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ABSTRACT 

The use of the circular hollow steel tube in a circular concrete-filled steel tubular (CFST) 

column significantly alters the confinement mechanism in the conventional CFST column. 

The confinement models proposed for conventional circular CFST columns are therefore not 

applicable to circular double-skin CFST (DCFST) columns. This paper presents a new 

numerical model for predicting the structural performance of circular DCFST short columns 

under axial compression. The numerical model incorporates new material constitutive 

relationships of sandwiched concrete in circular DCFST columns. The confinement effects 

provided by the outer and inner steel tubes on the sandwiched concrete in circular DCFST 

columns are taken into account in the numerical formulations. Comparisons with existing 

experimental results on circular DCFST short columns are made to verify the numerical 

model developed. The numerical model is used to undertake parametric studies to examine 

the effects of important geometric and material parameters on the strength and ductility of 

axially loaded DCFST short columns. It is demonstrated that the numerical model can 

accurately capture the complete axial load-strain characteristics of circular DCFST short 

columns under axial compression. A design formula is proposed and found to predict well the 

ultimate axial loads of circular DCFST short columns.  
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1. Introduction 

 

A circular double-skin concrete-filled steel tubular (DCFST) column is constructed by filling 

concrete between two concentric circular steel tubes as depicted in Fig. 1. This type of 

composite columns is recognized as a new form of double-skin composite panels used in 

submerged tube tunnels as studied by Wright et al. [1, 2] and Liang et al. [3, 4]. The use of the 

inner hollow steel tube in a CFST column not only remarkably reduces the structural weight 

but also significantly increases the bending stiffness, ductility and seismic performance of the 

CFST column. In addition, building services can be placed in the inner hollow steel tubes in 

DCFST columns. However, the use of the circular hollow steel tube in a circular CFST 

column obviously alters the confinement mechanism in the conventional CFST column. 

Consequently, the behavior of circular DCFST columns is significantly different from that of 

conventional circular CFST columns. This highlights the need for experimental studies on this 

type of composite columns. Extensive experimental studies on the structural performance of 

conventional circular CFST columns have been conducted in the past few decades [5-14]. 

However, experimental studies on the performance of circular DCFST short columns under 

axial compression are very limited [15-19]. 

 

Wei et al. [15] tested twenty-six circular double-skin steel tubular short columns filled with 

polymer concrete under axial compression to study the local instability issue and the strength 

and ductility enhancement due to the interaction. It was observed that the typical failure 

modes of DCFST short columns were the local buckling of the outer and inner steel tubes and 
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concrete shear failure in the buckled region. In addition, the DCFST short columns had the 

ultimate axial strengths of 10-30% higher than the sum of the strength of steel and concrete 

components. Moreover, the axial strain at the column ultimate load was much larger than the 

peak point strains of individual components. The test observations demonstrated that the 

confinement effect increased the strength and ductility of circular DCFST columns.  

 

Experimental investigations into the behavior of six cold-formed circular DCFST short 

columns under axial compression were undertaken by Zhao et al. [16]. The diameter-to-

thickness ( oo tD / ) ratios of the outer steel tubes ranged from 19 to 57 while the diameter-to-

thickness ( ii tD / ) ratios of the inner steel tubes varied from 17 to 33. The sandwich between 

the two steel tubes was filled with concrete with average compressive cylinder strength of 

63.4 MPa. However, the ends of all specimens were not strengthened by stiffeners to prevent 

the ends of the steel tubes from the premature failure. Two typical failure modes were 

observed, namely the so-called “elephant foot buckling” formed near the ends and the 

concrete diagonal shear failure. DCFST columns with slender outer steel sections were found 

to have higher ductility and energy absorption capacity than the hollow outer steel sections.  

 

Tao at al. [17] conducted experiments to investigate the effects of the diameter ( oi DD / ) ratio 

of the inner-to-outer steel tubes and the diameter-to-thickness ratios of both steel tubes on the 

behavior of circular DCFST short columns. Twelve cold-formed circular DCFST short 

columns under axial compression were tested to failure. The oi DD / ratio of these tested 

specimens ranged from 0.267 to 0.778. The oo tD /  ratios of the outer tubes ranged from 38 to 

100 while the inner tubes had ii tD /  ratios varying from 16 to 55. Test results showed that the 

outer steel tubes buckled locally outward while the inner steel tubes could buckle locally 
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inward depending on the tD /  ratios of the tubes. Further tests on DCFST short columns 

under axial loading were conducted by Uenaka et al. [18]. They observed that the 

confinement effect existed in circular DCFST columns.  

 

The behavior of conventional circular CFST columns has been studied analytically and 

numerically by researchers [7, 9, 10, 20-36]. Kostic et al. [37] developed a concentrated 

plasticity beam-column model based on the generalized plasticity material model for CFST 

beam-columns. The axial force and bending moment interaction, gradual yielding and strain 

hardening of material and nonlinear geometry under large displacements were taken into 

account in the model. The proposed model was shown to be accurate and computationally 

efficient. However, there are very few numerical models developed for simulating the 

performance of circular DCFST short columns [17, 38-41]. The analytical model proposed by 

Wei et al. [38] for double-skin polymer concrete-filled steel tubular columns considered the 

confinement effect. The material stress-strain relationships of confined polymer concrete were 

a function of the effective lateral confining stress, which was determined by using an iterative 

procedure. Tao et al. [17] developed a fiber element model for the nonlinear analysis of 

axially loaded circular DCFST columns. The material constitutive model for confined 

concrete in conventional circular CFST columns was used in the analysis of circular DCFST 

columns and the effect of the inner steel tube on the concrete confinement was not considered. 

They recognized that the fiber element model needs to be improved in order to accurately 

predict the post-peak behavior of DCFST short columns. The commercial finite element 

program ABAQUS was used by Huang et al. [39] to simulate the responses of DCFST short 

columns under axial loading. The stress-strain relationship for confined concrete in 

conventional circular CFST columns given by Han et al. [42] was used to model the material 

behavior of sandwiched concrete in circular DCFST columns.   
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Hu and Su [40] proposed three lateral confining pressure models based on experimental 

results presented by Tao et al. [17] and finite element analysis results for confined concrete in 

circular DCFST columns. In these models, the lateral confining pressure was expressed as a 

function of the geometric parameters of the outer and inner steel tubes or combined geometric 

parameters and yield strength of steel tubes. A material degradation factor was also proposed 

for modeling the post-peak behavior of the confined concrete. The proposed model and 

material degradation factor were used in the stress-strain relationship for sandwiched concrete 

in DCFST short columns. The models proposed by Hu and Su [40] were employed by 

Pagoulatou et al. [41] in the finite element models developed for the nonlinear analysis of 

DCFST short columns under axial loading. The results showed that the confining pressure 

models by Hu and Su generally yielded more accurate predictions of the structural 

performance of DCFST columns than the ones for concrete in conventional CFST columns.  

 

It should be noted that the confinement model proposed by Hu and Su [40] was based on 

limited test data. Further evaluations of their lateral confining pressure models are necessary. 

Moreover, new models need to be developed to accurately determine the post-peak behavior 

of the sandwiched concrete confined by the outer and inner steel tubes. This paper presents 

accurate constitutive models developed based on the previous work for simulating the 

material behavior of confined concrete in circular DCFST columns. The new material 

constitutive relationships are incorporated in the numerical model based on the fiber element 

formulation to predict the behavior of DCFST short columns under axial compression. The 

accuracy of the lateral confining pressure models given by Hu and Su [40] is examined. The 

numerical model is used to investigate the effects of various geometric and material 

parameters on the strength and ductility of circular DCFST short columns. A design model is 

proposed for the design of circular DCFST short columns.  
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2. The numerical model 

 

2.1. General 

 

There are three numerical models that can be used to undertake the nonlinear inelastic 

analysis of composite columns, including the continuum finite element model, fiber element 

model and inelastic beam-column model [37, 43-46]. In the finite element modeling, the 

column is divided into three dimensional elements with many degrees of freedom along its 

length. In addition, contract elements need to be used to model the interaction between the 

steel tubes and the sandwiched concrete. Because there are many degrees of freedom in a 

finite element model, the computational cost of the nonlinear finite element analysis is very 

high compared to the fiber element model, where the discretization of the column along its 

length is not required. In this paper, therefore, the numerical model is formulated based on the 

fiber element method. The typical fiber element discretization of the cross-section of the 

circular DCFST column is illustrated in Fig. 2. The outer steel tube, the inner steel tube and 

the sandwiched concrete can be assigned different material properties. The material uniaxial 

stress-strain relationships are used to calculate fiber stresses from fiber strains. The axial force 

acting on the cross-section is determined as the stress resultant.  

 
 
2.2. Stress-strain relationships for sandwiched concrete 

 

The confinement mechanism in circular DCFST short columns is different from that in 

conventional circular CFST short columns [18, 46]. When the expansion of the concrete in a 

circular DCFST column exceeds that of the steel tubes, radial pressures develop at the 

interfaces between the outer steel tube, the sandwiched concrete and the inner steel tube. The 
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outer steel tube is in hoop tension while the inner steel tube is under hoop compression. The 

sandwiched concrete is subjected to triaxial stresses, the outer steel tube is under biaxial 

stresses and the inner steel tube is in biaxial compression. It is noted that both the outer and 

inner steel tubes provide confinement to the sandwiched concrete. However, the yield stress 

of the steel tubes in the longitudinal direction is reduced by the presence of the hoop tension 

or hoop compression.   

 

The idealized stress-strain curve depicted in Fig. 3 is used to simulate the material behavior of 

the sandwiched concrete in circular DCFST columns. The stress-strain curve consists of three 

parts: the ascending part OA, the linearly descending part AB and the constant part BC. The 

material laws for confined concrete given by Mander et al. [47] are adopted here to model the 

part OA of the stress-strain curve, which is expressed by 
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in which c  denotes the longitudinal compressive stress of concrete, '
ccf  is the compressive 

strength of the confined concrete, c  stands for the longitudinal compressive strain of 

concrete, '
cc  is the strain at '

ccf  and cE  is the Young’s modulus of concrete. The Young’s 

modulus of concrete can be calculated by the following formula given in ACI-318 [48]: 

 

(MPa) 69003320 '  ccc fE                                                                                                 (3) 
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where c is the strength reduction factor, which is used to take into account the effects of the 

column size on the compressive strength of concrete in real columns [43, 44]. For the 

sandwiched concrete in circular DCFST columns, the strength reduction factor c  proposed 

by Liang [43, 44] is modified as follows: 

 

)0.1(0.85     85.1 c
135.0    cc t                                                                                             (4) 

 

in which ct  is the thickness of the sandwiched concrete and is taken as 2/2/ iooc DtDt  , 

where oD  and ot are the diameter and thickness of the outer steel tube respectively and iD  is 

the diameter of the inner steel tube.  

 

The compressive strength '
ccf  and corresponding strain '

cc  of the sandwiched concrete in the 

circular DCFST column is a function of the lateral confining pressure )( rpf  exerted by the 

outer and inner steel tubes. The confinement model given by Mander et al. [47] for reinforced 

concrete has commonly been used to determine the compressive strength and strain of the 

confined concrete in CFST columns [31, 32]. This confinement model is implemented in the 

present numerical model with the strength reduction factor c : 

 

rpcccc fkff 1
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where 1.41 k and 5.202 k  according to the experiment study conducted by Richart et al. 

[49]. The strain '
c  corresponding to '

cf  of the unconfined concrete depends on the effective 

compressive strength ( '
cc f ) of concrete, which is determined by [43]: 
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The lateral confining pressure depends on the geometric and material properties of the cross- 

sections of circular CFST columns. Liang and Fragomeni [28] proposed lateral confining 

pressure models for concrete in conventional circular CFST columns. However, the 

confinement mechanism in circular DCFST columns is different from that in conventional 

circular CFST columns as discussed previously. Therefore, new models accounting for the 

effects of the inner steel tube need to be developed for the sandwiched concrete. Based on test 

results reported by Tao et al. [17], Hu and Su [40] developed the following three lateral 

confining pressure models for sandwiched concrete in circular DCFST columns: 
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where iD , it  and syif are the diameter, thickness and yield strength of the inner steel tube, 

respectively and syof is the yield strength of the outer steel tube.  

 

It should be noted that Eqs. (8)-(10) were proposed based on the results of limited tests on 

circular DCFST short columns with 100/20  oo tD  and 55/15  ii tD [17, 40]. The 

validation presented in Section 4 demonstrate that Eqs. (9) and (10) significantly overestimate 

the lateral confining pressures on the sandwiched concrete in DCFST columns. It is suggested 

that Eqs. (9) and (10) should not be used. Eq. (8) is therefore implemented in the fiber 

element model to compute the lateral confining pressures on the sandwiched concrete. It 

should be noted that when 0/ ii tD , the column becomes a conventional CFST column. The 

constitutive model proposed for sandwiched concrete should give reasonable predictions of 

the behavior of conventional CFST columns. However, more accurate stress-strain 

relationships for confined concrete proposed by Liang and Fragomeni [28] should be used to 

simulate the behavior of conventional CFST columns.   

 

The parts AB and BC of the stress-strain curve presented in Fig. 3 can be expressed by 
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In the present study, the strain cu and factor c  are used to determine the post-peak behavior 

of the sandwiched concrete in DCFST columns. The strain cu and factor c reflect the 

confinement effect provided by the outer and inner steel tubes on the sandwiched concrete. 

Based on the test results reported by Tao et al. [17], the strain cu is proposed as follows: 
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It is seen from above equation that for 100/60  oo tD , the strain cu is between 0.023 and 

0.03 and is determined by the linear interpolation.  

 

A strength degradation parameter 3k was proposed by Hu and Su [40] to model the post-peak 

behavior of the sandwiched concrete as follows: 
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However, it has been found that 3k calculated using Eq. (13) could be negative, zero or greater 

than 1.0 for some cross-sections as shown in Table 1. For example, when 30/ oo tD  and  

12/ ii tD , 3k is greater than 1.0. Eq. (13) is therefore not used alone to determine the strength 

degradation of concrete rather it is incorporated in the following expressions 

for )0.1(0  cc  proposed here for the sandwiched concrete in circular DCFST columns: 
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It can be seen from above expression that when 40/ oo tD , the outer steel tube provides 

significant confinement to the sandwiched concrete so that c  is taken as 1.0 as suggested by 

Liang [31, 32]. In addition, when 03 k , the formula given by Hu et al. [23] is used in Eq. 

(14) to calculate c , which depends on the oo tD /  ratio of the outer steel tube. The factor 

c for the case of 40/ oo tD or 03 k  is proposed based on the assumption that the inner 

steel tube does not buckle locally so that it can provide confinement to the sandwiched 

concrete in DCFST columns. It should be noted that the strength degradation parameter 3k is 

within the range of 0.10 3  k . 

 
 
2.3. Stress-strain relationships for structural steels 

 

As discussed in the preceding section, both the outer and inner steel tubes of the circular 

DCFST short column under axial compression are subjected to biaxial stresses because of the 

confinement effect. The yield stress in the longitudinal direction is reduced by the presence of 

hoop tension in the outer steel tube or hoop compression in the inner steel tube. The 

confinement effect on the steel yield strength is considered in the idealized linear-rounded-

linear stress-strain curve for structural steels illustrated in Fig. 4. For high-strength steels, a 

straight line is used to replace the rounded part of the stress-strain curve. The expression for 

the rounded part of the stress-strain curve was given by Liang [43]. 
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2.4. Strain ductility index 

 

The axial ductility of a DCFST column under axial compression is evaluated by the strain 

ductility index, which is expressed by 

 

y

u
sdPI




                                                                                                                                (17) 

 

where u  represents the axial strain of the DCFST short column corresponding to the axial 

load which is 90% of its ultimate axial strength in the post-peak range. If the column exhibits 

an ascending post-yield behavior, u is taken as the ultimate axial strain. The yield strain y of 

the short column is calculated as 75.075.0 , where 75.0  denotes the axial strain corresponding 

to the axial load which attains 75% of its ultimate axial strength in the pre-peak range [17, 28, 

50].  

 

3. Verification of the numerical model 

 

The ultimate axial strengths of DCFST short columns predicted by the computer program are  

compared with experimental results reported by Tao et al. [17] and Uenaka et al. [18]. The 

geometric and material properties of tested specimens are provided in Table 2. Circular 

DCFST columns tested by Tao et al. [17] had oi DD /  ratios ranging from 0.267 to 0.778, 

oo tD / ratios ranging from 38 to 100 and ii tD /  ratios ranging from 16 to 55. The compressive 

strength of concrete cylinder ( '
cf ) was taken as 0.85 times that of the concrete cube. It is 

noted that the lateral confining pressure model adopted in the present numerical model is 

applicable only to DCFST columns with 100/20  oo tD  and 55/15  ii tD . Therefore, 
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only those specimens tested by Uenaka [18] within the ranges of 100/20  oo tD  and 

55/15  ii tD  were selected for comparison purpose. The tensile strength of all steel tubes 

was assumed to be 430 MPa in the analyses. 

 

The ultimate axial strengths of circular DCFST short columns predicted by the numerical 

analysis ( num.uP ) and experimental ultimate axial strengths ( exp.uP ) are listed in Table 2. It can 

be seen from Table 2 that there is a good agreement between computational solutions and 

experimental measurements. The mean ratio of the predicted ultimate axial strength to the 

measured value of the tested specimens is 0.99. The statistical analysis conducted shows that 

the standard deviation of num.uP / exp.uP  is 0.060 with a coefficient of variation of 0.061, which 

is within the acceptable range of 10%.  

 

The predicted axial load-strain curves for Specimens cc2a, cc3a, cc5a and cc7a are compared 

against experimental results provided by Tao et al. [17] in Fig. 5. The figure shows that the 

computer program predicts well the experimentally observed axial load-strain behavior of 

DCFST short columns. The post-peak behavior of Specimens cc2a, cc3a and cc7a with oo tD /  

ratios ranging from 60 to 100 is characterized by the descending stress-strain curves. 

However, due to its small oo tD /  ratio of 38, the Specimen cc5a experienced strain-hardening 

behavior in the post-yield range. It appears that the predicted post-yield behavior of DCFST 

columns is in excellent agreement with corresponding test data. This implies that the proposed 

strain cu  and factor c  can accurately determine the post-yield behavior of circular DCFST 

columns. However, there is a slight difference between the computational and experimental 

initial axial stiffness as depicted in Fig. 5. This may be caused by the uncertainty of the 
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concrete strength and stuffiness. It can be concluded that the numerical model can accurately 

capture the complete axial load-strain characteristics of circular DCFST short columns.  

 

4. Validation of lateral confining pressure models 

 

The lateral confining pressure model plays an important role in determining the stress-strain 

behavior of the sandwiched concrete in circular DCFST columns. The lateral confining 

pressure models proposed by Hu and Su [40] have been implemented in the computer 

program and their accuracy is examined in this section. The lateral confining pressures ( rpf ) 

and ultimate axial strengths ( uP ) of 15 tested DCFST short columns predicted by three 

models and the computer program are given in Table 3, where the subscripts 1, 2 and 3 

represent the confining pressure or the ultimate axial strength  computed using Eqs. (8), (9) 

and (10) respectively. The geometric and material properties of these specimens can be found 

in Table 2. It can be seen from Table 3 that Eq. (8) yields good predictions of the lateral 

confining pressures on the sandwiched concrete, which leads to the accurate estimations of 

the ultimate axial strengths of DCFST columns. However, Eqs (9) and (10) significantly 

overestimate the lateral confining pressures on the sandwiched concrete. As a result, the mean 

ultimate axial strength of these columns calculated based on Eqs. (9) and (10) is 

overestimated by 60.2% and 43.3% respectively. Therefore, it is suggested that Eq. (8) should 

be used in numerical models to determine the lateral confining pressures on the sandwiched 

concrete in circular DCFST columns and Eqs. (9) and (10) should not be used.  

 

5. Parametric study 
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The parametric study was conducted to investigate the effects of the oi DD / ratio, oo tD / ratio, 

ii tD /  ratio, concrete compressive strength and steel yield strength on the structural 

performance of circular DCFST short columns. Six groups of full-scale size circular DCFST 

columns with various geometric and material parameters were analyzed by the computer 

program developed. The geometric and material properties of these columns are given in 

Table 4. The same material properties were specified for the outer and inner steel tubes in a 

DCFST column. The Young’s modulus of steel tubes was taken as 200 GPa.  

 

5.1. Effects of oi DD / ratio 

 

The oi DD / ratio of the inner and outer steel tubes is an important parameter that influences 

the structural performance of DCFST short columns. The oi DD /  ratios of 0.3, 0.4, 0.5, 0.6 

and 0.7 were determined by varying the diameter of the inner steel tube but keeping its 

thickness unchanged as shown in Group 1 in Table 4. It can be seen from Table 4 that 

increasing the oi DD /  ratio or ii tD / ratio decreases the lateral confining pressure on the 

sandwiched concrete. When 40/ ii tD , the lateral confining pressure is zero. The axial load-

strain curves for DCFST short columns with various oi DD /  ratios are presented in Fig. 6. It 

can be observed from Fig. 6 that the oi DD /  ratio has an insignificant effect on the initial axial 

stiffness of DCFST short columns. In addition, increasing the oi DD /  ratio from 0.3 to 0.4, 

0.5, 0.6 and 0.7 reduces the ultimate axial strength of the DCFST short column by 4.8%, 

12.5%, 22.7% and 26.9%, respectively. This is because the cross-sectional area of the 

sandwiched concrete is reduced significantly but the cross-sectional area of the inner steel 

tube is increased considerably. Moreover, the slope of the post-peak stress-strain curve is 

found to decrease with an increase in the oi DD /  ratio. As demonstrated in Fig.7, the axial 
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ductility of DCFST short columns increases with increasing the oi DD /  ratio. The strain 

ductility indices of the DCFST columns with the oi DD /  ratios of 0.3, 0.4, 0.5, 0.6 and 0.7 are 

5.78, 6.47, 7.38, 9.74 and 10.36, respectively. This can be explained by the fact that 

increasing the oi DD /  ratio of the DCFST column decreases the concrete area but increases 

the steel area. As a result, the axial ductility of the column is shown to improve.    

 

5.2. Effects of oo tD /  ratio 

 

Two cases were considered to examine the effects of oo tD /  ratio on the performance of  

DCFST columns. The first case was to vary the diameter of the outer steel tubes while 

keeping their thickness unchanged as shown in Group 2 in Table 4. As demonstrated in Table 

4, the lateral confining pressure increases with increasing the oo tD /  ratio. Fig. 8 presents the 

axial load-strain curves for DCFST columns with various oo tD /  ratios. The initial axial 

stiffness of DCFST short column is considerably increased by increasing the oo tD /  ratio. It 

appears that increasing the oo tD /  ratio significantly increases the ultimate axial strength of 

DCFST short columns with the same ii tD /  ratio. When the oo tD /  ratio is increased from 50 

to 55, 60, 65 and 70, the column ultimate axial load is found to increase by 18.5%, 39.1%, 

62% and 87.6%, respectively. As demonstrated in Fig. 8, the oo tD /  ratio has a remarkable 

effect on the post-peak behavior of DCFST columns. The effects of oo tD /  ratio on the strain 

ductility index are illustrated in Fig. 9.  It can be seen that increasing the oo tD /  ratio 

significantly reduces the strain ductility index. The strain ductility index is reduced from 9.25 

to 7.41, 6.16, 5.2 and 4.55 by increasing the oo tD /  ratio from 50 to 55, 60, 65 and 70, 

respectively.  
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As illustrated in Group 3 in Table 4, the second case was to keep the diameter 600oD mm 

of the outer steel tube unchanged but to vary the thickness of the outer steel tube to give 

oo tD /  ratios of 50, 55, 60, 65 and 70. It can be observed from Table 4 that the lateral 

confining pressure increases with an increase in the oo tD /  ratio regardless of the diameter of 

the outer steel tube. It can be observed from Fig. 10 that increasing the oo tD /  ratio decreases 

the initial axial stiffness and remarkably reduces the post-peak axial stiffness. The ultimate 

axial load of DCFST short column is slightly reduced by increasing the oo tD /  ratio. This 

suggests that increasing the diameter of the outer steel tube is more effective in increasing the 

ultimate axial load of the DCFST column than increasing the thickness of the outer steel tube 

when keep the same oo tD /  ratio and other conditions. As shown in Fig.11, increasing the 

oo tD /  ratio leads to a remarkable decrease in the strain ductility of DCFST columns. For 

DCFST columns with oo tD /  ratios of 50, 55, 60, 65 and 70, the corresponding strain ductility 

indices are 8.37, 7.14, 6.16, 5.31 and 4.69, respectively.  

 

5.3. Effects of ii tD /  ratio 

 

In Group 4, the ii tD /  ratios of 25, 30, 35, 40 and 45 were computed by changing the 

thickness of the inner steel tube. It appears from Table 4 that increasing the ii tD /  ratio 

decreases the lateral confining pressure. Fig. 12 presents the axial load-strain curves for 

circular DCFST columns with various ii tD /  ratios. It can be observed from Fig. 12 that the 

ii tD /  ratio has neglectable effect on the initial axial stiffness of the DCFST short columns. In 

addition, three DCFST columns under consideration exhibit strain softening behavior in the 

post-yield range owing to the large oo tD /  ratio of 55. Moreover, the numerical results show 
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that increasing the ii tD /  ratio significantly decreases the ultimate axial load of DCFST 

columns. The effects of ii tD /  ratio on the strain ductility index are illustrated in Fig. 13. 

When increasing the ii tD /  ratio from 25 to 35, the strain ductility index increases slightly 

from 5.82 to 6.05. However, when increasing the ii tD /  ratio from 35 to 45, the strain 

ductility index decreases from 6.05 to 5.21.  

 

5.4. Effects of concrete compressive strength 

 

DCFST short columns in Group 5 were filled with concrete of different strengths. In the 

numerical analyses, the compressive cylinder strength of the sandwiched concrete was taken 

as 40, 55, 70, 85 and 100 MPa respectively. It is interesting to note that the lateral confining 

pressure is not affected by the concrete compressive strength. The predicted axial load-strain 

curves for DCFST short columns with various concrete strengths are given in Fig. 14. The 

results show that increasing the concrete compressive strength considerably increases the 

initial axial stiffness of DCFST columns. The use of high-strength concrete results in a 

significant increase in the ultimate axial load of the DCFST short column. When increasing 

the concrete strength from 40 to 100 MPa, the column ultimate axial load is found to increase 

by 63.95%. This suggests that it is effective to use high-strength concrete to increase the 

ultimate axial strengths of DCFST short columns. Fig. 15 provides the strain ductility index as 

a function of the concrete compressive strength. It appears that the higher the concrete 

strength, the lower the strain ductility index. The DCFST column filled with normal strength 

concrete of 40 MPa has a strain ductility index of 5.25. However, it is only 3.32 when high 

strength concrete of 100 MPa is used because of the brittle nature of high-strength concrete. 
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5.5. Effects of steel yield strength 

 

Circular DCFST short columns in Group 6 shown in Table 4 were analyzed to study the 

effects of steel yield strength on their strength and ductility. It can be seen from Table 4 that 

the steel yield strength does not affect the lateral confining pressure. The axial load-strain 

curves for circular DCFST columns with different steel yield strengths are shown in Fig. 16. 

The figure illustrates that the initial axial stiffness of DCFST short columns is not affected by 

the steel yield strength. However, increasing the steel yield strength significantly increases the 

ultimate axial load of the DCFST column. The column ultimate axial load is increased by 

5.9%, 11.8%, 15.4% and 23.6% respectively by increasing the steel yield strength from 250 to 

300, 350, 380 and 450 MPa. The strain ductility indices of these DCFST columns made of 

different strength steel tubes are given in Fig. 17. For DCFST columns with the steel yield 

strengths of 250 to 300, 350, 380 and 450 MPa, the strain ductility indices are 4.1, 4.34, 4.35, 

4.31 and 4.07, respectively. This indicates that the yield strength of normal strength steel 

tubes does not have a significant effect on the strain ductility of DCFST short columns.  

 

5.6 Load and stress distributions 

 

The DCFST column C13 given in Table 4 was analyzed to investigate the axial load and 

longitudinal stress distributions within its cross-section. Fig. 18 depicts the axial loads carried 

by the inner steel tube, outer steel tube, sandwiched concrete and DCFST column as a 

function of the axial strain. It can be observed from the figure that the axial loads carried by 

the inner steel tube, the outer steel tube, the sandwiched concrete at the ultimate limit state are 

10.38%, 26.63% and 62.99% of the ultimate axial load of the DCFST column, respectively. 

The sandwiched concrete carries a large portion of the ultimate axial load. The distribution of 
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the longitudinal stresses in the inner steel tube, the outer steel tube and the sandwiched 

concrete at different axial strain levels is presented in Fig. 19. When the axial strain is less 

than 0.006, the longitudinal stresses in steel and concrete components are found to increase 

with an increase in the axial strain. The DCFST column attains its ultimate axial strength at an 

axial strain of 0.006. It appears that the compressive stress of the sandwiched concrete at the 

axial strain of 0.006 is higher than '
cf due to the confinement effect.  When increasing the 

axial strain greater than 0.006, the compressive stress in the sandwiched concrete decreases 

but the longitudinal stresses in both steel tubes are shown to increase due to strain hardening 

as illustrated in Fig. 19. 

 

6. Proposed design model 

 

The ultimate axial load of a circular DCFST short column is governed by its geometric and 

material properties. A design formula considering confinement effects was proposed by Liang 

and Fragomeni [28] for the design of conventional circular CFST short columns. The concept 

is adopted here to develop a simple model for design purpose. Based on numerical analyses 

and experimental results, a new design formula for calculating the ultimate axial load of 

circular DCFST short columns incorporating the confinement effect is proposed as  

 
 

  sisyisisosyosocrpccu AfAfAffP   1.4'                                                                           (18) 

 

where rpf is calculated by using Eq. (8), cA  is the cross-sectional area of the sandwiched  

concrete, soA  is the cross-sectional area of the outer steel tube, and siA  is the cross-sectional 

area of the inner steel tube. The coefficients so and si are the strength factors for the outer 

and inner steel tubes respectively, which account for the effects of hoop stresses, strain 
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hardening, geometric imperfections and residual stresses. The strength factor s  proposed by 

Liang and Fragomeni [28] can be applied to both the outer and inner steel tubes as follows: 
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To examine the accuracy of the proposed design model, the ultimate axial loads of  DCFST 

short columns calculated using Eq. (18) are compared against test data in Table 5, where cal.uP  

is the ultimate axial load calculated using Eq. (18). The results given in Table 5 demonstrate 

that there is a good agreement between the calculated and experimental results. The mean of 

the calculated ultimate axial loads is 97.9% of that of the experimental values. The statistical 

analysis undertaken shows that the standard deviation of cal.uP / exp.uP  is 0.057 and its 

coefficient of variation is 0.058. This implies that the proposed design formula can be used in 

the design of circular DCFST short column under axial compression in practice.  

 

7. Conclusions 

 

This paper has presented a numerical model for simulating the behavior of circular double-

skin concrete-filled steel tubular (DCFST) short columns under axial compression. The stress-

strain relationships for the sandwiched concrete in circular DCFST columns, which 

recognizes the confinement effects provided by both the outer and inner steel tubes, have been 

proposed based on the previous work. The concrete strain and strength degradation factor 

have been proposed and shown to model well the post-peak behavior of DCFST columns. 
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Comparative studies have been undertaken to examine the accuracy of various lateral 

confining pressure models for sandwiched concrete in circular DCFST columns. The accurate 

lateral confining pressure model has been identified and implemented in the stress-strain 

relationships for the sandwiched concrete in circular DCFST columns. The accuracy of the 

numerical model developed has been verified by comparisons of computer solutions with 

experimentally observed behaviors of DCFST short columns reported by independent 

researchers. The developed material laws for sandwiched concrete can be implemented in 

nonlinear analysis techniques to simulate the behavior of DCFST columns. The results 

obtained in the parametric study on full-scale size DCFST short columns with various 

important geometric and material parameters can be used to validate other numerical models. 

The proposed design formula has been shown to yield accurate predictions of the ultimate 

axial loads of DCFST short columns and can be used in practice. 
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Fig. 1. Cross-section of circular DCFST column 
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Fig. 2. Typical fiber element discretization of circular DCFST column. 
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Fig. 3. Stress-strain curve for sandwiched concrete in circular DCFST columns 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s

s

suf

syf

syf9.0

sty9.00 su

s

s

suf

syf

syf9.0

sty9.00 su  
 
 

Fig. 4. Stress-strain curve for structural steels 
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Fig. 5. Comparison of predicted and experimental axial load-strain curves for circular DCFST 

short columns 
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Fig. 6. Axial load-strain curves for DCFST short columns with various oi DD /  ratios 
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Fig. 7. Strain ductility indices of DCFST short columns with various oi DD /  ratios 
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Fig. 8. Axial load-strain curves for DCFST short columns with various oo tD / ratios 

( mm) 10 mm, 700 650, 600, 550, ,500  oo tD  
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Fig. 9. Strain ductility indices of DCFST short columns with various oo tD / ratios 

( mm) 10 mm, 700 650, 600, 550, ,500  oo tD  
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Fig. 10. Axial load-strain curves for DCFST short columns with various oo tD /  ratios  

( mm 8.57 9.23, 10, 10.91, ,12 mm, 600  oo tD ) 
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Fig. 11. Strain ductility indices of DCFST short columns with various oo tD /  ratios  

( mm 8.57 9.23, 10, 10.91, ,12 mm, 600  oo tD ) 
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Fig. 12. Axial load-strain curves for DCFST short columns with various ii tD / ratios 
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Fig. 13. Strain ductility indices of DCFST short columns with various ii tD /  ratios 
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Fig. 14. Axial load-strain curves for DCFST short columns made of different strength 

concrete 
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Fig. 15. Strain ductility indices of DCFST short columns made of different strength concrete 
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Fig. 16. Axial load-strain curves for DCFST short columns made of different strength steel 

tubes 
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Fig. 17. Strain ductility indices of DCFST short columns made of different strength steel 

tubes 
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Fig. 18. Axial loads carried by the steel and concrete components and DCFST column 
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Fig. 19. Distribution of longitudinal stresses in steel and concrete of DCFST column at 

different axial strain levels: (a) 0008.0 ; (b) 0022.0 ; (c) 006.0 ; (d) 035.0  
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Table 1. Strength degradation parameter 3k for sandwiched concrete  
 

oo tD /  
ii tD /  

3k  oo tD / ii tD / 3k oo tD / ii tD /  
3k

45 15 0.687 65 15 0.124 85 15 -0.726 
45 20 0.650 65 20 0.222 85 20 -0.495 
45 25 0.585 65 25 0.290 85 25 -0.292 
45 30 0.490 65 30 0.330 85 30 -0.119 
45 35 0.366 65 35 0.340 85 35 0.026 
45 40 0.214 65 40 0.321 85 40 0.141 
45 45 0.032 65 45 0.274 85 45 0.228 
45 50 -0.178 65 50 0.197 85 50 0.285 
45 55 -0.418 65 55 0.092 85 55 0.313 
50 15 0.573 70 15 -0.061 90 15 -0.984 
50 20 0.570 70 20 0.070 90 20 -0.719 
50 25 0.538 70 25 0.172 90 25 -0.483 
50 30 0.477 70 30 0.244 90 30 -0.276 
50 35 0.387 70 35 0.288 90 35 -0.098 
50 40 0.268 70 40 0.303 90 40 0.051 
50 45 0.120 70 45 0.289 90 45 0.171 
50 50 -0.057 70 50 0.246 90 50 0.262 
50 55 -0.263 70 55 0.174 90 55 0.324 
55 15 0.441 75 15 -0.265 95 15 -1.259 
55 20 0.472 75 20 -0.101 95 20 -0.961 
55 25 0.473 75 25 0.035 95 25 -0.691 
55 30 0.446 75 30 0.141 95 30 -0.451 
55 35 0.389 75 35 0.219 95 35 -0.240 
55 40 0.304 75 40 0.267 95 40 -0.057 
55 45 0.189 75 45 0.287 95 45 0.096 
55 50 0.046 75 50 0.277 95 50 0.221 
55 55 -0.127 75 55 0.239 95 55 0.316 
60 15 0.292 80 15 -0.487 100 15 -1.553 
60 20 0.356 80 20 -0.289 100 20 -1.221 
60 25 0.391 80 25 -0.120 100 25 -0.918 
60 30 0.397 80 30 0.020 100 30 -0.644 
60 35 0.374 80 35 0.131 100 35 -0.399 
60 40 0.322 80 40 0.213 100 40 -0.183 
60 45 0.241 80 45 0.266 100 45 0.004 
60 50 0.130 80 50 0.290 100 50 0.162 
60 55 -0.009 80 55 0.285 100 55 0.291 

 
 
 

Table 2. Ultimate axial strengths of circular DCFST short columns  
 

Specimen oo tD   

(mm) 
ii tD   

(mm) 
oo tD /

 
ii tD /

 
yof   

(MPa)    
yif  

(MPa)    

'
cf  

(MPa) 
exp.uP  

(kN) 
num.uP  

(kN) 
exp.

num.

u

u

P

P

 

Ref. 

cc2a 180×3 48×3 60 16 275.9 396.1 40.3 1790 1867.2 1.043  [17] 
cc2b 180×3 48×3 60 16 275.9 396.1 40.3 1791 1867.2 1.043 
cc3a 180×3 88×3 60 29.3 275.9 370.2 40.3 1648 1643.6 0.997 
cc3b 180×3 88×3 60 29.3 275.9 370.2 40.3 1650 1643.6 0.996 
cc4a 180×3 140×3 60 46.7 275.9 342.0 40.3 1435 1216.8 0.848 
cc4b 180×3 140×3 60 46.7 275.9 342.0 40.3 1358 1216.8 0.896 
cc5a 114×3 58×3 38 19.3 294.5 374.5 40.3 904 906 1.002 
cc5b 114×3 58×3 38 19.3 294.5 374.5 40.3 898 906 1.009 
cc6a 240×3 114×3 80 38 275.9 294.5 40.3 2421 2573.9 1.063 
cc6b 240×3 114×3 80 38 275.9 294.5 40.3 2460 2573.9 1.046 
cc7a 300×3 165×3 100 55 275.9 320.5 40.3 3331 3272.3 0.982 
cc7b 300×3 165×3 100 55 275.9 320.5 40.3 3266 3272.3 1.002 
c23-375 158×2.14 40×2.14 73.8 18.7 286 286 18.7 968.2 1020.4 1.054 [18] 
c23-750 158×2.14 77×2.14 73.8 36.0 286 286 18.7 879.1 831.5 0.946 
c23-1125 157×2.14 115×2.14 73.4 53.7 286 286 18.7 703.6 650.7 0.925 
Mean 0.990  
Standard deviation (SD) 0.060 
Coefficient of variation (COV) 0.061 
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Table 3. Comparison of lateral confining pressure models for sandwiched concrete in circular 
DCFST short columns 

 
Specimen 

exp.uP  

(kN) 
1.rpf  

(MPa) 
1.uP  

(kN)    
2.rpf  

(MPa)       
2.uP  

(kN) 
3.rpf  

(MPa)    
3.uP  

(kN) exp.

1.

u

u

P

P

 
exp.

2.

u

u

P

P
 

exp.

3.

u

u

P

P

 

Ref. 

cc2a 1790 3.875 1867.2 12.802 2700.1 9.576 2399 1.043 1.508 1.340 [17] 
cc2b 1791 3.875 1867.2 12.802 2700.1 9.576 2399 1.043 1.508 1.339 
cc3a 1648 2.399 1643.6 12.426 2407.8 7.97 2068.2 0.997 1.461 1.255 
cc3b 1650 2.399 1643.6 12.426 2407.8 7.97 2068.2 0.996 1.459 1.253 
cc4a 1435 0.0 1216.8 8.396 1554.6 2.949 1343.1 0.848 1.083 0.936 
cc4b 1358 0.0 1216.8 8.396 1554.6 2.949 1343.1 0.896 1.145 0.989 
cc5a 904 3.6 906 7.334 1005.8 4.72 936 1.002 1.113 1.035 
cc5b 898 3.6 906 7.334 1005.8 4.72 936 1.009 1.120 1.0423 
cc6a 2421 2.441 2573.9 16.245 4510.4 13.709 4154.6 1.063 1.863 1.716 
cc6b 2460 2.441 2573.9 16.245 4510.4 13.709 4154.6 1.046 1.8335 1.689 
cc7a 3331 0.824 3272.3 25.621 8185.9 19.109 6897.6 0.982 2.457 2.071 
cc7b 3266 0.824 3272.3 25.621 8185.9 19.109 6897.6 1.002 2.506 2.112 
c23-375 968.2 4.388 1020.4 13.337 1693.9 14.364 1771.1 1.054 1.750 1.829 [18] 
c23-750 879.1 2.175 831.5 13.559 1539.2 11.965 1440.2 0.946 1.751 1.638 
c23-1125 703.6 0.0 650.7 10.032 1040.9 5.721 875 0.925 1.479 1.244 
Mean 0.990 1.602 1.433  
Standard deviation (SD) 0.060 0.427 0.373 
Coefficient of variation (COV) 0.061 0.267 0.260 

 

 
 

Table 4. Geometric and material properties of circular DCFST short columns used in the 
parametric study 

 
Group Column 

oD  

(mm) 
ot  

(mm) 
oo tD / iD

(mm) 
it

(mm) 
ii tD /

syof ,

syif  

(MPa) 

suof ,

suif  

(MPa) 

'
cf  

(MPa) 
rpf  

(MPa) 

1 C1 400 6.67 60 120 6 20 350 430 40 3.637 
C2 400 6.67 60 160 6 26.7 350 430 40 2.849 
C3 400 6.67 60 200 6 33.3 350 430 40 1.573 
C4 400 6.67 60 240 6 40 350 430 40 0.000 
C5 400 6.67 60 280 6 46.7 350 430 40 0.000 

2 C6 500 10 50 240 10 24 250 320 40 2.918 
C7 550 10 55 240 10 24 250 320 40 3.040 
C8 600 10 60 240 10 24 250 320 40 3.224 
C9 650 10 65 240 10 24 250 320 40 3.471 
C10 700 10 70 240 10 24 250 320 40 3.780 

3 C11 600 12 50 240 10 24 250 320 40 2.919 
C12 600 10.91 55 240 10 24 250 320 40 3.040 
C13 600 10 60 240 10 24 250 320 40 3.224 
C14 600 9.23 65 240 10 24 250 320 40 3.471 
C15 600 8.57 70 240 10 24 250 320 40 3.780 

4 C16 550 10 55 250 10 25 250 320 60 2.897 
C17 550 10 55 250 8.33 30 250 320 60 2.014 
C18 550 10 55 250 7.14 35 250 320 60 0.857 
C19 550 10 55 250 6.25 40 250 320 60 0.000 
C20 550 10 55 250 5.56 45 250 320 60 0.000 

5 C21 700 10 70 280 10 28 350 430 40 3.288 
C22 700 10 70 280 10 28 350 430 55 3.288
C23 700 10 70 280 10 28 350 430 70 3.288
C24 700 10 70 280 10 28 350 430 85 3.288
C25 700 10 70 280 10 28 350 430 100 3.288

6 C26 800 10 80 360 10 36 250 320 50 2.879 
C27 800 10 80 360 10 36 300 430 50 2.879 
C28 800 10 80 360 10 36 350 430 50 2.879 
C29 800 10 80 360 10 36 380 460 50 2.879 
C30 800 10 80 360 10 36 450 520 50 2.879 
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Table 5. Comparisons of calculated and experimental ultimate axial loads of circular DCFST 
short columns  

 
Specimen 

c  '
cf  

(MPa) 
rpf  

(MPa) 
so  si  0syf  

(MPa) 
syif  

(MPa) 
cal.uP  

(kN)  
exp.uP  

(kN) 
exp.

cal.

u

u

P

P
 

cc2a 1.0 40.3 3.875 0.968 1.105 275.9 396.1 1865.5 1790 1.042 
cc2b 1.0 40.3 3.875 0.968 1.105 275.9 396.1 1865.5 1791 1.042 
cc3a 1.0 40.3 2.405 0.968 1.040 275.9 370.2 1641.6 1648 0.996 
cc3b 1.0 40.3 2.405 0.968 1.040 275.9 370.2 1641.6 1650 0.995 
cc4a 1.0 40.3 0.0 0.968 0.993 275.9 342.0 1221.9 1435 0.851 
cc4b 1.0 40.3 0.0 0.968 0.993 275.9 342.0 1221.9 1358 0.900 
cc5a 1.0 40.3 3.604 1.013 1.084 294.5 374.5 881.6 904 0.975 
cc5b 1.0 40.3 3.604 1.013 1.085 294.5 374.5 881.6 898 0.981 
cc6a 1.0 40.3 2.441 0.941 1.013 275.9 294.5 2542 2421 1.05 
cc6b 1.0 40.3 2.441 0.941 1.013 275.9 294.5 2542 2460 1.033 
cc7a 1.0 40.3 0.824 0.92 0.977 275.9 320.5 3219.8 3331 0.967 
cc7b 1.0 40.3 0.824 0.92 0.977 275.9 320.5 3219.8 3266 0.986 
c23-375 1.0 18.7 4.388 0.948 1.088 286 286 998.1 968.2 1.031 
c23-750 1.0 18.7 2.175 0.948 1.019 286 286 814.7 879.1 0.927 
c23-1125 1.0 18.7 0.0 0.948 0.979 286 286 643.0 703.6 0.914 
Mean 0.979 
Standard deviation (SD) 0.057 
Coefficient of variation (COV) 0.058 

 

 
 
 


