPa. 

Figure 5.28 shows the wavelength shift for the set pressure limits.  

 

 

 

 

 

 

 

  
  
Figure 5.28:  Wavelength shift vs pressure, without any diameter deduction of the fibre 
cladding (a), wavelength shift after 30 µm deduction from the cladding of the fibre   

In each case both materials show a linear relationship with the pressure applied. 

When the fibre diameter decreased it shows 3 times higher sensitivity (Figure 

5.28 (b)). Fibre diameter reduction is also practically possible through introducing 

etching techniques. The pressure sensitivity has been further investigated for 

(a) (b) 
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reducing the diameter for both materials. Therefore, the following graph was 

plotted after setting the pressure up to 50 kPa. 

 

                           

 

 

 

 

 

 

 

Figure 5.29: Wavelength shift vs pressure graph for PTFE and PDMS when fibre 
diameter is 30 µm 

Table 5.4 summarises the pressure sensitivity of PTFE and PDMS. Both 

materials show nearly 35 times (bare fibre) sensitivity without any diameter 

change at 10 kPa. The same material shows nearly 100 times more pressure 

sensitivity at 50 kPa compared with the bare fibre at 70 MPa. It shows linear 

sensitivity under 10 kPa and 50 kPa. Therefore, both materials are viable options 

for low (gauge) pressure measument. However, further investigation conducting 

experiments is required to confirm their commercial use. 

Table 5.4: Pressure sensitivity by different materials under different pressure and 
changing diameter 

 Cladding diameter of fibre = 30 𝞵m 

50 kPa  

Cladding diameter of fibre= 62.5 𝞵m 

10 kPa 

PTFE PDMS PTFE PDMS 

∆𝜆𝑝

𝜆𝐵∆𝑃
(/MPa) 

−183 × 10−6 −216 × 10−6 

(= -0.34 nm/MPa) 

−70.1 × 10−6 −73.5 × 10−6 
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5.6 SUMMARY 

This chapter focused on using FEA to understand pressure exerted on optical 

fibre and proposed new pressure sensors to measure at a low-pressure (gauge) 

range. Computational models were developed to create a point load and a 

distributed load on optical fibre considering geometrical deformation under 

pressure. It included deformation of the structure not only in 2-D coordinates but 

also 3-D coordinates. This has given a clear picture of the behaviour under 

transverse compressive load. The results show a birefringent effect with an 

increase of load confirming the experimentally observed non-linear behaviour. 

The 2-D model was converted to a 3-D model by adding extra equations to 

simulate its true behaviour under an applied load. The splitting of the peak 

produced due to load was in good agreement with the data of the literature 

available. The analysis was also used to find the magnitude of the wavelength 

shift in each of the x and y directions with the aid of simulation results and 

mathematical equations.  

A possible uniform pressure sensor was modelled considering the literature and 

further modified for low pressure sensing after confirming the experimental results 

found in the literature. All the developed models were successfully designed with 

the aid of mathematical equations. 

Those models were used to analyse and determined an enhancement of the 

pressure sensitivity of FBG based sensors in this chapter. The developed models 

were in good agreement with the literature provided. Therefore, further analysis 

was carried out to improve the sensitivity in low (gauge) pressure range by adding 

polymer coating to change material properties of the cladding and the thickness 

of the fibre cladding diameter. The sensitivity obtained for the range of 0 - 50 kPa 

is 100 the times sensitivity than the sensitivity reported for bare fibre at 0 - 70 

MPa.  

According to Table 3.1, the maximum recorded pressure sensitivities at low 

pressure is 9.08 nm/MPa at range of 0 - 100 kPa for photonic crystal fibres. This 

study shows the pressure sensitivity of polymer coated fibre using PDMS and 

PTEF is nearly 0.34 nm/MPa at range of 0 - 50 kPa. Therefore, the proposed 

pressure sensors at a range of 0 - 50 kPa is a good candidate as a low pressure 
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sensor when considering the shape of the fibre and medium of the surroundings. 

Reviewing the predicted sensitivity of the sensor proposed in this chapter is in 

comparison to the application in the biomedical field as obtained in Table 1.1 and 

Table 1.2. It is evident that advantages of further investigation are towards 

biomedical applications.  
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CHAPTER 6:  Conclusion and future works 

6.1 KEY OUTCOMES 

This work considered a low (gauge) pressure sensor using a FBG for use in the 

field of biomedicine, sport... etc. To achieve this goal, this study used FEA 

methods to model FBGs structures and their spectra to analyse and to 

understand how their behaviour depends on the fabrication process. Then FBGs 

were modelled with different coatings using FEA to identify the suitable materials 

to enhance the pressure sensitivity in the range of 0 – 50 kPa.  

To achieve the above targets FEA was carried out step by step. Firstly, optical 

fibre (SMF-28) characteristics were analysed by FEA. Simulations were 

performed at different wavelength to analyse the number of modes propagating 

at each wavelength. It was confirmed the only mode propagates at  𝜆𝐵  and 2𝜆𝐵  

is 𝐻𝐸11.  However at  (⅔)𝜆𝐵  more modes (4 modes) were present, confirming its 

multimode behaviour due to V > 2.405. The analysis results are also in good 

agreement with the literature (Figure 2.3 and Figure 2.4). As expected, effective 

mode index values were between core and cladding refractive index values at 

each wavelength.  

Next, FEA was used to develop new computational models to create FBG 

refractive index structures and their spectra. The developed computational model 

was designed using phase mask manufacturing process as it is the commonly 

used method. This study considered multiple orders of the phase mask instead 

of an ideal phase mask, as it provides a complex grating structure which requires 

more research to understand its behaviour at different wavelengths and its 

response to various methods of exerting pressure (stress, load… etc).  The 

developed 2-D model was used to analyse the wave spectra and their harmonics. 

The FEA model was capable of creating various FBG structures by changing 

characteristics of the phase mask and incident angles such as first order gratings, 

complex grating and tilted grating as shown in Figure 4.33 (simulated by using 

COMSOL). FFT analysis was performed for the model FBG structure and it 

provided the number of harmonics, its grating period and expected efficiencies 

associated with the FBG pattern. The results produced were in a good agreement 
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with (Kouskousis et al., 2013) and (Rollinson, 2012). Reflection spectra were 

observed for the same structure at the wavelength of 𝜆𝐵 , 2𝜆𝐵 and (⅔) 𝜆𝐵 . The 

results were in good agreement with number of modes observed for single mode 

fibre by using FEA. 

The above method of the FBG produced by using 2-D model of computaional 

design has not been reported previously. This method is unique and able produce 

first order, complex grating or tilted gratings simply by adusting its parameters 

and dimensions  of first order or multiple order phase mask. The complex FBG 

pattern was easily imported into a simulated optical  fibre to analyse the spectrum 

at different wavelength.  

The next phase of the study was to develop 2-D models for pressure exerted via 

point load, distributed load and uniform pressure. In many studies of the literature, 

point load and distributed load were simulated assuming plane strain of the 

structure. In this study, it was extended to analyse the strain variation in the z 

direction using COMSOL software. Therefore, all the effects due to force on the 

fibre were included in the analysis. Those models were used to understand the 

birefringence effect on fibres due to an external load. Both models showed 

SMF28 is no longer behaving as a single mode fibre above 40N. The simulation 

results showed the splitting of the spectrum due to birefringence effects in both 

point and distributed load simulations. Compared to point load, the distributed 

load showed unequal peaks at the beginning of the split. After analysing the 

results, stress variation of distributed load showed the reasons for those peaks. 

Therefore, those models showed the advantage of computational modelling in 

understanding the real situation.  

Finally, the uniform pressure sensing of the FBG was modelled using literature 

data and its computational analysis was then verified with the results found in 

literature. The results of simulations were in a good agreement with literature 

findings; hence, the validity of the model was confirmed. It was then applied to 

test different materials in high pressure and once it produced acceptable 

wavelength change further studies were carried out by lowering the pressure up 

to 50 kPa. After testing several polymer materials to enhance the pressure 

sensitivity, PTFE and PDMS were found to be most viable, hence, they were 
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recommended for further study. Both materials were positive according to the fact 

that they are commercially available and have already been used for sensing 

purpose. Although PDMS did not show a linear response around 100 kPa it 

showed linear response up to 50 kPa. At 10 kPa, PDMS showed high sensitivity 

while PTFE showed less. However, at 50 kPa, both showed linear and similar 

response. In contrast with the material properties PTFE has high Young’s 

modulus and low Poisson’s ratio while PDMS has vice-versa. Therefore, all the 

findings give an indication of the coating process of the material that will be 

different to each other. The proposed low (gauge) pressure sensors are more 

suitable for low pressure measurement in the range of 0 – 50 kPa compared to 

the sensors were listed in Table 3.1. The outcome of these FEA simulations has 

made significant contribution to knowledge in understanding of characteristic of 

optical fibre, complex FBG structures and their spectrum, various method of 

pressure exerted on FBGs and advancement of use in modelling pressure 

sensors.  

In conclusion, key outcomes can be mapped with the initial objectives as we 

planned in the research as shown by the following table; 

Table 6.1: Mapping key outcomes of the study with the initial objectives 

Key Outcome Targeted Initial Objectives 

1. Complex FBG structures were 
developed using FEA method 

2. FEA model was developed to obtain 
spectra patterns 

3. Analysed results for spectra patterns 
were in good agreement with 
theoretical and experimental findings 

Model FBG structures and their spectra using 
Finite Element Analysis (FEA) methods; 
Analyse their spectra for better understanding 
of their relationship with the underlying FBG 
complex refractive index variation 

1. FEA model was built to simulate 
moderate pressure on a polymer 
coated fibre. 

2. Different materials were analysed and 
PDMS determined as the most 
effective coating material at moderate 
pressure range 

3. Analysed results in good agreement 
with existing literature 

Model FBGs with different polymer coatings 
using a FEA method to identify suitable 
materials for enhancing the pressure 
sensitivity at moderate pressures; Compare 
the results with existing literature to confirm 
efficacy of the findings in simulations. 
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6.2 FUTURE WORK 

Modelling of internal FBG structure post fabrication using a standard phase mask 

showed good agreement with theoretical analysis and experimental. Therefore, 

the developed models can be effectively applied in future work with complex 

grating.  All the simulations were performed for wavelength spectrum which was 

produced assuming 1.066 mm grating length. The grating length was limited by 

the size of the RAM (32 GB) available in the computer. Moreover, simulating 

optical fields requires a higher number of mesh points to ensure accurate results. 

Hence, the higher the RAM capacity of the computer the greater the number of 

mesh points which leads to more accurate results. A computational model of the 

phase mask method includes the angle of incidence of the light. This can be used 

to model a tilted grating for any angle. However, the developed tilted structure 

could not be analysed due to the number of mesh requirement in the cladding 

area which needs to show how the cladding modes propagate. Using high power 

computers with more RAM, this can be achievable. Therefore, future work can be 

designed using the same model but with high power computers with adequate 

RAM to analyse the behaviour of tilted structures. The model was built based on 

the literature and following the manufacturer’s (Ibsen) information of the phase 

mask structure. UV absorption was not included; this was not possible due to the 

difficulty of finding an accurate value for UV absorption. Although UV absorption 

in glass is high, it could be neglected considering the small lengths involved. The 

approach used is validated, as the results agree with the other models and 

experiments. 

For a point load, distributed load and uniform pressure sensing, analyses were 

performed assuming the grating structure is similar to first order gratings due to 

the insufficient computer capacity. Analysis of the pressure sensitivity of complex 

structure can be deeply investigated along with the developed computational 

models aided with sufficient computer capacity. A more efficient process to doing 

this is by combining spectral analysis of complex structure with pressure 

analysing together. The derived results can be greatly utilised to understand the 

complex structure and its commercial usage.  
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Low pressure sensing is greatly challenging due to material properties of optical 

fibre. In regard to commercializing sensors, simplicity of a sensor is a significant 

factor for consideration. In this study, PTFE and PDMS have been selected for 

further studied pressure sensitivity in different pressure ranges. The developed 

computation model shows promising sensitivity at low pressure range (up to 50 

kPa). It is also observed that both PDMS and PTFE have shown similar results 

at low pressure range; hence, future studies should target more on practical 

viability of both materials at low pressure range. In this study, simulation was 

performed only for normal gratings. Hence, future studies can consider the 

application of similar simulation for complex grating structure in 2-D coordinates 

in Cartesian coordinates.  
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