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ABSTRACT 26 

Measurements of isometric force, rate of force development (RFD) and impulse are widely 27 

reported. However, little is known about the variability and reliability of these measurements 28 

at multiple angles, over repeated testing occasions in a homogenous, resistance-trained 29 

population. Thus, understanding the intersession variability of multi-angle isometric force-time 30 

characteristics provides the purpose of this paper. Three sessions of isometric knee extensions 31 

at 40º, 70º and 100º of flexion were performed by 26 subjects across 51 limbs. All assessments 32 

were repeated on three occasions separated by 5-8 days. Variability was qualified by doubling 33 

the typical error of measurement (TEM), with thresholds of 0.2-0.6 (small), 0.6-1.2 (moderate), 34 

1.2-2.0 (large), 2.0-4.0 (very large) and >4.0 (extremely large). Additionally, variability was 35 

deemed large when the intraclass correlation coefficient (ICC) was <0.67 and coefficient of 36 

variation (CV)>10%; moderate when ICC>0.67 or CV<10% (but not both); and small when 37 

both ICC>0.67 and CV<10%. Small to moderate between-session variability (ICC=0.68-0.95, 38 

CV=5.2-18.7%, TEM=0.24-0.49) was associated with isometric peak force, regardless of 39 

angle. Moderate to large variability was seen in early-stage (0-50 ms) RFD and impulse 40 

(ICC=0.60-0.80, CV=22.4-63.1%, TEM=0.62-0.74). Impulse and RFD at 0-100 ms, 0-200 ms 41 

and 100-200 ms were moderately variable (ICC=0.71-0.89, CV=11.8-42.1%, TEM=0.38-0.60) 42 

at all joint angles. Isometric peak force and late-stage isometric RFD and impulse 43 

measurements were found to have low intersession variability regardless of joint angle. 44 

However, practitioners need to exercise caution when making inferences about early-stage 45 

RFD and impulse measures due to moderate-large variability.  46 

 47 
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 49 
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INTRODUCTION 51 

 Traditionally, the evaluation of the length-tension relationship has been completed via 52 

isokinetic derived angle of peak torque (i.e. optimal-angle) (23). However, dynamic 53 

contractions do not allow for reliable rate of force development (RFD) metrics. Additionally, 54 

eccentric evaluations require extensive familiarization and may be excessively strenuous if 55 

regular testing is required (23). As such, isometric evaluations of force, RFD and impulse are 56 

popular in general (17), athletic (6, 16), and rehabilitative (1, 5, 10) populations due to the ease 57 

of use and a high degree of safety (25). Additionally, isometric evaluations are regularly 58 

utilized to gain insight regarding neural drive and pain-induced inhibition via the rapid 59 

application of force (13), which is valuable in a variety of contexts (1, 6, 10, 19, 25). For 60 

example, Angelozzi et al. (1) reported that while peak force returned to baseline six-months 61 

after anterior cruciate ligament reconstruction, early-stage (0-30 ms, 0-50 ms, 0-90 ms) RFD 62 

remained measurably depressed 12 months post reconstruction. Furthermore, late-stage (100-63 

200 ms) RFD is a more sensitive means of indirectly evaluating exercise-induced muscle 64 

damage than peak force, providing value in research settings (19).  65 

 66 

Isometric contractions at multiple joint angles are commonly included in testing 67 

batteries (3, 11, 14) as morphological and functional adaptations to training appear to be joint 68 

angle specific (17). For example, Kubo et al. (11) observed that isometric training at long 69 

muscle lengths resulted in significantly improved isometric force from 40-110° of knee-70 

flexion, whereas short muscle length training only improved force production from 40-80°. 71 

Thus, no between-group differences would have been detected if force production had been 72 

evaluated at a single joint angle of ≤80° (11). Furthermore, strength and rapid force production 73 

at specific joint angles may provide beneficial information to athletic and rehabilitative 74 

populations. For instance, many knee and hamstring injuries occur at, or near, full extension 75 
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(7), and strength near the end-range of motion is a strong indicator of recovery (4). 76 

Alternatively, high force outputs at long muscle lengths critical to performance for athletes 77 

such as weightlifters (22). Therefore, isometric evaluation of muscle properties should take 78 

place at multiple angles, i.e. whole muscle length-tension relationship (23). 79 

 80 

While multi-angle isometric assessments have the potential to be useful in athletic and 81 

rehabilitation settings, several limitations have been identified by researchers. For example, 82 

nine of 26 papers included in a recent systematic review of isometric resistance training 83 

included multi-angle isometric assessments (17). However, only six reported reliability, and in 84 

three, variability was only derived from a single session (i.e. within-trial variation) (17), which 85 

has limited application to test-retest methodologies. Additionally, each study in the review (17), 86 

and the earlier cited studies do not report their own reliabilities (5, 10, 16, 19), or report only a 87 

single statistic, with a mixture of intraclass coefficient correlation (ICC) (1, 3), or the 88 

coefficient of variation (CV) (11, 14). Moreover, while peak force was highly reliable 89 

(ICC=0.80-0.99) across seven accepted studies, a systematic review of closed-chain isometric 90 

assessments (6) only reported pooled ICCs, which raises some issues. For example, while it is 91 

the most commonly reported reliability statistic, the ICC is overly reliant on between-subject 92 

variability, which minimally affects typical error of measure (TEM) and CVs (8, 20). Another 93 

limitation was the distinct lack of resistance-trained subjects as none of the papers included in 94 

the aforementioned systematic review included subjects with any substantial strength training 95 

history (17). Furthermore, the variability of RFD and impulse are seldom reported (1, 3). 96 

Therefore, the primary purpose of this technical report is to provide a comprehensive analysis 97 

of the variability of a multi-angle isometric knee extension assessment over three testing 98 

sessions in resistance-trained subjects. The findings of this report will provide greater insight 99 



5 
 

into isometric measures that can be used with confidence in test-retest methodologies that are 100 

quantifying longitudinal changes.  101 

 102 

METHODS 103 

Experimental design 104 

 Isometric force-time characteristics of the knee extensors were examined using a 105 

repeated measures study design. Subjects were tested on three separate occasions, with 5-8 106 

days between sessions. Each session followed identical sequencing of testing including a series 107 

of isometric contractions at short (40º), medium (70º), and long (100º) muscle lengths (0º=full 108 

extension). Intersession variability of peak force, early (0-50 ms) and late-stage (0-100 ms, 0-109 

200 ms, 100-200 ms) RFD and impulse were examined via ICC, CV, and TEM. 110 

 111 

Subjects 112 

Twenty-six healthy, resistance-trained males (28.8±4.8 years, 180.2±7.7 cm, 81.8±11.8 113 

kg) volunteered. To minimize training effects from the testing procedures, all subjects were 114 

required to have at least six months of resistance training experience (21) (2.53±0.76 115 

sessions·week-1), and be free of musculoskeletal injuries in the three months before data 116 

collection. Participants were instructed to maintain their current level of physical activity 117 

throughout the data collection period apart from refraining from strenuous physical activity in 118 

the 72 hours before each session. Additionally, participants were instructed to avoid alcohol, 119 

caffeine, and other ergogenic aids for at least 24 hours before each session. The Auckland 120 

University of Technology Research Ethics Committee approved the study (18/232), and all 121 

subjects gave written informed consent after being informed of the risks and benefits of 122 

participation.  123 

 124 
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Testing procedures 125 

Isometric testing 126 

 Participants warmed up by cycling at a low to moderate resistance using a self-selected 127 

pace for five minutes. Participants were seated upright on the isokinetic dynamometer (CSMi; 128 

Lumex, Ronkonkoma, NY, USA) at a hip angle of 85º, with shoulder, waist and thigh straps to 129 

reduce body movement during contractions. The shin-pad force was ~5 cm superior to the 130 

medial malleoli. Participants were required to hold the handles at the sides of the chair, and the 131 

non-working limb was positioned behind a restraining pad. Knee alignment was determined by 132 

visual inspection and unloaded knee extensions to ensure proper joint tracking. Dynamometer 133 

settings were recorded and matched for all subsequent sessions.  134 

 135 

Once fitted to the dynamometer, participants underwent a series of extensions and 136 

flexions of the knee to determine the safety stop positions and calibrate to the gravity 137 

correction. Participants then completed a standardized warmup of submaximal concentric 138 

contractions of 30%, 50%, 70%, 85% and 100% of perceived maximal voluntary contraction. 139 

Each warm-up contraction was initiated and terminated at 105° and 5° of knee flexion, 140 

respectively. Sixty seconds after the completion of the isokinetic warm-up, the participants' 141 

knee was positioned at 40º of flexion where one familiarization isometric knee extension at 142 

50% of maximal voluntary isometric contraction (MVIC) was performed. Subsequently, two 143 

MVICs lasting four seconds were completed with 30 seconds separating each contraction. 144 

Participants were instructed to contract “as fast and hard as possible” following a countdown 145 

of “3-2-1-go!” (13). All athletes were given strong verbal encouragement along with visual 146 

feedback of the force-time tracing during each trial (13). Participants were also instructed to 147 

avoid any pre-tension and countermovement of the knee extensors while the live force-time 148 

trace was carefully inspected by the examiner leading up to each contraction (13). The cut-off 149 
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for pre-tension was set at 10 N. Any contractions with a clear countermovement or an unsteady 150 

baseline were rejected and repeated (13). The subjects then completed the same series at 70º 151 

and 100º of knee flexion with 60 seconds of rest between angles. The isometric contractions 152 

were always performed in series from short to long muscle lengths to avoid greater muscle 153 

damage and fatigue synonymous with contractions at long muscle lengths (14). Following the 154 

final isometric contraction, the isokinetic warm-up and isometric assessment were repeated on 155 

the opposite limb. Limb order was randomized throughout the three testing sessions and 156 

counterbalanced over the sample. All isokinetic and isometric contractions were collected, 157 

without filtering, via a custom-made software (LabVIEW; National Instruments, New Zealand) 158 

sampling at 2000 Hz (13). 159 

  160 

Data processing and analysis 161 

 Data were analyzed via a customized MATLAB (MathWorks, Natick, MA) script. All 162 

dynamometer data was divided by the length of the lever arm, in meters, to normalize the 163 

difference in shank length between subjects. Following an initial manual inspection of the raw 164 

data, isometric forces over 200 N were identified to signify a full contraction and eliminate 165 

false contractions. A peak detection algorithm was implemented to detect and identify the 166 

instantaneous peak force of each contraction. The on-set of effort was determined via visual 167 

inspection and a manual section of each force-time curve (13). The same researcher determined 168 

on-set of effort by visually detecting the last trough before force deflected above the range of 169 

the baseline noise (13). Rate of force development and impulse were calculated for 0-50 ms, 170 

0-100 ms, 0-200 ms, and 100-200 ms, based on the manual onset of effort detection (13). 171 

 172 

Statistical analysis 173 
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Mean, and standard deviation was calculated for all variables. All data were log-174 

transformed to correct for heteroscedastic effects and analyzed using an Excel (version 2016; 175 

Microsoft Corporation, Redmond, WA) spreadsheet (8, 15). Intersession analysis was 176 

performed on the mean results of the variables for each session. The ICC and CV were used to 177 

explore relative and absolute variability respectively. An ICC<0.67 and CV>10% were deemed 178 

as having large variability, moderate variability when either the ICC>0.67 or the CV<10%, but 179 

not both, and small variability when ICC>0.67 and CV<10% (12, 15). Variability was also 180 

examined via TEM to provide the reader with a practical interpretation of the magnitude of 181 

error expected for any change in the mean (12, 15). Magnitudes for effects were calculated by 182 

doubling the TEM result (12, 15) with thresholds of 0.2-0.6 (small), 0.6-1.2 (moderate), 1.2-183 

2.0 (large), 2.0-4.0 (very large) and >4.0 (extremely large) (9, 12, 15). 184 

 185 

RESULTS 186 

Variability data for multi-angle isometric force, RFD and impulse measures are found 187 

in Table 1. 188 

 189 

(Table 1. About here) 190 

 191 

Small to moderate variabilities were found for isometric peak force (ICC=0.80-0.93, 192 

CV=6.7-11.5%, TEM=0.28-0.49) while late-stage (0-100, 100-200, 0-200 ms) RFD 193 

(ICC=0.67-0.88, CV=10.4-21.5%, TEM=0.37-0.74) and impulse (ICC=0.77-0.89, CV=21.5-194 

42.1%, TEM=0.36-0.56) were moderately variable regardless of angle between sessions one-195 

two and two-three. However, moderate to large variability were found for early-stage (0-50 196 

ms) RFD (ICC=0.60-0.71, CV=22.4-33.7%, TEM=0.64-0.82) and impulse (ICC=0.68-0.80, 197 

CV=32.9-63.1%, TEM=0.51-0.70). 198 
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 199 

DISCUSSION 200 

 A comprehensive analysis of the variability associated with isometric peak force, RFD 201 

and impulse at multiple angles during knee extension, in a homogenous resistance-trained 202 

population was previously lacking. This study addressed these limitations with the primary 203 

findings being: 1) peak force is minimally variable, 2) late-stage RFD and impulse are 204 

moderately variable, and 3) early-stage RFD and impulse hold moderate to large variability. 205 

  206 

 Small to moderate variability (ICC=0.80-0.93, CV=6.7-11.5%, TEM=0.28-0.49) was 207 

associated with isometric peak force regardless of joint angle, meaning that practitioners and 208 

researchers can be confident in using this metric across angles. Our findings corroborate 209 

previous reports, in that late (ICC=0.67-0.89, CV=10.4-42.1%, TEM=0.36-0.74), but not early-210 

stage (ICC=0.60-0.80, CV=22.4-63.1%, TEM=0.51-0.82) RFD and impulse, are relatively 211 

stable between testing occasions regardless of joint angle (13, 18). For example, Palmer, 212 

Pineda, and Durham recently reported highly reliable peak force (ICC=0.84-0.90, CV=6.6-213 

12%) and late-stage RFD (ICC=0.81, CV=12.3-19.4%), while peak and early-stage RFD 214 

(ICC=0.55-0.85, CV=17.3-55.9%) were much less consistent across two sessions in a multi-215 

angle isometric squat (18). No systematic bias was observed between sessions one-two, 216 

indicating a negligible learning effect and that the assessments need very little familiarisation 217 

in trained subjects.  218 

 219 

 From the findings of this technical report, reporting early-stage RFD (1, 19) would seem 220 

questionable, supporting the decisions of researchers who have declined to include rapid force 221 

production earlier than a 100 ms threshold (3). However, it is important to note that large 222 

intersession variability does not necessarily preclude early-stage RFD or impulse from holding 223 
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value if the smallest detectable change is known. For example, Krafft (10) and Angelozzi (1), 224 

reported relatively large improvements in peak (98.4-103.6%, Cohen’s d=0.58-1.06) and early-225 

stage RFD (20.3-41.7%, d=0.35-0.44) throughout recovery from anterior cruciate ligament 226 

reconstruction, which may have surpassed the smallest detectable change. However, neither 227 

study reported the information required to calculate the smallest detectable change in their 228 

population. Alternatively, well-trained athletic populations are unlikely to experience large 229 

enough improvements in early-stage RFD and impulse to overcome the moderate to large 230 

intersession variability (21). 231 

 232 

 While the primary aim of this report was achieved, readers should be cognizant of the 233 

limitations. All contractions were performed in a commercial dynamometer, where 234 

deformation of the seat and tissues of the subject may result in small shifts in the prescribed 235 

joint angle when compared to custom-made apparatus (2, 13). While the slight deviation in 236 

joint angle should not affect intersession variability, practitioners should be aware that the 237 

reported force, RFD and impulse data may not be interchangeable with other equipment set-238 

ups (2, 13). Future research should examine other movements (e.g. knee flexion, dorsiflexion) 239 

and populations (e.g. females, elderly, untrained, rehabilitative) to have a full understanding of 240 

the utility and reproducibility of multi-angle isometric force-time characteristics. Finally, while 241 

precedence exists for the specific statistical inference cut-offs in this article (12, 15), it is 242 

important to note that universal consensus is not possible (20, 24). Therefore, readers may wish 243 

to apply their own inferences based on their specific contexts. 244 

 245 

PRACTICAL APPLICATIONS 246 

 This was the first study to undertake a comprehensive analysis of knee extension force-247 

time variability across multiple joint angles and testing occasions. Peak force, and late-stage 248 
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RFD and impulse were the most stable measures at all assessed angles, indicating that the 249 

whole muscle length-tension relationship can be determined for knee extension. However, 250 

practitioners should avoid reporting early-stage (0-50 ms) RFD and impulse, due to moderate 251 

to large intersession variability. Additionally, practitioners should be aware that outcome 252 

measures with moderate to large variability require larger training-induced adaptations before 253 

they can be sure that real changes have occurred. It also appears that there is minimal learning 254 

involved with the testing, so familiarisation and assessment can occur in the same session with 255 

well-trained individuals. Readers may wish to calculate the smallest worthwhile change from 256 

table 1; however, it is critical to realize that these data are only applicable to a resistance-trained 257 

male population. In summation, isometric peak force, and late-stage RFD and impulse have 258 

low to moderate variability regardless of joint angle and therefore, can be used with confidence 259 

to demonstrate the force capability of knee extensors.  260 

 261 
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Table 1. Test-retest variability of isometric knee extension force production over three repeated measures.  
  Mean  Days 1 – 2  Days 2 - 3  

Joint 
angle 

 Day 1 Day 2 Day 3  TEM  TEM 
× 2 

TEM 
inference CV ICC CV/ICC 

inference 
 TEM  TEM 

× 2 
TEM 

inference CV ICC CV/ICC 
inference 

     Peak Force (N)  
40º  611.5 ± 140 601.3 ± 134 603.6 ± 133  0.45 0.90 moderate 10.8 0.84 moderate  0.39 0.78 moderate 9.6 0.87 small 
70º  790 ± 201 807.2 ± 174 805.5 ± 188  0.36 0.72 moderate 9.2 0.88 small  0.49 0.98 moderate 11.5 0.80 moderate 

100º  669 ± 151 679.2 ± 153 682.7 ± 149  0.28 0.56 small 6.7 0.93 small  0.38 0.76 moderate 8.5 0.88 small 
Mean      0.36 0.62 moderate 8.9 0.88 small  0.42 0.84 moderate 9.9 0.85 small 

     RFD 0-50 (N·s-1)  
40º  3894 ± 1227 3739 ± 967 3635 ± 1053  0.64 1.28 large 22.4 0.71 moderate  0.82 1.64 large 23.5 0.60 large 
70º  3245 ± 1255 3003 ± 1304 2940 ± 1121  0.74 1.48 large 32.2 0.66 large  0.66 1.32 large 27.2 0.70 moderate 

100º  1690 ± 998 1577 ± 827 1670 ± 1024  0.67 1.34 large 31.9 0.70 moderate  0.70 1.40 large 33.7 0.68 moderate 
Mean      0.68 1.36 large 28.8 0.69 moderate  0.73 1.46 large 28.1 0.66 large 

     RFD 0-100 (N·s-1)  
40º  3401 ± 980 3179 ± 846.8 3142 ± 868  0.57 1.14 moderate 18.7 0.76 moderate  0.60 1.20 moderate 19.9 0.71 moderate 
70º  3264 ± 1061 3025 ± 1006.5 2977 ± 939  0.48 0.96 moderate 18.8 0.82 moderate  0.57 1.14 moderate 20.1 0.76 moderate 

100º  2334 ± 761 2258 ± 471.6 2293 ± 830  0.51 1.02 moderate 19.4 0.80 moderate  0.57 1.14 moderate 21.7 0.76 moderate 
Mean      0.52 1.04 moderate 19 0.79 moderate  0.58 1.16 moderate 20.6 0.74 moderate 

     RFD 0-200 (N·s-1)  
40º  2459 ± 631 2340 ± 607.7 2297 ± 611  0.55 1.10 moderate 15.9 0.78 moderate  0.53 1.06 moderate 15.6 0.79 moderate 
70º  2804 ± 790 2643 ± 755.3 2618 ± 728  0.43 0.86 moderate 14 0.85 moderate  0.47 0.94 moderate 14.9 0.82 moderate 

100º  2271 ± 575 2224 ± 584 2266 ± 637  0.39 0.78 moderate 11.8 0.87 moderate  0.43 0.86 moderate 13 0.85 moderate 
Mean      0.46 0.92 moderate 13.9 0.83 moderate  0.48 0.96 moderate 14.5 0.82 moderate 

     RFD 100-200 (N·s-1)  
40º  1534 ± 460 1501 ± 446.6 1452 ± 459  0.74 1.48 large 21.5 0.67 moderate  0.53 1.06 moderate 17.1 0.79 moderate 
70º  2344 ± 649 2261 ± 634.6 2259 ± 637  0.45 0.90 moderate 13.9 0.84 moderate  0.46 0.92 moderate 15 0.83 moderate 

100º  2207 ± 560 2190 ± 557.1 2240 ± 558  0.39 0.78 moderate 10.9 0.87 moderate  0.37 0.74 moderate 10.4 0.88 moderate 
Mean      0.53 1.06 moderate 15.4 0.79 moderate  0.45 0.90 moderate 14.2 0.83 moderate 

     Impulse 0-50 (N·s)  
40º  10.6 ± 5.7 9.38 ± 4.3 9.19 ± 4.6  0.51 1.02 moderate 32.9 0.80 moderate  0.57 1.14 moderate 32.9 0.76 moderate 
70º  8.15 ± 6 7.26 ± 5.8 6.8 ± 4.4  0.70 1.40 large 56.2 0.68 moderate  0.57 1.14 moderate 42.5 0.76 moderate 

100º  2.93 ± 3.5 2.52 ± 2.6 2.86 ± 3.6  0.66 1.32 large 61 0.70 moderate  0.70 1.40 large 63.1 0.68 moderate 
Mean      0.62 1.24 large 50 0.73 moderate  0.61 1.22 large 46.2 0.73 moderate 

     Impulse 0-100 (N·s)  
40º  21.9 ± 10.6 27.3 ± 12.3 16.8 ± 12.9  0.52 1.04 moderate 36.3 0.79 moderate  0.52 1.04 moderate 33.1 0.79 moderate 
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70º  30.8 ± 17.4 26.7 ± 15.6 25.7 ± 14  0.43 0.86 moderate 33.8 0.85 moderate  0.52 1.04 moderate 37 0.80 moderate 
100º  16.8 ± 9.2 15.7 ± 8.7 16.5 ± 10.6  0.49 0.98 moderate 38.4 0.81 moderate  0.53 1.06 moderate 42.1 0.79 moderate 

Mean      0.48 0.96 moderate 36.2 0.82 moderate  0.52 1.04 moderate 37.4 0.79 moderate 
     Impulse 0-200 (N·s)  

40º  64.5 ± 28.7 58.7 ± 26.6 57 ± 27.1  0.51 1.02 moderate 30.7 0.80 moderate  0.44 0.88 moderate 27 0.85 moderate 
70º  87.4 ± 43.9 78.1 ± 39.4 76.4 ± 38.9  0.41 0.82 moderate 27.6 0.86 moderate  0.45 0.90 moderate 29.6 0.84 moderate 

100º  58.2 ± 26.1 56.2 ± 25.4 58.7 ± 30.7  0.38 0.76 moderate 23.6 0.88 moderate  0.41 0.82 moderate 25.9 0.86 moderate 
Mean      0.43 0.86 moderate 27.3 0.85 moderate  0.43 0.86 moderate 27.5 0.85 moderate 

     Impulse 100-200 (N·s)  
40º  33.9 ± 15.9 31.4 ± 15.2 30.3 ± 15.1  0.56 1.12 moderate 33.1 0.77 moderate  0.41 0.82 moderate 25.8 0.86 moderate 
70º  56.5 ± 27.9 51.3 ± 25 50.6 ± 24.9  0.41 0.82 moderate 26.9 0.86 moderate  0.44 0.88 moderate 29.2 0.84 moderate 

100º  41.4 ± 18.5 40.4 ± 17.8 42.2 ± 21  0.36 0.72 moderate 21.5 0.89 moderate  0.38 0.76 moderate 23.1 0.88 moderate 
Mean      0.44 0.88 moderate 27.2 0.84 moderate  0.41 0.82 moderate 26 0.86 moderate 

                   
TEM = typical error of measure. CV = coefficient of variation (%). ICC = intraclass correlation coefficient. RFD = rate of force development. N·s-1 = Newtons per second. N·s = Newton 

seconds. All reliability statistics are log-transformed. 
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