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Abstract: Polycystic Ovary Syndrome (PCOS) is a complex condition with mechanisms likely to
involve the interaction between genetics and lifestyle. Familial clustering of PCOS symptoms is
well documented, providing evidence for a genetic contribution to the condition. This overview
aims firstly to systematically summarise the current literature surrounding genetics and PCOS,
and secondly, to assess the methodological quality of current systematic reviews and identify
limitations. Four databases were searched to identify candidate gene systematic reviews, and quality
was assessed with the AMSTAR tool. Genome-wide association studies (GWAS) were identified
by a semi structured literature search. Of the candidate gene systematic reviews, 17 were of high
to moderate quality and four were of low quality. A total of 19 gene loci have been associated
with risk of PCOS in GWAS, and 11 of these have been replicated across two different ancestries.
Gene loci were located in the neuroendocrine, metabolic, and reproductive pathways. Overall,
the gene loci with the most robust findings were THADA, FSHR, INS-VNTR, and DENND1A, that now
require validation. This overview also identified limitations of the current literature and important
methodological considerations for future genetic studies. Much work remains to identify causal
variants and functional relevance of genes associated with PCOS.

Keywords: Polycystic Ovary Syndrome; genetics; genetic association studies; Systematic Review;
Overview of Systematic Reviews

1. Introduction

Polycystic ovary syndrome (PCOS) is a major public health concern affecting 6–10% of reproductive
aged women [1]. PCOS is exacerbated by obesity and has significant metabolic, reproductive, and
psychological features, including an increased risk of Type 2 Diabetes Mellitus (T2DM) with an
earlier age of onset, subfertility, and an increased risk of depression and anxiety symptoms [2–4].
At present, the internationally accepted criteria for diagnosis of PCOS is the revised Rotterdam
criteria [5], which requires exclusion of other causes of hyperandrogenism, like adrenal or pituitary
dysfunction, and presence of two of the following three characteristics: oligo- or anovulation, clinical
and/or biochemical signs of hyperandrogenism, and polycystic ovaries on ultrasound. The Rotterdam
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criteria yields four phenotypes of PCOS, and there is evidence that the different PCOS phenotypes have
varying degrees of adiposity, and may differ in metabolic and reproductive profiles [6]. The proposed
pathophysiology of PCOS is a synergistic relationship between perturbed gonadotrophin releasing
hormones (GnRH) pulsatility and hyperandrogenism probably accompanied by hyperinsulinemia,
insulin resistance, and inflammation. However, the nuances of these relationships are yet to be fully
elucidated (Figure 1) [7–9].
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documented with familial clustering of PCOS symptoms, providing evidence for a genetic 
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diagnosed with PCOS share common characteristics of the syndrome. Moreover, they seem to be 
more prone to develop T2DM and metabolic syndrome [11]. Finally, mono- and dizygotic twin 
studies have demonstrated the heritability of PCOS to be approximately 70% [12]. 

Two complementary types of genetic studies are Genome Wide Association Studies (GWAS) 
and candidate gene studies. GWAS look for associations between common genetic polymorphisms 
and the trait or disease without a predefined hypothesis about the possible role of genetic variants in 
the pathophysiology. However, a common misunderstanding about GWAS is that they identify 
specific genes. They merely provide information about a genetic region (gene loci) that is significantly 
associated with the trait. On one hand, the identified gene loci might be directly involved in gene 
function if located in or near a gene, or they might have a regulatory function for genes up- or 
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Figure 1. Proposed pathophysiology and features of Polycystic Ovary Syndrome (PCOS). Adapted
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In addition, PCOS pathophysiology appears to have a polygenic predisposition that is exacerbated
by environmental factors, especially obesity [2]. The polygenic predisposition is well documented
with familial clustering of PCOS symptoms, providing evidence for a genetic contribution to the
pathophysiology [10]. Both female and male family members of women diagnosed with PCOS share
common characteristics of the syndrome. Moreover, they seem to be more prone to develop T2DM and
metabolic syndrome [11]. Finally, mono- and dizygotic twin studies have demonstrated the heritability
of PCOS to be approximately 70% [12].

Two complementary types of genetic studies are Genome Wide Association Studies (GWAS)
and candidate gene studies. GWAS look for associations between common genetic polymorphisms
and the trait or disease without a predefined hypothesis about the possible role of genetic variants
in the pathophysiology. However, a common misunderstanding about GWAS is that they identify
specific genes. They merely provide information about a genetic region (gene loci) that is significantly
associated with the trait. On one hand, the identified gene loci might be directly involved in gene
function if located in or near a gene, or they might have a regulatory function for genes up- or
downstream. Hence, genetic loci detected by GWAS provide ideal a priori candidate genes that are
located within these loci to investigate. GWAS have been conducted in Chinese, Korean, and European
cohorts, and have identified up to 19 distinct genetic loci in, or near, known genes that are associated
with PCOS [13–19]. Candidate gene studies are particularly useful to validate and decipher the
functional impact of gene loci identified by GWAS to contextualise clinical relevance [20]. A multitude
of candidate gene studies have been conducted in PCOS, identifying single nucleotide polymorphisms
(SNPs) that may contribute to the genetic basis of PCOS [14]. These studies provide an effective
approach for detecting genetics variants that are either causative or belong to a shared haplotype
that is causative [21–23]. However, candidate gene studies have many common limitations, such as
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sample size and selection bias from confounding variables such as ancestry, diagnostic criteria, BMI,
and source of participants, which can limit statistical power and result in different findings [24,25].

In all fields of science, systematic evaluations are crucial for establishing the consistency and
significance of the current evidence base [24]. Such evaluations may take the form of systematic
reviews of individual studies or overviews of systematic reviews. An overview of systematic reviews
aims to assess the methodological quality of systematic reviews on a given topic and the consistency of
evidence contained in them [26]. The aim of this overview was to systematically evaluate the current
evidence regarding the genetics of PCOS from candidate gene systematic reviews and GWAS. We also
explored the methodological quality of the systematic reviews to identify how future genetic studies
can align the findings of candidate gene and GWAS studies by validating gene loci. A comprehensive
understanding of the current evidence and its limitations is necessary to ultimately improve our
understanding of the biological origins of PCOS.

2. Experimental Section

2.1. Protocol and Registration

This review was designed and reported in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) guidelines [27]. The protocol was registered in the
international prospective register of systematic reviews PROSPERO (CRD42016052649).

2.2. Systematic Search of Candidate Gene Systematic Review

2.2.1. Literature Search

A comprehensive database search was conducted on 17 October 2016 and updated on 5 April
2019. The following electronic databases were used to identify relevant systematic reviews: Medline
in-process and other nonindexed citations (Ovid MEDLINE(R) In-Process & Other Nonindexed
Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present), EMBASE (EBM
Reviews—Cochrane Database of Systematic Reviews 2005 to 12 October 2016, EBM Reviews—ACP
Journal Club 1991 to September 2016, EBM Reviews—Database of Abstracts of Reviews of Effects
1st Quarter 2015, EBM Reviews—Cochrane Central Register of Controlled Trials September 2016,
EBM Reviews—Cochrane Methodology Register 3rd Quarter 2012, EBM Reviews—Health Technology
Assessment 3rd Quarter 2016, EBM Reviews—NHS Economic Evaluation Database 1st Quarter 2015),
and CINAHL PLUS. The search strategy for MEDLINE is documented in Supplemental Table S2.
This search was modified for EMBASE and CINAHL using their subject headings instead of the
MeSH subject headings. Two independent reviewers (L.J.M. or A.M.-A. (update of search) and D.H),
who were not blinded to the names of investigators or sources of publication, identified and selected
the systematic reviews that met the inclusion criteria.

2.2.2. Eligibility Criteria and Inclusion Criteria

The Participant, Intervention, Comparison, Outcomes, and Studies (PICOs) framework was used
for this Overview of Systematic Reviews (OSR) (Table S1). Briefly, the population was women with
PCOS, and the intervention was a systematic review with or without a meta-analysis with a primary
focus on genetic associations. Systematic reviews not on the genetics of PCOS (e.g., focusing on
assessment or treatment) were excluded and are the focus of separate OSRs [28,29]. The specific
inclusion criteria for systematic reviews were a publication date from 2009 onwards, description of
a search strategy containing at least key words or terms, inclusion of the number of identified and
included articles, and quality appraisal of the articles. The comparison term was not applicable in
this context. The outcomes included the methodology, results, and quality of each systematic review.
Only articles published in English were included.
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2.2.3. Data Extraction

All eligible systematic reviews (SR) were examined and extracted independently by two reviewers
(D.H and A.M.-A). The data extracted included information on authors, publication date, inclusion
criteria, SR outcomes, number of participants in the SR, and quality of identified articles in each
SR. Methodological variables specific to genetic association studies were also extracted: source of
participants, whether the control group were in Hardy–Weinberg Equilibrium (HWE), and the method
by which the control group was dealt with in the SR if it departed from HWE. Briefly, the HWE
principle states that if control groups are healthy and therefore “disease-free”, they should be in
equilibrium and genetic variation remains constant [30]. Departures from HWE can indicate a number
of methodological issues including poor study design or genotyping errors. There is no consensus on
which method is most appropriate to deal with deviations from HWE, but common procedures are
excluding any studies that have a significant deviation from HWE before conducting meta-analysis,
conducting sensitivity analysis to examine whether meta-analysis results are altered when studies
containing control groups not in HWE are excluded, or correcting the pooled odds ratio [31]. For each
SR the diagnostic criteria for PCOS and the criteria for defining the control group were extracted.

2.2.4. Quality Assessment of Systematic Reviews

All included systematic reviews were evaluated by two independent reviewers (D.H and A.M.-A)
using the Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR2) tool, which
contains 16 items to appraise the methodological aspects of systematic reviews [32]. Systematic
reviews were ranked as high, moderate, low, and critically low quality based on the number of critical
(items 2, 4, 7, 9, 11, 13, and 15) domains missed [32]. At all stages of data extraction and quality
assessment, disagreements between the two reviewers (D.H. and A.M.-A.) were discussed and resolved
by consensus or arbitration (M.G.-H).

2.3. Semi-Structured Search of Genome-Wide Association Studies (GWAS)

GWAS are extremely informative in providing candidate genetic loci but were not included
in our original systematic search and PICO. Therefore, a semi structured search was performed to
identify all GWAS to date (April 2019) to provide a robust and comprehensive overview of genetics and
PCOS. Keywords searched were “PCOS”, “Polycystic Ovary Syndrome”, “GWAS”, and “genome-wide
association studies”. Narrative reviews and pathways analysis were excluded as this was not the focus
of the paper.

3. Results

3.1. Candidate Gene Systematic Reviews

3.1.1. Eligibility Assessment

The search yielded 1218 publications and 902 remained after removal of duplicates. A further
32 studies were identified from PROSPERO. Based on a priori selection criteria, screening for title or
abstract identified 340 studies for assessment of full text. Of these, 143 articles were excluded due to not
conducting quality assessment, not being in English, or no search terms or search strategy identified.
Detailed characteristics of excluded studies are reported in Table S3. Of the remaining 197 full-text
systematic reviews, 21 were related to genetics and included in this OSR (Figure 2).
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Figure 2. Identification and selection of systematic reviews of genetics and polycystic ovary syndrome.

All 21 systematic reviews included a meta-analysis and were based on case-control or cross-sectional
primary studies. Nineteen systematic reviews investigated SNPs [33–51]. The remaining two systematic
reviews investigated CAG repeat length or tandem repeats respectively [52,53]. Candidate genes
focused on three main aspects of PCOS pathophysiology: metabolic dysfunction, [33,35,38–44,48–50,52],
imbalances in androgens and gonadotrophins [36,37,51,53], and inflammation [34,45–47].

3.1.2. Metabolism

The genes involved in metabolic function investigated were INSR, Adiponectin, TCF7L2, IRS-1,
IRS-2, Calpain-10, CY1A1, CYP11A1, PON1, DENND1A, and Insulin gene-variable number of tandem
repeats (INS-VNTR) (Figure 3). In two systematic reviews, the SNP rs1801278 in IRS-1 was associated
with an increased risk of PCOS when carrying the A allele, in a combined cohort of women from
different ancestries [39,44]. The III allele in INS-VNTR was associated with an increased risk of
PCOS compared to I allele [52], also in a combined cohort of multiple ancestries. The SNP rs4646903
in CYP1A1 and the CYP11A1 microsatellite [TTTA] n repeat polymorphism were associated with
increased risk of PCOS, however not across all ancestries [41,42]. In adiponectin, the T allele in the
rs1501299 SNP was shown to have a decreased risk of PCOS, however ancestry played a major role,
with significant association found only in a mixed population of “East Asian” ancestry. Three SNPs
in Calpain-10 were associated with increased risk of PCOS, with ancestry again playing a major role,
with a significant association only found in a mixed population of “Asian” ancestry [40]. The two
SNPs in PON1 were associated with increased risk of PCOS overall but, again, this was restricted to



J. Clin. Med. 2019, 8, 1606 6 of 17

specific ancestries and diagnostic criteria [49]. Two SNPs in DENND1A (rs10818854 and rs10986105)
were associated with increased risk of PCOS [48], while the SNP (rs2479106) in DENND1A was only
associated in the women of mixed “Asian” ancestry [48]. In summary, the genes IRS-1, INS-VNTR,
Calpain-10, PON1, CYP1A1, CYP11A1, DENND1A, and Adiponectin were found to be associated with
risk of PCOS. Some of the SNPs in these genes were not consistent across ancestries indicating that
future genetic studies should include larger samples sizes and investigation of other SNPs within these
genes to uncover the causal SNP variant associated with PCOS in different ancestries.
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3.1.3. Androgens and Gonadotrophins 

Four systematic reviews focused on CYP17, FSHR, AMH, AMH receptor (AMHR II), and androgen 
receptor (AR) genes and their association with androgens and gonadotrophins (Figure 4). The rs6166 
SNP in FSHR was associated with PCOS with the Asn allele showing a protective effect for PCOS, 
but this was only significant in a mixed population of women with European ancestry [37]. CAG 
repeat length polymorphism in AR was positively associated with plasma testosterone concentration, 
but not with PCOS per se [53]. There were no clear association between SNPs in CYP17, AMH or 
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Figure 3. Forest plots representing the association between metabolic SNPs and PCOS under the
allele model. (A) Insulin receptor; (B) Insulin gene variable number of tandem repeats (INS-VNTR);
(C) Insulin Receptor Substrate-1 (IRS-1); (D) Insulin Receptor Substrate-2 (IRS-2); (E) Transcription
Factor 7-Like 2 (TCF7L2); (F) Calpain-10; (G) Adiponectin; (H) Cytochrome P450 Family 1 Subfamily A
Member 1 (CYP1A1); (I) Cytochrome P450 Family 11 Subfamily A Member 1 (CYP11A1); (J) DENN
domain containing 1A (DENND1A); (K) Paraoxonase 1 (PON1). The circle represents the odds ratio
(OR) and the horizontal lines are the 95% confidence intervals (CI).

3.1.3. Androgens and Gonadotrophins

Four systematic reviews focused on CYP17, FSHR, AMH, AMH receptor (AMHR II), and androgen
receptor (AR) genes and their association with androgens and gonadotrophins (Figure 4). The rs6166
SNP in FSHR was associated with PCOS with the Asn allele showing a protective effect for PCOS, but
this was only significant in a mixed population of women with European ancestry [37]. CAG repeat
length polymorphism in AR was positively associated with plasma testosterone concentration, but not
with PCOS per se [53]. There were no clear association between SNPs in CYP17, AMH or AMHR with
PCOS [36,51], however, it may be possible that other SNPs within these gene loci are related to PCOS
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and/or specific clinical characteristics of PCOS [54]. In summary, SNPs in the genes FSHR and AR were
found to be associated with risk of PCOS.
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Figure 4. Forest plots representing the association between metabolic SNPs and PCOS under the
allele model. (A) Follicle Stimulating Hormone Receptor (FSHR); (B) Androgen Receptor (AR);
(C) Cytochrome P450 Family 17 Subfamily A Member 1 (CYP17); (D) Anti-müllerian hormone (AMH);
Anti-müllerian hormone receptor II (AMHRII). The circle represents the odds ratio (OR) and the
horizontal lines are the 95% confidence intervals (CI).

3.1.4. Inflammation

Four systematic reviews focused on inflammation and investigated cytokine genes: TNF-α, IL-6,
IL-β, IL-10, and IL-18 (Figure 5). Of the three SNPs investigated within TNF-α, only one (rs1799964) was
positively associated with PCOS. All four systematic reviews concurred that the C allele (rs1800795)
in IL-6 was a protective factor for PCOS risk. However, in three of the systematic reviews, when
only primary studies with control groups in HWE were included, the association was no longer
significant [34,45,46]. Although, the most recent systematic review [47] with the largest sample size
found that this association held when controls were in HWE, indicating that rs1800795 in IL-6 may
be associated with PCOS. SNPs in the genes IL-β, IL-10, and IL-18 were not associated with PCOS.
In summary, evidence suggests that TNF-α (rs1800795) and IL-6 (rs1800795) may be associated with
PCOS, but larger sample sizes and further studies with appropriate control groups are required to
confirm these findings.
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Table 1. SNPs identified by Genome-Wide Association Studies (GWAS) in Polycystic Ovary 
Syndrome (PCOS). NIH, National Institute of Health. 

Study Diagnostic Criteria Gene Locus SNPs Nearest Gene 

Chen et al., 2011 [11] Rotterdam 

2p16.3 rs13405728 LHCGR, STON1-GTF2A1L 

2p21 
rs12468394 
rs13429458 
rs12478601 

THADA 

9q33.3 
rs10818854 
rs2479106 
rs10986105 

DENND1A 

Shi et al., 2012 [15] Rotterdam 

2p16.3 rs13405728 LHCGR, STON1-GTF2A1L 

2p16.3 
rs2268361 
rs2349415 

FSHR 

2p21 
rs12468394 
rs13429458 
rs12478601 

THADA 

9q33.3 
rs10818854 
rs2479106 
rs10986105 

DENND1A 

9q22.32 
rs4385527 
rs3802457 

C9orf3 

11q22.1 rs18974116 YAP1 
12q13.2 rs705702 RAB5B, SUOX 
12q14.3 rs2272046 HMGA2 
16q12.1 rs4784165 TOX3 
19p13.3 rs2059807 INSR 
20q13.2 rs6022786 SUMO1P1 

Lee et al., 2015 [19] Rotterdam  8q24.2 rs10505648 KHDRBS3, LINC02055 

Hwang et al., 2012 [18] Rotterdam  12p12.2 
rs10841843 
rs6487237 
rs7485509 

GYS2 

Hayes et al., 2015 [13] NIH  8p32.1 rs804279 GATA4, NEIL2 

Figure 5. Forest plots representing the association between metabolic SNPs and PCOS under the allele
model. (A) TNF-α, Tumor Necrosis Factor-Alpha; (B) IL, Interleukin. The circle represents the odds
ratio (OR) and the horizontal lines are the 95% confidence intervals (CI).

3.2. Genome-Wide Association Studies

Six GWAS have been conducted to identify gene loci that are associated with PCOS. Two GWAS
were conducted in women with Han Chinese ancestry (both North and South) [15,16,19], two in
women with Korean ancestry [18,19], and two in women with European ancestry, determined by
genetic analysis of local ancestry [13,17]. To date, only one meta-analysis of GWAS has been conducted
in women with European ancestry [17]. In total, 19 genetic loci associated with risk of PCOS have been
identified in three biogeographical ancestries, Korean, Han Chinese, and European. Eleven of the 19
loci are common to Han Chinese and European ancestry. Table 1 summarises the findings of the 6
GWAS. Table 2 summaries the SNPs identified from the meta-analysis including 3 novel loci [17].

Table 1. SNPs identified by Genome-Wide Association Studies (GWAS) in Polycystic Ovary Syndrome
(PCOS). NIH, National Institute of Health.

Study Diagnostic Criteria Gene Locus SNPs Nearest Gene

Chen et al., 2011
[11] Rotterdam

2p16.3 rs13405728 LHCGR, STON1-GTF2A1L

2p21
rs12468394

THADArs13429458
rs12478601

9q33.3
rs10818854

DENND1Ars2479106
rs10986105

Shi et al., 2012 [15] Rotterdam

2p16.3 rs13405728 LHCGR, STON1-GTF2A1L

2p16.3 rs2268361
FSHRrs2349415

2p21
rs12468394

THADArs13429458
rs12478601

9q33.3
rs10818854

DENND1Ars2479106
rs10986105

9q22.32 rs4385527 C9orf3
rs3802457

11q22.1 rs18974116 YAP1
12q13.2 rs705702 RAB5B, SUOX
12q14.3 rs2272046 HMGA2
16q12.1 rs4784165 TOX3
19p13.3 rs2059807 INSR
20q13.2 rs6022786 SUMO1P1



J. Clin. Med. 2019, 8, 1606 9 of 17

Table 1. Cont.

Study Diagnostic Criteria Gene Locus SNPs Nearest Gene

Lee et al., 2015 [19] Rotterdam 8q24.2 rs10505648 KHDRBS3, LINC02055

Hwang et al., 2012
[18] Rotterdam 12p12.2

rs10841843
GYS2rs6487237

rs7485509

Hayes et al., 2015
[13] NIH

8p32.1 rs804279 GATA4, NEIL2
9q22.32 rs10993397 C9orf3
11p14.1 rs11031006 ARL14EP, FSHB

Day et al., 2015 [14] NIH

2q.34 rs1351592 ERBB4
11q22.1 rs11225154 YAP1

2q21 rs7563201 THADA
11p14.1 rs11031006 FSHB
5q31.1 rs13164856 RAD50
12q21.2 rs1275468 KRR1

Table 2. SNPs identified from a GWAS meta-analysis in women of European biogeographical ancestry.

Study Diagnostic Criteria Gene Locus SNPs Nearest Gene

Day et al. [17] Rotterdam
NIH

2q21 rs7563201 THADA *
2q.34 rs2178575 ERBB4

5q31.1 rs13164856 IRF1/RAD50
8p32.1 rs804279 GATA4/NEIL2
9p24.1 rs10739076 PLGRKT
9q22.32 rs7864171 C9orf3 *
9q33.3 rs9696009 DENND1A *

11p14.1 rs11031005 ARL14EP/FSHB
11q22.1 rs11225154 YAP1 *
11q23.2 rs1784692 ZBTB16
12q13.2 rs2271194 ERBB3/RAB5B
12q21.2 rs1795379 KRR1
16q12.1 rs8043701 TOX3 *

20q11.21 rs853854 MAPRE1

* Gene loci that have been found in common in women of Han Chinese ancestry.

3.2.1. Methodological Limitations of the Systematic Reviews

Ten of the 21 included systematic reviews (48%) did not describe which PCOS diagnostic
criteria they accepted in their inclusion criteria (Supplementary Table S5) [36,38,39,41,44,45,47,50–52].
The remaining 11 systematic reviews accepted diagnostic criteria consistent with the most inclusive
Rotterdam diagnostic criteria. However, it should be noted that some of the primary studies included
in these systematic reviews selectively recruited specific phenotypes (such as the National Institute
of Health (NIH), or Androgen Excess PCOS (AEPCOS) phenotypes) [33–35,37,40,42,43,46,48,49,53]
potentially indicating a bias towards the more severe phenotypes in PCOS.

Only four systematic reviews (25%) described in detail the inclusion criteria for the control groups:
absence of irregular cycles, subfertility, polycystic ovarian morphology and signs of hyperandrogenism,
or healthy with proven fertility (Supplementary Table S5). The remaining systematic reviews either
did not describe any criteria for control group inclusion or described women in the control groups as
healthy but without including any further detail.

Five systematic reviews excluded any individual studies where the control group did not conform
to HWE [38,40–43,55]. One SR did not test for HWE [53]. The remaining systematic reviews (15/21) all
performed sensitivity analysis of the individual studies whose control group did not conform to the
HWE [34–37,39,44–46,52].
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3.2.2. Assessment of Systematic Review Quality Using the AMSTAR Tool

None of the systematic reviews met all 16 AMSTAR criteria (Table S4) [32]. Of the 21
systematic reviews, 24% (5/21) were of high quality, indicating that the reviews provided accurate
and comprehensive results, and 57% (12/21) were of moderate quality, indicating that there were
weaknesses identified but were able to provide meaningful results. The remaining four systematic
reviews were of low quality and should be treated with caution [32]. Of the systematic reviews relating
to metabolic dysfunction, 2/13 were of high quality, 8/13 were of moderate quality, and 2/13 were of
low quality. Of the systematic reviews relating imbalances in androgens and gonadotrophins, 2/4 were
of moderate quality and 2/4 were of low quality. Of the systematic reviews relating to inflammation,
2/4 were of high quality and 2/4 were of moderate quality.

4. Discussion

This systematic overview, encompassing both candidate gene systematic reviews and GWAS,
highlights gene loci that have robust associations with PCOS. These include the genes DENN1DA,
INS-VNTR, and INSR, which are related to metabolic dysfunction, and THADA and FSHR, relating to
imbalances in androgens and gonadotrophins pathways. However, SNPs in inflammatory genes seem
unrelated to PCOS, and require additional investigation, especially in the context of obesity and PCOS.

4.1. Metabolic Dysfunction

Metabolic dysfunction is involved in the aetiology of PCOS [9,29]. Much research has been
conducted in this area, supported by our finding that over half of the gene loci identified were concerned
with metabolic dysfunction. More specifically, most studies examined genetic variants within genes
that regulate insulin resistance, which is strongly implicated in the aetiology and reproductive and
metabolic health consequences of PCOS [6,7]. The genetic variants from candidate gene systematic
reviews, including CYP1A1, CYP11A1, Adiponectin, Calpain-10, and PON-1, provide promising candidate
genes, but the SNPs investigated were not significant across all ancestries. This could indicate that while
these genetic loci could be associated with PCOS, the genotypic variations (SNPs) within in the gene
loci may vary depending on the ancestry of population being studied [56–58]. This is clearly illustrated
by the GWAS in the DENND1A gene, whereby the rs10818854, rs2479106, and rs10986105 SNPs were
associated with PCOS in those of Han Chinese ancestry and mixed “Asian” ancestry [15,16,48]. While in
European ancestry, it was the SNP rs9696009 that was associated with risk of PCOS [17], highlighting the
important role that ancestry plays in the genetics of PCOS.

SNPs in INS-VNTR, which are implicated in the development of T2DM, were associated in two
candidate gene systematic reviews with increased risk of PCOS [40,52]. Further, the Shi et al. GWAS
identified the SNP rs2059807 in INSR to be associated with PCOS in a Han Chinese ancestry [15].
It was then followed up in a meta-analysis by Feng et al. [33] who investigated multiple SNPs in INSR
including the rs2059807. While they were unable to perform a meta-analysis due to insufficient data,
three of the four genetic studies found a significant association with PCOS [33]. This SNP provides
an ideal candidate to investigate in other ancestries, and further reinforces the importance of insulin
resistance in the aetiology of PCOS.

In summary, robust candidate gene studies of the following loci are required in different ancestries:
CYP1A1, CYP11A1, Adiponectin, Calpain-10, and PON-1. SNPs in the INS-VNTR, DENND1A, and INSR
genes have been identified in multiple ancestries and may affect the metabolic dysfunction exhibited
in PCOS. To identify the causal role of these SNPs in aetiology of PCOS, genotype–phenotype studies
of SNPs in the INS-VNTR, DENN1DA, and INSR are warranted.

4.2. Dysregulation of Androgens and Gonadotrophins

Follicular arrest, menstrual dysfunction, and anovulation are commonly observed in PCOS [59–61],
and are linked to excess androgens, FSH, and LH imbalances and elevated AMH levels. Therefore,
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candidate gene studies have focused on SNPs in genes such as CYP17, AMH, or AMHR that are
associated with these pathways. From this overview, we cannot at this time establish or refute any
of these candidate genes, as the quality of the current candidate gene systematic reviews were of
moderate quality [37,51] or low quality [36,53].

The FSHR locus provides a more promising genetic loci found in the GWAS conducted by Chen
et al. and Shi et al. [15,16] who examined women of Han Chinese ancestry and identified that the
SNPs rs2268361 and rs2349415 were associated with PCOS. In women of European ancestry, the
candidate gene systematic review conducted by Qiu et al. indicate that the SNP rs6166 in the FSHR
gene may be the more relevant genetic variant [37]. The FSHR locus has also been significantly
associated, in phenotypic studies, with levels of gonadotrophins (FSH and LH), indicating this may
be a causal gene in the development of PCOS [62]. However, interestingly the GWAS [13,14,17] that
were conducted in European ancestry did not uncover any association between the SNP rs6166 that
was identified by Qiu et al. in the candidate gene systematic review. We speculate this may be due to
the different diagnostic criteria used [37]. The GWAS included only women with PCOS diagnosed by
the NIH criteria, and therefore potentially biased the gene loci towards the more severe phenotype
of hyperandrogenism and anovulation, while the candidate gene systematic review conducted by
Qiu et al. used the more inclusive Rotterdam criteria which includes the polycystic ovarian morphology
(PCOM) phenotype [37]. A recent review has highlighted this conflicting relationship between the SNPs
in the FHSR locus and risk of PCOS [63], emphasising that the SNPs may be correlated with higher
basal FSH serum levels and the PCOM phenotype, rather than PCOS per se, hence the discrepancy
between the GWAS findings and the candidate gene systematic review.

The loci THADA has been replicated across multiple ancestries and diagnostic criteria, providing
another promising candidate gene in PCOS aetiology. While the functional role of THADA has yet to be
well characterised, SNPs within the THADA locus have been identified as a candidate gene in T2DM,
a comorbidity of PCOS [64]. Subsequent genotype–phenotype correlational analysis found that the
THADA gene contributes to hyperandrogenism in PCOS with Han Chinese ancestry [65]. In summary,
robust markers related to imbalances in androgens and gonadotrophins have been identified and
future studies need to (a) identify the underlying molecular mechanism of the THADA and FSHR gene
in PCOS, and (b) uncover the causal SNP variant across different ancestries and phenotypes.

4.3. Inflammation

Inflammation potentially acts as a link between insulin resistance and hyperandrogenism in
PCOS and is associated with both [66,67]. Two candidate gene systematic reviews focused on SNPs in
the TNF-α gene, which is a pro-inflammatory cytokine that has been associated with PCOS, ovarian
function, and ovulation, and is a known mediator of insulin resistance [34,46,66]. Neither reported
significant associations between the rs1800629 SNP and PCOS [34,46]. However, the SNP rs1799964
was positively associated with PCOS suggesting this may be the casual polymorphism in the TNF-α
gene for susceptibility to PCOS [46]. Four systematic reviews examined the SNP rs1800795 in the
IL-6 gene and found a decreased risk of PCOS when carrying the C allele. Caution is warranted as
when only primary studies with control groups in HWE were included, this association was no longer
significant based on three of the candidate gene systematic reviews [34,45,46]. However, the most
recent systematic review [47] with the largest sample size found that this association held when controls
were in HWE, indicating that rs1800795 in IL-6 may be associated with PCOS, but this requires further
investigation before conclusions can be made [34,45–47].

The conflicting findings regarding SNPs in inflammatory genes could be explained by selection
bias introduced by the source of recruitment. Compared to community based recruitment, recruitment
from hospitals would lead to selection bias of the more severe hyperandrogenic-anovulatory phenotype,
which has greater rates of obesity and inflammation [6]. Whether low-grade inflammation is intrinsic to
PCOS or a consequence of PCOS-related obesity is contentious. Some, but not all, studies demonstrate
that inflammation is independent of BMI in women with PCOS [68,69]. Unfortunately, only one of
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the included systematic reviews investigated the confounding influence of BMI on inflammation
gene variants [34]. Obesity is known to exacerbate many of the symptoms of PCOS, and it would
be prudent for future systematic reviews to investigate the role BMI may play in the association
between inflammatory related gene loci and PCOS. In fact, the impact of environmental factors on
PCOS is demonstrated by weight management being the first line treatment for the condition [70].
The contribution of these gene–environment interactions and epigenetics to PCOS is an emerging field,
with recent findings revealing specific epigenetic reprogramming of genes involved in reproductive
function in women with PCOS [71]. Therefore, it is important that future studies acknowledge and
investigate the role of gene–environment interactions in the context of PCOS.

4.4. Recommendations for Future Genetic Analysis

We found little overlap between gene loci identified from GWAS and those identified from the
candidate gene systematic reviews. This could be due to multiple reasons. Firstly, some of the gene
loci identified from the candidate gene systematic reviews may have had real but weak associations
in GWAS that were lost in the adjustment for multiple comparisons [72–74]. A second reason may
be that the GWAS were not designed to be sensitive enough to detect rare genetic variants that may
have a larger effect on genetic risk. Instead, the GWAS focused on common variants, and in general,
these alleles may only have a small effect on genetic risk [74,75]. This was recently shown in a
family-based association study that identified multiple rare genetic variants in DENN1DA that would
have been unable to be detected in GWAS, and these rare SNPs were found to contribute to PCOS and,
in particular, to hormonal imbalances [76]. GWAS have identified less than 10% of PCOS heritability,
while twin and family studies indicate that heritability may be up to 70%. This emphasises that a
combined approach of GWAS, candidate gene association, and family-based studies are required to
fully elucidate the genetic contribution to the origins of PCOS [77].

Future genetic studies should consider performing Phenome-Wide Association Studies (PheWAS)
which examine many different phenotypes to see which, if any, are associated with a given genetic
variant [78]. The findings of this overview provide potential pathways that could be used in PheWAS
to determine the functional relevance of the identified genes, and secondly, to explore associations
between genetic polymorphisms and different PCOS phenotypes. The importance of this has been
recently highlighted in a GWAS meta-analysis where it was identified that the SNP rs804279 in the
GATA4/NEIL2 gene loci was strongly associated with the NIH diagnostic criteria, which encompasses
only hyperandrogenic PCOS phenotypes, compared to the Rotterdam criteria, which also encompasses
the non-hyperandrogenic PCOS phenotypes [17]. Rigorous reporting and examination of the differing
diagnostic criteria, and therefore PCOS phenotypes, will be particularly important to both genetic studies
and PheWAS to elucidate whether the four phenotypes of PCOS may have different molecular origins [6].

This overview is a timely reminder of important methodological considerations for future genetic
studies in PCOS and in complex diseases more generally. Genetic studies need to be more meticulous
in the reporting of ancestry to determine genetic variation in humans. Many studies used the term
“race/ethnicity” which is not appropriate in a genetic study, as commonly used ethnicity terms
including Caucasian, Asian, White, African, or Latino are poor predictors of human genetic variation
or similarity [58,79]. Instead it would be more accurate to calculate ancestry or the geographical origins
of individual participant’s ancestry (biogeographical ancestry) to uncover genetic variation in PCOS.
Ancestry Informative Markers (AIMs) can estimate biogeographical ancestry, especially those of mixed
ancestral background, and provide an improved understanding of the impact of genes in PCOS [75,79].

Criteria for control groups need to be clearly defined, as most of the systematic reviews simply
stated that they included healthy women or did not define the relevant inclusion criteria. This may
affect the strength of association [75,80], as suggested by two systematic reviews reported in this OSR
that included the same primary studies but came to different conclusions [38,43]. While Ramos et al.
(2015) excluded any controls from their meta-analysis that were not considered healthy, Shen et al.
(2014) did not describe the inclusion criteria for the control group, therefore it is difficult to compare
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the meta-analyses to understand where this variation in findings originated from. Another contentious
issue is whether to include or exclude individual primary studies whose control groups did not
conform to the Hardy–Weinberg Equilibrium (HWE) [31,81]. We note a variety of methods were used
to deal with the primary studies that departed from HWE, and some of the systematic reviews did
not consider this issue at all. Almost all systematic reviews acknowledged they were limited by a
small sample size, highlighting the need for larger primary studies and systematic reviews, with the
candidate genes informed by family-based studies and GWAS. Although most systematic reviews
were at low risk of bias, there was a lack of consistent methodological rigour regarding clear definitions
of cases and controls, ancestry, and the differences in dealing with deviations from HWE, which should
be addressed to progress our knowledge of the role of genetics in the aetiology of PCOS.

5. Conclusions

This overview of systematic reviews and GWAS identified several PCOS candidate gene loci that
are located in the neuroendocrine, metabolic, and reproductive pathways. Additionally, we described
the limitations and important methodological considerations that should inform and complement
future genetic studies. We have provided a comprehensive catalogue of gene loci, with work now
required to identify causal variants and functional relevance to the biological origins and established
pathophysiology of PCOS.
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