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Abstract  23 

Physical inactivity is a global health risk that can be addressed through application of exercise training 24 

suitable for an individual’s health and age. People’s willingness to participate in physical activity is 25 

often limited by an initially poor physical capability and early onset of fatigue. One factor associated 26 

with muscle fatigue during intense contractions is an inexcitability of skeletal muscle cells, reflecting 27 

impaired transmembrane Na+/K+ exchange and membrane depolarisation, which are regulated via the 28 

transmembranous protein, Na+,K+-ATPase (NKA). This short review focuses on the plasticity of NKA 29 

in skeletal muscle in humans following periods of altered usage, exploring NKA upregulation with 30 

exercise training and downregulation with physical inactivity. In human skeletal muscle, the NKA 31 

content quantified by the [3H]ouabain binding site content shows robust, yet tightly constrained 32 

upregulation of 8-22% with physical training, across a broad range of exercise training types. Muscle 33 

NKA content in humans undergoes extensive downregulation with injury that involves substantial 34 

muscular inactivity. Surprisingly, however, no reduction in NKA content was found in the single study 35 

which investigated short-term disuse. Despite clear findings that exercise training and injury modulate 36 

NKA content, the adaptability of the individual NKA isoforms in muscle (α1-3 and β1-3) and of the 37 

accessory and regulatory protein FXYD1, are surprisingly inconsistent across studies, for exercise 38 

training, as well as for injury/disuse. Potential reasons for this are explored. Finally, we provide 39 

suggestions for future studies to provide greater understanding of NKA regulation during exercise 40 

training and inactivity in humans.  41 

  42 
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Linking health, physical activity, muscle excitability and Na+,K+-ATPase 43 

Inactivity or disuse causes diverse negative health outcomes, with inactivity recognised as a 44 

contributing factor to many cardiovascular and metabolic diseases, as well as declines in mental 45 

health (21, 46, 110). Deconditioning (i.e. lack of fitness) is also recognised as a key factor adversely 46 

affecting muscular performance in many chronic diseases (16, 60, 94) and in patients receiving organ 47 

transplants (114). An important consideration of this is poor physical conditioning and associated 48 

muscle fatigue, which directly limit muscle function and the capability to perform repeated muscular 49 

contractions that are essential to develop or sustain muscle strength and metabolic health, as well as 50 

to prevent severity of sarcopenia (1, 115). On the other hand, physical training does improve health, 51 

muscle mass and performance in patients with chronic disease and the general population including 52 

by attenuating or delaying muscular fatigue and thereby increasing an individual’s capacity to perform 53 

exercise. This differs to the intent of training in elite athletes, in which optimizing physical training 54 

protocols is critical for ensuring maximal performance of skeletal muscle during competition.  55 

Fatigue during muscle contractions is a topic of major debate still after more than a century of study 56 

and is likely to involve both central and peripheral components (1, 78, 84). Full discussion of fatigue is 57 

beyond the scope of this short review, so here we focus on one important component of fatigue 58 

occurring early in the excitation-contraction cycle, membrane excitability. Membrane excitability is 59 

linked with the release of K+ from the contracting cell into the extracellular space with each action 60 

potential and is accompanied by an influx of Na+ from the extracellular space into the muscle cell; 61 

repeated action potentials can lead to depolarisation of the membrane leading to inexcitability of the 62 

muscle fiber, thus contributing to fatigue (78).  63 

The Na+,K+-ATPase (NKA) plays a critical role in the regulation of concentration gradients for K+ and 64 

Na+ ions and thus, in the maintenance of membrane potential to enable continued propagation of 65 

action potentials along the sarcolemma and into the transverse tubular system (18, 78, 101). 66 

Understanding the NKA adaptability in muscle to training and downregulation to inactivity are of key 67 

interest for muscle NKA, Na+/K+ regulation and fatigue. The present review extends earlier reviews 68 

which included sections on muscle NKA, but focussed on training and electrolyte regulation (77, 80) 69 

on muscle NKA regulation (18) and NKA and its contribution to fatigue at a cellular level (78). Here we 70 

explore NKA adaptability in response to increased physical activity through exercise training regimes, 71 

as well as downregulation with reduced physical activity, through injury and induced inactivity. The 72 
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review focusses on skeletal muscle in humans wherever possible and includes focus on NKA 73 

isoforms as well as total content. All biopsies in these studies were taken from the vastus lateralis 74 

muscle, unless otherwise stated. In order to fully understand the findings, we also briefly discuss 75 

important methodological techniques used to measure NKA in human skeletal muscle and their 76 

implications. 77 

NKA in skeletal muscle 78 

The NKA is a heterodimer comprized of an alpha subunit with ten transmembrane segments, and beta 79 

subunit, as well as an accessory protein from the FXYD family (18, 87). In human skeletal muscle the 80 

exact locations of NKA are not yet determined, whereas in rodent muscle the NKA are predominantly 81 

located in the plasma membrane’ and within the t-tubules’ (56). The α subunit comprizes four isoforms 82 

(α1-4), but with only α1-3 expressed at the protein level in skeletal muscle; the β subunit comprizes three 83 

isoforms (β1-3), with each expressed in skeletal muscle (89). The specific functions of the α isoforms 84 

have not yet been clarified in human muscle, but have been assumed to be similar to those identified 85 

in skeletal muscle of other species. In rodent skeletal muscle, the α1 isoform is important for Na+/K+ 86 

regulation under basal conditions and has also recently been found to have an important intracellular 87 

signalling role in skeletal muscle growth, using an α1-modified murine model (63). The α2 isoform, also 88 

the most abundant α isoform, is primarily responsible for regulating the large Na+/K+ fluxes that occur 89 

during muscle contractions (42, 44, 75, 98). The role for the α3 isoform in skeletal muscle remains 90 

unclear. The β1 isoform is highly abundant in skeletal muscle (11) and is critical in NKA integration into 91 

the cell membrane (28) and plays a key role in regulating NKA enzymatic activity (64). The β1 isoform 92 

is highly expressed in slow muscle but is near undetectable in fast muscle, where the β2 isoform is 93 

heavily abundant (55, 91, 109). Thus, both the β1 and β2 isoforms must make heterodimers with both 94 

α1 and α2 isoforms to enable NKA activity and the composition of these heterodimers differs between 95 

slow and fast muscles in the rodent. The role of the NKA β3 isoform in skeletal muscle is however, 96 

unclear.  In human skeletal muscle, fiber-type heterogeneity is an important consideration of muscle 97 

performance, thus the expression of NKA isoforms in different fiber-types are of high interest. The α2 98 

was shown to be more abundant in Type II fibers in two studies (17, 108), conversely two other studies 99 

found no difference in the abundance of α2 in either fiber-types (119, 120) while the β2 isoform was 100 

more abundant in fast than slow twitch fibers (17, 120).   101 
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Phospholemman (FXYD1) is the main isoform of the FXYD family expressed in skeletal muscle, where 102 

it mainly associates with the NKA α1 and α2 isoforms (29, 99, 100); a further isoform, FXYD5, is also 103 

expressed in skeletal muscle (13, 72). FXYD1 binds to the α subunits in an unphosphorylated state and 104 

reduces α subunit Na+ affinity (26), whereas when FXYD1 is phosphorylated, Na+ affinity is increased 105 

(10). FXYD1 acts as a main substrate for protein kinase A and C phosphorylation in skeletal muscle 106 

(30), and it appears that FXYD1 is necessary for maximal activation of the NKA (100). FXYD1 is not 107 

expressed in a fiber type specific manner (108) but does undergo fiber-type specific phosphorylation 108 

after brief and intense acute exercise bouts (108). FXYD5 upregulation has also been shown to be 109 

responsible for increasing NKA activity (72), but nothing is known regarding its possible fiber-type 110 

specificity.  Further information regarding the activation of the NKA acutely can be found in an excellent 111 

recent review (97).  112 

Measurement of NKA in Human Skeletal Muscle - Methodological Considerations.  113 

Outcome measures. 114 

1. [3H]ouabain binding site content 115 

The [3H]ouabain binding site content technique provides an absolute measurement of the NKA in 116 

molar units (pmol.g wet wt−1 muscle). Readers are referred elsewhere to detailed discussion of the 117 

[3H]ouabain binding site content methodology and its significance (18, 19). In brief, the [3H]ouabain 118 

binds stoichiometrically to the α subunit of the NKA, thereby allowing quantification of the content of 119 

these subunits, with the specific α isoform detected dependent on the differing affinity to ouabain of α 120 

isoforms in some species, and the concentration of ouabain used. The NKA are located in both the 121 

sarcolemma and the transverse tubules in muscle (18). The [3H]ouabain binding site content in rat 122 

soleus muscles was identical when using either cut muscle pieces or intact muscles, thus this method 123 

ensures quantification of all NKA in sarcolemmal and transverse tubular membranes, at least for NKA 124 

that incorporate the α2 isoform (79). Similar analyses have not been conducted on human muscles, 125 

since muscle biopsies contain cut pieces only. Due to the high affinity of ouabain binding to all α 126 

isoforms in human muscle (93, 111), the [3H]ouabain binding site content can also be referred to as 127 

the total NKA content in human skeletal muscle. In rat muscle the α1 isoform makes up approximately 128 

20% of the NKA α subunits; however the α1 has a lower affinity to cardiac glycosides which doesn’t 129 

allow for the α1 to be detected using the standard [3H]ouabain binding site content technique (42). 130 

Thus, in rodent muscles, the standard [3H]ouabain binding site technique detects all α2 but not α1 131 
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isoforms and is not a full quantification of total content. Regardless, the α2 is believed to be the major 132 

isoform in skeletal muscle (44). Thus research in rodents which showed e.g. increases in [3H]ouabain 133 

binding site content with training, represent a gain in the NKA α2 isoform protein (58), whereas e.g. 134 

increases in human muscle with training, would primarily reflect increases in α2, but could also include 135 

changes in the α1 or α3 isoforms (82). A limitation of the standard [3H]ouabain binding site content 136 

technique for studying adaptability in human skeletal muscle is that it cannot differentiate between 137 

binding to the three α isoforms, although using different concentrations of ouabain have been used for 138 

this purpose in muscle in some other species (61). A second limitation of the [3H]ouabain binding site 139 

content technique is the slow incubation time for [3H]ouabain to the muscle NKA, typically around ~2 h 140 

to saturate all sarcolemmal and t-tubular membranes, which means that impacts of processes 141 

changing within muscle on a more rapid time frame on NKA including hormonal changes, nutritional 142 

supplementation and acute exercise on e.g. translocation might not be detected (97). However, this 143 

latter limitation is not relevant to interpretation of the total NKA content in muscle, in particular with 144 

training or inactivity interventions, as biopsies are generally taken under resting conditions before and 145 

after a medium-long term intervention. Hence this long in-vitro incubation time for NKA content 146 

measurements will not affect training induced changes in resting skeletal muscle.  147 

2. NKA isoform proteins  148 

Western blotting is commonly used to investigate possible changes in NKA isoform abundance and 149 

phosphorylation with inactivity and training. The immunoblot technique should detect all NKA protein 150 

for the specific isoform probed, regardless of their membrane location, or incorporation into a 151 

functional NKA dimer. Thus the technique would also be expected to detect any isoform proteins 152 

present. In contrast the [3H]ouabain binding site technique detects functional NKA dimers, being 153 

locked into a conformation by vanadate to facilitate ouabain binding. That these different techniques 154 

are detecting some differences is suggested by the considerably different responses in percentage 155 

terms to training (see later). Thus whilst immunoblotting allows investigation of relative changes in 156 

abundance (e.g. with training), this does not allow quantification with molar units (19). Different 157 

analytical techniques are used which should be considered when evaluating differences in findings 158 

between research groups. Some studies used a fractionated muscle lysate for western blotting 159 

analyses (9, 106, 107), whilst others employed whole homogenate as the preparation of the sample 160 

(6, 88, 89, 96, 118, 120). Readers are referred to two excellent methods papers regarding western 161 
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blotting for more detail on these issues (76, 90).This difference in sample preparation may have an 162 

effect on the yield of the isoform retrieved (76, 90). An additional issue, which is not well documented 163 

within the literature, is the heating of a sample over 60°C, which can lead to aggregation of integral 164 

membrane proteins interpretations may be inaccurate compared to studies where no heating was 165 

employed.  As a semi-quantitative technique, western blotting probably has greater variability in the 166 

magnitude of change compared to quantitative techniques such as [3H]ouabain binding site content. 167 

The typical error of western blotting for NKA isoforms was recently reported to be 10-30% (17). Thus, 168 

western blotting may not have the sensitivity to detect small changes in NKA isoforms. Another issue 169 

with western blotting is that potential adaptations may not have been detected due to proteins being 170 

measured in a mixed-muscle homogenate sample, rather than in individual muscle fibers. It is 171 

possible that some studies failed to detect actual changes in NKA isoform proteins that occurred in 172 

one fibre type only, by not measuring NKA isoforms at the single fiber level. To overcome this, 173 

researchers have begun isolating segments of single fibers from human muscle biopsies and 174 

performing western blots. So far, single fiber analyses have been utilized to investigate effects of both 175 

training and inactivity (96, 118, 120), these changes are described in more detail within the inactivity 176 

and training sections of this manuscript. 177 

Other methodological considerations 178 

1. Intervention differences  179 

Many training studies that measured isoform abundance adaptations used trained populations, such 180 

as elite cyclists, football players, as well as recreationally active participants. The varying athletic 181 

status is likely to be important, as an earlier cross sectional analysis indicated that well-trained 182 

participants had a higher abundance of NKA isoforms, relative to recreationally active participants 183 

(88). Therefore, the level of stimulus required to increase the abundance of NKA isoforms in muscle 184 

may be greater in athletes compared with recreationally active and non-trained individuals. The 185 

experimental design also varies tremendously, making it difficult to make direct comparisons between 186 

studies, or to investigate any association between upregulation of NKA isoforms with any training 187 

modality or duration. Some studies also utilized High-Intensity Interval Training (HIT), speed 188 

endurance training (SET), or sprint training (ST) in replacement of regular training (51), or to 189 

supplement training (6, 8, 41), whilst others combined multiple training modalities within the same 190 



8 
 

study (106, 117). This makes their findings more difficult to compare with studies that used SET, ST, 191 

repeat sprint exercise (RSE) or HIT as the sole training modality (86, 92, 118, 120).  192 

Finally, the sample size studied is important and insufficient statistical power may limit the capacity to 193 

detect changes in NKA isoform abundances in a number of training studies. The typical sample size 194 

for studies ranged between 8-15 participants, however in instances where n=15 were studied, these 195 

were often divided into two different groups (51, 86). A challenge of this research is finding sufficient 196 

numbers of volunteers willing to undergo invasive procedures on multiple occasions, which explains 197 

why sample sizes are often limited. This issue of small sample size and lower power is especially 198 

prevalent in invasive training studies with humans, nonetheless, future studies should embark on 199 

larger scale, simple training interventions to minimise potential effects of insufficient statistical power. 200 

This could be achieved by multicentre trials across institutions to recruit increased numbers of 201 

participants thus generating larger data sets.   202 

Disuse effects on muscle NKA content  203 

Both injury and disuse models have been used to study the broad effects of inactivity within skeletal 204 

muscle (12). Common disuse models include bed rest (54) with studies extending for as long as 119 205 

days (65), or immobilisation, which typically involves a cast placed around a limb to prevent dynamic 206 

muscle contractions and movement. A less constrictive approach is that of Unilateral Lower Limb 207 

Suspension (ULLS), in which participants wear one shoe with an extended sole (~10 cm) and walk 208 

with the assistance of crutches, causing one leg to become unloaded (105), with the contralateral leg 209 

acting as a control leg (96). A model used in athletes is reduced muscular usage or detraining that 210 

occurs with cessation of training, often after completion of a competitive season (106). The literature 211 

examining the effects of injury or inactivity on NKA in human skeletal muscle is currently sparse, 212 

being limited to only six studies, likely due to the extremely difficult nature of these studies, which 213 

combined with invasive measurements involve major disruption to a participant’s daily life. Thus future 214 

studies are still required to understand the effects of inactivity on muscle NKA. In lieu of these 215 

challenges surrounding human volunteers, different models of human inactivity including astronauts, 216 

as well as a multicentre approach, should be used to investigate effects on muscle NKA. Here we 217 

have reviewed findings of the current studies which have investigated inactivity and NKA in human 218 

skeletal muscle. 219 



9 
 

Different types of injury that induce severe localised inactivity have been found to decrease muscle 220 

NKA content, including shoulder impingement syndrome, anterior cruciate ligament injury (using a 221 

contralateral limb as a control), paraplegia and partial spinal injury compared to ambulant, age-222 

matched controls (13, 22, 67, 95). The muscle NKA content was reduced with these injuries, with 223 

declines ranging from 20-23% in patients with ruptured anterior cruciate ligament (n=6, mean age 25 224 

years, 5-50 weeks post-injury) (95), 27% in patients with shoulder impingement syndrome (n=6, mean 225 

age 44 years, at least 11-77 months post-injury) (67), 34% in paraplegia patients (n=6, mean age 32 226 

years, 1-19 years post-injury) compared to the deltoid of the same patients (22); and as much as a 227 

45% decline in chronic cervical spinal injury patients (n=6, mean age 44 years, injured for multiple 228 

years) compared to controls (13). However, for all of these studies, it is possible that in addition to 229 

enforced muscular inactivity, effects consequent to the injury per se, or medical treatment may also 230 

have had impact on muscle NKA. Thus a preferred approach is to investigate muscle unloading per 231 

se in otherwise healthy individuals, but to date only a single study has investigated the impacts of 232 

voluntary unloading on NKA (96). A surprising finding was that 23-days of ULLS failed to cause any 233 

decrease in NKA content, despite substantial impairment of muscle mass and function, including 234 

exercise performance (96). One interpretation of the lack of NKA downregulation after ULLS 235 

compared to the marked reductions in muscle NKA content with injury, is that differences may in part 236 

be attributed to the short time frame of the ULLS intervention. In animal models, where lifespans are 237 

much shorter, short-term inactivity induced substantial reductions in muscle [3H]ouabain binding site 238 

content when expressed relative to muscle wet weight; falling by 20% in soleus muscle after 1 week 239 

limb casting in rats (58), by 23-25% in gastrocnemius muscle and 18-19% in the plantaris muscle, 240 

after 2-3 weeks partial immobilisation using a prosthesis in guinea pigs, (66) and by 39% after 9 241 

weeks limb casting in sheep (52). Substantial recovery in muscle [3H]ouabain binding site content in 242 

sheep muscle occurred after subsequent 9 weeks of remobilisation (52). Immobilisation in young rats 243 

(5 days old) for 7 days reduced the normal gain that occurred at that age in [3H]ouabain binding in 244 

soleus muscles by 33% (112). Partial immobilisation for 3 weeks also allowed eventual recovery of 245 

[3H]ouabain binding site content (66). Inactivity subsequent to training also reduced the muscle 246 

[3H]ouabain binding site content; 6 weeks of swim training induced ~41% and ~46% upregulation in 247 

soleus and extensor digitorum longus muscles, respectively, whereas 3 weeks of subsequent rest 248 

reduced NKA by ~34% and ~26%, respectively (58). Therefore the results from these inactivity 249 
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studies in animals suggest that either a longer duration or greater severity of unloading may be 250 

required to depress NKA content in human skeletal muscle and the balance between mRNA mediated 251 

synthesis and degradation rates of NKA proteins. Other factors concomitant with injury, such as 252 

enhanced local inflammation (69, 70) and changes to neurotrophic factors (103) may also exert 253 

effects additive to those of disuse per se, but these are untested in relation to NKA expression  254 

Disuse effects on muscle NKA Isoform abundances   255 

Only three studies have investigated the effects of injury and inactivity on muscle NKA isoform 256 

abundances in humans. Patients with chronic cervical spinal injury (n=6, mean age 44 years, injured 257 

for multiple years) had 75%, 52% and 38% lower NKA α1, α2 and β1 abundances in the vastus lateralis 258 

muscle, respectively, compared to healthy controls (13). Interestingly, those patients who were able to 259 

perform daily activities despite partial cervical spinal injury (n=6, mean age 49 years) actually 260 

exhibited no differences in NKA isoform abundances in the paralysed vastus lateralis muscle (13). 261 

Following 3 weeks of muscular disuse induced by ULLS in healthy young adults, there were no 262 

changes in the α1 or α2 isoform abundances, whether measured in either whole muscle homogenates 263 

or in single muscle fibers (96). However, after ULLS, the β1 isoform protein abundance was lower in 264 

Type II fibers (40%) and was also restored following resistance training; no changes were detected in 265 

homogenates (96). NKA heterodimers with a β1 isoform have been suggested to support higher NKA 266 

activity by having a greater affinity for Na+ than the α/β2 heterodimer (64); thus a loss of β1 may imply 267 

a reduced number of functional NKA heterodimers present in Type II fibres of skeletal muscle after 268 

ULLS.  The functional effects of possible reduction in β isoforms are not clear, as skeletal muscle is 269 

thought to have an excess abundance of β compared to α subunits (64). Similarly, no changes in the 270 

α1,  α2 or β1 isoform abundances were found after a less severe inactivity model, comprising cessation 271 

of training for two weeks following the end of a soccer season and with isoforms measured in 272 

fractionated lysates (106). These studies strongly suggest, consistent with findings in NKA content, 273 

that reductions in muscle NKA isoforms are only induced by a severe lack of physical activity over a 274 

prolonged period. This conclusion is surprising given the large and rapid reductions in NKA isoforms 275 

evidenced in animal models. In rat muscle, the marked reductions in [3H]ouabain binding site content 276 

with one week inactivity represent mainly a reduction in the NKA α2 isoform protein (58), due to its 277 

high affinity to ouabain (18) and as the dominant α isoform expressed in muscle (42, 44). Changes in 278 

NKA α2 isoforms are also highly complex and time-dependent. Hindlimb suspension in rats reduced 279 
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the electrogenic activity of the α2 isoform protein, measured via ouabain-suppressible activity. 280 

Surprisingly, the reduction in electrogenic α2 activity  was accompanied with an initial doubling in α2 281 

protein abundance after 24 h and with a ~50% elevation still remaining at 72 hours post-intervention, 282 

β subunit protein abundances were unfortunately not reported (61). This indicates that the reduction in 283 

α2 electrogenic activity was due to a decline in NKA enzymatic activity per se; interestingly, no 284 

changes were found in the same measures for the α1 isoform in the soleus muscle (61). These 285 

changes were subsequently demonstrated in a time frame as short as 12 h post hindlimb suspension 286 

(62). These changes in NKA may also be responsive to changes in plasma [K+], with hypokalaemia 287 

having a profound impact on NKA content and specific isoform abundance, with particular effects on 288 

α2 as seen in studies with rodents. When rats were placed on K+ deficient diets over a period of 1-4 289 

weeks, the α2 showed a progressive decline and disappeared after 3 weeks (48). It has been 290 

suggested that decreased [K+] may be important in suppressing mRNA to protein translation, at least 291 

for the α2 isoform (7). Conversely, hyperkalaemia typically induces increases in NKA content, as 292 

increased K+ clearance is required; in rats this was observed within 7 days of a high K+ diet (15). The 293 

link between voluntary inactivity and plasma [K+] changes in humans are not known, however, after 23 294 

days of ULLS plasma [K+] at rest was not altered (96). Thus, in short-term inactivity studies 295 

investigating muscle NKA content or isoform abundances, any alterations are less likely to be 296 

changes in plasma [K+], at least in healthy populations. Hence, the time course of these changes and 297 

the underlying mechanisms in human muscle of considerable interest for future studies to explore. 298 

Muscle FXYD following inactivity 299 

Despite its emerging importance in regulating NKA activity (10), few studies have investigated the 300 

regulation of FXYD with disuse in human skeletal muscle.  Cervical injury patients had 52% lower 301 

muscle FXYD1 content compared to healthy controls, with no difference in phosphorylation at 302 

FXYD1ser63 and FXYD1ser68 (13). The amount of basal and phosphorylated FXYD1 in the cervical 303 

spinal injury patients capable of ambulation (i.e. able to perform some movements) were not different 304 

from the controls (13). There was also an increase of the FXYD5 in the spinal injury patients (13). 305 

These few studies indicate that injury and physical inactivity clearly can regulate the abundance of the 306 

FXYD1 and 5 proteins. In addition, these findings in cervical injury patients indicate that reductions in 307 

the FXYD1 due to inactivity may not be related to the abundance of phosphorylation of FXYD1. It is 308 

possible that the unchanged phosphorylation of FXYD1 and increases in FXYD5 compensated for the 309 
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dramatic decline in α1, α2 and β1 isoforms and total amount of FXYD1 in these patients, thereby 310 

assisting in maintenance of functional NKA. Thus the abundance of the FXYD1 and 5 proteins may 311 

regulate the catalytic activity of the NKA despite declines in isoform abundance associated with 312 

inactivity.     313 

The effects of disuse on the abundance of FXYD1 in skeletal muscle has not been extensively studied 314 

in healthy humans. Following two weeks of cessation of training in soccer players, there was no 315 

change in the abundance of FXYD1, however, there was a decrease in the phosphorylation of 316 

FXYD1ser68 by 19% and 18% at 72 h and 2 weeks after training cessation, respectively (106). Given 317 

the training status of these participants, it is likely that FXYD1 proteins were already elevated by 318 

training; this is likely to be a typical post-training reduction rather than a true disuse effect. 319 

Effect of exercise training on muscle NKA  320 

Classification of modalities of physical training.   321 

The first investigation into adaptability of muscle NKA with longitudinal exercise training was 322 

conducted nearly three decades ago (57). Since then numerous studies have investigated exercise 323 

training effects on muscle NKA content, NKA isoforms using a broad range of training modalities, 324 

which especially for high intensity training, have adapted over time and thus require definition. For the 325 

purpose of comparison of training effects on NKA in this review, exercise training modalities have 326 

been classified into three broad categories, defined as Endurance Training (ET), High Intensity 327 

Training (HIT) and Resistance Training (RT), as described in Table 1.  Each of these exercise types 328 

will likely recruit a differing proportion of both Type I and Type II fibres; Type I fibres are more heavily 329 

recruited during submaximal endurance exercise, whereas during high intensity exercise, Type II 330 

fibres are recruited in additional to Type I (24). Thus the implementation of these exercises may 331 

influence NKA isoform contribution to exercise. ET is defined as training that comprizes exercise 332 

bouts performed at an intensity between 50-80% of an individual’s maximum oxygen consumption 333 

(VO2max) and typically sustained for a prolonged period, therefore having a heavy reliance on aerobic 334 

metabolic pathways. High Intensity Training (HIT) is defined as training utilising repeated, short 335 

duration, intense exercise bouts, interspersed with passive or active recovery periods, requiring a 336 

heavy contribution from anaerobic metabolism. HIT typically comprizes 4-10 bouts, of 10 s to 4 min 337 

duration, completed at work rates ≥ 90% VO2peak, or with longer ~4 min bouts ≥ 80% VO2 peak (31, 338 

32, 50, 82). HIT can therefore be further classified into several sub-types of training, including Aerobic 339 
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High Intensity Training (AHIT), Speed Endurance Training (SET), Sprint/Speed Training (ST) and 340 

Repeat Sprint Exercise (RSE). Aerobic High Intensity Training (AHIT) is defined as repeated bouts of 341 

exercise between 1-5 minutes ≥ 80% VO2 peak (6, 9) or HR max (33, 106) the recovery time is 342 

between 1:0.5 up to 1:2 work rest ratio.   343 

Speed Endurance Training comprizes repeated 10-40 s sprint bouts of near-maximal intensity, with a 344 

1:5 work rest ratio (50), this type of training has also previously been termed sprint training (43, 82), 345 

but for consistency we will refer to this type of training as SET. Speed training (ST) comprizes 2-10 s 346 

maximal exercise, with recovery periods up to 1:10 work rest ratio (50). Repeat-sprint exercise (RSE) 347 

comprizes multiple (4-6) high-intensity bursts, each lasting between 2-6 s, interspersed by a brief 348 

recovery period (102, 104) and are typically used to be comparable with efforts produced during 349 

intermittent team sports, such as soccer, rugby, Australian football and hockey (4, 53, 113). 350 

Resistance Training (RT) is classically defined as moving limbs/ or body segments against various 351 

resistances including machines, dumbbells, body weight and cables and is utilized to improve muscle 352 

strength and power and to promote muscular hypertrophy. The performance benefits of ET, HIT and 353 

RT have been well described elsewhere (31, 33, 50, 85) and hence are not covered here.   354 

Adaptations in muscle NKA content with endurance and high intensity training   355 

The findings of studies investigating training effects on muscle NKA content are indicated in Table 2. 356 

In order to summarise this literature, we searched for studies involving humans which had 357 

investigated muscle [3H]ouabain binding and/or muscle NKA isoforms with training or inactivity. No 358 

studies were excluded and those that measured but failed to detect any upregulation with training 359 

were also cited. The studies are broadly consistent, with 8-25% increases in NKA content elicited with 360 

training, in 10 out of 12 studies published to date. Furthermore, and importantly, these increases 361 

appear to be regardless of the type of training utilised, or the population studied. Only two of these 362 

studies did not detect an increase in NKA content; in the first neither the training modality nor fitness 363 

status of participants were detailed (57), whilst in the more recent study, the participants were already 364 

well-trained cyclists (VO2 peak 4.9 L.min-1) (6). Thus, it is possible that the training stimulus used was 365 

sub-optimal or that the muscle NKA content may already have been elevated before the training 366 

intervention (88). Nonetheless, upregulation of NKA content in muscle is clearly a consistent finding. 367 

To compare findings from the various studies, the 90% Confidence Interval (90%CI) was calculated 368 

utilising each of the percentage increases in NKA content, reported p values and sample size (47). 369 
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Where the precise p value was not presented, but rather reported as p<0.05, we took a conservative 370 

approach, using a p-value of 0.049 for consistency across analysis. The study by (57) was not 371 

included as insufficient data were reported. The objective was to identify whether there were any 372 

apparent differences in adaptation with different training modes. The data reveals firstly that NKA 373 

content was consistently increased with training, between 8-22%, regardless of training modality, 374 

whether studied in healthy young or older adults, or in Type I diabetics (Figure 1). Furthermore, the 375 

percentage increase in NKA content was not related to either the mean training intensity or 376 

cumulative training time (Figure 2). An important additional finding was that the training duration did 377 

not affect the gain in muscle NKA content. An increase in NKA content was found after only one week 378 

of ET (39) and participants undertaking ET exhibited a 22% increase in NKA content after 3 weeks, 379 

but with no further increase after 12 weeks (34). Thus, the mean gain in NKA content did not exceed 380 

~25%, even when training exceeded 3 months. Elderly also displayed a similar muscle NKA content 381 

upregulation with training, with an 11% increase after 12 weeks of HIT (118). An early cross sectional 382 

study demonstrated that older adults who had been active for over 10 years had higher muscle NKA 383 

content compared to sedentary older adults, which ranged between 30-40% depending on the type of 384 

training, including swimming (30%), running (32%) and RT (40%) (59). It is of interest to compare 385 

these findings in human muscles, to those with chronically stimulated muscles in animal models. Low 386 

frequency stimulation of extensor digitorum longus muscle in rabbits rapidly increased the [3H]ouabain 387 

binding site content by ~41% after only 3 days, 86% after 10 days, then plateaued, with no further 388 

increase after 50 days (37). Even larger increases were found in a subsequent study, where a gain in 389 

[3H]ouabain binding site content of 60% occurred after 6 days and by 107% after 20 days chronic low 390 

frequency stimulation (45). Apparently, there are clear differences between species in the magnitude 391 

and rate of adaptation of muscle NKA. Within humans, the importance of the NKA increasing during 392 

training has obvious implications for maintaining membrane potential and K+ clearance during 393 

exercise, for improvement of exercise performance (78, 82). But the time course of adaptability in 394 

NKA in human skeletal muscle content are needed to understand why and when NKA adaptation 395 

reaches a plateau. For example in the studies listed in Table 2, the maximum NKA content increase 396 

was ~25%. There are several possible speculations on what may be limiting increases in NKA content 397 

with training. A consideration might be that the stimulus of training isn’t eliciting the same ‘new 398 

stimulus’ and thus over time, the NKA pool is able to better cope with the  demands of the training 399 
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session, the physiological challenge is decreased with a lesser requirement for synthesis of new NKA. 400 

Secondly, it might be dangerous to synthesize NKA beyond a particular threshold within a given 401 

individual. As muscle makes up 40% human body mass its role in clearing increases of K+ is 402 

extremely important. Thus more NKA in muscle would enable greater K+ clearance and thereby better 403 

performance; however this also has large potential effects on post-exercise plasma [K+]. 404 

Hypokalaemia is commonly reported within the first 5-10 minutes of recovery from an acute bout of 405 

intensive exercise, in particular exercise utilizing a large muscle mass (e.g. rowing, sprint cycling) (2, 406 

3, 71); this is likely due to an highly activated NKA. Hypokalaemia has important adverse implications 407 

for cardiac muscle (71) with a recent study showing the post-exercise hypokalaemia was associated 408 

with impaired cardiac hysteresis measured via electrocardiogram (3). This lowered K+ post exercise 409 

therefore has implications for cardiac arrhythmias and sudden cardiac death after exercise (3). Thus a 410 

training plateau of the increase in NKA content may be a protective mechanism, however more 411 

research is required to determine the time point or physiological point where this plateau is reached.  412 

 413 

Adaptations in NKA content with resistance training.  414 

Three studies have examined the effects of RT on skeletal muscle NKA content. In one study, 415 

participants performed RT for 12 weeks, comprising 3 sets of 6-8 repetitions of each of leg press, squat 416 

and leg extension exercises, finding that muscle NKA content was unchanged after 4 weeks (34), 417 

increased by 16% after 7 weeks, but then remained constant until 12 weeks (34). In another study, well-418 

trained cross country skiers undertook RT comprising five series of four heavy full squat lifts, with a 419 

focus on eccentric contractions, completed either once, twice or three times per week, for 3 months 420 

(83). They found that NKA content was not significantly increased in the athletes that undertook RT only 421 

once a week, but was increased when athletes trained twice and three times per week by 15% in the 422 

pooled results (83). In the third study, the effects of 4 weeks RT on muscle NKA content were examined 423 

in six healthy participants, with RT undertaken immediately following a 23-day period of ULLS. 424 

Interestingly, RT had no effect on the NKA content, despite gains in both muscle mass and strength 425 

(96). Regardless, an unchanged NKA content in the context of an overall increased muscle mass would 426 

in fact suggest an increased NKA synthesis commensurate with the increased muscle protein content, 427 

but detailed studies are required to verify this.    428 

Adaptations in muscle NKA content with exercise training in hypoxia 429 
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Whilst almost all exercise training studies reported an increased muscle NKA content, undertaking 430 

training with hypoxic exposure actually induced the opposite effect of reducing NKA content, at least 431 

for ET. Participants who performed ET in normoxia exhibited a 14% increase in muscle NKA content 432 

after ET, whereas a group that trained under hypoxic conditions over 8 weeks had a decline in muscle 433 

NKA content by 14% (35). This decline was similar to the 14% reduction found after a 21-day expedition 434 

to 6,194 m in recreationally active people (36). Practically, this implies that training in hypoxia per se 435 

may not be beneficial for enhancing muscle performance. Mechanistically, this may be due to reactive 436 

oxygen species (ROS) which are generated during exercise, ROS generation is amplified when training 437 

in hypoxia (74) and ROS may inhibit NKA activity during exercise (81) and thus muscle cellular 438 

responses to chronic hypoxia may prematurely impair NKA activity and excitability during training. From 439 

a training perspective, the quality and capacity of each training session would then be compromised, 440 

with athletes’ therefore not reaching required training load and reflective in a lack of NKA responses 441 

(5). Regarding chronic hypoxic exposure that caused a reduction in NKA content, although it was 442 

hypothesised exposure to hypoxia may result in greater protein breakdown and thus a loss of NKA was 443 

seen after 21 days reaching 6,194 m (36), there is little evidence to directly support this explanation. An 444 

alternative approach to training in hypoxia, that allows athletes to receive the beneficial adaptions of 445 

altitude exposure has been termed Live-High, Train-Low (LHTL) (68). When well-trained endurance 446 

athletes continued their normal training whilst undertaking 23 consecutive nights of hypoxic exposure, 447 

no change in muscle NKA content occurred (5) thereby intermittent exposure to hypoxia may be more 448 

beneficial to NKA and allows athletes are able to train at appropriate intensities while obtaining 449 

haematological benefit (27, 49).    450 

Muscle NKA isoform adaptability to training  451 

Over the past decade, there has been considerable interest in determining the malleability of NKA 452 

isoforms in human skeletal muscle with training. These studies show highly variable responsiveness 453 

of specific NKA isoforms to various training modalities (Table 2). The percent change ±90% CI (47) for 454 

most commonly measured NKA isoforms, α1, α2 and β1 with training is presented in Figure 3. Only 455 

around one-half of the studies published to date reported increases in these isoforms, with increases 456 

found for α1 in 6 of 13 studies, for α2 in 6 of 13 studies and for β1 isoforms in 7 of 13 studies. It is 457 

surprising that less than one-half of studies utilizing western blotting detected an increase in the α2 458 
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isoform with training. There is no apparent consistency regarding the upregulation of any isoform with 459 

a particular type of training. This may be due to methodological considerations, as outlined on page’s 460 

5-7. It is also unclear whether any particular training modality consistently increased one isoform more 461 

than another. Only three of these 13 studies detected an increase for each of the α1, α2 and β1 462 

isoforms (9, 20, 38). One study utilizing high-intensity single leg cycling reported an increase in both 463 

the α1 and α2 isoforms (92); while SET (running) increased in both the α2 and β1 isoforms (86); two 464 

studies which incorporated either regular football (soccer) training or repeated small sided soccer 465 

drills (8x2 min) in conjunction with SET running training found increases in α2 (8, 106); another study 466 

found sprint training (running) exclusively increased α1 (51); while a combination of mixed RT and 467 

SET training found an increase only in β1 (117).  468 

NKA isoform measurements within single muscle fibers 469 

There have been a handful of studies conducted within single fibers to elucidate how the NKA works 470 

during exercise and adapts to training. The first study examined acute exercise responses primarily 471 

focusing on FXYD1 phosphorylation (108). Following a 5-min bout of intense exercise, corresponding 472 

to ~95% of maximal oxygen uptake on a cycle ergometer, there was an increase in phosphorylation of 473 

FXYD1ser68 in Type II fibers and increased unspecified  FXYD1 phosphorylation in both Type I and II 474 

fibers (108). Following 4 weeks of RSE training, which comprised 3 sets of 5 x 4 s sprints performed 475 

on a non-motorised treadmill, there was a 42% increase in β1 isoform protein abundance in Type II 476 

fibers, with no changes found for other isoforms (120). A 12-week training protocol comprising four 4-477 

min bouts at 95% peak heart rate, performed 3 times per week in adults aged over 65 years, showed 478 

a 30%-increase in α2 in Type II fibers with no other isoforms being upregulated (118). In adults aged 479 

between 18-35 years, six weeks of High-Intensity Training (HIT) comprising 4x 30s sprints, with 4 480 

minutes recovery between sprints, induced increases in the α1 and β3 isoforms in both Type I and II 481 

fibers, β1 in Type II fibers, and decreases in FXYD1 in Type I fibers (17).  482 

Despite a lack of consistency around training and isoform upregulation, one observation is the studies 483 

that found increases in α2 utilized training that comprized either exercise of high intensity, ranging 484 

between 90-150%of VO2 max or running speed (8, 9, 86, 92, 106), or of high volume, with training 485 

sessions lasting between 60-120 minutes (9, 38). One RT study also found increases in the α2 isoform 486 

(20), which might relate to the repeated highly intense contractions performed in RT. It is likely that 487 
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intense quadriceps contractions during these high-intensity or high-volume running and cycle training 488 

studies (5, 6, 71, 76, 90), as well as during RT (14) also indicate heavy recruitment of the vastus 489 

lateralis muscle, hence accounting for the consistent elevations in the NKA α2 isoform in the vastus 490 

lateralis, thus explaining why different modes of exercise training induced similar outcomes for α2. 491 

Muscle FXYD1 and training  492 

Ten days of training which incorporated both ET at ~75% VO2 peak for 45-90 min and AHIT (comprising 493 

6x5 min intervals at 90-100% VO2 peak), had no effect on total FXYD1 content or phosphorylation at 494 

Ser63, Ser68 or Thr69, despite upregulation of each of the NKA α1, α2 and β1 isoforms (9). In contrast, 495 

after 2 weeks combined SET and AHIT, FXYD1 phosphorylation on site Ser68 relative total FXYD1 was 496 

increased by 27% (106). Similarly, in well trained endurance cyclists, subsequent to a reduction in 497 

training volume by ~70% and then replaced with SET and AHIT, there was a 30% increase in FXYD1 498 

protein abundance and an increase in non-specific FXYD1 phosphorylation, suggested to be attained 499 

through phosphorylation at Ser68 (107). An interesting observation is when there was a heavy ET 500 

component during 10 d of one-legged cycling training, there were no changes in FXYD1 501 

phosphorylation on sites Ser63, Ser68 or Thr69 or the total FXYD1 abundance (9). Conversely, when 502 

intermittent intense exercise training was predominantly used, both FXYD1 abundance and 503 

phosphorylation were increased (106, 107). Together this suggests a higher intensity of training may 504 

be required to induce FXYD1 phosphorylation adaptations.  505 

Association between muscle NKA, performance and fatigue 506 

The increases of α2/β1 isoforms in skeletal muscle with training reported in a number of studies may 507 

have considerable implications for NKA activity and exercise performance, but it is important to 508 

acknowledge that these changes have not been consistently reported. The fact that the [3H]ouabain 509 

binding sites are increased suggests that the α2 isoform at least should also be elevated and points to 510 

methodological reasons underpinning the inconsistent findings. Both α2 and β1 isoforms are believed 511 

to be the major isoforms employed during muscle contractions/exercise (64, 98). The α2 isoform 512 

abundance was correlated to high-intensity running during soccer. Importantly, the α2 and β1 isoforms 513 

are each expressed in Type I versus II muscle fibers with no fibre-type dominance being reported 514 

(119, 120). This suggests that both isoforms can exert an effect on the whole muscle, rather than 515 

being constrained to a dominant effect in one fiber-type only, as is the case for other enzymes and 516 

proteins that are expressed specifically in one fiber-type only in skeletal muscle. The use of co-517 
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immunoprecipitation of α, β and γ subunit isoforms would be particularly valuable in identifying fiber-518 

type specific heterodimers. The same could be said for improvements in the NKA α1 isoform, which 519 

was observed to adapt as often as the α2 isoform, but just as inconsistently, and which also showed 520 

the largest reported increase in any isoform, of up to ~80% (9) (Figure 3). Given we do not yet know 521 

the relative composition or respective roles of the α subunit isoforms in human skeletal muscle, it is 522 

possible that adaptations in the α1 may play an equally important role as those for α2, since 523 

improvements in performance and K+ regulation were also seen with increases only in α1 (51).  The α2 524 

key role is to regulate Na+/K+ gradients during contractions, and thus it would be expected to be 525 

increased in most training studies. However, this review demonstrates that this is not always the case. 526 

In training protocols utilising short bouts of only a few seconds duration, the rise in interstitial [K+] and 527 

intracellular [Na+] may not be as pronounced, in particular, intercellular Na+ is a potentially important 528 

regulator which may trigger the synthesis of new NKA as demonstrated in myotubes (14, 116). Thus if 529 

these sprints are too short, there might be insufficient stimulus for complete α2 activation and or α2 530 

synthesis. The lack of consistency among training studies and the mechanistic research conducted 531 

thus far makes speculation difficult. For these reasons, it should not be a surprise that both α1 and α2 532 

display large adaptability to longer periods of both intense (9, 92) and long endurance exercise (9, 533 

39). It is likely that FXYD1 also plays an important role in skeletal muscle function, since a reduction 534 

in phosphorylation of FXYD1ser68 were associated with declines in physical tests related to team sport 535 

performance, namely a repeat sprint test and Yo-Yo IR2 performance, (106, 107).  536 

Conclusions and perspectives  537 

Exercise training has been demonstrated to robustly increase NKA content with most training types, 538 

however individual isoform responses are much more varied.  More studies need to be undertaken to 539 

determine which isoforms are changed with various types of training inclusive of changes in FXYD1 540 

and its phosphorylation. These investigations will need to calibrate the potentially differing impacts of 541 

training intensity, duration and training modalities. Studying both exercise intensity and duration as 542 

differing regulators of NKA, would provide valuable understanding whether specific isoforms have a 543 

particular threshold of physical activity for upregulation, whether one specific isoform is upregulated in 544 

preference to, in concert with, in sequence with, or independent of other isoforms during training and 545 

may reveal the mechanisms behind training induced NKA upregulation.  546 
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The limited available evidence with voluntary disuse in humans suggests that NKA content is 547 

surprisingly resilient to change with short-term inactivity. However, severe injury, which promotes long-548 

term inactivity, such as observed with spinal injury, ACL injury and shoulder impingement clearly reduce 549 

skeletal muscle NKA content. These conclusions are all drawn however, from a limited number of 550 

studies, so further research is needed to better understand the NKA response to disuse.  An important 551 

component of this should be a focus on the time course of responses in NKA isoforms with both training 552 

and inactivity, focusing on specific adaptations to disuse as well as their implications for muscle NKA 553 

activity and overall muscle function. Finally, molar quantification of each of the NKA α and β isoforms 554 

in human skeletal muscle is essential, particularly in the context of heterodimers, which determine NKA 555 

function. Understanding the relative distribution of these isoforms in muscle, in specific fiber-types, 556 

including through co-IP studies, could uncover their specific contributions to changes in muscle function 557 

and adaptability. Detailed understanding of the functional roles of the different NKA isoforms will enable 558 

the implications of their adaptability for understanding human musculoskeletal function, as well as 559 

exercise limitation through peripheral and respiratory muscles.  560 

  561 
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LIST OF FIGURES. 562 

Figure 1. Percentage changes in [3H]ouabain binding site content (NKA content) in human 563 

skeletal muscle with A) Injury, inactivity and chronic disease and B) exercise training  564 

Panel A, the data shows difference from pre and post inactivity and is presented as calculated percent 565 

change ± 90% CI. Data is presented from four studies, of which two were models of injury, one of 566 

paraplegia and one study comprized inactivity. Specifically, three references show percentage 567 

compared to a control limb (67, 95, 96) while two others compared to control participants (13, 22). 568 

Panel B, the data shows difference from pre and post training, calculated percent change ± 90% CI.  569 

 570 

Figure 2. Neither training intensity nor volume is specifically related to upregulation of 571 

[3H]ouabain binding site content in human skeletal muscle with training.  572 

Data is presented as percentage increases in [3H]ouabain binding site content (NKA content) in 573 

human skeletal muscle, plotted against A) training intensity, B) minutes trained per week and C) total 574 

training minutes. Training intensity was expressed as percentage of maximum, using measures 575 

utilizedin differing studies, which included maximum HR, maximum running speed and VO2 max. In 576 

studies where training minutes or exercise intensity were gradually increased during the training 577 

period, the average over the duration of the study was used and plotted.  578 

 579 

Figure 3. Inconsistent training adaptions of NKA isoforms measured in homogenates in human 580 

skeletal muscle.  581 

Data for isoforms are compared to ‘pre-training’ and presented as calculated percent change ± 90% 582 

CI for A) α1, B) α2 C) β1 583 

Isoforms not indicated were not measured, or reported in that study. Significance levels were p<0.05.  584 

585 
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LIST OF TABLES.  586 

Table 1. Table 1. General characteristics of different training types 587 

ET, Endurance Training; HIT, High Intensity Training; AHIT, Aerobic High-Intensity Training, RT, 588 

Resistance Training; SET, Speed Endurance Training; ST, Sprint/Speed Training; RSE, Repeat 589 

Sprint Exercise. 590 

 591 

Table 2. Adaptations in exercise performance and skeletal muscle [3H]ouabain binding site 592 

content (NKA content) to intense exercise training in healthy young humans  593 

NR not reported in that study. n.c= no significant difference pre-post training. ↑ = increase compared 594 

to pre-training. Significance levels were p<0.05. References. 1. Kjeldsen et al., 1990 (57) 2. McKenna 595 

et al., 1993 (82) 3. Green et al., 1993 (39) 4. Madsen et al., 1994 (73) 5. Green et al., 1999a (34) 6. 596 

Evertsen et al., 1997 (25)  7. Medbø et al., 2001 (83)  8. Harmer et al., 2006 (43) 9. Aughey et al., 597 

2007 (6) 10. Green et al., 2008 (38) 11. Edge et al., 2013 (23)  12. Wyckelsma et al., 2017 (118). 598 

Table 3. NKA isoform abundance in human homogenates and exercise performance changes 599 

following intense exercise training in healthy young humans 600 

n.s  = no significant difference pre-post training. ↑ = increase compared to pre-training. Significance 601 

levels were p<0.05. References.1. Dela et al., 2004 (20) (CON group) 2. Nielsen et al., 2004 (92) 3. 602 

Aughey et al., 2007 (6) 4. Mohr et al., 2007 (86) 5. Green et al., 2008 (38)  6. Iaia et al., 2008 (51)  7. 603 

Bangsbo et al., 2009 (8)  8. Thomassen et al., 2010 (106)  9. Gunnarsson et al., 2012 (41) 10. 604 

Gunnarsson & Bangsbo, 2012 (40) 11. Thomassen et al., 2016 (107) 12. Benziane et al., 2011 (9) 13. 605 

Vorup et al., 2016 (117).  606 

 607 
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 ET   HIT  RT 

  AHIT SET ST RSE  

Nature Continuous Intermittent Intermittent Intermittent Intermittent Intermittent 

Bout Number 1* 4-10 4-10 4-10 4-6 3-5 sets 

Bout Duration 20-120 min 1-5 min 10-40s 2-10s 2-6s 5-12 reps 

Bout Intensity  50-80%  80-100% 90-100% ≥100% ≥100% 60-80% 

1RM 

Work:Recovery 

ratio 

1:0-1:1 1:0.5-1:2 1:5-1:6 1:10 1:4 1:2-1:5 

* may also include multiple bouts each of long duration  

 



 

 
Ref
. 

 
Participant Characteristics 

 
Training characteristics 

 
Outcomes 

 N  Pre-train  
VO2 peak 
(ml.kg-

1.min-1) 

Mea
n 
Age 
(yr) 

Type/frequency of training Session Intensity and 
duration 

Duration 
(wk) 

Performance 
measure (%∆) 

NKA content 
(%∆) 
 

1 15 
 

NR 20 Military 
Moderate Physical Training 
Details NR 

 
NR 

10 ↑ 7% distance 
during 12 min run 
test 
 

n.c 

2 6  
 

51.1  18.8  
 

SET 
x3 p/wk 
 
Wk1- 3 
x30s bouts 
Wks 4-7 10x30s ST 
 

30s maximal cycle sprints 
 

7 
 
 
 

↑ 11% work output ↑ 16% 

3 
 
 

9 
 

47.5  19.7 
 

ET 
 

65%  VO2 max 
2 hours 

0.9  ↑ 6.5%  VO2 max ↑ 13.6% 

4 39 
 

 30  Combined HIT+ ET 
x3 p/wk HIT 
x1-3 p/wk ET 
 
 

93% of HR max 
Low-intensity run < 60% HR 
max 

6 
 

↑ 5%VO2 max ↑ 15% 

5 16 
 

45   
 

21.4 
 
 
 
19.9 

x3 p/wk 
ET   
 
 
RT 
 
 
 

ET group 
~68% VO2 peak 
~ 2 hours 
 
RT Group 
3 sets 
8-10 reps 

11 
 
 
 
12 
 

↑VO2 peak 
 
 
 
n.c 

↑22%  
 
 
 
↑16%  

6 20 66.6 18  Skiing, Running 86% of training at 60-70% ~21 ↑ Distance in 20 min ↑16% in both 



  
 
 

7 days p/wk 
MI group- 
 
HI group 
 
 

VO2 max 
 
 
83% of training 80-90% VO2 

max 

 
 

treadmill test 
 

groups 
 
 
 

7 21 
 

58  27  
 

RT 
Group 1 x1 p/wk  
Group 2 x2 p/wk  
Group 3 x3 p/wk  
 

 
 

3 month 
 

↑ max strength all 
groups 

n.s x1 p/wk 
↑ x2 p/wk 
↑x3 p/wk 

8   
(CON) 
 
       

7 
 
 
 

3.1 
(L.min-1) 
 
 

24 SET 
x3 p/wk 

x4-10,  30s maximal cycle 
sprints 
 

7 ↑ VO2 peak  
↑ Peak incremental 
power  
 

↑8.2%  
 
 

9  12  
 

4.98 
(L.min-1) 

31  
 

HIT 
Wk 1- x3 p/wk 
Wk 2- x2 p/wk 
Wk 3 x2 p/wk 

8x5min at 80% peak power 
output 
 
 

3 
 

↑ Peak power 
output 3% 
 
 

n.c  

10  12 
 

44.8  19.2  
 

ET ~60% VO2 max 
2hrs 

3 d 
 

NR ↑ 12% 

11  12 
 

49.5 21  HIT 6-10 x2 min intervals 
Cycle ergometer 
~140-170% of LTDmax  or  
92-111% pre-training power 
at VO2peak 
 

5 ↑ VO2 peak 
↑ power at VO2 
peak 
↑ power at LT Dmax 

↑ 22-26% 

12 8 
 

24.7 65 HIT 
x3 p/wk 

4x4 min cycle  
~90-95% peak HR 
 

12 ↑ VO2 peak 
↑ Work (J) 
↑ Peak HR 
 
 

↑11% 

 



 

 
Reference  

  
Participant 

Characteristics 
 

 
Training Characteristics 

 
Outcomes 

 n Pre-train VO2 
peak 
(ml.kg-1.min-1) 

Age 
(yr) 

Type 
/frequency 

Intensity and 
duration 

Duration 
(wk) 

Performance 
measure (%∆) 

Isoform 
abundance 

1.  7 NR 61 RT Wk 1-2. 3x10 reps 
50% 1RM 
 
Wk3-6. 8-12 reps 
70-80% 1RM 
 
 

6 ↑ maximal leg press ↑ α1 37% 
↑ α2 22% 
↑ β1 33% 

2  
 
 

6 50.2  25.3 
 

wk 1-2, x3 p/wk 
wk 3-4, x4 p/wk 
wk 5-7, x5 p/wk 
 

Intermittent knee 
extensor 
exercise- 
 
Single leg, 15 
work intervals 
~150% of thigh 
VO2 max. 

7 
 

↑16% power output 
 
↑Time to fatigue 
27%  
 

↑α1 29 
↑ α2 15.1% 
n.s β1 

3  12 4.98 (L.min-1) 31  
 

Wk 1- x3 p/wk 
Wk 2- x2 p/wk 
Wk 3 x2 p/wk 

HIT 
8x5min at 80% 
peak power 
output 
 

3 
 

↑ Peak power 
output 3% 
 
 

n.s- α1, α2, α3 
n.s- β1, β2, β3 

4  13 Sprint train 
group (ST) 
50.2 
 

26.7  
 
 
24.6  

Wk 1-2, x3p/wk 
Wk 2-5, x4 p/wk 
Wk 6-8 x 5p/wk 
 

ST 
15 x 6s 95% max 
running speed 
 

8 
 

↑10%Yo-Yo IR2 ST 
& 30% SET 
 
↑~18% time to 

n.s - α1 in 
either group 
 
↑ α2 speed 



speed 
endurance 
training (SET) 
group 
49.0  

Final week- 
6 times p/wk. 

SET 
8x30s 130% 
VO2 max 
 

exhaustion (SET) 
 
↓~5.8%- 50m sprint  
(ST) 
 
↓ 30m time (both) 
 
 

endurance 
training only 
(68±26%) 
 
↑ β1 both 
~38% ST 
~35% SET 
 

5 12 44.8  19.2  
 

ET ~60% VO2 max 
2hrs 

3 d 
 

NM ↑ α1 46% 
↑ α2  42% 
↑ β1 19% 
 

6  15 55.8  33.4 
 

SET 
3-4 sessions per 
week 
 
 
CON 3-5 days per 
week 

ST. 8-12 x30s 
runs at 90-95% 
max running 
speed.  
 
CON- normal 
training (9-12km, 
45-60 min/day 

4 ↑ Yo-Yo IR2 
19%- ST 
 
  

↑ α1  ~29% 
(ST) 
n.s α2 
n.s β1 
 

7  
 
 

17 63.0  34.8  SET 
a) 2-3 p/wk 
b) 1 p/wk 
c)1-2 p/wk 
 
 

SET sessions 
a) 30s bouts at 
~95% of max 
running speed. 
 
b) 4x4 min at 
>85% max HR 
 
c) <75% max HR 
or 75-85% max 
HR 
 

6-9 
 
 

n.c VO2 max 

 
↓ 3km run 
performance 
 
↑ mean speed 
during 3km run 
 

n.s α1 
↑ α2 68% 
(SET) 
n.s β1 

 

 
 

8  
 
 

18 55.0 23.4 
 

5 sessions of 
aerobic high-
intensity (AHI) & 
5 sessions SET 
 

AHI 
8x2 min-4 vs.4 
small sided 
soccer drills. 1 
min rec 
 
SET 
10-12 x 25-30s  

2 
 
 

↑ performance in 
4th, 6th and 10th 
sprint in repeat 
sprint test 
 
↓Total sprint time 
 
 

n.s α1 
↑  α2 14.5 
n.s β1 
↑27.3% 
FXYD1ser68  



 
9 
 
 

18 60.6 23.9  SET x1 per week + 
regular soccer 
commitments  

6-9 intervals at 
90-95% maximal 
intensity 
 

 
 

↓ O2 consumption at 
10 km.h-1 

↑ Yo-Yo IR2 11% 
 

 

n.s α1 
n.s α2 
↓ β1  13% 
 
 
 
 
 

10 
 
 

18 52.2 33.8 
 

HIT 3-4 x 5 minute 
running. 
Each 5 min 
consisting of 1 
min intervals at 
<30%, <60% and 
90-100% 
of running speed 
 

7 
 

↑10-20-30 
performance by 6% 
↑ VO2 max 4% 

n.s α1 
n.s α2 
n.s β1 

11  8 59 33 Cycle (outdoor) 
2-3 x p/wk SET 
 
1-2 sessions per 
week HIT   
 
Reduction in ~70% 
training volume 
from regular 
training  
 

SET 
10-12 x ~30-s 
maximal uphill 
~6% gradient.  
Interspersed 4.5 
min low-intensity 
exercise 
 
HIT 
4-5 x ~4 min at 
90-95% maximal 
HR 
0% gradient. 
Interspersed with 
two days of 
recovery    
  

7 n.c VO2 
 
↑Time to exhaustion 
↑mean power 4% 
↑peak power 3% 
 
 

↑FXYD1 30% 
n.s α1

 (~11%) 
n.s α2  (~8%) 
n.s β1 (~3%) 
 
 



12  8 ~44.3 
 

23 END & HIT  
 
 
 
 
 
 
 
 
 

END  
~75% VO2 peak 
Days 1,5,6 & 10 
60min 
Day 3- 60 minutes 
Day 8- 90 minutes 
 
HIT 6x5 min ~90-
100% VO2 peak 
Days 2, 4, 7, 9 
 

10 d  
 

9% increase VO2 
peak 

↑ α1 113% 
↑ α2 49% 
n.s α3 
↑ β1 27% 
n.s FXYD1 
n.s Ser68, 
Ser63 or Thr69 

13 8 60.1 39 Combined RT and 
SET 
 

x2 Strength p.wk 
1x10 wk 1 
2x8 wk 2 
3x6 wk 3 
4x4 wk 4-8 
 
x2 SET p.wk 
30s at 90-95% 
maximal speed 
 
x4 efforts wk 1 
x6 efforts wk 2 
x8 efforts wk 3-4 
x10 efforts wk 5-8 
 
58% ↓ training 
volume 
 

8 ↑ Yo-Yo IR2 
(18.5%) 
↓ 400m time (4.8%) 
↑ Maximal Aerobic  
Speed (0.6 km hr-1) 
↑ 4RM (Squat, 
deadlift and Leg 
Press) 
 

n.s α1 
n.s α2 
↑ β1 (15%) 
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