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Abstract
In the implementation of traditional GP algorithm as models are evolved in a single deme (an environment in which a

population of models is evolved) it may tend to produce sub-optimal models with poor generalisation skills due to lack of

model diversity. As a solution to above issue, in this study the potential of evolving models in parallel multiple demes with

different genetic attributes (parallel heterogeneous environments) and subsequent further evolution of some of the fittest

models selected from each deme in another deme called the master deme was investigated, in relation to downscaling of

large-scale climate data to daily minimum temperature (Tmin) and daily maximum temperature (Tmax). It was discovered

that independent of the climate regime (i.e. warm or cold) and the geographic location of the observation station, a fraction

of the fittest models (e.g. 25%) obtained from the last generation of each deme alone are sufficient for the formulation of a

diverse initial population of models for the master deme. Also, independent of the climate regime and the geographic

location of the observation station, both daily Tmin and Tmax downscaling models developed with the parallel multi-

population genetic programming (PMPGP) algorithm showed better generalisation skills compared to that of models

developed with the traditional single deme GP, even when the amount of redundant information in the data of predictors

was high. The models developed for daily Tmin and Tmax with the PMPGP algorithm simulated fewer unphysically large

outliers compared to that of models developed with the GP algorithm.

Keywords Genetic programming � Parallel multi-population genetic programming � Downscaling � Evolution �
Diversity � Migration policy

1 Introduction

For the simulation of the historical climate and the pro-

jection of climate into future general circulation models

(GCMs) are widely used (Mujumdar and Kumar 2012).

Though GCMs are able to adequately simulate the large-

scale climate (i.e. global or continental) (Wang et al. 2015)

since catchment-scale characteristics such as fine topo-

graphical features, land use, and convective processes are

coarsely represented in their structures, they are not able to

correctly simulate climate at catchment-scale (Chu and Yu

2010). As a solution to this matter, statistical (Liu et al.

2013a; Pour et al. 2014; Erhardt et al. 2015; Manzanas

et al. 2018) and dynamical (Laprise 2008; Liu et al. 2013b)

downscaling techniques have been developed. In statistical

and dynamical downscaling coarse-scale climate data from

GCMs are used to derive catchment-scale climate infor-

mation. Readers are referred to Fowler et al. (2007) and

Maraun et al. (2010) for detailed reviews on statistical and

dynamical downscaling.

The main objectives of statistical downscaling are;

enhancement of spatial details of a predictand, reduction of

bias in reanalysis/GCM outputs which may migrate to

predictands, and simulation of hydroclimatic variables that
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are not explicitly produced by GCMs (e.g. streamflows)

(Lanzante et al. 2018). The framework of a statistical

downscaling exercise in general encompasses; predictand

and predictor selection, delineation of an atmospheric

domain, reanalysis data and GCM selection, selection of a

downscaling technique and a strategy for calibration and

validation of the model, model calibration and validation,

bias-correction, and projection of catchment-scale climate

into future (Sachindra et al. 2014a, b). The performance of

a statistical downscaling model depends on the downscal-

ing framework and the data used in model development. In

any downscaling framework, predictor selection is regar-

ded as one of the foremost steps (Hammami et al. 2012)

which can have a significant impact on the capabilities of a

downscaling model. The inclusion of predictors irrelevant

to the underlying process, the inclusion of redundant pre-

dictors and the omission of relevant predictors are some of

the issues related to the development of statistical down-

scaling models. Irrelevant predictors are uninformative of

the underlying process and inject noise into the down-

scaling model and, hence detrimental to the model per-

formance. Meanwhile, the inclusion of redundant

predictors may unnecessarily increase the model com-

plexity without providing any improvement to its perfor-

mance, and this can even increase the model run time. The

omission of relevant predictors from the set of predictors

may make the downscaling model incapable of success-

fully describing the predictand. Therefore, careful selection

of relevant predictors omitting redundant and irrelevant

information is a paramount requirement in the development

of robust and parsimonious downscaling models (Fowler

et al. 2007; Maraun et al. 2010).

Selection approaches of predictors for statistical down-

scaling models can be grouped into three categories; (1)

model-independent approaches (or filters), (2) model-de-

pendant approaches (or wrappers), and (3) hybrid approa-

ches. The model-independent predictor selection

approaches are based on the strength of linear (Anandhi

et al. 2009) or non-linear association between the predic-

tors and the predictand (Sharma 2000). The use of Pearson

correlation (Pearson 1896) to identify linear associations

and mutual information to identify non-linear associations

between predictors and the predictands are examples for

the use of model-independent predictor selection approa-

ches. Model-independent approaches are computationally

inexpensive but may tend to select a set of predictors with

data redundancies. In order to reduce the redundancies in

the data of predictors identified using model-independent

approaches, principal component analysis (PCA) is widely

used (Anandhi et al. 2008). Furthermore, partial correlation

(Stennett-Brown et al. 2017) and partial mutual informa-

tion criterion (Sharma 2000) can also reduce the influx of

redundant information into a model.

The model-dependant predictor selection approaches are

dependent on the calibration/validation and the structure of

the downscaling model (Coulibaly 2004). The use of

genetic programming (GP) or stepwise regression to

identify inputs to a downscaling model are examples of

model-dependant input selection approaches. In model-

dependant predictor selection approaches, inputs are

selected based on the performance of the downscaling

model, and in general iterative calibration/validation of the

model is required. Since, models are specifically tuned to a

set of predictor data they achieve a better degree of per-

formance (Galelli and Castelletti 2013). However, the

higher computational cost associated with model-depen-

dant predictor selection approaches is a concern. Hybrid

predictor selection approaches are a combination of both

model-independent and model-dependant approaches.

The correlated nature of predictors induces information

redundancy and collinearity in the input set to any statis-

tical model (Galelli and Castelletti 2013). This is more

pronounced in the case of downscaling models since the

data of any predictor of interest are highly correlated over

space (Sachindra et al. 2014c). The non-linearity in the

predictor–predictand relationships and inherent complexi-

ties in the natural processes of interest make it ineffective

to apply traditional predictor selection approaches, such as

correlation analysis (May et al. 2008, 2011) and traditional

dimensionality/redundancy reduction techniques such as

PCA (Sachindra et al. 2013). In comparison to other

environmental modelling exercises where the dimension-

ality of the predictor data set is mostly in the order of tens

(e.g. streamflow forecasting), in some statistical down-

scaling exercises the dimensionality of the predictor data

set could be in the order of hundreds or even thousands

(Spak et al. 2007). It is accepted that a combination of

predictors leads to a statistical downscaling model with

better performance in comparison to a downscaling model

built with a single predictor (Lutz et al. 2012). However,

the selection of a proper combination of predictors to a

statistical downscaling model still remains a challenge

(Yang et al. 2017). Therefore, there is a need to further

investigate on non-linear input selection approaches which

can effectively reduce information redundancy, omit

irrelevant information, reduce the dimensionality of input

data and hence select an optimum set of predictors to sta-

tistical downscaling models.

The relationships between catchment-scale hydrocli-

matic variables (predictands) and large-scale atmospheric

information (predictors) are often highly non-linear.

Machine learning techniques have been proven effective in

capturing highly non-linear relationships between predic-

tors and predictands (Sachindra et al. 2013; Devak et al.

2015). However, most of the machine learning techniques

suffer from the drawback of being black-box in nature,
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where the relationships between predictors and predictands

and the underlying processes remain hidden (Sehgal et al.

2018). Among the plethora of regression techniques used in

statistical downscaling, genetic programming (GP) which

is inspired by Darwin’s theory of biological evolution can

be considered as a unique technique as it; (1) models both

linear and non-linear relationships, (2) identifies an opti-

mum set of predictors while evolving predictors–predic-

tand relationships, (3) produces explicit equations relating

predictors to the predictand (predictors–predictand rela-

tionships) and (4) filters out irrelevant and redundant

information in the set of predictors through evolution

(Koza 1992). The traditional/conventional GP algorithm

starts with the generation of a random population of models

and continues to evolve them (improve model fitness) by

performing genetic operations. Although traditional GP

algorithm possesses the above advantages, as models are

evolved in a single deme (an environment in which a

population of models is evolved) it may tend to produce

sub-optimal models with poor generalization skills due to

limited model diversity (variety among models) (Fernan-

dez et al. 2003). Also, owing to the inherent randomness in

the algorithm, GP often displays limited ability to identify

a unique optimum set of predictors influential on a given

predictand (Sachindra et al. 2018a). The evolution of

populations of models in parallel multiple demes is seen as

a potential way to increase model diversity and hence it

may reduce the chances of evolving sub-optimal models.

In this study the potential of evolving populations of

models in parallel multiple demes with different genetic

attributes (parallel heterogeneous environments) and sub-

sequent further evolution of some of the fittest models

selected from each deme in an environment called the

‘‘master deme’’ was investigated, in relation to downscal-

ing of large-scale climate information to daily minimum

and maximum temperature. The performance of down-

scaling models evolved with novel PMPGP was also

compared with that of models developed with traditional

single deme GP. So far in the literature of the field of

hydroclimatology, the use of parallel multiple demes to

evolve models employing GP has not been seen (Danandeh

Mehr et al. 2018).

The major innovations of this study are:

• Use of parallel heterogeneous environments for boost-

ing model diversity to evolve optimal models

In the PMPGP algorithm, models were initially

evolved in parallel environments where cross-over,

mutation and replication probabilities are different.

Since the models were evolved in different parallel

environments the diversity among the models was

expected to be high. Therefore, the possibility of

evolving optimal models was also high.

• Investigation of impacts of different migration policies

on model performance

In the PMPGP algorithm, some of the models

evolved in different parallel environments were allowed

to migrate into a common environment called the

‘‘master deme’’ where further evolution occurred.

Different migration policies govern which models will

migrate into the master deme.

• Investigation of degree of resistance of this novel

PMPGP algorithm to redundant information in inputs

Redundant information in inputs can increase the

model complexity and reduce model generalization

skills. The ability of the models developed with

PMPGP algorithm to minimise the adverse impacts of

redundant information present in the inputs was

investigated.

• Investigation of generation of unphysically large out-

liers produced by models developed with traditional GP

algorithm and this novel PMPGP algorithm

Traditional GP-based models, in general, tend to

simulate unphysically large outliers (e.g. a value 100

times or larger than the observed maximum). It was

investigated whether PMPGP-based models also gen-

erate such unphysically large outliers.

2 Study area and data

In this research, Japan was selected as the study area as it is

an ideal location for testing statistical downscaling

approaches due to its diverse topography and climate. The

total areal extent of Japan is about 377,727 km2, and its

climate varies significantly over land. The southern region

of Japan displays a subtropical climate, while the northern

region experiences sub-arctic (sub-frigid) climate (Mu-

razaki et al. 2010). In this study, 15 temperature observa-

tion stations were considered in such way that they

represent; relatively cold and warm conditions, different

geographic locations (e.g. the side of the Sea of Japan and

the side of the North Pacific Ocean) and elevations. Also,

caution was exercised to select stations that contained a

minimum amount of missing observations. Table 1 shows

the details of the 15 temperature observation stations

selected for this investigation. As seen in Table 1 the

percentages of missing data at the majority of the stations

for both daily minimum and maximum temperature were

extremely small. These small amounts of missing data were

infilled with the average values of temperature computed

from the preceding and succeeding days. At Ebina,

Yamanaka and Otsuki stations the missing data percent-

ages were relatively higher, and hence using a regression

equation with the data at Kawaguchiko station those
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missing data were infilled. Figure 1 shows the locations of

these observation stations in Japan.

For calibrating and validating downscaling models

large-scale climate information is required. For this pur-

pose, daily NCEP/NCAR (National Centres for Environ-

mental Prediction/National Centre for Atmospheric

Research) reanalysis data were obtained corresponding to

the period 1977–2017 from the National Oceanic and

Atmospheric Administration/Earth System Research Lab-

oratory (NOAA/ESRL) Physical Sciences Division.

Reanalysis data provide comprehensive portraits of climate

conditions over long periods of time covering large spatial

extents (Parker 2016). NCEP/NCAR reanalysis data are

produced employing data assimilation, a process that uses

both observations and numerical model simulations to

estimate climate conditions (Kalnay et al. 1996). As stated

by Brands et al. (2012) NCEP/NCAR reanalysis data set is

the most popularly used reanalysis data set in the field of

climate research. The observations of daily minimum and

maximum temperature for the 15 stations were obtained

from the Japan Meteorological Agency (www.data.jma.go.

jp/gmd/risk/obsdl/index.php) for the same period. The

observations of daily minimum and maximum temperature

used in this study have originated from the automated

meteorological data acquisition system (AMeDAS) of the

Japan Meteorological Agency. The AMeDAS is a network

of automated weather monitoring stations located across

Japan with an average density of a station per 17 km2

Table 1 Temperature stations

considered in this study
Predictand Station name Lati Lon Elev Avg SD Cv Missing data%

Tmax Fuji mountain 35.36 138.73 3775.1 - 3.2 9.5 - 2.95 0.00

Tmin - 9.2 9.8 - 1.06 0.19

Tmax Kofu 35.66 138.55 272.8 20.7 8.8 0.43 0.00

Tmin 10.1 9.3 0.93 0.00

Tmax Ebina 35.43 139.38 18.0 20.1 7.8 0.39 2.74

Tmin 11.0 8.8 0.80 2.74

Tmax Kawaguchiko 35.50 138.76 859.6 16.5 8.5 0.51 0.05

Tmin 5.7 9.1 1.60 0.07

Tmax Yamanaka 35.44 138.84 992.0 14.6 8.4 0.58 2.46

Tmin 3.8 9.6 2.51 2.46

Tmax Otsuki 35.61 138.94 364.0 19.0 8.6 0.45 2.43

Tmin 8.3 8.9 1.08 2.43

Tmax Cape Muroto 33.25 134.18 185.0 19.4 6.7 0.34 0.05

Tmin 14.4 7.2 0.50 0.03

Tmax Sukumo 32.92 132.70 2.2 21.1 7.2 0.34 0.01

Tmin 13.1 8.0 0.61 0.00

Tmax Kitami 44.94 142.58 6.7 9.5 9.9 1.05 0.02

Tmin 2.7 9.4 3.42 0.04

Tmax Wakkanai 45.42 141.68 2.8 9.5 9.4 0.99 0.01

Tmin 4.3 8.9 2.05 0.01

Tmax Wajima 37.39 136.89 5.2 17.6 8.7 0.49 0.00

Tmin 9.6 8.2 0.86 0.00

Tmax Niigata 37.89 139.02 4.1 17.6 9.2 0.52 0.01

Tmin 10.6 8.6 0.81 0.01

Tmax Nagasaki 32.73 129.87 26.9 21.0 7.7 0.37 0.00

Tmin 13.9 7.9 0.57 0.00

Tmax Makurazaki 31.27 130.29 29.5 22.0 6.9 0.31 0.01

Tmin 14.3 7.7 0.54 0.00

Tmax Maebashi 36.40 139.06 112.1 19.8 8.6 0.43 0.00

Tmin 10.4 8.7 0.84 0.00

Lati, latitude; Lon, longitude; Elev, elevation of a station above mean sea level in m; Avg, daily average of

minimum or maximum temperature over period 1977–2017 in �C; SD, daily standard deviation of mini-

mum or maximum temperature over period 1977–2017 in �C; Cv, coefficient of variation of minimum or

maximum temperature over period 1977–2017; Tmax, daily maximum temperature in �C; Tmin, daily

minimum temperature in �C; Missing data%, percentage of missing data over period 1977–2017
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(Vuillaume and Hearth 2018). These stations relay weather

information at every 1 or 10-min to a data centre where

quality control measures are in place to remove any

abnormal values. In addition to that weather stations are

periodically inspected, and instruments are calibrated to

ensure the quality of observations (Yato et al. 2017). These

observations were used to provide point scale information

to downscaling models in their calibration phase. In vali-

dation, simulations produced by downscaling models were

verified against these observations.

3 Techniques

In this study two non-linear regression techniques were

employed to develop downscaling models; (1) traditional

genetic programming (GP) and (2) parallel multi-popula-

tion genetic programming (PMPGP). Sections 3.1 and 3.2

provide the details of GP and PMPGP.

3.1 Genetic programming

GP algorithm mimics Darwin’s theory of biological evo-

lution which states that ‘the fittest individuals in a popu-

lation will survive and reproduce’. GP is inspired by the

popular optimisation technique genetic algorithm (GA). A

detailed review of the applications of GP algorithm and

some of its variants (e.g. gene expression programming) in

the field of water resources research is provided by

Danandeh Mehr et al. (2018). The traditional/conventional

GP algorithm involves several main steps as listed below

(Koza 1992). Figure 2 depicts the traditional GP algorithm

in a flow chart. The details of the main attributes of the GP

algorithm are given in Table 2.

1. Randomly generate an initial population of downscal-

ing models (predictor–predictand relationships).

2. Assess the fitness/performance of downscaling models

in the initial population.

3. Create a mating pool by randomly selecting downscal-

ing models from the initial population, considering

their fitness.

Fig. 1 Study area with locations of observation stations considered in this study
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4. Generate the next population of models by executing

genetic operations on models in the mating pool.

5. Continue steps 2–4 until a certain termination criterion

is met, and then select the fittest (best) downscaling

model.

3.2 Parallel multi population genetic
programming

In the traditional GP algorithm, steps shown in Sect. 3.1

are employed within a single deme (single environment)

No

Yes  

G
en

er
at

io
n

= 
G

en
er

at
io

n 
+ 

1

Generation = 1
Random generation 

of an initial 
population of models

Evaluation of fitness of each 
model in the population (e.g. 
using root mean square error)

Is stopping 
criterion 
satisfied?

Stop 
running 

algorithm 
and select 
the fittest 

model 

Random selection of 
models for mating pool 

based on fitness (e.g. using 
tournament selection) 

Perform genetic operations (e.g. 
crossover, mutation and 

replication) on randomly selected 
models from mating pool

Fig. 2 GP algorithm in a flow chart

Table 2 Main attributes of GP algorithm

GP attribute Brief description

Size of population Refers to the number of models in a generation. Use of 50–500 models per generation is widely seen in

literature (e.g. Parasuraman et al. 2007; Sachindra et al. 2018a, b), Larger populations demand higher

computational resources and smaller populations limit the model diversity (Danandeh Mehr et al. 2018)

Tree depth/program size/model size Refers to the maximum depth of a model tree. Large tree sizes may lead to boat and smaller tree sizes

may hinder the effective evolution of models (Koza 1992)

Mathematical function set Refers to a set of mathematical functions such as {?, -, 9, 7, H} used in evolving models. Selected in

a manner that functions can be used to create linear or non-linear models that are adequately complex

but not overly complex (Sachindra et al. 2018a)

Technique for generating initial

population

Technique used to generate the initial population of models. Ramped half-and-half initialization

technique is widely used to produce a variety of model trees with different sizes and structures (Koza

1992)

Measure of fitness Refers to the technique used to measure performance of models. Mean square error and root mean square

error are widely used to measure fitness (e.g. Parasuraman et al. 2007; Danandeh Mehr et al. 2018)

Model selection criterion for creating

mating pool

Basis on which models are selected for performing genetic operations such as mutation, crossover and

replication. Roulette wheel selection, tournament selection and lexictour are examples for some of the

selection criteria in use

Probability of mutation Likelihood of replacing a sub-tree of a model (a part of a model) with a new sub-tree. Higher mutation

probabilities will increase the time required to converge the GP algorithm (Sachindra et al. 2018a)

Probability of crossover Likelihood of exchanging sub-trees between two models. Higher crossover probabilities assist in better

recombining models (Coulibaly 2004)

Probability of replication Likelihood of copying a model from one generation to another. Higher replication probabilities may

impede effective evolution of models (Sachindra et al. 2018a)

Criterion for stopping the algorithm It decides when to terminate the evolution of models. Usually, the GP algorithm is stopped after a specific

number of generations (e.g. Stanislawska et al. 2012)

1502 Stochastic Environmental Research and Risk Assessment (2019) 33:1497–1533

123



with a single set of attributes (e.g. probabilities of cross-

over, mutation and replication). One major shortcoming of

the traditional GP algorithm is that since models are

evolved in a single deme with a single set of GP attributes

it limits the diversity among model. For the effective

evolution of a population of models, there should be a

sufficient degree of diversity in the population. In nature,

limited genetic diversity may lead to the evolution of

individuals with abnormalities, and in GP, limited diversity

among models may lead to premature convergence of the

algorithm resulting in a sub-optimal model (Fernandez

et al. 2003) with poor generalisation skills. The limited

diversity among models in a population is mainly caused

by the lack of uniqueness among the models in the initial

population and, high replication and low mutation

probabilities.

This study employed a novel evolutionary algorithm in

which downscaling models were initially evolved in par-

allel multiple demes with different GP attributes. The

parallel multiple demes refer to independent environments

where the evolution of downscaling models was performed

with the traditional GP algorithm with different GP attri-

butes (heterogeneous demes). Then, some of the better

performing models in each parallel deme were allowed to

migrate to another deme called the ‘master deme’ where

they were further evolved with the traditional GP algo-

rithm, and then the fittest model was selected. This novel

approach allowed the generation of a diverse initial popu-

lation of models for the master deme. The main steps of

this novel PMPGP algorithm are listed below.

1. Execution of steps 1–5 shown in Sect. 3.1 with

different GP attributes in each parallel deme (e.g.

different crossover and mutation probabilities).

2. Selection of a subset of mathematical equations (i.e.

downscaling models) from each parallel deme based on

fitness (e.g. 25% of the fittest models in the last

generation of each deme).

3. Formation of an initial population of models for the

master deme using the models selected in step 2.

4. Execution of steps 2–5 shown in Sect. 3.1 in the master

deme, and selection of the fittest model from the master

deme.

The topology/architecture of the PMPGP algorithm used

in this study is shown in Fig. 3. As depicted in Fig. 3, in

the current study 5 parallel heterogeneous demes were used

to evolve models for the master deme. The migration

policy is the criterion that decides which models in each

parallel deme will migrate to the master deme (e.g. 25% of

the fittest models in the last generation of each deme). In

the current study, the impact of different migration policies

on the model performance was also investigated. For

details on the migration policies used in this study, readers

are referred to Sect. 4.7.1.

4 Methodology

The main steps involved in overall methodology (down-

scaling framework) employed in this study are; predictand

selection, atmospheric domain delineation, probable pre-

dictor selection, determination of association between

probable predictors–predictands, ranking of probable pre-

dictors (based on strength of correlation, mutual informa-

tion and predictive potential), identification of a subset of

probable predictors as potential predictors (based on

rankings), reduction of data redundancies in larger sets of

potential predictors, evolution of downscaling models with

the PMPGP and GP algorithms, assessment of model per-

formance and comparison of performance of models

evolved with the PMPGP and GP algorithms. Figure 4

shows the main steps in the overall methodology used in

this study in a flow chart. In Fig. 4, in each box, the number

of the section in the paper which contains the details of the

step/s is also indicated within square brackets (e.g. [4.2]

refers to Sect. 4.2).

4.1 Predictand selection

In this study, daily minimum temperature (Tmin) and daily

maximum temperature (Tmax) were selected as the pre-

dictands. Tmin and Tmax are inputs to most of the hydro-

logical models as they are influential on the water

availability in a catchment (e.g. temperature governs

evaporation rate) (Abbaspour et al. 2015). Also, daily Tmin

and Tmax are indicative of cold snaps and heatwaves,

respectively. Therefore, in order to demonstrate the

methodology, in this study daily Tmin and Tmax were

selected as the predictands.

4.2 Delineation of an atmospheric domain

In a statistical downscaling study atmospheric domain is

the area of the atmosphere corresponding to which the

large-scale atmospheric information is obtained in order to

provide inputs to a downscaling model (Sachindra and

Perera 2016). The location and extent of the atmospheric

domain are decided based on the location of the study area

and the nature of the atmospheric processes which influ-

ence the predictand. Japan’s climate is influenced by sev-

eral large-scale atmospheric phenomena as shown in

Table 3. In order to adequately capture the influence of

these large-scale atmospheric phenomena on the catch-

ment-scale climate, an atmospheric domain with 21 9 25

(N = 21 9 25 = 525) grid points along the latitudinal and
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longitudinal directions was delineated over Japan, as

depicted in Fig. 5. The atmospheric domain spans over

latitudes 10.0N�–60.0N� and longitudes 110.0E�–170.0E�,
and it has a resolution of 2.5� in both directions. In this

study, the atmospheric domain shown in Fig. 5 was used

for both daily Tmin and Tmax for all observation stations to

select inputs to downscaling models.

Deme 
1 

Deme 
2 

Deme 
3 

Deme 
4 

Deme 
5 

Fittest model 

Master 
Deme

Fig. 3 Topology/architecture of

parallel multi-population

genetic programming used in

this study

Probable predictor (Px) selection for 
each predictand (Py) [4.3]

Selected based on (i) atmospheric
physics which governs any Pyi and (ii) 
reliability and availability of predictor 
data
n = number of probable predictors for Pyi
Px(For Pyi) = {Px1, Px2, Px3 … Pxj … Pxn} 

Atmospheric domain delineation [4.2]
Delineated based on the nature of large-
scale atmospheric circulations influential 

on predictands
N = number of grid points in the domain

Predictand (Py) selection [4.1]
Selected based on the nature of the 

impact assessment (in this study Tmin
and Tmax) 

m = number of predictands
Py = {Py1, Py2, Py3 … Pyi … Pym} 

Probable predictor - Predictand association [4.4]
Calculate; (i) Correlation (CC), (ii) Mutual Information (MI) and (iii) 

Predictive Potential (PP), between data of any Pyi and each Pxj in 
Px(For Pyi) for each grid point in atmospheric domain for calibration 

period 

Potential predictors [4.5]
Select probable predictor data corresponding to k (1<=k<=N) number of best 
ranked grid points by (i) CC, (ii) MI and (iii) PP for each Pxj in Px(For Pyi) as 

potential predictors

Reanalysis data of probable predictors
(Px) [2.0]

Observations of predictands (Py) 
[2.0]

Reduction of data redundancies in large sets of predictors [4.6]
Use Representative Grid Location (RGL) algorithm to reduce redundancies in 
data sets ranked based on CC. 

Evolution of downscaling models with 
Parallel Multi Population Genetic 
Programming (PMPGP) / Traditional 
Genetic Programming (GP) for each Pyi

[4.7]

Probable predictor ranking [4.5]
Rank grid points based on; (i) CC, (ii) MI and (iii) PP, between data of Pyi 

and each Pxj in Px(For Pyi) from the best to worst

Assessment of model performance [5.0]

When k = {1, 2, 3, 4, 5}

Fig. 4 Overall methodology used in this study in a flow chart
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4.3 Probable predictor selection

Probable predictors are the most likely predictors to

influence a given predictand (Sachindra et al. 2014a). In

general, probable predictors are identified considering the

past downscaling exercises and also studying the physical

processes of the atmosphere influential on the predictand

(Anandhi et al. 2009). Probable predictors are common to

all calendar months and may vary depending on the pre-

dictands as well as the region of interest. It is important to

select probable predictors based on the physics governing

the predictand of interest. This avoids the likely introduc-

tion of irrelevant information to the downscaling model. In

this study, 5 probable predictors common to both daily Tmin

and Tmax, and all stations were chosen. These probable

predictors are; surface air temperature (SAT), mean sea

level pressure (MSLP), net shortwave radiation (NSWR),

net longwave radiation (NLWR) and net latent heat flux

(NLHF). SAT is indicative of the mean status of air tem-

perature, MSLP is indicative of the large-scale circulations

that are responsible for the distribution of thermal energy,

NSWR, NLWR and NLHF are main components of the

Earth’s radiative budget which governs its temperature.

4.4 Probable predictor–predictand association

As demonstrated by Wilby et al. (2002), the influence of

individual predictors on daily Tmin and Tmax may vary

markedly on a calendar monthly basis. Therefore, it is

important to identify the most influential predictors on

predictands for each calendar month to well characterise

the predictor–predictand relationships for each observation

station. In this study, each probable predictor data set had a

dimensionality of 21 9 25 = 525, which is equal to the

number of grid points in the atmospheric domain. Since

there were 5 probable predictors the dimensionality of the

entire probable predictor data set was 21 9 25 9 5 = 2625

(per predictand).

As stated above, the dimensionality of the probable

predictor data set in this study was in the order of thou-

sands and contained large amounts of redundant and

irrelevant information. Due to potential issues such as

overfitting/underfitting in calibration/validation and

increased computational time, it is not advised to introduce

a large number of predictors to a downscaling model

(Mujumdar and Kumar 2012). In the current study, in order

to reduce the amount of redundant and irrelevant infor-

mation in the probable predictor data, firstly, the associa-

tion between each probable predictor at each grid point in

the atmospheric domain and each predictand (i.e. daily

Tmin and Tmax) for each calendar month was computed

using three different filters; (1) Pearson correlation coeffi-

cient (CC), (2) mutual information (MI) and (3) predictive

potential (PP). Then based on the strength of probable

predictor–predictand association, subsets of probable pre-

dictors called potential predictors were extracted (detailed

in Sect. 4.5). The use of three different filters enabled the

assessment of their impacts on the model performance.

Apart from the above three filters, another filter which is

essentially an extension of CC was also tested as a special

case (detailed in Sect. 4.6).

CC between data of probable predictor Px1 at a given

grid point in the atmospheric domain and data of predic-

tand Py1 (e.g. daily Tmin) at an observation station is given

by Eq. 1. In Eq. 1, t = number of data pairs in the data sets

of Px1 and Py1, and �Px1 and �Py1 refer to their respective

averages. The values of CC range between - 1 and ? 1,

where a CC value of 0 refers to no liner association and a

Table 3 Large-scale atmospheric phenomena influential on Japan’s climate

Season Large-scale atmospheric phenomena Influence on Japan’s climate (Japan Meteorological Agency 2018)

Winter

(December–

February)

Siberian high over the Eurasian continent and

Aleutian low over the North Pacific Ocean (Wu

2002)

Heavy snowfall over the side of Japan adjacent to the Sea of Japan

and sunny weather over the side of Japan adjacent to the Pacific

Ocean

Spring (March–

May)

Cyclones and anticyclones which move eastward

across Japan

Gradual increase in temperature. Also, sunshine hours increase in

latter spring due to anticyclones

Summer (June–

August)

Baiu front (early summer) (Matsumoto et al. 1971)

North Pacific high (late summer) (Miyasaka and

Nakamura 2005)

Okhotsk high (Ogi et al. 2004)

Bonin high (Enomoto et al. 2003)

Precipitation and cloudiness over Japan during early summer

Warm and sunny weather over eastern and western Japan

Precipitation and cloudiness over the Pacific side of northern and

eastern Japan

Dry and warm late summer climate over Japan

Autumn

(September–

November)

Tropical cyclones (Grossman et al. 2015)

Autumnal rain front (Yabusaki et al. 2010)

Heavy precipitation over eastern Japan

Heavy precipitation in September–October over Japan
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value of - 1 or ? 1 refers to a perfect negative or positive

linear association between a predictor and a predictand

(Ratner 2009). In this investigation, the absolute values of

CC (magnitude only) were considered in quantifying the

strength of association between the probable predictors and

the predictands. Unlike MI and PP, CC is a measure of

linear association between the predictors and the

predictand.

CC ¼
Pt

t¼1 Px1 � �Px1ð Þ � Py1 � �Py1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pt

t¼1 Px1 � �Px1ð Þ2� Py1 � �Py1

� �2
q ð1Þ

MI is a measure that quantifies the amount of informa-

tion contained in one random variable about another ran-

dom variable. In this investigation, MI is the information

obtained about a predictand, from a predictor. MI between

predictand Py1 and any probable predictor Px1 at a given

grid location in the atmospheric domain was computed

using Eq. 2. Values of MI range between 0 and ? !,

where a value of 0 refers to no mutual information while

the larger the value of MI the higher the mutual informa-

tion. In Eq. 2, P(Px1) and P(Py1) refer to the marginal

distributions of Px1 and Py1 respectively, and P(Px1�Py1)
refers to the joint distribution of Px1 and Py1.

MI ¼
ZZ

p Px1Py1

� �
log2

p Px1Py1

� �

p Px1ÞpðPy1

� �

( )

dxdy ð2Þ

PP is a measure of the ability of any probable predictor

Px1 at a given grid point in the atmospheric domain to

solely explain a predictand Py1 at an observation station. In

this investigation, for each probable predictor Px1 for each

grid point in the atmospheric domain, a GP-based model

was evolved to simulate predictand Py1. The performance

Fig. 5 Atmospheric domain used in this study
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of each of these models was assessed in terms of root mean

square error (RMSE). RMSE is an indicator of the average

absolute bias per data point in a time series, and its inverse

is an indicator of the ability of a probable predictor to

independently simulate the predictand of interest. PP of a

probable predictor Px1 at a given grid point was calculated

using Eq. 3. In Eq. 3, t = number of data points in the data

set of Py1, and Oi and Mi refer to the observed and simu-

lated values of Py1 respectively. PP varies between 0 and

? !, and the higher the value the better the ability of a

given probable predictor Px1 at a given grid point to

independently simulate the predictand Py1.

PP ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t

Pt
i¼1 Oi �Mi½ �2

q ð3Þ

4.5 Ranking of probable predictors
and extraction of potential predictors

Once the association between probable predictors and

predictands (i.e. daily Tmin and Tmax) was determined using

CC, MI and PP, for each station for each calendar month,

the grid points in the atmospheric domain were ranked

from the best to the worst corresponding to each of the

above three filters separately. Then a k (1 B k B N;

N = number of grid points) number of best-ranked grid

points in the atmospheric domain were selected for each

predictand for each calendar month considering each of the

above three filters separately. Above step was applied to

each station separately. This procedure enabled the selec-

tion of data of probable predictors corresponding to the

most influential grid locations, and they are called potential

predictors (subsets of data of probable predictors). This

process yielded k 9 n number of data sets for each pre-

dictand for each calendar month, where n is the number of

probable predictors (in this study n = 5). The value of

k was increased from 1 to 5 (k = {1, 2, 3, 4, 5}) progres-

sively to define sets of potential predictors with increasing

amounts of information. As an example; when k = 1, each

probable predictor contributed with one set of data forming

a set of potential predictors of size 1 9 n; when k = 2, each

probable predictor contributed with two sets of data

forming a set of potential predictors of size 2 9 n. Each

potential predictor data set for each calendar month was

then standardised with its mean and standard deviation.

Standardisation removes the effect of the order of magni-

tude of data and their units. The increase in the value of

k increased the amount of redundant information flowing

into the downscaling models. This enabled the assessment

of the impact of redundant information in inputs on the

performance of GP and PMPGP-based downscaling mod-

els. Also, since all probable predictors {SAT, MSLP,

NSWR, NLWR, NLHF} were allowed to contribute to each

set of potential predictors (defined by different values of

k) with some of their data sets, above predictor selection

approach presented a unique opportunity to experiment the

performance of evolutionary algorithms GP and PMPGP

with various different combinations of predictors.

4.6 Reduction of data redundancies in large sets
of predictors

As stated earlier when the value of k is increased, the

amount of information flowing into the downscaling

models also increases. Larger values of k may enable the

inclusion of large-scale atmospheric influences originating

in different regions of the atmospheric domain in the set of

potential predictors. Therefore, there is a need to investi-

gate the impacts of large-scale atmospheric influences

originating in different regions of the atmospheric domain

on the performance of downscaling models. However, with

the increase in the information flowing into the models (i.e.

increase in the value of k), there is a significant chance for

some data redundancies to occur in the sets of potential

predictors. This is because each probable predictor contains

data that are highly correlated over the atmospheric domain

(Ghosh and Mujumdar 2008).

The presence of redundancies in predictor data is limited

for relatively smaller values of k, but when the value of

k increases the chances of redundancies to occur in the

predictor data largely increase. Minor data redundancies

(caused by smaller values of k = {1, 2, 3, 4, 5}) in the

inputs to downscaling models are not expected to affect the

performance of the downscaling models, as evolution is

likely to discard most of the redundant information.

However, large data redundancies may delay the evolution

of models, and lead to unnecessary complexities in models.

As an example, if k = 10, then the dimensionality of the

potential predictor data set becomes k 9 n = 1095 = 50

(in this study n = 5). Although the dimensionality of the set

of potential predictors has reduced drastically compared to

that of probable predictors (2192595 = 2625), still it

contains a significant amount of redundant information

owing to the strong spatial associations between the data

sets. Therefore, when the value of k is large (say k[ 5), the

data set should be further refined to reduce the overly large

amounts of redundant information which will flow into the

models.

The use of principal component analysis (PCA) to

extract a few principal components (PCs) which preserve

bulk of the variance present in the original set of predictors

can be regarded as the most commonly used redundancy

and dimensionality reduction technique in downscaling

(Anandhi et al. 2009; Salvi and Ghosh 2013; Devak and

Dhanya 2016). However, it has been documented that, in
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certain instances, the use of PCs as inputs can deteriorate

the model performance (Klein and Walsh 1983; Huth 1999;

Sachindra et al. 2013). Furthermore, Sehgal et al. (2018)

stated that the use of PCA with a set of predictors with

different distributions violates the assumption that predic-

tors are drawn from the same underlying distribution.

Owing to the above issues associated with PCA, in this

study instead of PCA, a representative grid location (RGL)

technique was used in reducing the redundancies (and

dimensionality) in the data of predictors. This RGL tech-

nique identified the least inter-correlated (spatially) data

sets for each predictor for values of k = {5, 10, 15, 20, 25}.

The main steps involved in the application of the RGL

technique are given below. These steps were applied to

each station for each predictand (i.e. daily Tmin and Tmax)

for each calendar month (i.e. January–December) for each

value of k (k = {5, 10, 15, 20, 25}) separately.

1. Calculate the spatial-correlations (using Pearson cor-

relation) between the data sets pertaining to all grid

locations in the atmospheric domain for a given

probable predictor Pxi. In other words, as shown in

Fig. 6, the correlations between the data of any

probable predictor Pxi at any grid point {i, j} and data

of probable predictor Pxi at all other grid points are

calculated. In this study, the values of i and j varied

between 1–25 (longitudinal direction) and 1–21 (lati-

tudinal direction), respectively. This procedure yields a

correlation matrix which provides the correlation

between the data of probable predictor Pxi at any two

grid points.

2. Using the above correlation matrix identify the data set

of Pxi which displays the highest number of high

correlations (in this study above the correlation

threshold = 0.90) with the data sets of Pxi at other

grid locations. The grid location of the data set which

displayed the highest number of high correlations with

the data sets at other grid locations is identified as the

first RGL for Pxi. In Fig. 6, for example, data at grid

point {p, g} (shown in bold red text) are highly

correlated with the data at z number of grid points

(shown in non-bold red text bounded by the blue box).

Since, there is no other grid point where data of Pxi
show more than z number of highly correlated grid

points, the grid point {p, g} is identified as the first

RGL.

Fig. 6 Identification of

representative grid locations

(grid points are denoted with

‘‘O’’)
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3. Remove the data pertaining to the first RGL along with

the data sets that are highly correlated with the data at

the first RGL from the original data set of Pxi. For

example, data of Pxi pertaining to the grid points

bounded by the blue box shown in Fig. 6 are removed

from the original data set of Pxi, thus the correlation

matrix shrinks.

4. Perform above steps 2 and 3 on the rest of the data of

Pxi to identify the second RGL and continue until no

more RGLs can be found for Pxi.

5. Calculate the correlations between the data of Pxi
corresponding to each RGL and the observations of the

predictand.

6. Based on the correlations calculated in step 5 rank the

data sets of RGLs of Pxi from the most correlated to the

least correlated with the observations. Then for each

value of k = {5, 10, 15, 20, 25} the most correlated 5,

10, 15, 20 and 25 sets of data of RGLs of Pxi are

selected, respectively.

7. Thereafter, perform steps 1–6 on all other probable

predictors (e.g. Px1, Px2, … Pxi, … Pxn). Finally,

combine the data sets of all probable predictors

identified in step 6 for each k value separately, and

use as the input data to the downscaling models. For

example, when k = 10, each probable predictor con-

tributed with the 10 most correlated data sets of RGLs

(with the data of the predictand) identified in step 6 to

the set of inputs to the downscaling models.

8. Repeat the above steps 1–7 for each calendar month for

each station for each predictand (i.e. Tmin and Tmax).

The data corresponding to RGLs for a given predictor

Pxi are least correlated over space, hence the chances of

data redundancies in the inputs to downscaling models are

minimised. Henceforth, the use of CC in conjunction with

RGL is referred to as CC ? RGL. Although, CC ? RGL

filters out some of the redundant information, during this

process the data sets that are most correlated with the

predictand may also be discarded.

4.7 Downscaling model development

In the past literature, downscaling models based on; the

calendar months (e.g. Sachindra et al. 2018b), wet and dry

seasons (e.g. Chen et al. 2010), four seasons; summer,

autumn, winter and spring (e.g. Timbal et al. 2009) and the

whole set of data considering all 12 calendar months

together (e.g. Goly et al. 2014) have been developed.

Sachindra et al. (2018a) stated that the development of

downscaling models for each calendar month with the

potential predictors separately selected for each calendar

month yields better performing models. This is due to the

fact that calendar monthly potential predictor selection and

model development enables better characterization of both

intra and inter-seasonal variations in the predictor–predic-

tand relationships. Hence, in the current study, once the

potential predictors were identified, downscaling models

were developed for each calendar month for each station

separately. For calibration (i.e. evolution) of GP and

PMPGP-based downscaling models, data of potential pre-

dictors and predictands corresponding to the period 01st

Jan 1977–31st Dec 1996 (the 1st 50% of data) were used.

The data pertaining to the period 01st Jan 1997–31st Dec

2016 (the 2nd 50% of data) were used for the model val-

idation. In general, in statistical modelling, 50–80% of data

are used for the calibration and the rest is used for the

validation of the models (Koukidis and Berg 2009; Ana-

ndhi et al. 2009). The partitioning of data into equal pro-

portions enabled a fair comparison between the

performance of a model in the calibration and validation

phases avoiding any impact of population size on the

model performance assessment. In the present investiga-

tion, downscaling models were initially built with the

PMPGP algorithm and then their performances were

compared with that of models developed with the GP

algorithm. Sections 4.7.1 and 4.7.2 detail the development

of models with the PMPGP and GP algorithms

respectively.

4.7.1 PMPGP-based model development

For the development of downscaling models for daily Tmin

and Tmax with the PMPGP algorithm, the combinations of

filters and k values shown in Table 4 were considered. For

the execution of the PMPGP algorithm, the set of attributes

shown in Table 5 were used. As seen in Table 5, 5 demes

with different mutation and crossover probabilities were

employed to evolve a diverse initial population of models

for the master deme. The other attributes were common to

all demes (e.g. mathematical function set). Different

combinations of mutation and crossover probabilities

assisted in increasing diversity among models across the

demes. In each deme, 100 models were evolved up to 100

generations, and the number of models in the master deme

varied depending on the migration policy. The 5 migration

policies tested in this study are detailed in Table 6. As seen

in Table 4 there were 20 combinations of filters and k val-

ues, and each of these combinations was used under 5

migration policies yielding a total of 100 experimental

setups (per station) for the models based on the PMPGP

algorithm.

As stated earlier, in this study, 5 different migration

policies were tested and their details are provided in

Table 6. The number of models that migrated from each

deme to the master deme was dependant on the nature of

the migration policy. As shown in Table 6, the 1st
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migration policy which is the simplest of all policies only

allowed models from the last generation of each deme to

migrate to the master deme, whereas all other policies

allowed the migration of models also from some of the

subsequent generations (e.g. 99th, 98th …). The notion

behind the selection of models from the last generation was

that in each deme the most evolved models (fittest models)

exist in the last generation, hence it is logical to allow a

certain percentage of the fittest models from the last gen-

eration to migrate to the master deme. Nonetheless, certain

traits of models (e.g. sub-trees) in the subsequent genera-

tions might be lost as evolution continues but such traits

may still be useful in evolving models in the master deme.

Therefore, in the migration policies 2–5, apart from the

selection of models from the last generation of each deme,

models were also selected from some of the subsequent

generations. In addition to that, policies 2–5 allowed the

formation of larger populations of models in the master

deme compared to that of policy 1, enabling the investi-

gation of the impact of population size in the master deme

on the performance of PMPGP-based models (larger pop-

ulations of models may implicitly increase the model

diversity).

Once the models were developed for each station using

the PMPGP algorithm, by assessing the model performance

using normalised mean square error (NMSE), the most

suitable migration policy and the combinations of filters

and k values were identified. In this study, NMSE was

computed by dividing the mean square error with the

standard deviation of observations of the predictand.

Unlike, mean square error and root mean square error,

NMSE is less sensitive to the order of the magnitude of

data of the predictands, hence it can be used to compare the

performance of models pertaining to different climate

regimes (Sachindra et al. 2018b).

4.7.2 GP-based model development

In this investigation, the GP-based downscaling models

were developed for the comparison of their performance

with that of PMPGP-based downscaling models. For a fair

performance comparison between PMPGP-based models

and GP-based models, it was required to decide the values

of the attributes of the GP algorithm to be in compliance

with those of the PMPGP algorithm pertaining to the most

suitable migration policy. Therefore, after the performance

assessment of the PMPGP-based downscaling models, for

the development of the GP-based downscaling models, the

GP algorithm’s attributes were defined as given in Table 7.

The stopping criterion and the population size of the GP

Table 4 Combinations of filters and k values

Potential predictor selection

criteria (filters)

Correlation

coefficient (CC)

Mutual information

(MI)

Predictive potential

(PP)

Correlation coefficient with RGL

(CC ? RGL)

k values 1, 2, 3, 4, 5 1, 2, 3, 4, 5 1, 2, 3, 4, 5 5, 10, 15, 20, 25

Table 5 Attributes of PMPGP algorithm used in this study

GP attribute name Values of attributes used in each deme

Deme

1

Deme

2

Deme

3

Deme

4

Deme

5

Master deme

Calibration and validation data % Calibration 50% and validation 50%

Tree depth/program size/model size Maximum depth of a model tree = 15

Mathematical function set ?, -, 9, 7, H, x2, sine, cosine, ex (exponential), and ln (natural logarithm)

Technique for generating initial population Ramped half-and-half initialization

Measure of fitness Root mean square error (RMSE)

Model selection criterion for creating mating

pool

Lexictour

Criterion for stopping the algorithm Stop when the number of generations is equal to 100

Probability of replication 0.10

Probability of mutation 0.10 0.30 0.50 0.70 0.90 0.10

Probability of crossover 0.90 0.70 0.50 0.30 0.10 0.90

Population size (models per generation) 100 100 100 100 100 Varied depending on the migration policy (see

Table 6)
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algorithm were decided based on the most suitable migra-

tion policy employed in the PMPGP algorithm as detailed

in Sect. 5.2. In the execution of the GP-algorithm, as the

stopping criterion, the number of generations was set to

600. This was because, in the execution of the PMPGP

algorithm, models in each of the 5 demes and the master

deme were evolved up to 100 generations (equivalent to a

total of 600 generations). All the other attributes in the GP

Table 6 Migration policies employed in PMPGP algorithm

Migration

policy

Description of migration policy Number of models migrating from each deme to

master deme per calendar month per station

1 25% of the fittest models in the last generation (i.e. the 100th generation) of

each deme were allowed to migrate to the master deme

Total of 25 models from each deme migrated to the

master deme

5 9 25 = 125 models in the master deme

2 25% of the fittest models in the last generation (i.e. 100th generation) and

increasingly decreasing percentage of models from the subsequent

generations (e.g. 99th, 98th…) in each deme were allowed to migrate to the

master deme

For migration, models were selected only from the last 1/3 of the generations

from each deme. The slope of the percentage of selection line was set to

25%

Total of 705 models from each deme migrated to

the master deme

5 9 705 = 3525 models in the master deme

3 50% of the fittest models in the last generation (i.e. 100th generation) and

increasingly decreasing percentage of models from the subsequent

generations (e.g. 99th, 98th…) in each deme were allowed to migrate to the

master deme

For migration, models were selected only from the last 1/3 of the generations

from each deme. The slope of the percentage of selection line was set to

50%

Total of 1394 models from each deme migrated to

the master deme

5 9 1394 = 6970 models in the master deme

4 25% of the fittest models in the last generation (i.e. 100th generation) and

increasingly decreasing percentage of models from the subsequent

generations (e.g. 99th, 98th ….) in each deme were allowed to migrate to

the master deme

For migration, models were selected only from the last 2/3 of the generations

from each deme. The slope of the percentage of selection line was set to

25%

Total of 1138 models from each deme migrated to

the master deme

5 9 1138 = 5690 models in the master deme

5 50% of the fittest models in the last generation (i.e. 100th generation) and

increasingly decreasing percentage of models from the subsequent

generations (e.g. 99th, 98th ….) in each deme were allowed to migrate to

the master deme

For migration, models were selected only from the last 2/3 of the generations

from each deme. The slope of the percentage of selection line was set to

50%

Total of 2244 models from each deme migrated to

the master deme

5 9 2244 = 11,220 models in the master deme

Table 7 Attributes of GP algorithm used in this study

GP attribute name Values of attributes used

Calibration and validation data % Calibration 50% and validation 50%

Tree depth/program size/model size Maximum depth of a model tree = 15

Mathematical function set ?, -, 9, 7, H, x2, sine, cosine, ex (exponential), and ln (natural logarithm)

Technique for generating initial population Ramped half-and-half initialization

Measure of fitness Root mean square error (RMSE)

Model selection criterion for creating mating pool Lexictour

Criterion for stopping the algorithm Stop when the number of generations is equal to 600

Probability of replication 0.10

Probability of mutation 0.10

probability of crossover 0.90

Population size (models per generation) Dependent on the most suitable migration policy identified (see Sect. 5.2)
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algorithm were the same as the ones used in the master

deme of the PMPGP algorithm (see Tables 5 and 7).

5 Results and discussion

5.1 Impacts of different filters, k values
and migration policies on performance
of PMPGP-based models

Figures 7 and 8 show the NMSE of the fittest model

extracted from each deme and the master deme for daily

Tmin and Tmax pertaining to stations at Fuji and Kawa-

guchiko respectively. For the demonstration of the per-

formance of PMPGP-based models, stations located at Fuji

and Kawaguchiko were selected as they represent rela-

tively very cold and very warm temperature regimes,

respectively. In each sub-figure in Figs. 7 and 8 the hori-

zontal axis refers to calibration and validation phases of

each deme and the master deme (e.g. ‘Deme 1 C’ and

‘Deme 1 V’ respectively refer to the calibration and vali-

dation phases of deme 1, and similarly ‘Deme M C’ and

‘Deme M V’ respectively refer to the calibration and val-

idation phases of the master deme). The vertical axis of

each sub-figure in Figs. 7 and 8 refers to different combi-

nations of filters and k values (e.g. ‘CC k = 1’ refers to the

use of correlation coefficient along with a k value of 1 and

similarly ‘CC ? RGL k = 20’ refers to the use of corre-

lation coefficient in conjunction with representative grid

location technique with a k value of 20).

As seen in Figs. 7 and 8, for daily Tmin at Fuji station

and daily Tmax at Kawaguchiko station, the models dis-

played characteristic patterns of performance across all

migration policies. The characteristic pattern for daily Tmin

was a bit different from that of daily Tmax, however, for a

given predictand (i.e. Tmin) the pattern was consistent

across all migration policies. Similar patterns of perfor-

mance were also seen at all station for daily Tmin and Tmax

(results not shown). This indicated that the PMPGP algo-

rithm was insensitive to the migration policy, on condition

that some of the fittest models in the last generation of each

deme were allowed to migrate to the master deme. In other

words, it was evident that a fraction (e.g. 25%) of the fittest

models in the last generation of each deme alone is suffi-

cient for the formulation of a diverse initial population of

models for the master deme. Also, the population size in

the master deme (see Table 6 for population sizes) did not

show any clear impact on the performance of the fittest

model in the master deme. Furthermore, irrespective of the

migration policy it was clear that the fittest model in the

master deme, in general, shows better performance com-

pared to the fittest models in all other demes, in both cal-

ibration and validation. This was because the initial

population of models in the master deme was pre-evolved

(in other demes initial population was randomly generated)

and the diversity among the models in the master deme was

higher compared to that of other demes (models originated

in different environments).

In general, at all stations for both daily Tmin and Tmax

the fittest model in the master deme evolved by the PMPGP

algorithm with the potential predictors identified by CC,

MI and PP filters (CC and MI in particular) showed good

generalisation skills, irrespective of the k value and the

migration policy. This indicated that the PMPGP algorithm

was able to resist data redundancies in the sets of potential

predictors. However, it was found that at all stations for

both daily Tmin and Tmax, the models (in all demes and the

master deme) developed with potential predictors identified

by CC ? RGL filter show signs of significant underfitting

in validation, irrespective of the k value and the migration

policy. The poor generalisation skills of models developed

with potential predictors identified by CC ? RGL filter

was most likely caused by the fact that while the RGL

technique removes highly spatially correlated predictor

data sets, it may also remove data sets of predictors which

show high correlations with the predictand. Therefore, it

should be noted that in the use of CC ? RGL filter there is

a trade-off between the reduction of data redundancies and

the loss of some of the most correlated predictor data with

the predictand. Considering the above finding, it can be

stated that in developing a model using the PMPGP algo-

rithm it is more important to include the most correlated

predictor data with the predictand in the set of potential

predictors rather than attempting to reduce redundancies or

to include influences originating in different regions of the

atmospheric domain.

5.2 Comparison of performance of GP
and PMPGP-based downscaling models

As detailed in Sect. 5.1, the performance of the fittest

model in the master deme was insensitive to migration

policy on condition that a fraction of the fittest models in

each deme were allowed to migrate to the master deme.

Also, CC ? RGL filter was proven to be unsuccessful in

producing a model with good generalisation skills. Fur-

thermore, CC, MI and PP filters showed more or less

similar performance in terms of NMSE. Therefore, for the

performance comparison between the GP-based and

PMPGP-based models, the GP-based models were only run

with the potential predictors identified by CC and MI fil-

ters. Both MI and PP are non-linear filters whereas CC is a

linear filter, hence, only CC and MI filters were used to

provide inputs to the GP-based models. In the execution of

the GP algorithm, its attributes were defined as shown in

Table 7 (see Sect. 4.7.2). Under migration policy 1, the
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Fig. 7 NMSE of the fittest model in each deme and the master deme for daily Tmin at Fuji observation station
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Fig. 8 NMSE of the fittest model in each deme and the master deme for daily Tmax at Kawaguchiko observation station
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Fig. 9 Performance of downscaling models developed for daily Tmin with the PMPGP (100 models per deme per generation) and GP (100

models per generation) algorithms in terms of NMSE
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Fig. 9 continued
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Fig. 9 continued
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Fig. 10 Performance of downscaling models developed for daily Tmax with the PMPGP (100 models per deme per generation) and GP (100

models per generation) algorithms in terms of NMSE
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Fig. 10 continued

Stochastic Environmental Research and Risk Assessment (2019) 33:1497–1533 1519

123



Fig. 10 continued
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master deme contained 125 models per generation, in order

to compare the performance of GP-based models, the GP

algorithm was run with 125 models per generation up to

600 generations. Figures 9 and 10 show the NMSE of the

fittest models evolved by the PMPGP and GP algorithms

for all 15 stations for daily Tmin and Tmax respectively. In

Figs. 9 and 10, ‘Master D C’ and ‘Master D V’ refer to the

performance of the fittest model in the master deme

evolved by the PMPGP algorithm in calibration and vali-

dation respectively, whereas ‘Single P C’ and ‘Single P V’

refer to the performance of the fittest model evolved by the

traditional single deme GP algorithm respectively. Fig-

ures S1 and S2 in the supplementary material show the box

plots depicting the performance of models developed with

the PMPGP and GP algorithms with different k values (1,

2, 3, 4 and 5) and different association measures (i.e. CC

and MI).

In Figs. 9 and 10 it was seen that at all stations for the

majority of filter and k value combinations, the GP-based

models displayed higher NMSE values in validation com-

pared to that of PMPGP-based models. According to

Fig. 9, at Ebina (MI, k = 4), Yamanaka (CC, k = 5) and

Nagasaki (CC, k = 5; MI, k = 3) stations abnormally high

NMSE values associated with PMPGP-based Tmin models

were seen. Similarly, according to Fig. 10, at Fuji (CC,

k = 5) and Otsuki (CC, k = 4) stations abnormally high

NMSE values associated with PMPGP-based Tmax models

were seen. Thus, it was understood that abnormally high

NMSE values associated with PMPGP-based models were

seen only when the k values were high (k = 3, 4, and 5).

However, even when the k values were relatively smaller

(e.g. k = 1, 2), unlike PMPGP-based models, GP-based

models displayed abnormally high NMSE values in many

instances. According to Fig. 9, at Fuji (CC, k = 1),

Kawaguchiko (MI, k = 1), Otsuki (CC, k = 3), Cape

Muroto (MI, k = 4), Kitami (CC, k = 3), Wajima (CC,

k = 2), Niigata (CC, k = 1) and Maebashi (MI, k = 4)

stations abnormally high NMSE values associated with

GP-based Tmin models were observed. Similarly, according

to Fig. 10 at Fuji (CC, k = 2), Kofu (MI, k = 1), Ebina

(CC, k = 1; MI, k = 2), Kawaguchiko (CC, k = 1; MI,

k = 2), Yamanaka (MI, k = 1), Cape Muroto (MI, k = 5),

Sukumo (CC, k = 4; MI, k = 3; MI, k = 4), Kitami (CC,

k = 1) and Niigata (CC, k = 1; MI, k = 3) stations abnor-

mally high NMSE values associated with GP-based Tmax

models were observed. From the above details, it is clear

that GP-based models were more vulnerable to failure even

when the inputs do not contain a lot of redundant infor-

mation. On the other hand, PMPGP-based models showed

a higher degree of resistance to redundant information and

were far less vulnerable to failure due to the presence of

redundant information in inputs. This indicated that the

models evolved with the PMPGP algorithm display better

generalisation skills compared to those developed with the

traditional single deme GP. Hence, it can be stated that an

increase in the model diversity assists in evolving models

with better generalisation skills.

Furthermore, it was observed that PMPGP algorithm

takes significantly much less time to complete evolving

models compared to that of GP algorithm. In a model test

run PMPGP algorithm (with migration policy 1) took

55 min to complete evolving models for a station (12

calendar monthly models) while traditional GP algorithm

took 108 min for the same task. It was clear that the sim-

pler traditional GP algorithm took almost twice as much

time as the PMPGP algorithm. In other words, the more

complex PMPGP algorithm ran almost twice as fast as the

traditional GP algorithm. This was because unlike GP,

PMPGP algorithm systematically boosts the diversity

among the models and hence evolution occurs faster.

In certain instances, models developed with the GP

algorithm, in particular, showed very high NMSE (the

ceiling value of NMSE in Figs. 7 and 8 was set to 2, but

some values of NMSE largely exceeded this ceiling). A

close examination of the time series of simulations

revealed that the models developed with both GP and

PMPGP algorithms tend to produce unphysically large

outliers (e.g. 100 times larger than the observed maximum)

and these outliers lead to large values of NMSE. This

aspect was significantly more pronounced in the simula-

tions produced by the GP-based models, indicating that the

GP-based downscaling models are more likely to simulate

unphysically large values compared to that of PMPGP-

based downscaling models. However, for both GP and

PMPGP-based models this tendency of simulating

unphysically large values of the predictands did not display

a clear relationship with the k values. This indicated that

data redundancies are not in direct connection with the

simulation of unphysically large values of predictands.

Sachindra et al. (2018b) stated that quite often machine

learning techniques simulate outliers and some of these

outliers can be unphysically large. In the GP and PMPGP

algorithms, the mathematical function set contained ex

(exponential) and ln (natural logarithm) which are useful in

capturing extremes in the time series of a predictand.

However, these functions may create hyper-sensitive

regions such as asymptotic regions in the predictor–pre-

dictand relationships in downscaling models, where some

value/s of potential predictors may trigger unphysically

large values of the predictand.

As an example, Fig. 11 shows the scatter plots for daily

Tmin at Fuji observation station and daily Tmax at Kawa-

guchiko observation station corresponding to models

developed with the GP and PMPGP algorithms. As seen in

Fig. 11a, c, the models developed with both the GP and

PMPGP algorithms produced very similar scatter for daily
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Fig. 11 Scatter plots for daily

Tmin at Fuji station and daily

Tmax at Kawaguchiko station

corresponding to models

developed with GP and PMPGP

algorithms
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Tmin at Fuji observation station in the calibration phase.

Whereas in the validation phase, the scatter produced by

the models developed with both the GP and PMPGP

algorithms for daily Tmin at Fuji observation station also

looked very similar to each other as seen in Fig. 11b, d.

However, the model developed with the GP algorithm for

daily Tmin at Fuji observation station, simulated an

unphysically large outlier with a magnitude of 65,535.5 �C
in its validation phase. Since that outlier is overwhelmingly

large it was not shown in the scatter plot in Fig. 11b. This

was the reason why in Fig. 9a, the GP based model dis-

played a high NMSE in its validation phase (since the value

of NMSE was very large it was not shown). In Fig. 11e, f,

the scatter of daily Tmax at Kawaguchiko observation sta-

tion for the calibration and validation periods of the GP-

based model are presented respectively. As seen in

Fig. 11e, f it was clear that the scatter has a major island

and a minor island in both calibration and validation

periods. The major island of the scatter lies along the

45-degree line while the minor island of the scatter lies on

the x-axis of the plots. The minor island of the scatter was

due to the fact that in a certain calendar month the model

did not evolve as expected (even after 600 generations of

evolution) due to the lack of model diversity in the initial

population. However, the generation of such sub-optimal

models was not seen in the implementation of the PMPGP

algorithm owing to relatively higher model diversity in the

master deme.

5.3 Impact of increase in population size in GP
algorithm on model performance

In general, GP is sensitive to the number of models in a

population. In fact, larger populations of models may even

lead to higher levels of diversity. In the implementation of

GP, the initial population is randomly generated. When the

population size is increased, purely due to the increase in

the number of models the diversity/variety among the

models can also increase by chance. Nonetheless, in such

case, since there is no dedicated mechanism to increase

model diversity, increasing the population size is not seen

as an effective way to increase model diversity and hence

enhance the model optimality. In order to determine the

validity of this theoretical argument, using GP algorithm

models were evolved up to 100 generations with popula-

tions of 600 models per generation (other attributes

remained as shown in Table 7). Then the performances of

these GP-based models were compared with that of origi-

nal PMPGP-based models which were evolved up to 100

generations with 100 models per generation per deme (see

PMPGP attributes in Table 5). The performances of these

models in terms of NMSE are shown in Figs. 12 and 13 for

Tmin and Tmax respectively. According to Figs. 12 and 13,

it was understood that when the GP algorithm was run with

600 models per generation, models tend to show fewer

abnormally high NMSE values compared to that when the

GP algorithm was run with 100 models per generation (see

Figs. 9, 10). Also, when the number of models was

increased from 100 to 600 per generation, GP-based

models began to show a higher degree of resistance to

redundant information in inputs. However, yet, the models

evolved using the PMPGP-algorithm with 100 models per

generation per deme displayed better generalisation skills

owing to parallel evolution which systematically boosted

the diversity among models. This leads to the conclusion

that an increase in the population size may increase model

diversity and improve model optimality, but still, parallel

evolution of models is seen as a more effective approach to

improve model optimality.

5.4 Caveats of the study

In this investigation, only one architecture/topology of

PMPGP was tested. The architecture of PMPGP used in

this study employed 5 demes with different mutation and

crossover probabilities to generate a diverse population of

models for the master deme. Initial investigations indicated

that the use of 3–4 demes does not lead to much

improvement in the performance of the fittest model in the

master deme in comparison to the fittest models in the other

demes. Once the number of demes was increased to 5, the

PMPGP algorithm tended to evolve models in the master

deme which showed better performance compared to the

models in the other demes. However, in this study, the

increase in the number of demes above 5, and its impacts

on the model performance was not investigated. Further-

more, in this study, the differences between the 5 demes

were limited to the differences in mutation and crossover

probabilities. However, the other attributes such as the

selection criterion of models for the mating pool can also

be varied across the demes in order to increase the diversity

among the models that migrate to the master deme.

As mentioned in Sect. 4, the methodology used in this

study involved a number of steps. However, out of these

steps, only the determination of association between

probable predictors–predictands and the evolution of

downscaling models with the PMPGP and GP algorithms,

were computationally demanding. In the assessment of

predictor–predictand associations, the computational time

is directly related to the number of grid points in the

atmospheric domain, as calculations are performed at each

individual grid point. Therefore, in order to minimise the

computational time related to the assessment of predictor–

predictand associations; depending on the study area, the

predictand and the large-scale atmospheric circulations

influential on the predictand, the domain should be
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Fig. 12 Performance of downscaling models developed for daily Tmin with the PMPGP (100 models per deme per generation) and GP (600

models per generation) algorithms in terms of NMSE
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Fig. 12 continued
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Fig. 12 continued

1526 Stochastic Environmental Research and Risk Assessment (2019) 33:1497–1533

123



Fig. 13 Performance of downscaling models developed for daily Tmax with the PMPGP (100 models per deme per generation) and GP (600

models per generation) algorithms in terms of NMSE
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Fig. 13 continued
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Fig. 13 continued
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objectively delineated (neither overly large nor too small).

Also, for determining the association between the probable

predictors and a given predictand one single association

measure such as MI can be used rather than several mea-

sures as used in this study (in this study several association

measures were used to investigate their impacts on the

model performance).

It is worth mentioning that, GCM outputs show low CCs

with observations in comparison to reanalysis data. This is

due to the bias in the GCM outputs and the low temporal

synchronicity between GCM outputs and observations,

particularly pronounced at fine temporal scales (e.g. daily)

(Eden et al. 2012). Therefore, when a downscaling model

developed with reanalysis data is run with GCM outputs it

tends to show a decline in performance. However, a low

CC between the GCM outputs and the predictand does not

necessarily mean that GCM outputs do not contain the

information required to simulate the predictand. There can

be a high level of mutual information between the GCM

outputs and the predictand even when the CC is low, par-

ticularly when a highly non-linear relationship between

predictors and the predictand is present (Sharma 2000).

Predictands such as precipitation and streamflow have a

higher likelihood of having highly non-linear relationships

with the predictors. In such cases, the use of MI for iden-

tifying potential predictors from probable predictors is seen

as a better option than the use of CC for the same purpose.

However, still, there will be some bias in the simulations of

the downscaling models run with GCM outputs. In order to

reduce that bias present in the outputs of the downscaling

models, an appropriate bias-correction method should be

used.

In this study, the models in each deme and the master

deme were evolved up to 100 generations. However, the

impact of the number of generations on the performance of

the fittest model in the master deme was not investigated.

The evolution of models up to 100 generations was based

on the notion that the higher the number of generations the

evolution is performed the greater the chances of over-

evolving the models. The over-evolution may cause the

models to overfit in calibration and underfit in validation.

On the other hand, under-evolution (evolved up to a very

small number of generations) may create models which

perform poorly in both calibration and validation.

Sachindra et al. (2018a) stated that when the traditional

single deme GP algorithm is run repeatedly it tends to

produce markedly different predictor–predictor relation-

ships, and the likelihood of identification of a unique

optimum set of predictors from the set of potential pre-

dictors is quite low. The current investigation did not gauge

the potential of the PMPGP algorithm to recognise a

unique optimum set of predictors. Such investigation will

need the repetitive execution of the PMPGP algorithm for a

large number of runs and comparison of results with that of

traditional single deme GP. Perhaps, such investigation is

not very important in downscaling temperature but in

downscaling a much complex variable such as streamflows.

6 Conclusions

The conclusions drawn from the results of this investiga-

tion are as follows.

1. Independent of the climate regime (i.e. warm or cold)

and the geographic location of the observation station,

downscaling models developed for both daily mini-

mum temperature (Tmin) and daily maximum temper-

ature (Tmax) with the parallel multi-population genetic

programming (PMPGP) algorithm showed no sensitiv-

ity to migration policy, on condition that a fraction

(e.g. 25%) of the fittest models in the last generation of

each deme were allowed to migrate to the master deme.

Furthermore, the performance (in both calibration and

validation) of the fittest model evolved in the master

deme was not dependent on the population size of the

master deme which was dependent on the migration

policy. Therefore, it was evident that a small fraction

of the fittest models (e.g. 25%) obtained from the last

generation of each deme alone are sufficient for the

formulation of a diverse initial population of models

for the master deme.

2. In general, at all stations for both daily Tmin and Tmax,

the fittest model in the master deme evolved by the

PMPGP algorithm run with the potential predictors

identified using correlation coefficient (CC) and mutual

information (MI) showed good generalisation skills

even for higher levels of redundant information. This

indicated that the PMPGP algorithm was able to

effectively discard redundant information in the sets of

potential predictors. Furthermore, in the application of

the PMPGP algorithm it was found that it is more

important to include the data of predictors that are most

correlated with the predictand, in the set of potential

predictors in developing a downscaling model rather

than attempting to reduce data redundancies or to

include large-scale influences originating in different

regions of the atmospheric domain.

3. Independent of the climate regime (i.e. warm or cold)

and the geographic location of the observation station,

both daily Tmin and Tmax downscaling models devel-

oped with the PMPGP algorithm showed better
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generalisation skills compared to that of models

developed with the traditional single deme GP. This

indicated that the increase in diversity among models

in the master deme in the PMPGP algorithm leads to

the evolution of models with better generalisation

skills.

4. In certain instances, models developed for daily Tmin

and Tmax with both PMPGP and GP algorithms

simulated unphysically large outliers (e.g. a value

which is 100 times larger than the observed maxi-

mum). This tendency was more pronounced particu-

larly among the GP-based models compared to that of

PMPGP-based models. The simulation of unphysically

large values did not show any clear dependence on the

climate regime, the geographic location of the obser-

vation station and the amount of redundant information

present in the sets of potential predictors. The gener-

ation of unphysically large values of predictands is

suspected to be due to the use of mathematical

functions ex (exponential) and ln (natural logarithm)

which may form asymptotic regions in the predictor–

predictand relationships.
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