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Abstract

Many feature selection approaches are proposed in recent years. Most approaches utilize graph-
based methods in studying the structure and relationship among data. However, many data rela-
tionships may loss during the graph construction, such as the residual relationships. To better pre-
serve the relationships between data, in this paper, we propose a novel unified learning framework
- unsupervised feature selection with adaptive residual preserving (UFSARP). The framework uni-
fies feature selection, data reconstruction, and local residual preserving into one unified process,
in which these tasks are completed simultaneously. We use the distance of projected data to learn
the similarity matrix and simultaneously impose it on the data representation term to enforce that
similar samples have similar reconstruction residuals. The use of such learning way has three-fold
advantages: 1) The reconstruction residuals aim to maintain the residual relationships between
data samples, namely, similar samples have similar residuals, and this helps to reconstruct the
original data better; 2) Imposing the similarity matrix on the data representation term encourages
similar samples not only have similar reconstruction residuals but also have similar reconstruction
coefficients; 3) The similarity matrix and the reconstruction coefficient can be promoted by each
other during the learning process. The experimental results show that the proposed algorithm is
superior to other similar researches.

Keywords: Residual preserving, Unsupervised learning, Feature selection, Unified learning
framework, and Sparse representation

1. Introduction

Nowadays, many real-world applications often confront data with high dimensions, such as
image retrieval[52], pattern recognition[3], computer vision[51], and gene expression microarrays
analysis[1]. As high dimensional data involves a large number of features, it brings considerable
challenges in training time and storage resources. Moreover, the adverse impact of noisy and ir-
relevant features in all data may severely degrade the generalized performance. To address the dif-
ficulties, dimensionality reduction methods are proposed to learn a subset of informative features.
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These learnt features are representative and retain the salient characteristics of data. Therefore,
using dimensionality reduction approaches helps to reduce data processing time and improves the
performance.

There are two types of the dimensionality reduction: feature selection [5][13][18][19][42][63]
and feature extraction [15][65][29]. Feature selection does not change the original representa-
tion of data and aims to obtain a subset of features to represent the original data. While, fea-
ture extraction forms new representations and commonly produces new features. In this pa-
per, we focus on feature selection [41][40]. Depending on the availability of label informa-
tion, feature selection is generally classified into supervised[22], semi-supervised[28] [48], and
unsupervised[20][21][39][56][61]. Most available data in the real applications are unlabeled. Due
to the lack of label knowledge, unsupervised learning is more challenging than the supervised and
the semi-supervised learning. Thus it is necessary to develop an effective unsupervised feature
selection method.

The studies on unsupervised feature selection can be mainly categorized into three groups:
filters [62], wrappers, and embedding[16].

Filter methods select the optimal features based on a trace ratio score[62][33]. Typical filter
methods are Laplacian score[18], spectral based feature selection[64], filter-based multivariate
method[53], etc. However, filter methods do not fit a specific algorithm, thus they can only provide
a generic selection of features and fail to select the most informative features for a particular
learning task[16][27].

The approaches based on wrapper model require a predetermined learning algorithm and
‘wrap’ the feature selection to evaluate relevant features[27][49]. In past decades, Ma et al.[36],
Guyon et al.[17], Maldonado et al.[37], and Dy et al.[12], etc. have dedicated a lot of researches on
this topic, and experimental results show that algorithms based on wrapper model perform better
than filter models. However, the wrapper models are usually computationally expensive, so they
are not able to be applied in large-scale data sets. In addition, wrapper model is prone to the issue
of overfitting.

Embedding-based methods unify the feature selection and model construction into one frame-
work [56][66]. Zhu et al. [66][67] proposed an unsupervised spectral feature selection model by
embedding a graph regularizer into one framework of joint sparse regression for preserving the
local structures of data. Weston et al.[57] added the l0-norm regularizer into an objective function
to achieve sparse solution for performing feature selection and classifying object. Liu et al.[32]
employed the l2,1-norm regularizer to achieve the similar objective. Wang et al.[55] proposed an
unsupervised feature selection algorithm that is built with a similarity matrix and a non-squared
l2-norm based sparsity. All these graph embedding methods process the classification in two sep-
arate steps: construct the data structure; select the target features. Thus the feature selection result
is highly dependent on the built structure. Once the construction fails to represent the intrinsic data
structure, the feature selection will also fail to represent the data characteristics. In recent years,
Kang et al.[23][24][25][26] proposed multiple kernel-based learning methods that can not only
learn both linear and nonlinear similarity information but also simultaneously learn cluster indica-
tor matrix and similarity information in kernel spaces. In addition, there are many dimensionality
reduction methods using the reconstruction coefficient matrix as a local similarity matrix to rep-
resent the data relationships[47][35][14]. In 2010, Qiao et al. [47] used the l1-norm to minimize
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the objective function. In the article, l1-norm helps to maintain the local manifold structure and
sparsity during the process of dimensionality reduction. Then, in 2016, Lu et al.[35] introduced
a method that retained the low-rank information and global structure in dimensionality reduction
process. In 2017, Fang et al.[14] proposed an algorithm that simultaneously obtained the feature
representation and intrinsic similarity structure of data. Du et al.[11] introduced a unified learning
framework which performed structure learning and feature selection simultaneously. In 2018, Li
et al.[30] proposed a generalized uncorrelated regression with adaptive graph for unsupervised
feature selection that can perform feature selection and spectral clustering simultaneously. As we
all know, similar samples have similar properties. All these above methods only consider the local
manifold structure but ignore the residual relationship among data.

In this paper, we proposed a novel unsupervised feature selection method, i.e., the unsuper-
vised feature selection with adaptive residual preserving. In this framework, we not only unify the
subspace learning and feature selection into one process, but also retain the local residuals in the
data reconstruction process. Different from simply unifying the graph Laplacian and sparse rep-
resentation to capture the data structure, the proposed method introduces the local residual, which
assumes that similar samples have similar reconstructed residuals before and after transformation.
Compared with traditional and aforementioned methods, our method could better capture the in-
trinsic data structure. With the refined reconstruction structure, a better feature selection result
could be expected.

We emphasize three contributions of this paper as follows:
1) A novel unified learning framework - unsupervised feature selection with adaptive residual

preserving is proposed in this paper. The framework unifies feature selection, data recon-
struction, and local residual preserving into one process in which these tasks are completed
simultaneously.

2) UFSARP holds the local manifold structure and intrinsic data relationship among data,
so that similar samples not only have similar reconstruction coefficients and but also have
similar reconstruction residuals.

3) The reconstruction residuals which preserve the residual relationships between data sam-
ples, help to reconstruct the original data better.

The rest of this paper is arranged as follows. We introduce the recent related works in Section
2. In Section 3, we propose our framework and the optimization. Section 4 discusses the compu-
tational complexity and convergence. In Section 5, comprehensive experiments are conducted to
compare related methods. Last of all, we conclude our paper in Section 6.

2. Related work

This section overviews the literatures on the sparse representation, graph embedding, and un-
supervised feature selection with adaptive structure learning (FSASL) proposed by Du et al.[11].

2.1. Notation

In this paper, we use bold uppercase letters to denote matrices, and bold lowercase letters to
denote vectors. For an arbitrary matrix F ∈ Rd×k, fi means the i-th row vector of F and fT

j is

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the j-th column vector of matrix F . Fij denotes the value of the i-th row and j-th column of F .

The l2,1-norm is defined as ‖F ‖2,1 =
∑d

i=1

√∑k
j=1 F

2
ij .

In our work, X ∈ Rn×d denotes the sample matrix, where n is the number of samples, and d
is the number of features.

2.2. Sparse Representation

The research on sparse representation has a long history, and recent literature proves that sparse
representation is utilized not only in signal processing, but also in image processing and pattern
recognition[9][44][45].

Sparse representation uses fewest samples to represent the randomly selected sample. Given a
data set X = [x1, x2, ..., xn] ∈ Rd×n, where xi ∈ Rd is a random sample in the data set. Then the
objective function can be described as:

min
s
||s||0 s.t. xi =Xs (1)

where s = [s1, s2, ..., sn]T ∈ Rn is the sparse coefficient vector, ||.||0 refers to the number of
nonzero elements in the vector and is also viewed as the measure of sparsity. Although the sparse
representation method with l0-norm minimization can obtain the fundamental sparse solution of s∗

over the matrix X , function (1) is still a non-deterministic polynomial-time hard (NP-hard) prob-
lem and the solution is difficult to approximate. Literatures[58][10][6][7] demonstrate that if the
solution s∗ is sparse enough, the solution of the above l0 minimization problem is approximately
equal to the solution of the following l1 minimization problem:

min
s
||s||1 s.t. xi =Xs (2)

Moreover, the l1 minimization problem has an analytical solution and can be solved in poly-
nomial time.

2.3. Graph Embedding

Graph embedding has been proved to be successful in preserving the manifold structure be-
tween data[60]. Many algorithms, including the isometric feature mapping (ISOMAP)[54], linear
discriminant analysis (LDA)[8][38], locally linear embedding (LLE)[50], and laplacian eigenmaps
(LE)[2], etc. can be classified into a graph embedding general framework[60].

These methods use k-nearest neighbor or ε-ball to determine the neighborhood relationship
between samples. Then, the weight between neighbors is defined by different methods, including
heat kernel, inverse Euclidean distance, and local linear reconstruction coefficient. These methods
construct graphs and select features independently. Besides, the graph structure is derived from
original data and remains invariant during the subsequent process, but real world data always
contain lots of noisy samples and features, which make the graph structure unreliable.

2.4. FSASL

In 2014, Du et al. proposed a unified unsupervised feature selection framework FSASL[11].
The framework processes data reconstruction and feature selection simultaneously.

4
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The objective of framework FSASL is as follows:

min
W,S,P

(||W TX −W TXS||2F +α||S||1) + β
n∑

i,j

(||W Txi−W Txj||2Pij + µP 2
ij)

+ γ||W ||2,1
s.t. Sii = 0,P1n = 1n,P ≥ 0,W TXXTW = I

(3)

where 1n ∈ Rn×1 is a vector with all elements valued 1.
In the framework, the first term of (3) is a sparse representation [58][59] that helps to deter-

mine the global structure of data. The coefficient regularization term α||S||1 aims to balance the
sparsity and the reconstruction error. In the second term of the framework, variable P helps to
determine the local manifold structure of data. ||W ||2,1 encourages the rows of W to be zero.
With the sparsity of W , the irrelevant and noisy features can be largely removed. β(> 0) and
γ(> 0) are regularization parameters.

To draw the intrinsic structure of data, Du et al.[11] integrated the global with the local man-
ifold structure into one framework, so that both structures were counted. In the framework, the
structure determination and feature selection are conducted simultaneously. Thus it can find the
intrinsic data structure and select the most relevant features simultaneously. In addition, since in
conventional methods, the similarity matrix is predetermined and separated from feature selection,
the process and result of the feature selection rely on this prebuilt similarity matrix. In FSASL,
the problem is avoided because the local manifold structure and feature selection are conducted
simultaneously. However, FSASL ignores the residual relationship among data, which can neither
guarantee similar samples have similar reconstruction residuals, nor guarantee similar samples
have similar reconstruction coefficient.

3. Algorithm

An informative graph is critical for graph based learning models. Different from classic graph
constructions, the graph of UFSARP is constructed by using sparse representation and local resid-
ual preserving. In this section, we briefly introduce residual preserving.

3.1. Similarity Matrix Learning

The similarity matrix can preserve the local manifold structure of data. Instead of using the
graph Laplacian with the determined neighborhood relationship, a local similarity matrix P is used
to solve the following problem according to the FSASL:

min
P

∑
||W Txi−W Txj ||2Pij + µP 2

ij s.t. P1n = 1n,P ≥ 0 (4)

This is a typical graph construction function where variable P reflects the local manifold
structure. It can be found that a large distance of ||xi−xj||2 will lead to a small probability Pij . µ
is a regularization parameter. The regularization term is used to avoid the trivial solution and can
be seen as a prior of uniform distribution.
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3.2. Residual Preserving Learning

As introduced in the previous section, sparse representation can capture the global represen-
tation structure of data. Besides, sparse representation is used to eliminate noise and reduce the
impact of outliers. So we choose sparse representation to reconstruct data. In sparse represen-
tation, the i-th sample is represented by a linear combination of other samples, which can be
formulated as the following function:

min
S

n∑

i=1

||xi −Xsi||2 + α||S||1 s.t. Sii = 0 (5)

where X = [x1, x2, ..., xn] refers to the data set, and si is the reconstruction coefficients. By
employing the l1 norm constraint, si is sparse. Sample xi can be sparsely represented by other
samples. However, the sparse representation only considers the global structure but ignores the
local structure and residual relationship between samples. Therefore, we introduce the graph
P and modify the above function, so that similar samples not only have similar reconstruction
coefficient, but also have similar reconstruction residuals. Thus the above idea can be formulated
as follows:

min
P,S

n∑

i=1

n∑

j=1

||xi −Xsj||2Pij + α||S||1 s.t. Sii = 0 (6)

where α is a parameter of S, the sparsity variable. Xsj is the reconstructed sample of original
sample xi.

Lemma 1: For samples xs and xt, if xs and xt are similar at the measure of Euclidean distance,
then ||xs − xt||2 is small.

Proof: The distance measure between two samples can be defined as dissimilarity between
them. The smaller the distance measure is, the more similar they are. When samples xs and xt are
similar at the measure of Euclidean distance, ||xs − xt||2 is small.

Lemma 2: For samples xs and xt, if xs is similar to xt at the measure of Euclidean distance, and∑n
i=1Xsi and

∑n
j=1Xsj approximate to xs and xt, respectively, then

∑n
i=1Xsi and

∑n
j=1Xsj

are also similar at the measure of Euclidean distance.
Proof: According to the trigonometric inequality, we have

||
n∑

i=1

Xsi −
n∑

j=1

Xsj||2 = ||
n∑

i=1

Xsi −
n∑

j=1

Xsj + xs − xs + xt − xt||2

≤ ||xs −
n∑

i=1

Xsi||2 + ||xt −
n∑

j=1

Xsj||2 + ||xs − xt||2
(7)

Since
∑n

i=1Xsi and
∑n

j=1Xsj approximate to xs and xt, respectively, ||xs −
∑n

i=1Xsi||2
and ||xt −

∑n
j=1Xsj||2 are small. According to Lemma 1, ||xs − xt||2 is small too. Therefore∑n

i=1Xsi and
∑n

j=1Xsj are similar at the measure of Euclidean distance.
Theorem 1: For samples xs and xt, if xs is similar to xt at the measure of Euclidean distance,

6
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and
∑n

i=1Xsi and
∑n

j=1Xsj approximate to xs and xt, respectively, then reconstruction coeffi-
cient matrix S not only makes similar samples be still similar, but also preserve residuals between
the similar samples.

Proof: According to Lemma 1 and Lemma 2,
∑n

i=1Xsi and
∑n

j=1Xsj are similar at the
measure of Euclidean distance. Therefore, ||∑n

i=1Xsi−
∑n

j=1Xsj||2 is small. So reconstruction
coefficient matrix S not only makes similar samples be still similar, but also preserve residuals
between the similar samples.

Furthermore, we hope that dimensionality reduction can maintain above characteristics which
aim to select useful and discriminative features. Thus, we propose the following formulation:

min
S,P,W

n∑

i=1

n∑

j=1

||W Txi −W TXsj||2Pij + α||S||1 s.t. Sii = 0 (8)

Accordingly, a data reconstruction function with preserving the residual relationship according
to local manifold structure is proposed as follows:

min
S,P,W

n∑

i=1

n∑

j=1

||W Txi −W TXsj||2Pij + α||S||1 + β(
n∑

i=1

n∑

j=1

||W Txi −W Txj||2Pij + µP 2
ij)

s.t. P1n = 1n,P ≥ 0,Sii = 0
(9)

where β is to regularize the local similarity matrix P .
In Eq. (9), P , preserves the local manifold structure of data. In the function, ||W Txi −

W Txj||2 represents the reconstruction residuals relationships between samples xi and xj . As we
have taken the local residual relationships into account, the local residual relationship will be well
preserved, which encourages the similar samples have similar reconstruction residuals during data
reconstruction process.

3.3. UFSARP

Finally, in order to maintain the characteristics of residuals and achieve the purpose of feature
selection, the l2,1 norm constraint is added to W . Due to the good row-sparsity property of l2,1
norm, we impose it on the selection matrix as follows:

min
S,P,W

n∑

i=1

n∑

j=1

||W Txi −W TXsj||2Pij + α||S||1 + β(
n∑

i=1

n∑

j=1

||W Txi −W Txj||2Pij + µP 2
ij)

+ γ||W ||2,1
s.t. P1n = 1n,P ≥ 0,Sii = 0,W TXXTW = I

(10)
where α, β , γ, and µ in the framework are the regularization parameters that are used to balance
the the importance of the corresponding terms. ||W ||2,1 encourages W to be row sparse, which
can be used to select features.

7
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In this framework, we integrate the sparse representation with local residuals. Term ||W Txi−
W Txj||2Pij learns the local manifold structure. Given two similar samples xi and xj , if the value
of ||W Txi −W Txj||2 is small, Pij will be relatively large. Then P can be adaptively learnt.
Besides, the local similarity matrix P encourages similar samples to have similar reconstruction
residuals after transformation, so the reconstruction residual can be preserved. In addition, since
in conventional methods, the similarity matrix is predetermined and separated from feature selec-
tion, the process and result of the feature selection rely on this prebuilt similarity matrix. However,
in UFSARP, the problem is avoided because the local manifold structure and feature selection are
conducted simultaneously. And UFSARP considers the residual relationship between samples dur-
ing the process of data reconstruction. Therefore, UFSARP can better preserve the relationships
between data, which helps in achieving the efficiency and effectiveness of the framework.

3.4. Optimization

Since W , P and S are unknown variables, it is challenging to find the optimial solution of
our objective function directly, particularly in calculating the derivative of the function in term of
S. Therefore, to solve the problem, we attempt to minimize the following augmented Lagrange
multiplier (ALM) formula Γ:

Γ(W ,S,P ,Q,T ,Y1,Y2,Y3, µ1)

=
n∑

i=1

n∑

j=1

||W Txi −W TXsj||2Pij + α||T ||1 + β(
n∑

i=1

n∑

j=1

||W Txi −W Txj||2Pij + µP 2
ij)

+ γ||W ||2,1 + 〈Y1,P1n − 1n〉+ 〈Y2,P −Q〉+ 〈Y3,S − T 〉
+
µ1

2
(||P1n − 1n||2F + ||P −Q||2F ) +

µ1

2
||S − T ||2F

s.t. W TXXTW = I,Sii = 0
(11)

where 〈A,B〉 = Tr(ATB). Y1, Y2 and Y3 are Lagrange multipliers, µ1 > 0 is a penalty pa-
rameter. Then, we employ the Alternating Direction Method of multipliers (ADMM) algorithm to
problem (11) [4].

ADMM updates each of these variables with all other variables fixed in each iteration by
minimizing Γ. The main steps of solving the term (11) are shown as follows:

3.4.1. Updating variableW
Firstly, we fix the value of other variables in order to update theW . The optimization problem

can be rewritten as:
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Γ(W ) = min
W

n∑

i=1

n∑

j=1

||W Txi −W TXsj||2Pij + β(
n∑

i=1

n∑

j=1

‖|W Txi −W Txj||2Pij + µPij)

+ γ||W ||2,1
s.t. W TXXTW = I

(12)
Denote LSP = (DP +SDP TST − 2PST +β(DP +DP T − 2P )), whereDP andDP T are

two diagonal matrices,DP ii =
∑

j Pij andDP T =
∑

i Pij . Then we can transfer Γ(W ) into:

Γ(W ) = min
W

Tr(W TXLSPX
TW ) + γ||W ||2,1

s.t. W TXXTW = I
(13)

Eq. (13) is equivalent to:

Γ(W ) = min
W

Tr(W TXLSPX
TW ) + γ(W TDWW )

s.t. W TXXTW = I
(14)

whereDW ∈ Rd×d is a diagonal matrix whose i-th diagonal element is:

DWi,i
=

1

2||Wi||2
(15)

Consequently, we can obtain the solution of problem (12) by solving the following problem:

min
W

Tr(W T (XLSPX
T + γDW )TW ) s.t. W TXXTW = I (16)

and it is clear that the optimal solutions ofW are the eigenvectors corresponding to the c smallest
eigenvalues of the eigenvalue decomposition problem:

(XLSPX
T + γDW )TW = ΛXXTW (17)

3.4.2. Updating variable P
Secondly, in order to update variable P , we fix other variables, and the optimization objective

function can be rewritten as the following form.

Γ(P ) = min
P

n∑

j=1

||W Txi −W TXsj||2Pij + β(
n∑

i=1

n∑

j=1

||W Txi −W Txj||2Pij + µP 2
ij)

+
µ1

2
||P1n − 1n +

Y1

µ1

||2F +
µ1

2
||P −Q+

Y2

µ1

||2F
(18)

9
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Set the partial derivative of Γ(P ) with respect to P as zero, then, we have the following equation:

(2µ+ µ1)

µ1

P + P1n1
T
n −

E

µ1

= 0 (19)

or equivalent

P =
E

2µ+ µ1

(I +
µ1

2µ+ µ1

1n1
T
n )−1 (20)

with E = (µ11n1
T
n + µ1Q−A− βB − Y11

T
n − Y2), where Aij = ||W Txi −W TXsj||2, and

Bij = ||W Txi −W Txj||2. We can update P by Eq. (20).

3.4.3. Updating variable S
Thirdly, we fix other variables, and the optimization objective function can be transferred into:

Γ(S) = min
S

n∑

j=1

||W Txi −W TXsj||2Pij + α||T ||1 +
µ1

2
||S − T +

Y3

µ1

||2F

s.t. Sii = 0

(21)

In order to find the optimal solution of Γ(S), we take the derivative of the function with respect
to S, and set it as zero ( ∂Γ

∂S
= 0):

C

µ1

S + SD−1
P T +

(CP − µ1T + Y3)D−1
P T

µ1

= 0 (22)

where C = 2XTWW TX . Then S can be obtained by solving a Sylvester equation.

3.4.4. Updating variablesQ, T and Lagrange multipliers
Q can be updated by solving the following optimization function:

Q∗ = arg min
Q

µ1

2
||P −Q+

Y2

µ1

||2F
s.t. Q > 0

(23)

and the solution is:

Q∗ = max(P +
Y2

µ1

,0) (24)

T can be updated by solving the following optimization function:

T ∗ = arg min
T
α||T ||1 +

µ1

2
||S − T +

Y3

µ1

||2F (25)

10
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by utilizing the shrinkage operator, we have:

T ∗ = shrink(S +
Y3

µ1

,
α

µ1

) (26)

where shrink(x, a) = sign(x)max(|x| − a, 0).
Finally, we can update Lagrange multipliers Y1,Y2,Y3, and the penalty parameter µ1 by Eq.

(27): 



Y1 = Y1 + µ1(P1n − 1n)
Y2 = Y2 + µ1(P −Q)
Y3 = Y3 + µ1(S − T )
µ1 = min(µmax, ρµ1)

(27)

where ρ > 0 is the iteration step-size, and µmax is a constant.
In summary, the procedure of optimization process is listed in Algorithm 1.

Algorithm 1 Solving problem (11) by ADMM

Input: X ∈ Rd×n, α, β, γ, µ, c;
Initialization: P = Pknn, Q = P , S = 1

n
1, T = S, µmax = 107, Y1 = 0, Y2 = Y3 = 0,

µ1 = 0.1, ρ = 1.01, ε = 10−6;
1: while not converged do
2: Fix other variables and updateW by solving Eq. (17)
3: Fix other variables and update P by Eq. (20)
4: Fix other variables and update S by solving Eq. (22)
5: Fix other variables and updateQ by Eq. (24)
6: Fix other variables and update T by Eq. (26)
7: Update the multipliers and the penalty parameter by solving Eq. (27)
8: Check the convergence condition

||P1n − 1n||F < ε AND ||P −Q||F < ε AND ||S − T ||F < ε
9: end while

Output: W

4. Discussion

4.1. Computational Complexity

The major computational burden of our algorithm is in Eq. (17), Eq. (20), and Eq. (22), be-
cause eigenvalue decomposition (EVD) and Sylvester equation problem are involved. Especially
in Eq. (17), the EVD is operated on a d × d matrix with the computational complexity o(d3). In
addition, the Eq. (20) and Eq. (22) are operated on n × n matrices with the complexity about
o(2n3). Thus,the main computational complexity of Algorithm 1 is o(τ(d3 + 2n3)) where τ is the
number of iterations.
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4.2. Convergence Analysis

In this section, we would like to represent the convergence behavior of our proposed frame-
work. We operate the framework with the k-means clustering on four image data sets, including
TOX, YALE, UMIST, and ORL. We deem that the algorithm tends to converge if all variables and
the recognition accuracies are stable. Therefore we define an objective function in formula (28),
which represents the sum of changes of all variables. We operate our method for 300 steps of
iterations to show the numerical value of the objective function and clustering accuracy in Fig.1.

obj = ||P −Q||F + ||S − T ||F < ε (28)

Although UFSARP is a nonconvex optimization problem, we can obtain its local optimal so-
lution by using the ADMM algorithm. In Fig.1, it is clear that the value of objective function
decreases along with the increase of iterations. The convergence of the objective function is not
smooth, which may be caused by regularization terms. The main influence may come from the
term ||S||1 and term ||W ||2,1. Variable S and variable W are not convex in each iteration. There
are two possible reasons: 1) It is difficult to ensure that matrices X and XT (in Eq. (17)) are
nonsingular. So the pseudo inverse of XXT may cause the fluctuation; 2) The Sylvester equation
(in Eq. (22)) may also cause the fluctuation of curves. But the value of the function will eventually
converge by ADMM. For the accuracy curves, there still exist some waves. The reason may be
that k-means based clustering depends on the initialization.

4.3. The Determination of Parameter µ

It is clear that the parameter µ is used to control the trade off between the trivial solutions
(µ = 0) and the uniform distribution (µ =∞).

The determination of parameter µ has been researched in some literatures[11][43]. Based on
the previous research, we define µ as follows,

µ =
1

n

n∑

i

(
k

2
dWi,k′+1 −

1

2
dWik′) (29)

where k is the neighborhood size. In this way, the search of µ can be better handled by searching
k, which is more intuitive and easy to tune.

4.4. Comparison with FSASL

Du et al. proposed FSASL method in 2015, and the method can be formulated as Eq. (3).
Comparing Eq. (3) with our proposed method Eq. (11), the main differences between UFSARP
and FSASL are as follows:

UFSARP not only unifies the subspace learning and feature selection into one process, but also
retains the local residuals during the data reconstruction process, while FSASL does not consider
the local residuals. More specifically, we capture the local structure and residual relationships
between samples during reconstruction process, which encourages similar samples not only have
similar reconstruction coefficients, but also have similar reconstruction residuals. Therefore, our
method can help to better represent the intrinsic characteristics of the data set.
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(a) Results on the TOX
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(b) Results on the YALE
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(c) Results on the UMIST
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(d) Results on the ORL

Figure 1: The objective function value and clustering accuracy versus the iterations of the the proposed method on
(a) TOX biomedical data set, (b) YALE face image data set, (c) UMIST face image data set, and (d) ORL biomedical

data set.

5. Experiments

In this section, we conduct extensive experiments to evaluate the performance of the proposed
UFSARP for the task of unsupervised feature selection.

5.1. Data Sets

The experiments will be tested based on ten open source data sets, including handwritten and
spoken digit/letter recognition data sets (i.e., MFEA from UCI repository1 and USPS2 data sets),
five face image data sets (i.e., UMIST3, JAFFE4, AR5, YALE6, and ORL7), one object data set

1http://www.ics.uci.edu/∼mlearn/MLRepository.html
2http://www-stat-class.stanford.edu/∼tibs/ElemStatLearn/data.html
3http://images.ee.umist.ac.uk/danny/database.html
4http://www.kasrl.org/jaffe.html
5http://www2.ece.ohio-state.edu/∼aleix/ARdatabase.html
6http://cvc.yale.edu/projects/yalefaces/yalefaces.html
7www.zjucadcg.cn/dengcai/Sata/FaceData.html
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(i.e., COIL8) and two biomedical data sets (i.e., LUNG9 and TOX10). In this paper, we conduct
experiments based on all samples in the data sets except for MFEA and USPS. For these two data
sets, we randomly select 200 images from each category, and the brief of these benchmark data
sets are summarized in Table 1.

• MFEA200 contains series of handwritten numerals (0 − 9) which are extracted from a col-
lection of Dutch utility maps. The size of one image has 15× 16 pixels. In our experiments,
we randomly selected 200 images from 10 projects with 20 samples for each project.

• USPS200 has 9298 samples in total, in which there are 7291 samples for the training set
and 2007 samples for the test set. The samples are handwritten images in digits 4 versus 9,
and each image is in 16× 16 pixels. In our experiments, we randomly selected 200 samples
from 2 projects with 100 samples for each project.

• UMIST is a data set that contains 564 images of 20 people. Each person conducts a range
of poses from profile to frontal views, and the persons are from different races, sexes, and
appearances. The files are all in PGM format with 220× 220 pixels in 256 shades of grey.

• JAFFE is a data set that contains 213 images of 7 facial expressions, including six basic
facial expressions and one neutral, posed by 10 Japanese female models.

• AR is a data set about color face images of 126 people and has over 4000 images in total.
The images are taken from frontal views with various facial expressions, lighting conditions
and occlusions.

• COIL is a data set that consists 1440 samples of 20 objects with 72 samples for each object.
The samples are captured from varying angles at intervals of 5 degrees. All the images are
cropped and resized to 32× 32 pixels.

• ORL is consisted of 400 images of 40 distinct subjects with ten images for each subject. The
images are taken at different time, lighting, facial expressions (open/closed eyes, smiling/not
smiling) and facial details (wearing/not wearing glasses). All the images are taken against a
dark homogeneous background with the subjects in an upright, frontal position (with toler-
ance for some side movement), and are cropped and then resized to 32× 32 pixels.

• YALE is a data set that has 165 grayscaling images in GIF format of 15 individuals, 11
images per person. The images are in different facial expression or configuration: cen-
ter/right/left lighting, wearing/not wearing glasses, happy/normal/sad/sleepy/surprised/wink.
The images are cropped and then resized to 32× 32 pixels.

8http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
9https://archive.ics.uci.edu/ml/datasets/lung+cancer

10http://featureselection.asu.edu/datasets.php
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• LUNG has 203 images from 5 classes, and each class has 139, 21, 20, 6, 17 samples respec-
tively. Each sample has 12600 genes. We removed those genes with standard deviations
smaller than 50 expression units and then obtained a data set with 203 samples and 3312
genes in our experiments.

• TOX has 171 samples from 4 classes in total, and we have obtained a data set with 171
samples and 5748 genes in our experiments.

Table 1: Summary of the benchmark data sets and the number of selected features.

Data Sets. sample feature class selected features

MFEA200 200 240 10 [5,10,...,50]

USPS200 200 256 2 [5,10,...,50]

UMIST 575 644 20 [5,10,...,50]

JAFFE 213 676 10 [5,10,...,50]

AR 840 768 120 [5,10,...,50]

COIL 1440 1024 20 [5,10,...,50]

ORL 400 1024 40 [5,10,...,50]

YALE 165 1024 15 [5,10,...,50]

LUNG 203 3312 5 [10,20,...,150]

TOX 171 5748 4 [10,20,...,150]

Table 2: Aggregated clustering results measured by Accuracy (%) of the compared methods

DataSets UMIST JAFFE AR COIL LUNG TOX Average

AllFea 42.40 71.57 30.26 59.17 72.46 43.65 53.25

LapScore 36.73 ± 1.18 67.62 ± 8.49 25.29 ± 2.89 45.60 ± 6.16 58.97 ± 5.24 40.25 ± 0.65 45.74

MCFS 44.46 ± 3.26 73.56 ± 4.83 29.05 ± 1.19 51.50 ± 5.38 70.42 ± 3.41 43.10 ± 1.86 52.02

LLCFS 47.31 ± 0.83 64.79 ± 4.08 34.22 ± 2.70 50.84 ± 3.76 71.58 ± 5.85 39.28 ± 0.49 51.34

UDFS 48.04 ± 1.92 75.48 ± 1.63 30.87 ± 0.35 48.40 ± 16.89 65.46 ± 3.88 47.14 ± 0.75 52.57

NDFS 52.80 ± 2.26 74.98 ± 2.15 32.34 ± 1.52 52.22 ± 6.33 75.52 ± 1.57 38.28 ± 1.64 54.36

URAFS 45.77 ± 2.89 79.86 ± 8.63 40.67 ± 1.30 56.68 ± 3.84 66.85 ± 7.65 49.80 ± 1.68 56.61

RUFS 50.87 ± 1.95 75.75 ± 2.53 34.84 ± 1.90 59.20 ± 3.28 77.35 ± 2.62 49.17 ± 0.83 57.86

JELSR 53.52 ± 1.54 77.77 ± 1.87 34.19 ± 2.52 59.53 ± 4.01 77.86 ± 3.12 43.96 ± 1.56 57.81

GLSPFS 50.53 ± 0.59 75.46 ± 1.61 34.12 ± 1.60 57.96 ± 2.27 77.83 ± 2.70 47.38 ± 1.93 57.21

FSASL 54.92 ± 1.89 79.29 ± 2.24 36.11 ± 0.75 60.93 ± 2.50 81.93 ± 1.63 50.12 ± 0.67 60.55

UFSARP 53.99 ± 4.14 81.39 ± 9.11 39.32 ± 0.87 61.87 ± 5.91 83.33 ± 2.58 52.57 ± 3.36 62.08
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Figure 2: The clustering accuracy versus the number of selected features of the the comparison methods on (a)
MEFA200, (b) USPS200, (c) YALE, and (d) ORL.

5.2. Experiment Setup

To validate the effectiveness of our proposed UFSARP, we compared our method with state-
of-the-art unsupervised feature selection methods and one baseline (i.e., allfea).

• LapScore [18] evaluates and selects features according to their ability of locality preserving
of the manifold structure.

• MCFS [5] selects features by adopting spectral regression with l1-norm regularization.

• LLCFS [62] incorporates the relevance of each feature into the built-in regularization of the
local learning-based clustering algorithm.

• UDFS [61] exploits local discriminative information and feature correlations simultane-
ously.

• NDFS [31] selects features by using a joint framework of nonnegative spectral analysis and
l2,1-norm regularized regression.

• RUFS [46] performs robust clustering and robust feature selection simultaneously to select
the most critical and discriminative features.
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Table 3: Aggregated clustering results measured by NMI (%) of the compared methods

DataSets UMIST JAFFE AR COIL LUNG TOX Average

AllFea 64.15 81.52 65.48 75.58 60.37 15.87 60.50

LapScore 55.57 ± 2.32 77.28 ± 8.98 63.59 ± 2.36 62.21 ± 4.98 50.14 ± 4.13 10.92 ± 0.68 53.29

MCFS 63.46 ± 4.93 79.04 ± 5.88 66.41 ± 0.85 66.19 ± 6.78 55.68 ± 2.31 16.53 ± 2.68 57.89

LLCFS 63.42 ± 1.42 66.97 ± 3.47 69.01 ± 1.45 64.04 ± 4.34 60.12 ± 4.65 9.68 ± 0.75 55.54

UDFS 65.19 ± 2.96 84.25 ± 1.74 67.49 ± 0.27 44.27 ± 12.61 54.88 ± 4.21 22.16 ± 1.36 56.37

NDFS 71.19 ± 2.77 82.53 ± 3.49 67.89 ± 0.89 56.29 ± 6.91 60.57 ± 1.54 9.07 ± 1.87 57.92

URAFS 62.53 ± 2.23 81.37 ± 3.56 70.42 ± 0.59 69.75 ± 2.17 51.97 ± 4.22 26.16 ± 2.22 60.37

RUFS 68.19 ± 2.61 82.00 ± 3.56 69.54 ± 1.10 70.54 ± 4.48 65.47 ± 1.87 25.79 ± 1.60 63.59

JELSR 71.33 ± 2.06 85.23 ± 3.31 69.02 ± 1.32 71.37 ± 4.97 63.54 ± 2.94 17.46 ± 3.36 62.99

GLSPFS 69.16 ± 0.97 83.20 ± 3.17 69.44 ± 0.84 69.89 ± 4.00 63.50 ± 2.99 23.49 ± 2.77 63.11

FSASL 72.39 ± 2.39 86.42 ± 3.34 70.78 ± 0.63 72.93 ± 4.44 66.78 ± 1.72 27.37 ± 1.62 66.11

UFSARP 66.30 ± 2.17 86.42 ± 3.98 69.92 ± 0.50 73.81 ± 2.06 61.34 ± 2.92 28.30 ± 3.24 64.35
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Figure 3: The clustering NMI versus the number of selected features of the the comparison methods on (a)
MEFA200, (b) USPS200, (c) YALE, and (d) ORL.

• JELSR [20][21] combines embedding learning with sparse regression to perform feature
selection.
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• GLSPFS [34] integrates both global pairwise sample similarity and local geometric data
structure to conduct feature selection.

• FSASL [11] unifies the structure construction and feature selection into one framework.

• URAFS [30] performs the feature selection and spectral clustering simultaneously by an
uncorrelated regression model.

For the convenience of calculation, we preset several parameters. The size of neighborhood is
set as k = 5. Note that in the GLSPFS algorithm, the pairwise similarity is determined based on
Gaussian Kernel, where the kernel width is searched from grid {2−3, 2−2, ..., 23} δ0, and δ0 is the
mean distance between any two samples. For GLSPFS, we record the best results among three
local manifold models, which are locality preserving projection (LPP), locally linear embedding
(LLE) and local tangent space alignment (LTSA)[16]. To fairly compare the unsupervised fea-
ture selection algorithms, we use grid search strategy to regularize the parameters in all methods.
Regarding to the regularization parameters in methods LLCFS, UDFS, NDFS, RUFS, JELSR,
GLSPFS, FSASL, and URAFS, we search them from the grid {10−5, 10−4, ..., 105}. For UF-
SARP, α and β are searched from grid {10−3, 5× 10−3, 10−2, ..., 5, 10}, γ is searched in the grid
{10−3, 10−2, ..., 102, 103}. Furthermore, to compare the generalized performance of each method,
we choose two widely used metrics, i.e., Accuracy (ACC) and Normalized Mutual Information
(NMI). Since all the algorithms are affected by different parameters, we would like to repeat the
clustering for twenty times with random initialization and record the average result.

5.3. Clustering with Selected Features

It is difficult to determine the best optimal number of selected features in different algorithms
and data sets. So, to better evaluate the performance of unsupervised feature selection algorithms,
we demonstrate the average of best results over different number of selected features (the number
of selected features for all data sets can be seen in Table 1) with standard deviation. Table 2 and
Table 3 show the clustering results measured by Accuracy and NMI respectively. Numbers posted
in each cell are the mean ± standard deviation of the performances of algorithms in different
data sets, and the last columns in both tables show the average results of different feature selection
algorithms over six data sets.

From both Table 2 and Table 3, we find that there is a substantial improvement in clustering
result after removing the redundant features from the data sets. Namely, a better performance can
be achieved in data clustering by utilizing feature selection methods. It is obvious that UFSARP
performs better than LapScore, MCFS, LLCFS, UDFS, RUFS, JELSR, URAFS, and GLSPFS.
In Table 2, the Accuracy of UFSARP is slightly inferior to FSASL and URAFS on UMIST data
set and AR data set, respectively. However, UFSARP still demonstrates its superiority on the rest
data sets. From Table 3, it can be seen that UFSARP does not achieve the best NMI on UMIST
and LUNG, and the NMI of UFSARP is slightly inferior to FSASL and URAFS on AR data set.
UFSARP gets better result on the rest data sets. Table 2 and Table 3 show that UFSARP achieves
good Accuracy, and it does not mean that a good NMI can be obtained simultaneously, such as
on AR and LUNG data sets. In particular, our proposed method UFSARP achieves 16.58% and
6.37% improvement regarding to Accuracy and NMI respectively with less than 10% features.
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(a) Variations of clustering Accuracy(%) versus
parameters α and β on MEFA200
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(b) Variations of clustering Accuracy(%) versus
parameters γ on MEFA200
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(c) Variations of clustering Accuracy(%) versus
parameters α and β on ORL
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(d) Variations of clustering Accuracy(%) versus
parameters γ on ORL

0
10

20

5

40

101

# 
ac

cu
ra

cy
(%

)

5

60

0.5 1# parameter 

0.1

80

0.5

# parameter 
0.05 0.1

100

0.050.01 0.010.005 0.0050.001 0.001

88

89

90

91

92

93

94

95

96

(e) Variations of clustering Accuracy(%) versus
parameters α and β on USPS200
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(f) Variations of clustering Accuracy(%) versus
parameters γ on USPS200
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(g) Variations of clustering Accuracy(%) versus
parameters α and β on YALE
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parameters γ on YALE

Figure 4: Variations of clustering Accuracy(%) versus parameters α, β and γ on (a)(b)MEFA200, (c)(d)ORL,
(e)(f)USPS200 and (g)(h)YALE data sets.
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Figure 5: The Clustering Accuracy of the proposed method versus parameters α and β with γ fixed on the JAFFE
face image data set.
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Figure 6: The Clustering Accuracy of the proposed method versus parameters α and β with γ fixed on the USPS200
biomedical data set.

Also, we compare the Accuracy of different algorithms by selecting a various number of fea-
tures. These experiments are conducted on data sets of ORL, YALE, USPS200, and MEFA200.
The results are shown in Fig. 2 and Fig. 3, which indicate that our method results in much higher
Accuracy than those conventional feature selection methods. In different dimensions, UFSARP
performs better than other approaches in most cases. Especially in lower dimensions, UFSARP
still achieves good results. The reasons may be that UFSARP performs feature selection and graph
embedding simultaneously, which encourages the reconstructed data to maintain local manifold
structure after feature selection. Fig. 2 and Fig. 3 show that as the number of selected features
increases, the Accuracy increases in general, but the best results may not appear in most selected
features. Intuitively, if the number of selected features is too small, it is not enough to represent
the key information of data. Conversely, a large number of selected features may increase the
redundant information.
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In summary, comparing with other algorithms, our proposed method is more stable and has an
average higher accuracy. As seen from Fig. 2, Fig. 3, Table 2, and Table 3, we have the following
conclusions.

(1) All the feature selection methods generally get better performance than using all features,
which indicates that feature selection can reduce redundancy and enhance performance.

(2) Both clustering Accuracy and NMI indicate that UFSARP performs better than other ap-
proaches in most cases. The main reason is that UFSARP not only unifies the manifold learning
and feature selection into one process, but also retains the value of local residual struture in the
data reconstruction process.

(3) With the increasing number of selected features, the accuracy increase generally. However,
the result will no longer be promoted when the number of selected features increases to a cer-
tain extent. Besides, UFSARP can still achieve good results at lower dimensions, since the local
similarity matrix P is adaptively learnt.

5.4. Parameter Sensitivity

We study the sensitivity of the regularization parameters α, β and γ. When we fix the value
of some parameters, we keep other parameters changed at the optimal value. First, we focus on
the influence of α and β by fixing γ. Parameters α and β are used to control the trade off between
the global structure and the local structure. Fig. 4(a), (c), (e), (g) show the clustering Accuracy
variation of our method with respect to different values of parameters α and β. The graphs are
generally flat which indicates that the performance of our method is not sensitive to the values of α
and β. Then we focus on the influence of parameter γ by fixing others. As we change the value of
γ, the variances of performance are demonstrated in Fig. 4(b), (d), (f), (h). Our method is robust
to different values of γ on these data sets when it is in the range of [10−2, 10−1] or [10, 102], which
indicates that a suitable value of γ can guarantee a better row sparsity of W . The results show that
our method is robust in terms of γ.

We are also interested in the sensitivity of the number of selected features. The results are
shown in Fig. 5 and Fig. 6. Generally speaking, UFSARP obtains the best performance when the
range of the number of selected features is large, i.e., the range is [20, 50]. Besides, it is easy to find
that parameters α, β and γ do not affect the Accuracy too much when there are enough selected
features. Specifically, in Fig. 5, the Accuracy is depressing in the case of few selected features.
The reason is intuitive to understand that, for face images, too few features can not distinguish
between different samples. Fig. 6 shows that UFSARP is very robust to the number of selected
features on UFSARP. Even in scenario of 5 selected features, the algorithm still achieves good
results. Because USPS200 is handwritten data set, it is easy to find significant features between
samples.

In short, the experimental results show that our method is not very sensitive to α, β, γ, and
even the number of selected features, i.e., our method is pretty robust to different parameters.

5.5. Effect of Neighborhood Size and Running Time
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Figure 7: Comparison on different size of neighborhood. (a)(b) JAFFE, (c)(d) UMIST.

In the previous experiment, the size of neighborhood K is set as 5. We investigate the effect of
neighborhood size and has conducted another experiment for K = 10 on data sets of JAFFE and
UMIST. The results are shown in Fig.7.

From Fig.7 we can see that the proposed method obtains better performance when K = 10 on
JAFFE data set. While, on data set UMIST, there is a better accuracy when K = 5, and the NMI
is higher when K = 10. Therefore, the overall results of accuracy and NMI are similar on both
data sets when K = 5 and K = 10.

In addition, we conduct another experiment to show the running time of our method that runs
on the real data set. All of the experiments are implemented on MATLAB R2014b, and the codes
are run on a Windows 10 machine with 2.80-GHz i7-7700HQ CPU, 16GB main memory. Fig. 8
shows the running time of the methods in our experiments. We compared the proposed UFSARP
with seven related methods FSASL, GLSPFS, JELSR, LLCFS, NDFS, URAFS, and UDFS. From
the results in Fig. 8, the running time of UFSARP is slightly inferior to other methods except
URAFS on LUNG data set. However, the longer running time of UFSARP is within a reasonable
range that is acceptable since it has comparably promising experimental results.
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Figure 8: Comparison on running time. (a)UMIST, (b)AR, (c)LUNG, and (d)ORL. The X-axis represents the feature
selection methods, while y-axis records the running time.

6. Conclusion

In this paper, we proposed a novel unsupervised feature selection method to improve the cred-
ibility of reconstruction structure. In our method, the local structure and the feature selection are
integrated within a unified framework. Namely, the framework processes the data reconstruction
and feature selection simultaneously within one single function. In addition, by considering the
data local residuals, local manifold structure can be better preserved in the data reconstruction
process. The extensive experiments have been conducted on the real-world benchmark data sets,
and experimental results demonstrate that our method performs superior to all others.

In UFSARP, the complexity level is relatively higher than other frameworks. In the future, we
plan to further investigate the local residual, and alleviate the complexity.
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