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This paper attempts to estimate diagnostically relevant measure, i.e., Arteriovenous Ratio with
an improved retinal vessel classi¯cation using feature ranking strategies and multiple classi¯ers
decision-combination scheme. The features exploited for retinal vessel characterization are based
on statistical measures of histogram, di®erent ¯lter responses of images and local gradient in-
formation. The feature selection process is based on two feature ranking approaches (Pearson
Correlation Coe±cient technique and Relief-F method) to rank the features followed by use of
maximum classi¯cation accuracy of three supervised classi¯ers (k-Nearest Neighbor, Support
Vector Machine and Naïve Bayes) as a threshold for feature subset selection. Retinal vessels are
labeled using the selected feature subset and proposed hybrid classi¯cation scheme, i.e., decision
fusion of multiple classi¯ers. The comparative analysis shows an increase in vessel classi¯cation
accuracy as well as Arteriovenous Ratio calculation performance. The system is tested on three
databases, a local dataset of 44 images and two publically available databases, INSPIRE-AVR
containing 40 images and VICAVR containing 58 images. The local database also contains
images with pathologically diseased structures. The performance of the proposed system is
assessed by comparing the experimental results with the gold standard estimations as well as with
the results of previous methodologies. Overall, an accuracy of 90.45%, 93.90% and 87.82% is
achieved in retinal blood vessel separation with 0.0565, 0.0650 and 0.0849 mean error in Arte-
riovenous Ratio calculation for Local, INSPIRE-AVR and VICAVR dataset, respectively.
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1. Introduction

Cardiovascular diseases including coronary heart
disease, stroke and hypertension are characterized
by the deviations in blood vascular structure.1,2 In
hypertension, arteries are altered from the regular
pattern and the inner lining of arteries is damaged
and as a result, they become thick and sti®.3 Due to
this thickness of artery-walls in hypertension, the
normal blood °ow pressure is a®ected.4 Along with
other body organs including heart and kidney, the
presence of hypertension also a®ects eye and leads
to several ocular disorders including Hypertensive
Retinopathy (HR).5 In HR, both the vascular and
nonvascular structures in retina are deteriorated.
However, the alteration of retinal vessel width is
considered as an earliest biomarker of HR.6 Partic-
ularly, the width of arteries is narrowed in initial
stages, that is why \arteriolar narrowing" is placed
at initial stage in all the three scales proposed so far
for HR diagnosis.7–10 For assessment of arteriolar
narrowing, a parameter called Arteriovenous Ratio
(AVR), suggested by Stokoe and Turner,11 is used.
It is the ratio of average diameter of retinal Arter-
ioles (arteries) to average Venules (veins) diameter
and its calculation involves the use of two other
parameters known as Central Retinal Artery
Equivalent and Central Retinal Venular Equiva-
lent.12,13 The deviation of this parameter from a
normal range indicates the presence of HR so this
biomarker is considered crucial for HR severity as-
sessment. In order to quantify the AVR, the oph-
thalmologists examine the internal structure of
retina using the photographs obtained via di®erent
imaging modalities, i.e., Ophthalmoscopy, Fluores-
cein Angiography and Fundus Photography, how-
ever, fundus imaging is the only non-invasive
imaging method that provides a mode for extensive
visualization of blood vessels and other structures in
retina. Moreover, according to the studies,14–16 the
fundus camera has the additional capability of im-
proving retina visualization and consequently the
detection of retinal diseases. Figure 1 illustrates a
sample retinal fundus image taken from local da-
tabase with several anomalies that occur in HR.

Generally, AVR is manually estimated by oph-
thalmologists through visual screening of retina in
fundus image which is a time-taking and labor-
intensive process. The ophthalmologist ¯rst manu-
ally performs vessel classi¯cation in retinal photo-
graphs and then estimates AVR. To assist the

ophthalmologist to speed up the detection process,
the digital image processing techniques and com-
puter vision tools are being used for e±cient and
timely diagnosis of HR.17–22

Automated HR detection systems generally
consist of three modules, i.e., retinal vessel, (a)
segmentation, (b) classi¯cation and (d) width esti-
mation. The accurate segmentation and classi¯ca-
tion of retinal vessels directly a®ects the retinal
width estimation which is later used for AVR cal-
culation. A vast number of computerized retinal
analysis studies have focused on vessel segmenta-
tion.23–25 There are a few researches that have fo-
cused on detection of vessel bifurcations and cross-
over points.26,27 As far as retinal vessel classi¯cation
is concerned, there are existing methods that
recognize vessels as veins and arteries either auto-
matically or semi-automatically.28,29 The most
prominent visual di®erence between retinal veins
and arteries is their color. Arteries are light in color
due to the abundance of oxygenated hemoglobin
and this fact has led to the use of intensity-based
features for vessel recognition. The pioneer study
was proposed by Grisan and Ruggeri88 for arterio-
venous classi¯cation in which retinal image was
divided into four quadrants based on optic disk
center and vessel segments found in each quadrant
are classi¯ed using color features. This quadrant
division-based approach is also adopted in later
studies.30 In another method proposed by the same
group,31 several circular regions of di®erent radii
around optic disk are assessed to obtain the classes

Cotton Wool Spots

Blood vessels

Hemorrhages

Macula

Optic Disk

Exudates

Fig. 1. Sample retinal image with structures and abnormali-
ties marked with arrow.
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of vessels in each zone using vessel pro¯le features.
A similar approach is proposed by Mirsharif et al.32

with a little variation by dividing the image in four
quadrants with further partitions in upper and
lower regions.

Some of the methods presented previously also
employed inherited vessel-structure sequence infor-
mation along with color features for retinal vessel
classi¯cation. A method proposed by Niemeijer
et al.33 for classi¯cation of retinal vessels incorpo-
rated color features and prior structural knowledge
of vessels. Another important inherited character-
istic of artery-vein is that the same types of vessel
never cross each other. This retinal vessel property
has also been employed to classify vessels.34 Fur-
thermore, in the literature, some methods classify
complete vessel network while others consider only
small vessel segments within speci¯c circular zone
for classi¯cation.35,36 However, it is not necessary to
classify complete vessel network for calculation of
AVR.3 Graph-based methods have been investi-
gated in Ref. 37. In these methods, graphs are
generated using vessel center-lines with vessel
junction points and the resultant graphs are classi-
¯ed into arteries and veins. Most of these methods
classi¯ed the complete vessel network.38 Same
group Dashtbozorg et al.39; Mendonça et al.40 also
proposed methods for AVR calculation. Among the
recent methods, Xu et al.41 proposed ¯rst- and
second-order textural features for di®erentiation
between arteries and veins in retina and Yan et al.
(2017) used context-dependent features for retinal
vessel classi¯cation. Quite recently, Relan et al.
(2017) presented approach for arteriovenous classi-
¯cation that includes the use of a pre-processing
module called multiscale self-quotient image
method for illumination and lightning correction
in retinal images. Currently, the deep learning
network has also been widely and successfully
applied in the retinal image processing and
segmentation.42–44

Although, the advancement in technology has
paved the path for robust and reliable development
of computer algorithms for HR detection through
assessment of retinal vessels, however, it is observed
that the methods previously proposed are tested on
healthy retinal images, that do not contain patho-
logical structures. The disease progression makes
the retinal vessels prone to many di®erent kinds of
pathologies, e.g., vessel tortuosity, hard and soft
exudates, branch retinal artery and vein occlusion,

sheathing of vessels, focal arteriolar narrowing and
optic disk swelling, which deteriorate the width and
intensity of vessels. Moreover, HR progression has
di®erent e®ect on vein and artery; comparatively
arteries are observed to be more a®ected in presence
of HR. Figure 2 shows visualization of such cases in
enlarged slices of six images, taken from retinal
fundus database acquired from Armed Forces In-
stitute of Ophthalmology, Pakistan. Development
of new \ghost" vessels and vessel fading is observed
due to occlusion in Fig. 2(a). As shown in Fig. 2(b),
retinal arteries are hardly visible (e.g., the ones in-
dicated by circle arrow) due to occlusion and
sheathing of vessels with appearance of cotton wool
spots in fundus area. Optic disk swelling can be
noted from Figs. 2(b) to 2(d). Branch retinal vein
occlusion is shown in Fig. 2(c) which makes the
vessel appearance deteriorated. It is observed that
these pathologies pose a serious di±culty in retinal
vessel classi¯cation phase, since vessel intensity is
the major character that is used to classify vessels.
The performance of retinal vessel classi¯cation
methods on pathologically diseased images needs to
be evaluated so that a robust solution can be de-
vised which is invariant to presence of pathological
changes. This paper attempts to provide a system
for reliable HR diagnosis using AVR parameter that
is robust to presence of pathological structures in
fundus images. Furthermore, the features extracted
for retinal vessel classi¯cation may contain redun-
dant information. For this purpose, we exploited
two feature ranking strategies for feature selection.
Feature selection is a technique to obtain dimen-
sionally reduced feature set by retaining only those
features which are truly relevant for predicting the
outcome. There are a number of ways for selection
of most signi¯cant of most features from a large
feature set. Most widely used among these ways are;
(a) Wrapper methods: Feature selection based on
association between predictors (features) and
responses (target labels) before applying machine
learning algorithm and (b) Filter methods: Feature
selection after applying machine learning techni-
ques. In the ¯rst type, signi¯cant features are ¯l-
tered out from the original dataset by evaluating
the relevance of individual attributes (features)
with the target classes. The criterion according to
which the feature-target relationship is measured
depends upon the speci¯c feature ¯ltering algo-
rithm. Whereas in second type of feature selection
techniques, attribute selection is conducted on the
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basis of performance of feature in predicting the
target class after it has been fed to classi¯er. Using
this technique for feature selection, a feature may
show optimal performance for a certain classi¯er
but fails to perform optimally for other classi¯ers.
E®ect of ¯lter-based feature selection methods for
anomaly detection is examined in depth in many
medical applications45–47 and promising results are
reported. The impact of feature ranking methods in
relation with decision mapping of machine learning
algorithms for Artery/Vein (A/V) classi¯cation
needs to be evaluated.

In addition to the feature selection process, the
class prediction performance of retinal vessels also
depends signi¯cantly on the particular machine
learning algorithm. In methods proposed by,
Relan et al.48–50 various predictive models are used
for retinal vessel classi¯cation: Gaussian Mixture
Model, Expectation-Maximization (GMM-EM)
classi¯er, Least Square-Support Vector Machine
(LS-SVM) and Squared-loss Mutual Information
clustering (SMIC). Similarly, Agurto et al.,51;
Vijayakumar et al.52 used SVM classi¯er and linear

regression, respectively, for retinal vessel classi¯ca-
tion. In all these approaches, single classi¯ers are
used for vessel recognition. A decision-ensemble
based on decision trees with bootstrap aggregation
is used by Fraz et al.53 for retinal vessel classi¯ca-
tion, but this ensemble system is created by
employing one type of base classi¯er. In bootstrap
method, di®erent predictive models are generated
using di®erent subsets of data and then the deci-
sions of all those models is averaged out. Fusion of
di®erent classi¯ers decisions is known to have en-
hanced performance as compared to single classi¯er
and has been used in many machine learning
applications.54–57 This motivated us to examine the
performance of di®erent classi¯ers combination for
retinal vessel classi¯cation.

With respect to the issues highlighted above, this
paper aims to develop an automatic framework
for detection of HR with an improved retinal
vessel recognitionmodule which is based on the use of
di®erent feature ranking strategies and classi¯cation
accuracy of various prediction models (k-Nearest
Neighbor, SupportVectorMachine andNaïveBayes)

(a) (b) (c)

(d) (e)

Fig. 2. Image slices showing pathologies (circle and square arrows indicate di®erent abnormalities). (a) Arrow with circle: vessel
tortuosity and Neovascularization, Arrow with rectangle: Retinal artery occlusion, (b) Arrow with circle: Shrinkage and occlusion of
retinal artery, Arrow with square: Optic Disk Swelling, (c) Arrow with square: Branch Retinal Vein Occlusion, (d) Arrow with
circle: Branch Retinal Artery Occlusion and (e) Arrow with square: Sclerotic retinal arteries.
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to select optimal feature subset followed by vessel
labeling through the proposed hybrid classi¯cation
approach.Moreover, the proposed systemdetectsHR
robustly not only in healthy images, but also in
images with multiple pathological changes. This re-
search allows to investigate the impact of proposed
feature selection process and decision-fusion of mul-
tiple classi¯ers on labeling of retinal vessels.

The e®ect of proposed method on retinal vessel
di®erentiation is evaluated using three performance
metrics, i.e., Classi¯cation Accuracy, Sensitivity
and Speci¯city and the method is tested on three
databases, Local Database, INSPIRE-AVR data-
base33 and VICAVR database.31 The performance
of AVR calculation module is assessed by calculat-
ing the mean error between the estimations pro-
vided by ophthalmologist and the ones shown by
our method. The promising results presented by
proposed system shows its capability in lowering the
prevalence of HR and can be proved a valuable tool
for retinal screening.

Main contributions of this work are:

(a) The robustness of proposed retinal vessel clas-
si¯cation method and subsequent HR diagnosis
is examined in images with pathological struc-
tures. Currently, there are seldom papers that
report hybrid classi¯cation approaches on reti-
nal fundus photography with HR. The proposed
system detects HR robustly not only in healthy
images but also in images with multiple path-
ological changes.

(b) A novel feature selection strategy that includes
¯lter-based methods with the use of three
classi¯ers for selection of optimal feature
subset is employed. The feature ranking is car-
ried out using two feature ranking algorithms,
Pearson Correlation Coe±cient58 and Relief-F
method,59 to rank the features (extracted for
A/V di®erentiation) and then, employing
classi¯cation accuracy of three supervised
classi¯ers as a stopping criteria (threshold) to
select the optimal feature subset from ranked
feature list.

(c) The proposed \labels-combination" framework
has been investigated for recognition of retinal
vessels. Majority voting technique is used to
combine the decision labels obtained from three
classi¯ers, i.e., k-Nearest Neighbor (k-NN),
Support Vector Machine (SVM) and Naïve
Bayes, for vessel labeling.

This paper contains ¯ve sections; introduction and
review of previous work is already explained in this
section, Sec. 2 explains the methodology adopted
for retinal image preprocessing, vascular network
extraction, Optic Disk localization and boundary
segmentation, determination of region of analysis,
feature extraction for vessel recognition and ¯nally
blood vessel width calculation for AVR computa-
tion. Section 3 focusses on the details of feature
selection process and retinal vessel classi¯cation
followed by experimental results in Sec. 4. Section 5
summarizes the contributions and limitations of this
research.

2. Methodology

The °ow chart for the proposed methodology is
shown in Fig. 3. The retinal image is ¯rst acquired
via fundus camera and then preprocessed. After
that, the retinal vascular network is detected using
Gabor ¯lter bank and a binary vessel map is gen-
erated. Details of preprocessing and vessel segmen-
tation is given in Secs. 2.1 and 2.2, respectively.
Next, the position of optic disk is determined using
Laplacian of Gaussian ¯lter with highest vessel
density feature. Based on the optic disk boundary, a
circular region of interest is de¯ned around optic
disk and the vessels within this region are obtained,
as described in Secs. 2.3 and 2.4 Vessel junctions
i.e., bifurcations and cross-overs, present in the
extracted vessel segments are detected and then,
di®erentiated using local variance based method in
order to remove cross-overs. In the next step, a set
of 81 features is extracted from retinal vessels as
explained in Secs. 2.5. The acquired features are
then subject to two feature-ranking methods, i.e.,
Pearson Correlation Coe±cient and Relief-F meth-
od. Di®erent combinations of ranked features are
then fed to three supervised classi¯ers (k-NN, SVM
and Naïve Bayes) and based on the classi¯cation
accuracy of each classi¯er; optimal feature subsets
are selected and fused together using union opera-
tion. Afterwards, these fused feature subsets are
given as an input to decision-fusion framework and
¯nal labels of retinal vessel segments are obtained.
Classi¯ed vessel segments are then measured using
2-Dimentional (2D) Euclidean distance transform,
as explained in Sec. 2.6. After measuring the widths
of vessel segments, AVR is calculated. Details of
feature ranking algorithms, classi¯ers and feature
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selection method are given in Secs. 3.1 and 3.2,
respectively. Experimental results and performance
comparison are presented in Sec. 4 followed by
discussion in Sec. 5. The proposed methodology
involves technically diverse techniques for each
step from image preprocessing to calculation of
AVR and some steps involve tuning of relevant
parameters which a®ects the ¯nal performance
of the system. In addition to that, all three
image datasets used in this research have di®erent
image speci¯cations (size and quality); therefore, in
some steps, optimal parameter values may vary.
The tuned parameter values are mentioned
explicitly where they are di®erent for the three
datasets.

2.1. Preprocessing

As a preprocessing step, dark background is seg-
mented from digital fundus image in order to reduce
the computational complexity. The background is
estimated using local mean and variance-based
method60 and binary segmentation mask is formed
by thresholding operation, which is dependent on
mean of green component of image. The generated
background mask is shown in Fig. 4(b) with original
image in Fig 4(a), taken from local and INSPIRE-
AVR dataset (in ¯rst and second row, respectively).
Local and INSPIRE-AVR datasets are tuned at a
threshold value of 10 whereas for VICAVR dataset,
this threshold is set at 30 after background esti-
mation. Regarding threshold selection, we adopt

trying and testing techniques, in order to ¯nd the
binary images with whole retinal information.

2.2. Vessel extraction

2D Gabor ¯lter bank is employed here for extraction
of vessels.61 The purpose of using Gabor Wavelet
bank is its localization characteristic, due to which
the response on small as well large width vessels are
captured with greater accuracy. Gabor Wavelet is
applied on green channel of image due to the e®ec-
tive discrimination between retinal vessels and
fundus area present in this color component. After
enhancement of retinal vessel tree, it is thresholded.
The Gabor Wavelet is computed for angle spanning
from 0� up to 179� at steps of 10� and then the
maximum response (MR) is taken. A scale value of
7, 9 and 11 is found to be optimal for local,
INSPIRE-AVR and VICAVR dataset, respectively.
By varying the angles and scales, Gabor ¯lter bank
is formed which enhances the objects in target
image according to the set parameters. Figures 4(c)
and 4(d) show the enhanced vascular patterns in
retinal images using Gabor Wavelet and the
binarzied vessel trees, respectively.

2.3. Identi¯cation of the position of

Optic Disk (OD)

OD is a bright circular region in retina from which
all the blood vessels emerge. Laplacian of Gaussian
(LoG) ¯lter and the highest vessel density property

Fig. 3. Flow chart of proposed methodology.
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of OD is used in this research to detect the location
of OD.62,63 LoG ¯lter is applied on red channel of
RGB image to enhance the location of OD. This
template is particularly used because of circular
structure of OD and red channel is selected because
of clear and discriminating visualization of OD in
this channel. After the candidate circular regions
have been enhanced using the LoG ¯lter, they are
binarized. The threshold value used for binarization
is given in Eq. (1).61

T ¼ 0:6 �mLoG: ð1Þ
This threshold selects pixels having top 60% re-

sponse from the LoG ¯ltered image and mLoG
indicates the maximum value in Gaussian Kernel
Processed Image.62 Preliminary experiments guided
the selection of this threshold since it is optimal for
all datasets. Red plane of original retinal image,
LoG ¯lter, enhanced OD region and binarized OD is

shown in Figs. 5(a)–5(d), respectively. Some images
in the local dataset contain pathologies like hard
exudates and cotton wool spots that have similarity
in structural and color properties with OD, so the
LoG ¯ltered and subsequent thresholded image may
contain more than one OD region. To overcome this
issue, vessel density property is incorporated to
separate out the OD region from the other seg-
mented portions. After localization of OD position,
as illustrated in Fig. 6, its center is determined and
boundary is estimated using intensity gradient based
technique which we recently proposed in Ref. 63.

2.4. Determination of \Analysis Zone"
and extraction of vessel segments

from vascular tree

Once the position and boundary of OD is deter-
mined, a Region of Analysis (RoI) is identi¯ed for

(a) (b) (c) (d)

Fig. 5. OD detection. (a) Red channel of OD, (b) LoG ¯lter, (c) Enhanced OD region and (d) Binary OD region.

(a) (b) (c) (d)

Fig. 4. Vessel preprocessing and extraction. (a) Original retinal image, (b) Background segmented mask, (c) Enhanced retinal
vessels using Gabor Wavelet and (d) Binary segmented vessels.
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extraction of candidate retinal blood vessels which
are to be categorized into artery or vein class. As
suggested by Parr and Spears,64 Knudtson et al.
(1994) a circular zone that is at a speci¯c distance
from OD, is marked and the vessels within this
zone are considered for classi¯cation and AVR com-
putation purpose. Although, some of the researchers
have classi¯ed the complete retinal vessel net-
work37,39,52 but since our goal here is to calculate
AVR which can be e±ciently calculated by asses-
sing the blood vessels in a speci¯c circular zone
around OD, therefore, only the vessel portions
within a circular zone are selected. A ¯xed circular
RoI around OD is identi¯ed by placing two con-
centric circles; one at 1=4 Disk Diameter (DD) and
another at 1 DD, from OD boundary. Another
reason for selection of this zone is to ignore the
vessel portions near OD because glial tissue or

perivascular sheathing may in°uence the vessel
segments in OD proximity.11 Figure 7(a) shows the
OD boundary and RoI between the two concentric
circles and Fig. 7(b) shows the vessels extracted
from measurement zone.

After the vessels within RoI are extracted, the
next phase is to split those connected vessels into
isolated vessel segments by determining the vessel
junction points (bifurcations and cross-overs). These
landmarks make the vessel classi¯cation and mea-
surement task ambiguous. The slices in Fig. 9 illus-
trates this phenomenon where by examining it can
be noticed that the arteriovenous crossing in vessel
center-lines appears as one vessel segment, shown in
Fig. 9(c). In order to rectify the false landmark, it is
important to di®erentiate between bifurcations and
cross-overs. Moreover, even for AVR calculation,
the arteries and veins needed to be properly

(a) (b)

Fig. 6. OD Localization (a), Position of OD marked with its enlarged version in (b).

(a) (b)

Fig. 7. OD boundary. (a) OD boundary marked in green color and RoI is shown between concentric red and blue circle and (b)
Retinal vessels segments inside RoI.
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distinguished, therefore the vessels with crossing
points must be isolated into individual vessel seg-
ments. In this paper, we adopt a local variance-based
method for di®erentiation between two types of
junction points. For determination of these junction
points, following steps are implemented.

. First, the binary vessel map is skeletonized and
then potential junction points are extracted.
Skeletonization is an operation that removes the
pixels from edges of objects without destroying
the connectivity in an eight-connected scheme
and as a result, one-pixel wide center-line vessel
structure is extracted.23 For skeletonization, a
level-set algorithm proposed in Rumpf and
Telea,66 is used. The reason for choosing this
method is that it gives more smoother and cen-
tered structures than other thinning methods.
Moreover, center-line vessels avoid pruning
branches via this algorithm. Figure 8(a) show the

center-line vessels and (b) center-line vessel
structure embedded on RGB retinal image.

. Then, this skeleton-vessel image is convolved with
a kernel of 3� 3 shown in Fig. 10(a) and for each
pixel, the number of neighboring pixels are
counted. The location of pixels which have three
or more than three neighbors is taken. These
locations indicate vessel junction points, i.e.,
bifurcations, arteriovenous crossings or crossing
between vessel and capillary. Figure 10(b) shows
the pixel localized that have three or more than
three neighbors whereas (c) shows a single arte-
riovenous crossing which appears as two bifurca-
tion points.

. Now, to di®erentiate between a junction that is
bifurcation or arteriovenous crossing, the local
variance-based method is used. A circular window
of radius 11 is employed here that is made cen-
tered on the detected junction points (as shown in
Fig. 10(d), where the junction points are shown in
red with a circular window in green. The variance
of pixels inside the window in green component of
RGB image is captured. Since the vessel crossings
do not contain pixels from just one type of vessel,
i.e., it either contains pixels from (artery and
vein) or (artery and capillary) or (vein and cap-
illary), the captured variance will show a spike in
variance if it is a cross-over and will have more
variance than bifurcation points. This variance-
based property is used here to characterize the
vessel junctions as cross-overs or bifurcations.

. Once the bifurcations and crossing-overs have
been di®erentiated, the cross-over points are

(a) (b)

Fig. 8. Skeletonization of retinal binary vessels. (a) Skeletonized binary vessel map and (b) Skeletonized binary vessel segments
embedded on original image.

(a) (b) (c)

Fig. 9. Arteriovenous Crossing phenomenon. (a) Slice from
original image showing Arteriovenous crossing, (b) Corre-
sponding binary vessel segment and (c) Skeletonized vessel
segment.
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eroded in original extracted vessel map. As a re-
sult, we will have an image that does not have
vessel cross-overs.

It should be noted that for detection of cross-over
points, di®erent structures with varying radii
were tested and the preliminary trials favored the
choice of circular window with radius 11. After the
cross-overs are identi¯ed and removed, the binary
image now contains veins, arteries and small
thin capillaries. However, due to unavailability of
ground truth, the thin capillaries are not considered
in next phase, i.e., feature extraction for vessel
classi¯cation.

2.5. Feature extraction for vessel

classi¯cation

Once the vessel tree is split into vessel subsegments,
features are extracted from each candidate vessel
segment. Each detected vessel is regarded as a
sample for classi¯cation and represented by a fea-
ture vector containing several features. In previous
work, we proposed method for vessel classi¯ca-
tion.67 However, the research was tested on a small
image dataset that does not contain any pathology.
In another approach,68 retinal vessels were classi¯ed
using a small number of vessel segments from each
dataset (major A/V pairs).

In this paper, 81 features are proposed for
representation of blood vessels in retina, i.e., a single
vessel sample is represented by 81 features.
Although, the use of large number of visual repre-
sentations for a pattern recognition problem
increases the probability of accurate object classi¯-
cation, but it also increases the computations in-
volved in extracting and categorizing those features.
However, our proposed method includes the feature
selection process, so any irrelevant features extrac-
ted will be removed before ¯nal vessel labeling. Let
xi be the candidate vessel sample considered for
retinal vessel classi¯cation, where i ¼ 1; 2; . . . ;M ,
and M being the total number of vessel samples.
The number of vessel segments, i.e., i considered
from each dataset is di®erent. The true class label of
xi vessel sample is yi, where yi can only take on from
two values, since the number of vessel classes is two,
i.e., artery and vein. Denoted by F ¼ f1; f2; . . . ; fN ,
the feature matrix where j ¼ 1; 2; . . . ;N and N
being the total number of features extracted from
each vessel sample. So the dimensions of input data
matrix X is M �N, where each vessel sample xi in
X is represented by N distinct feature values. Y is
the vector containing values of true class labels yi.
The features extracted for retinal vessel classi¯ca-
tion comprises of: (I) First-order statistical features
characterizing the properties of histogram of
vessel pixels in di®erent color spaces. (II) Spatial

(a) (d)(b)

(c)

Fig. 10. Detection of vessel junctions. (a) 3� 3 window used to detect the junctions, (b) Location of vessel junctions,
(c) An arteriovenous crossing which fakes as two vessel bifurcations and (d) Circular window (in green) centered on junction points
in (red).
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distribution of gradient magnitude representing the
changes in vessel intensity with respect to fundus
area pixels. (III) Features based on ¯lter responses,
where the ¯lters borrowed from Leung and Malik,69

Schmid,70 Geusebroek et al.71 These features are
extracted from either vessel centerlines or complete
vessel segments. Features extracted from vessel
center-lines are e®ective due to the presence of light
re°ex in center of arteries and this light re°ex in
arteries makes them distinguishable from veins
since veins are darker in intensity. Another reason
for widely use of features from center-lines is the less
number of pixels required in feature set which leads
to less computations in form of pixel-processing as
compared to features from complete vessel seg-
ments. RGB, CIE L*a*b, CMYK and YCbCr color
spaces are exploited for extraction of features. All
the features are concatenated into a single feature
set, consisting of 81 features. It has been observed in
literature that features obtained using di®erent
methods outperform single type of features because
visual representations acquired using multiple
techniques have the ability to capture various
aspects of same object in image.72,73 Details of
proposed features are elaborated below and Table 1
tabulates the features which are used in this paper
for retinal vessel recognition.

2.5.1. Histogram-based ¯rst-order statistical
features

First-order statistical features are extracted using
histogram of vessel center-lines. The vessel center-
line pixel intensities are recorded in di®erent color
spaces and saved into a vector. Then the distribu-
tion of vessel center-line pixel intensities is analyzed
by quantizing the total intensity range into 256
bins. The motivation behind extracting features
from histogram-based statistical values is that they
o®er better results as compared to raw pixel
values.74 21 features are extracted using statistical
properties of intensity distribution as described in
Table 1.

2.5.2. Vessel Intensity Transition Features
(VITF)

VITF represents strength of change in intensity as
the circular pro¯le crosses the vessel segments, il-
lustrated in Fig. 11 and this strength is expressed
here by means of gradient magnitude. Gradient
magnitude accurately depicts the power of peaks
and valleys of intensity in an image. The cross-sec-
tional vessel intensity transitions are investigated in
depth here. As mentioned before that arteries are

Table 1. Details of feature set.

Feature no. Feature description Type

1–21 (f1 � f21) Mean, Standard Deviation, and Entropy of vessel
Center-line pixels. (Red and Green channel of RGB;
Luminance and Chrominance channel of YCbCr color
space, L and B channel of L*a*b and M of CMYK)

Histogram-based statistical features

22–49 (f22 � f49) Minimum and Maximum value of gradient magnitude,
Kurtosis and Variance of gradient magnitude
histogram. (Red and Green channel of RGB;
Luminance and chrominance channel of YCbCr color
space, L and B channel of L*a*b; and M of CMYK)

Gradient magnitude and spatial distribution of
gradient magnitude

50–70 (f50 � f70) Minimum, Maximum and Variance of pixel intensities of
complete vessel segment. (Red and Green channel of
RGB; Luminance and chrominance channel of
YCbCr, L and B channel of L*a*b, color space and M
channel of CMYK)

Values directly calculated from complete vessel
pixel intensities

71 (f71) Ratio of center-line pixels intensity average to average of
intensities in complete vessel segment (in Green
channel of RGB)

Average of pixel intensity values taken from
center-line pixels and complete vessel
segments

72–81 (f72 � f81) Minimum and Maximum value of responses of ¯lters
from LM, Schmid and MR ¯lter banks in red and
green channels of RGB image

Values calculated from raw pixel values in
¯ltered images

Classi¯ers fusion for improved vessel recognition
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brighter in intensity as compared to veins, so the
intensity transitions captured for both classes (ar-
tery and vein) show signi¯cant di®erence. It should
be noted that the curved pro¯le is made to obtain
features from all those vessel segments which are
considered in RoI for vessel classi¯cation. For ex-
traction of the transition features, a portion of circle
cutting the vessel segments is taken and gradient
magnitude of intensities along with that curved
portion is calculated as shown in Fig. 11. The
strength of gradient magnitude for vein class is
larger due to abrupt changes in intensity of vein,
whereas for artery class, they are lower because
arteries are brighter as compared to veins so in-
tensity transitions are not sharp as compared to
fundus area pixels. Therefore, the gradient magni-
tude will be high for vein class as compared to ar-
tery class. This is characterized by considering the
minimum and maximum value of gradient magni-
tude. Also, the spatial distribution of gradient
magnitude is obtained and quantized into 15 bins. It
is noticed that for vein class, the majority of values
cluster at starting and ending bins in spatial dis-
tribution while for artery class, magnitude gradient
values show membership to the bins which are in
middle. Moreover, the gradient magnitude values
for the artery class are evenly distributed among all
bins as compared to vein class, so this behavior is
captured by taking kurtosis and variance of gradi-
ent magnitude histogram. We further explain this
property as follows: As the vein class shows wider
blood vessels than artery class, the gradient mag-
nitude is higher along its edges, but lower within its
internal pixels. While for artery class, as the width
of blood vessels is very narrow, the variation in
gradient magnitude is less, so its spatial distribution

of gradient magnitude is even. Di®erent values of
bins (varying from 10 to 30) are tested and it is
observed that value of 15 bins capture most suitable
characteristics of both vessel types. Based on these
properties, 28 features are extracted in di®erent
color spaces, details are mentioned in second row of
Table 1.

2.5.3. Features from all pixels in vessel

segment

Next, 28 features are extracted using all pixel values
in vessel segment, as described in third row of
Table 1. The raw pixel values are considered for
feature extraction in this category.

2.5.4. Features from ¯lter response

of images

Filters from Leung–Malik (LM) Filter Bank,69

Schmid (S) Filter Bank70 and MR Filter Bank71 are
employed here to extract features. The selected ¯l-
ters are convolved with red and green channel of
RGB fundus image and the vessel center-line pixels
of ¯lter response images are considered for feature
extraction.

Leung–Malik ¯lter bank contains; 48 ¯lters
including ¯rst and second derivative of Gaussian
¯lters at various orientations and scales, Laplacian
of Gaussian ¯lters and simple Gaussian ¯lters.
However, we have borrowed only one Gaussian ¯l-
ter which is at scale ¼ 2

p
2. The selection of this

¯lter is made through the preexperiments in which
only one ¯lter was seemed to enhance the retinal
vessels.

Schmid ¯lter bank contains 13 rotationally
symmetric ¯lters of the form given in Eq. (2).

F ðr; �; �Þ ¼ Foð�; �Þ þ cos
��r

�

� �
e

r 2
�2� 2

; ð2Þ

where (�,�Þ takes the values (2,1), (4,1), (4,2),
(6,1), (6,2), (6,3), (8,1), (8,2), (8,3), (10,1), (10,2),
(10,3) and (10,4). In this paper, we have used two
¯lters from Schmid ¯lter bank, with (�; �) having
values of (2,1) and (10,4). The third ¯lter bank
used is MR ¯lter bank, which basically consists of
38 ¯lters. From this ¯lter bank, we have borrowed
two isotropic ¯lters, i.e., Gaussian ¯lter and
Laplacian of Gaussian ¯lter. Ten features are
extracted using the ¯ltered images, as shown in
¯fth row of Table 1.

Fig. 11. Color retinal image with circular pro¯le marked in
blue and small curved portions in red.
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2.6. Width estimation of vessels

The width of classi¯ed vessel segments is calculated
here using 2D Euclidean distance transform.75

When the distance transform of a complement of
binary image is taken, the resultant image looks like
a gray-level image, but in actual distance-trans-
formed image represents distance of the respective
pixel to the nearest nonzero pixel. For calculation of
width, ¯rst the complement of segmented binary
vessel image is taken (say I1) shown in Fig. 12(b).
2D Euclidian distance transform is applied on I1 in
Fig. 12(b), giving ID as a resultant image shown in
Fig. 12(c) with its enlarged version. Then the cen-
ter-line vessel map of original binary vessel network
IB is obtained, as shown in Fig. 12(d) and multi-
plied with ID to acquire distance map value for
center-line pixels. This distance map image (shown
in Fig. 12(e)) is ¯nally multiplied by two to get
vessel width.

2.7. Calculation of AVR

After we have acquired the width of vessels, AVR is
calculated. The parameters Central Retinal Arterial
Equivalent (CRAE) and Central Retina Venous
Equivalent (CRVE) are determined using Parr–
Hubbard formulas.64,65 It should be noted that the
width of single vessel does not remain constant for
whole vessel and varies according to the pixels as
shown in Fig. 12(e). Therefore, mean of width of a

vessel segment is taken and collected in separate
vector; \Arteriole" and \Venule", respectively,
depending upon the class of label of vessel generated
previously. These two vectors show the mean width
of respective vessels. Equations (3) and (4) show the
formula for calculating CRAE and CRVE, respec-
tively.

CRAE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:87W 2

a þ 1:01W 2
b � 0:22WaWb � 10:73Þ

q
;

ð3Þ
where Wb and Wa, is the median and the value oc-
curring immediately before the median in vector
\Arteriole", respectively.

CRVE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:72W 2

a þ 0:91W 2
b þ 450:02Þ

q
: ð4Þ

Likewise for CRVE, Wb and Wa is the median
and the value occurring immediately before the
median in vector \Venule", respectively. AVR is
calculated as given in Eq. (5).

AVR ¼ CRAE

CRVE
: ð5Þ

3. Feature Selection and Classi¯cation

of Vessels

In this section, the method proposed for feature
selection and vessel classi¯cation is explained. To
select the signi¯cant features, the features are ¯rst

(a)

(d) (e)

(b) (c)

Fig. 12. Vessel width computation. (a) Binary vessel map, (b) Complement of binary vessel map, (c) Distance map of complement
binary map, (d) Center-line vessels and (e) Product of (c) and (d).
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ranked using two feature ranking strategies and
then the classi¯cation accuracy of three classi¯ers is
used as a threshold to select an optimal feature
subset from ranked feature list. The feature subsets
selected depending on accuracy of each classi¯er are
then fused to make a single feature subset and will
be used by hybrid labeling method for retinal vessel
classi¯cation. This process is elaborated in detail in
sections to follow. We will ¯rst discuss the feature
selection process here followed by vessel classi¯ca-
tion scheme.

3.1. Ranking of features and selection of
optimal feature subset

The motivation for including a feature selection
module is that the extracted features may contain
some redundant data that leads to over¯tting of
prediction model and consequently reduction in
prediction accuracy. The selection of features
ensures the inclusion of only those features that are
actually useful for classi¯cation and subsequently
decreases the computational complexity.76 In this
paper, we use two feature-ranking techniques to
rank the features but a novel approach is followed
for selecting features from ranked feature list. The
system works by ¯rst ranking the features according
to two feature ranking methods, i.e., Pearson Cor-
relation Coe±cient58 and Relief-F method59 and
then selection of optimal features. Generally, after
the features have been ranked and arranged
according to their ranks, a speci¯c threshold is used
to select a certain number of top-ranked features.
This threshold is usually user-de¯ned, however, as
pointed out in Refs. 77 and 78, the correct way to
ensure the selection of optimal combination of top-
ranked features is by evaluating the classi¯cation
performance of di®erent combinations of top-ranked
features. Therefore, the selection of signi¯cant fea-
tures from a ranked feature list cannot be carried
out using a ¯xed threshold because we do not have a
prior knowledge regarding the performance of dif-
ferent number of ranked features. In this paper, we
use the maximum classi¯cation accuracy of classi-
¯ers as the threshold to select the features. A par-
ticular number of top-ranked features that yield
maximum accuracy on classi¯er is selected. In this
paper, we employed three classi¯ers for selection of
optimal number of top-ranked features. The opti-
mal feature subsets selected using three classi¯ers

are combined and used by proposed hybrid classi-
¯cation technique for vessel classi¯cation.

Class label yi and feature value fj of every
sample xi is given as an input to feature ranking
strategy. Both these techniques evaluate correla-
tion of each feature with the class label using some
criteria79,80 and a rank is generated for each feature.
The features are then arranged in descending order
of their ranks, i.e., F � ¼ ffr1 ; fr2 ; fr3 ; . . . ; frNg,
where fr1 and frN denotes the features with highest
and lowest rank, respectively. For selection of
feature subset, the ranked features F � are given as
an input by constructing \n" feature subsets, in
which ¯rst feature subset is initialized by incor-
porating only the highest-ranked feature, the sec-
ond subset is constructed by adding second top-
ranked feature in the ¯rst subset and this process is
repeated until the last feature subset contains all
ranked features. By applying di®erent combina-
tions of highly ranked features to classi¯ers, dif-
ferent predictive models are generated which have
di®erent accuracies. The optimal predictive model
is the one with maximum classi¯cation accuracy
and the feature subset corresponding to this pre-
dictive model is selected. This feature selection
process is shown in Fig. 13. As illustrated in
Fig. 13, di®erent combinations of ranked features
are applied to classi¯er, and the feature subset,
f T
S , corresponding to maximum classi¯cation

accuracy, T, is selected. Now, since we have
employed three supervised classi¯ers, so three op-
timal feature subsets are obtained. The number of
features in the optimal subsets is not speci¯c. This
hybrid approach allows us to select di®erent fea-
ture combinations from ranked feature list. The
ranked optimal feature subsets obtained using
Pearson Correlation Coe±cient method on k-NN,
SVM and Naïve Bayes classi¯er are denoted by fp1 ,
fp2 and fp3 , respectively, and those obtained using
Relief-F method on k-NN, SVM and Naïve Bayes
classi¯er are denoted by fp1 , fp2 and fp3 , respec-
tively. Finally, the union of those optimal feature
subsets is taken as given in Eqs. (6) and (7), and
the resulting feature subsets, FP and FR are used
by proposed hybrid classi¯cation scheme for retinal
vessel labelling. The feature ranking approaches
used are

FP ¼ fp1 [ fp2 [ fp3 ; ð6Þ
FR ¼ fr1 [ fr2 [ fr3 : ð7Þ
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3.1.1. Pearson Correlation Coe±cient
method

The Pearson Correlation Coe±cient (PCC) method
ranks features by calculating linear correlation be-
tween individual features and class labels.58 In this
paper, we use PCC method to obtain rank of fea-
tures. This PCC method ¯nds correlation pi for
relevance assessment of the feature fj with the
corresponding class label yi and as an output, a
correlation score for each individual feature is gen-
erated. PCC of a vessel sample xi (where xi 2 X)
and class label yi (where yi 2 Y ) is calculated as
given in Eq. (8), where cov is covariance and � is
variance.

pðxi; yiÞ ¼
covðxi; yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðxiÞ�ðyiÞ

p : ð8Þ

3.1.2. Relief-F algorithm

The second feature ranking algorithm that is used
here is Relief-F algorithm.59 In Relief-F algorithm,
each feature gets a weight depending upon its
strength for distinguishing between those opposite
class samples that are near to each other and di±-
cult to di®erentiate. The feature rank is calculated
by taking a data point at random and considering

the k-nearest neighbors of that data point.59 The
k-nearest neighbors are taken from both the classes
and by considering their contribution, the strength
of feature is analyzed. In order to ¯nd the optimal
value of k for this feature ranking technique, we
analyzed the weights of features by varying the
value of k. Here, maximum value of K is taken as
75% of total instances because according to theory
of Relief-F concept,59 if the value of K is taken too
small, then estimates would be di±cult to generalize
on highly varied data whereas if the value of K is
equal to number of instances, then signi¯cance of
relevant features will be deteriorated.

3.2. Details of classi¯ers used for
feature selection after ranking of

features

After the features are ranked using the above
mentioned strategies, signi¯cant features are se-
lected by application of ranked features on three
classi¯ers (k-NN, SVM and Naïve Bayes). The same
three classi¯ers are used in decision fusion frame-
work for recognition of retinal vessels. The purpose
to use the same classi¯ers for vessel classi¯cation, is
to study the e®ect of single classi¯ers performance
with the ones obtained when they are combined.
The classi¯ers used are detailed in what follows.

Fig. 13. Complete framework for optimal ranked features selection, where f N
S represenets the total number of feature subsets

acquired from ranked feature list, AccNS denotes the classi¯cation accuracy corresponding to feature subset f N
S , T represents the

maximum accuracy obtained using a feature subset f T
S .
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3.2.1. k-NN classi¯er

k-NN is one of the simplest classi¯ers used for
supervised classi¯cation.81 It searches for closest k
samples from complete dataset by calculating dis-
tance between training and test instances. For ex-
ample, in our case, when an unknown vessel sample,
say xi comes, the labels of k-nearest neighors of xi
are analyzed and then xi is assigned a class (either
\artery" or \vein") depending upon the label of
majority neighbors. The distance between the test
sample and all nearest neighbors is calculated.
\Euclidean distance" is chosen to calculate the dis-
tance between sample and neighbors. Equation (9)
shows the Euclidean distance calculated between
the vessel sample and its nearest neighbors, where xi

is the test sample and xmb represent the nearest
neighboring samples with subscript b showing the
total number of nearest neighbors. In order to obtain
the optimal value of k for our vessel classi¯cation
task, di®erent k values such as 1, 3, 5, 7 and 9 are
tested.

dðxi; xmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq
b¼1

ðxi � xmb
Þ2

s
: ð9Þ

3.2.2. SVM classi¯er

SVM is a supervised machine learning method that
separates di®erent classes in testing data by an
optimal hyperplane82 and the advantage of using
SVM in classi¯cation lies in its ability to identify a
nonlinear separation between data-points of di®er-
ent classes. This is carried out by using di®erent
\separation" functions called kernels. The input
sample vector xi represented by N feature values is
mapped to a new feature space ’ with higher
demensions and an optimal hyperplane is con-
structed using the kernel Kl(xi;xm), shown in
Eq. (10), where xi and xm are two feature input
vectors. In our case, the dataset is tested using SVM
with di®erent kernel functions, i.e., Polynomial
(Klpo) and Radial Basis Function (RBF) (KlGa),
and the function that provides optimal results is
selected. For polynomial kernel, the degree is varied
from 1 to 3 and for RBF kernel, the scaling factor is
tested using values from 1 to 9. The representations
for both these kernel functions are given in Eqs. (11)
and (12).83

Klðxi; xmÞ ¼ h’ðxiÞ:’ðxmÞi; ð10Þ

Kl�oðxi;xmÞ ¼ ðxi:xm þ 1Þ�; ð11Þ
where � is degree of polynomial (11)

KlGaðxi; xmÞ ¼ e
jjxi�xm jj 2

2�G : ð12Þ
where �G is Gaussian sigma.

3.2.3. Na€{ve Bayes classi¯er

Naive Bayes classi¯er is a widely used probabilistic
classi¯er that classi¯es the data based on Bayes'
Theorem.84 The input data matrix X and vector of
labels Y are fed to classi¯er, and according to Bayes
theorem, the classi¯cation aim is to achieve maxi-
mum probability P ðY jXÞ, as shown in Eq. (13). The
strength of Naïve Bayes is its simplicity and e±-
ciency with which it classi¯es the data. Naïve Bayes
classi¯er is implemented using di®erent distribution
functions such as kernel and normal. The classi¯er is
tested with both distribution functions and model
with highest validation accuracy is selected.

P ðYvjXÞ ¼ P ðXjYvÞP ðYvÞ
P ðXÞ : ð13Þ

3.2.4. Proposed hybrid classi¯cation scheme

The proposed hybrid classi¯cation technique is a
fusion of decisions generated by k-NN, SVM and
Naïve Bayes classi¯ers for vessel classi¯cation. The
proposed scheme works in a way such that the
labels given by each of three classi¯ers are acquired
and a ¯nal label is assigned to the vessel sample by a
classi¯er fusion technique known as majority vot-
ing.85 The main motivation for combining the
decisions of the supervised machine learning meth-
ods is the strategy used for decisions combination,
which re°ects the local competency of individual
learning methods.86 Moreover, the samples mis-
classi¯ed by individual classi¯ers may not neces-
sarily overlap.87 Majority voting is one the popular
classi¯er fusion techniques in which the single labels
produced by individual classi¯ers are counted and
the sample is given the label with majority votes.87

It is an e±cient classi¯er fusion scheme since it does
not require any other information except for single
class labels generated by individual classi¯ers. The
optimal feature set selected by the feature selection
process is used by proposed hybrid classi¯cation
method for vessel di®erentiation.
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4. Experimental Results

Through experimental results, we aim to investigate
if the proposed feature selection and classi¯er fusion
technique improves the retinal vessel classi¯cation
task and subsequent AVR calculation. We ¯rst give
a description of datasets used in this research. Then,
we elaborate the procedure for choosing the optimal
parameters of classi¯ers. Afterwards, we illustrate
the feature ranks obtained from two di®erent
strategies and features selected after application of
ranked features on classi¯ers. Then, we show the
results of applying selected features on proposed
decision combination framework followed by AVR
calculation results. Computer program in this work
is implemented using computer with 1.80GHz pro-
cessor and 4.0GB RAM. Commercial software
MATLAB is used for implementation purpose.

4.1. Speci¯cations of datasets

The methodology is evaluated on three databases: a
database collected from Armed Forces Institute of
Ophthalmology (AFIO), Pakistan, and two public
labeled databases, i.e., INSPIRE-AVR33 and
VICAVR database.31 In this research, only those
vessel segments are used for retinal classi¯cation
and quanti¯cation purpose whose labels are pro-
vided in ground truth.

The local database contains 44 retinal images in
JPEG format with dimensions 1504� 1000, in-
cluding 11 images containing pathological struc-
tures like hard exudates, cotton wool spots,
hemorrhages, arteriosclerosis, vessel tortuosity,
focal arteriolar narrowing and OD blurring. True
vessel labels and AVRs are acquired by an expert
ophthalmologist that will be are considered as a
ground truth. INSPIRE-AVR is a publically avail-
able database containing high-resolution 40 OD
centered healthy retinal images, acquired at the
University of Iowa Hospitals and Clinics. These
images are of size 2392� 2048 and available in
JPEG format. AVR values estimated by two
observers are provided with INSPIRE-AVR data-
base, to be used for comparison and the vessel labels
are acquired from our ophthalmologist. Third da-
tabase used is VICAVR that contains OD-centered
58 images of size 768� 576. The artery-vein
labels and vessel caliber for VICAVR database,
obtained from three human experts are available
with the dataset. Table 2 describes the complete
speci¯cations of datasets used in this study.

The images in local dataset are marked by oph-
thalmologist on the basis of visual appearance;
therefore, underlying causes of di®erent abnormal
structures are not exploited here. Additionally, de-
tection and diagnosis of the other retinal patholo-
gies occurring independently or associated with HR
are beyond the scope of this research. In this paper,
we have evaluated the results only for vessel clas-
si¯cation and AVR computation. The unclassi¯ed
vessels are not included in evaluation.

4.2. Parameter tuning of classi¯ers

In our research, classi¯cation accuracy of three
classi¯ers (k-NN, SVM and Naïve Bayes) is used as
a threshold to select the optimal top-ranked fea-
tures. Before giving ranked features as an input to
classi¯er, for feature selection, the parameters of
classi¯er are tuned. This is done in \parameter
tuning phase", where the dataset is divided into two
parts, training set (70% of data) and validation set
(30% of data). The classi¯er is tested with di®erent
parameters using training data and then accuracy is
evaluated on validation set. Complete ranked fea-
ture set of 81 features is given as input to classi¯er
for tuning of parameters. The parameters showing
maximum accuracy on validation set are selected.
All three supervised classi¯ers are trained once
using training data and then tested on validation
set to acquire optimal parameters. The values of
optimal parameters of classi¯ers are mentioned in
Table 3.

Once the optimal parameters are acquired, three
classi¯er models (k-NN, SVM and Naïve Bayes) are
re¯t again to entire dataset using 10-fold cross
validation and classi¯cation accuracy of these three
classi¯ers is used to select optimal number of ranked
features from ranked feature list. In 10-fold cross-
validation, data is divided into 10 subsets, out of
which nine are retained for training and one is used
for testing. The samples which are included in each
fold are randomly selected. Each fold is iteratively
tested and the rest of folds are kept for training. The
10-fold cross-validation is conducted for 10 times,
and the samples which are included in each 10-fold
cross-validation are randomly selected di®erently.
Di®erent combinations of ranked feature subsets are
given as an input to classi¯er and the subset leading
to maximum classi¯cation accuracy is selected. The
performance metrics calculated for evaluation of
ranked feature subsets on classi¯ers are, accuracy,
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sensitivity and speci¯city. However, accuracy met-
ric is used as a stopping criteria to select the number
of top-ranked features from ranked feature list or in
other words, as a threshold to select the optimal
feature subset. Sensitivity the is true positive rate
(positives) and speci¯city is true negative rate
(negatives). The feature selection procedure is il-
lustrated in Fig. 13. The evaluation parameters are
calculated using Eqs. (14)–(16), respectively.

Sensivity ¼ TP

ðTP þ FNÞ
; ð14Þ

Specificity ¼ TN

ðTN þ FP Þ
; ð15Þ

Accuracy ¼ ðTP þ TNÞ
ðTP þ TN þ FP þ FNÞ

: ð16Þ

4.3. Performance of feature raking
methods and Selection of optimal

features

In order to rank the features using Relief-F method,
the value of K, i.e., number of nearest neighbors is
determined. We analyzed the weights of features
with varying the number of nearest neighbors, i.e.,
K ¼ 1 to 250, 1 to 287 and 1 to 333, for local, IN-
SPIRE-AVR and VICAVR datasets, respectively.
The optimal value of K for which the weights of
features become stable is 196, 132 and 245 for local,
INSPIRE-AVR, and VICAVR dataset, respective-
ly. Figure 14 shows the sample plots of ¯rst 24
features from local database. The ranking of fea-
tures depends on the weights, and Fig. 14 shows the
weights of features are varying with increasing the
number of K-neighbors. It can be observed in
Fig. 14(a) that the feature 1 has a signi¯cant
weights di®erence with other 5 features (i.e., from

Table 3. Parameters con¯guration for di®erent
classi¯ers.

Classi¯ers
Classi¯er parameters selection using
features ranked by both methods

k-NN Nearest neighbors k ¼ 3
SVM \RBF" kernel with scaling factor 7
Naïve Bayes \kernel" distribution function

Table 2. Speci¯cations of datasets.

Datasets
Number and size of

images
Number of vessel segments

for classi¯cation Ground truth and details of pathologies

Local dataset 44 images of dimensions
(1504� 1000)

356 vessel samples (195
vein vessels, 161 artery
segments)

Corresponding AVR values for 44 images
estimated by expert ophthalmologist

Images include:
20 Non-HR images
11 images with Grade-I HR including (4

images with vessel sheathing near OD,
2 images with hard exudates and
hemorrhages, 1 image with branch retinal
vein occlusion)

8 images with Grade-II HR including (1 image
with vessel sheathing near OD, 1 image with
cotton wool spots and hemorrhages)

3 images with Grade-III HR including
(2 images with cotton wool spots and
hemorrhages)

2 images with Grade-IV HR including
(2 images with cotton wool spots,
hemorrhages and OD swelling)

INSPIRE-AVR
dataset

40 retinal images of
dimensions
(2392� 2048)

410 vessel samples (201
artery segments, 209
vein segments)

Corresponding AVR values for 40 images
estimated by two Observers

VICAVR database 58 retinal images of
dimensions
(768� 576)

476 vessel samples (244
vein vessels, 232 artery
segments)

Artery/Vein labels and AVR values for
40 images estimated by three Observers
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2 to 5) and the features from 2 to 6 have negligible
weight di®erence. In Fig. 14(b), it is observed that
the weights of feature 7 are increasing with an in-
crease in number of neighbors. It can also be ob-
served that as K approaches 196, the feature
weights become stable. This situation motivates us
to select K ¼ 196 for local database, since adding
more neighbors is not contributing towards the
better modeling of data.

For selection of top-ranked features, di®erent
subsets of features acquired from ranked feature
lists are applied on k-NN, SVM and Naïve Bayes
classi¯er using 10-fold cross-validation. This lead to

generation of 81 predictive models with di®erent
accuracy, sensitivity and speci¯city metrics, as il-
lustrated in Fig. 15 with upper and lower curves
showing performance metrics for local and IN-
SPIRE-AVR dataset, respectively. The feature
subset that maximizes the classi¯cation accuracy on
each classi¯er is selected. For a better visualization
and comparison purpose, we concatenated the per-
formance curves of both datasets on same x-axis in
Fig. 15. From these illustrations, the relation of
classi¯er with certain combinations of ranked fea-
tures can be observed. Each classi¯er's response for
each feature subset is di®erent, which indicates the

(a) (b)

(c) (d)

Fig. 14. Weights of ¯rst 24 features varying as number of neighbors are increased from 1 to 250 by Relief-F algorithm (for local
database). (a) Values of feature weights from 1 to 6, (b) Varying weights of features from 7 to 12, (c) Varying weights of features
from 13 to 18 and (d) Varying weights of features from 19 to 24.
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(a) (b)

(c) (d)

(e) (f)

Fig. 15. Performance metrics (Green, Blue and Red curves depicting Accuracy, Sensitivity and Speci¯city, respectively) for
di®erent-ranked feature subsets, upper curves: Local dataset and lower curves: INSPIRE-AVR dataset. (a), (c) and (e) Classi¯-
cation performance of k-NN, SVM and Naïve Bayes classi¯er on features ranked by PCC and (b), (d) and (f) Classi¯cation
performance of k-NN, SVM and Naïve Bayes classi¯er on features ranked by Relief-F method.
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importance of features combination on the class
label outcomes. Use of di®erent classi¯ers for selec-
tion of optimal number of features, resulted in se-
lection of feature subsets containing di®erent
number of features. For example, as shown in
Fig. 16(a), the feature subset that led to maximum
classi¯cation accuracy on k-NN, SVM and Naïve
Bayes classi¯er for local dataset using PCC, consists
of di®erent number of features, i.e., 45, 55 and 51,
respectively. These feature subsets will be combined
using union operation to obtain a ¯nal feature
subset.

In terms of number of features, no speci¯c pat-
tern is seen among the number of features in opti-
mal subsets in Fig. 16. However, in majority cases,
SVM requires the largest number of features to

reach the maximum classi¯cation accuracy. In all
cases, the value of \threshold" (maximum classi¯-
cation accuracy), is highest for INSPIRE-AVR da-
tabase. An obvious explanation for this observation
is the greater quality of fundus images in INSPIRE-
AVR dataset. From Fig. 15, it is also concluded that
overall no signi¯cant di®erence is seen between the
performance of classi¯ers on features ranked either
using PCC or Relief-F method. We also tested if
the use of feature ranking is bene¯cial by analyzing
the e®ect of feature subsets obtained from; (a)
Ranked features list using Relief-F method, (b) Raw
feature list without using ranking algorithm, on k-
NN classi¯er for VICAVR database. From Fig. 17,
it is found that feature ranking strategies have ac-
tually contributed in increasing the classi¯cation

(a) (b)

Fig. 16. Number of features in optimal feature subsets acquired from two ranking schemes with classi¯cation accuracy of three
classi¯ers. (a) Number of features in optimal feature subsets using PCC method and (b) Number of features in optimal feature
subsets using Relief-F method.

(a) (b)

Fig. 17. Comparison of classi¯cation accuracy achieved for raw feature subsets (unordered) and ordered feature list using Relief-F
method on k-NN classi¯er for VICAVR dataset. (a) Classi¯cation performance of feature subsets from unordered feature list and (b)
Performance attained using feature subsets from ranked lists acquired through Relief-F method.
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accuracy. Note that the average accuracy and peak
accuracy attained from ranked list is much higher as
compared to accuracy illustrated using unordered
feature list.

4.3.1. Optimal feature subset selection

Since we use classi¯cation accuracy generated by
three classi¯ers as a criteria to select optimal feature
subset, so three di®erent feature subsets will be se-
lected for each dataset. As it can be seen in Fig. 16,
the number of features showing maximum classi¯-
cation accuracy on each classi¯er is di®erent, even
for the same dataset. So, in order to have a single
feature subset that can be used by proposed hybrid
classi¯cation approach, we combine the feature
subsets acquired using di®erent classi¯ers. The
number of features in each subset resulted after
talking union are shown in Fig. 18. The exact fea-
tures in selected subsets are shown in Table 4.
Majority of features in feature subset selected using
PCC with preevaluations by three classi¯ers are
also present in feature subset acquired using Relief-
F method. This indicates the similarity in ranking of
two di®erent strategies.

4.4. Retinal vessel classi¯cation using

proposed hybrid classi¯cation

scheme with optimal feature subset

The proposed hybrid classi¯cation scheme combines
the labels generated by three classi¯ers, i.e., k-NN,
SVM and Naïve Bayes. This decision-combination
is chosen for vessel classi¯cation because it repre-
sents the joint strength of objective function of
multiple classi¯ers. In majority voting, the votes

given by each classi¯er for a certain sample are
counted and the class with maximum votes is
assigned to the sample. For example, if SVM and
Naïve Bayes assigns \Artery" to a sample whereas
k-NN assigns \Vein", the ¯nal label will be given as
\Artery", since the \Artery" class has two votes.
After assigning the labels using proposed hybrid
classi¯cation method, accuracy, sensitivity and
speci¯city is calculated by comparing the ¯nal
labels with ground truth. The classi¯cation perfor-
mance achieved using proposed decision fusion
framework with optimal feature subsets (FP ) and
(FR), acquired using PCC and Relief-F method, is
given in Tables 5 and 6, respectively. Overall, hy-
brid classi¯cation scheme has caused to increase the
vessel classi¯cation accuracy, both for feature sub-
sets acquired from PCC and Relief-F ranking list.
We have illustrated the increments in classi¯cation
accuracies obtained with proposed classi¯cation
technique with those acquired single classi¯ers as-
sociated with averaged classi¯cation accuracy on
same feature subsets, as shown in Figs. 19 (using
PCC) and 20 (using Relief-F). For all datasets, the
increase in vessel classi¯cation performance show
the improvement induced by the multi-classi¯er
decision combination.

Confusion matrix attained using the performance
measures are shown in Fig. 21. Confusion matrix is
a representation of overall classi¯cation perfor-
mance, and re°ection of the fraction of two classes
being correctly classi¯ed or misclassi¯ed. These
illustrations validates the ability of proposed system
in classifying vessels. Here, we represent the class of
artery and vein sample with \1" and \0", respec-
tively. Therefore, the top two entities on the left
diagonal of confusion matrix (in green color) are
True Negative (TN) and True Positive (TP), re-
spectively. In our case, TP and TN, is the fraction of
vessels being correctly classi¯ed as, arteries and
veins, respectively, by the proposed method. The
other two entities in the adjacent diagonal (in peach
color) represent the False Negative (FN) and False
Positive (FP), respectively. We represent FP and
FN, as the fraction of veins being misclassi¯ed as
arteries and fraction of arteries being misclassi¯ed
as veins, respectively. The ¯rst two entities in third
row of confusion matrix represent the Sensitivity
and Speci¯city, respectively. In our case, Sensitivity
represents the percentage of TP (vessels correctly
classi¯ed as arteries) and Speci¯city represents the
percentage of TN (vessels correctly classi¯ed as

Fig. 18. Feature subsets selected for vessel classi¯cation, using
two di®erent ranking methods for VICAVR, INSPIRE-AVR
and Local database.
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veins). The last entity in the third row on right side
represents the overall classi¯cation accuracy. Here,
it represents the percentage of all vessels being
correctly classi¯ed. The other two entities in con-
fusion matrix on extreme right side of ¯rst and
second row are Positive Predictive Value (PPV)
and Negative Predictive Value (NPV), respectively.
PPV and NPV represent the percentage of TP and
TN among all data samples of two classes, respec-
tively. Here, PPV and NPV represent the fraction
of arteries and veins, correctly classi¯ed among all
artery and vein samples, respectively, in data.

The highest vessel classi¯cation accuracy is ob-
served for INSPIRE-AVR dataset with 93.9%

correct rate using Relief-F ranking and proposed
hybrid classi¯cation method. An interesting obser-
vation is the error rate for classi¯cation of artery
samples in local dataset, with 6.2% and 5.3% mis-
classi¯cation that is highest among all datasets. An
obvious explanation for this result is the presence of
pathological structures in local dataset images that
deteriorate the appearance of arteries and thus
make their classi¯cation more challenging. On the
other hand, both for INSPIRE-AVR and VICAVR
dataset, the misclassi¯cation rate for veins is more
high as compared to arteries.

Figure 22 shows an example of two fundus ima-
ges, selected from local database (Fig. 22(a)) with

Table 4. Optimal feature sets obtained via fusion of features using PCC (FP ) and Relief-F (FR) ranking.

Datasets FP FR

Local database f55, 7, 25, 31, 53, 8, 69, 1, 78, 51, 9, 45, 26, 49,
70, 71, 12, 64, 24, 68, 48, 54, 27, 47, 77, 23,
44, 60, 66, 30, 11, 50, 67, 72, 20, 61, 13, 21,
29, 57, 59, 73, 19, 2, 52, 36, 42, 35, 3, 75, 63,
37, 34, 39, 76g

f7, 55, 25, 31, 53, 1, 51, 8, 69, 49, 78, 26, 45, 9,
12, 70, 47, 27, 24, 64, 54, 50, 30, 23, 66, 60,
71, 68, 11, 48, 61, 13, 44, 77, 67, 20, 57, 59,
72, 19, 21, 29, 2, 42, 36, 39, 37, 63, 3, 73, 52,
35, 38, 75, 58, 18, 65, 40, 14g

INSPIRE-AVR database f25, 39, 51, 1, 55, 67, 38, 50, 7, 31, 53, 37, 49,
66, 69, 78, 54, 65, 70, 52, 71, 2, 77, 73, 56, 72,
40, 26, 3, 8, 74, 27, 32, 9, 68, 33, 13, 59, 58, 6,
57, 75, 30, 12, 5, 14, 63, 18, 62, 19, 15, 29, 17,
61, 76g

f1, 39, 51, 25, 50, 38, 31, 67, 55, 69, 78, 7, 70,
37, 49, 73, 53, 66, 52, 54, 65, 71, 77, 72, 5, 6,
22, 74, 75, 2, 40, 11, 13, 3, 23, 56, 29, 30, 35,
36, 12, 42, 57, 58, 16, 4, 59, 10, 68, 28, 26, 34,
61g

VICAVR database f7, 69, 78, 12, 66, 70, 53, 11, 71, 55, 67, 77, 72,
45, 25, 31, 8, 59, 1, 75, 57, 13, 47, 73, 76, 61,
63, 54, 65, 19, 17, 18, 9, 58, 30, 64, 68g

f7, 12, 11, 66, 53, 8, 55, 67, 69, 71, 78, 77, 70,
72, 25, 45, 59, 31, 1, 57, 13, 75, 9, 73, 61, 63,
19, 54, 65, 18, 17, 30, 76g

Table 5. Performance of hybrid classi¯cation for feature subsets acquired using PCC method.

Hybrid classi¯cation approach

Datasets Number of features in selected subset Accuracy (%) Sensitivity (%) Speci¯city (%)

Local dataset 55 90.17 91.45 89.22
INSPIRE-AVR dataset 55 93.41 95.02 91.87
VICAVR dataset 37 87.82 85.08 90.79

Table 6. Performance of hybrid classi¯cation for feature subsets acquired using relief-F method.

Hybrid classi¯cation approach

Datasets Number of features in selected subset Accuracy (%) Sensitivity (%) Speci¯city (%)

Local dataset 59 90.45 90.45 90.45
INSPIRE-AVR dataset 53 93.90 95.52 92.34
VICAVR dataset 33 85.92 83.95 87.98
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the segmented vessel network (Fig. 22(b)), candi-
date vessel segments for retinal vessel classi¯cation
inside RoI (Fig. 22(c)) and classi¯ed vessel segments
illustrated in Fig. 22(d), (blue and red circles show
vessels classi¯ed correctly as vein and artery, re-
spectively, whereas white and green circles show
unclassi¯ed vessel segments for which ground truth
is not available and vein segments misclassi¯ed as
artery, respectively.

4.5. Comparison of vessel classi¯cation
accuracy with other state-of-art

approaches

Table 7 tabulates the techniques and outputs
reported by previous researchers for retinal vessel
classi¯cation using INSPIRE-AVR and VICAVR
datasets and makes a comparison with the results

shown by our system. We used accuracy, sensitivity
and speci¯city metrics for comparison with vessel
recognition results presented by already existing
alternative methods. For comparison purpose with
previous approaches, we selected the vessel classi¯-
cation results using hybrid labeling scheme with
feature selection method that shows highest-per-
formance. Highest-vessel classi¯cation accuracy is
achieved using Relief-F ranking method with hybrid
classi¯cation approach for local dataset (90.45%)
and INSPIRE-AVR dataset (93.90%), while for
VICAVR database, the highest accuracy (87.82%)
is obtained using PCC method with hybrid classi-
¯cation method. For comparison of VICAVR
results, among the opinion of three experts, we used
the ground truth provided by Expert 1 with the
dataset.30

Area Under Curve (AUC) metric is used by
Niemeijer et al.,33 for evaluation of their proposed
vessel classi¯cation approach, however, in order to
facilitate the comparison with vessel classi¯cation
results of our system, we use the sensitivity and
speci¯city values approximated by Dashtbozorg
et al.38 from the AUC reported by Niemeijer et al.33

Note from Table 7 that both the sensitivity and
speci¯city values presented by our system show a
considerable superiority to the ones approximated
for.33 It should be noted that33 vessel classi¯cation
results are only for vessel center-line pixels whereas
our method is evaluated on complete vessel seg-
ments in RoI. On the other hand, our method has
not considered the small capillaries in vessel classi-
¯cation task due to the unavailability of ground
truth. Although, the vessel center-line features used
in Ref. 33 are also included in this research, but our
method exploits comparatively a larger number of
color planes for vessel characterization from both
healthy and pathological-diseased images. Note
that this comparison is with the approximated
sensitivity and speci¯city values for vessel classi¯-
cation presented by Niemeijer et al.33

In comparison with vessel classi¯cation results
proposed by,38 they acquired 91.1% accuracy for
INSPIRE-AVR dataset using 2-fold cross-valida-
tion with Linear Discriminant Analysis (LDA)
classi¯er while our method achieved an accuracy of
92.26% using 10-fold cross-validation with fusion of
classi¯er decisions. In addition, note that38 achieved
this accuracy using only a set of 19 features whereas
our system obtained the mentioned accuracy using
an optimal set of 37 features. In this case, although

Fig. 20. Comparison of classi¯cation accuracy obtained using
single classi¯er (shown in blue) and proposed hybrid classi¯-
cation (shown in orange), for feature subset from Relief-F
ranking.

Fig. 19. Comparison of classi¯cation accuracy obtained using
single classi¯er (shown in blue) and proposed hybrid classi¯-
cation (shown in orange), for feature subset from PCC ranking.
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our system achieved slightly higher vessel classi¯-
cation accuracy, sensitivity and speci¯city but if the
number of features are compared, our system is in-
ferior in e±ciency as compared to the ones pre-
sented by Dashtbozorg et al.38 The vessel

classi¯cation approach presented by Dashtbozorg
et al.38 is tested on three databases and the results
are reported for vessels inside RoI as well as com-
plete retinal vessel tree. However, for computation
of AVR, the classi¯cation of complete vessel tree is

(a) (b)

(c) (d)

(e) (f)

Fig. 21. Confusion matrices obtained for hybrid classi¯cation using features selected via PCC and Relief-F method. Left side: (a),
(c) and (e) Vessel labeling performance with optimal feature subsets using PCC method. Right side: (b), (d) and (f) Vessel labeling
performance with optimal feature subsets using PCC method.

Classi¯ers fusion for improved vessel recognition

1950021-25

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

03
.2

21
.3

9.
15

3 
on

 0
1/

06
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



not necessary. Classi¯cation of complete vessel tree
is computationally expensive as compared to clas-
si¯cation of small vessel portions inside RoI. In our
method, only the vessels inside RoI are used, thus
reducing the processing of redundant pixels that do
not contribute. In order to have system with less
complexity and increased e±ciency, only the vessels
inside RoI are assessed.

An accuracy of 87.6% is reported by Relan
et al.50 for the INSPIRE-AVR dataset as compared
to 92.44% accuracy in our research, however, the
sample size used in their paper is comparatively
larger. Two features, i.e., mean of Red and Green
channel from center-line pixels used by Relan
et al.50 for vessel recognition are also incorporated in
our method. It is worth noting that none of these
studies consider pathologically diseased images for
evaluation of their proposed methods. For
VICAVR, our system showed comparatively less
classi¯cation accuracy. An accuracy of 88.8% is
achieved by V�azquez et al.,30 on VICAVR dataset
which is a little higher than the ones achieved by
our system. Recently, Vijayakumar et al.,52 repor-
ted an accuracy of 92.4% on VICAVR dataset,
however, they have not mentioned the number of
vessels used for evaluation of their method. An ap-
parent reason for low classi¯cation rate achieved
using VICAVR can be the di®erence of ground-
truth used for evaluation purpose.

The classi¯cation results presented for both
healthy image database and diseased image

database prove the capability of system in recog-
nizing the vessels with higher accuracy.

4.6. AVR computation results

For evaluation purpose, the values of AVR calcu-
lated using the proposed method on three databases
is compared with the corresponding AVR values in
groundtruth. For INSPIRE-AVR database, we use
the AVR values provided by both the observers 1
and 2 as benchmark for comparison and error cal-
culation, since AVR estimated by an individual ob-
server is dependent on his visual perception.We have
used three parameters to assess the validity of our
method in calculating AVR: (a) mean of di®erence
between AVR values calculated by our system and
those estimated by human expert, (b) mean of ratio
of AVRs calculated automatically by our method to
that of estimated manually, (c) mean of di®erence
between AVRs by automatic method and average of
(AVRs by observer 1 and 2). The parameter (a) is
calculated by taking the mean of di®erence between
AVRs generated by automatic system with the
manual estimations. Parameter (b) is calculated by
taking the ratio of AVRs calculated automatically to
the corresponding AVRs given by human observer
and then taking the mean of all those ratios. The
closeness of parameter (b) which is basically mean of
ratios with 1 depicts the closeness of AVRs auto-
matically calculated and manually estimated. Pa-
rameter (c) is only calculated for INSPIRE-AVR

(a) (b) (c) (d)

Fig. 22. Classi¯cation of retinal vessels (images taken from local database). (a) Original retinal images, (b) Vessel segmentation
results, (c) Vessels inside RoI and (d) Classi¯ed retinal vessel portions (blue: vein, red: artery, white: neither artery or vein
(unclassi¯ed), green: vein that has been wrongly classi¯ed as artery).
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Table 7. Comparison of vessel classi¯cation with previous methods.

Performance parameter

Method Dataset Technique Accuracy Sensitivity Speci¯city

Niemeijer et al.33 INSPIRE-AVR database (All
center-line pixels detected in
RoI)

27 features from Red, Green,
Hue, Saturation and
Intensity plane + prior
information of retinal vessel
arrangement + LDA
classi¯er

— �78 �78

Dashtbozorg et al.38 INSPIRE-AVR Database (All
vessel segments inside RoI)

19 features based on HSI and
RGB color channel + LDA
classi¯er

91.1 91 86

VICAVR dataset (All vessel
segments including
unclassi¯ed vessels)

89.8 — —

Relan et al.50 INSPIRE-AVR dataset
(483 vessel segments)

4 features from Green, Red and
Hue planes + Squared-loss
Mutual Information
clustering

87.6 — —

V�azquez et al.30 VICAVR database (All vessel
segments including
unclassi¯ed vessels)

5 features from vessel pro¯les
in RGB, HSL and gray-level
color space with clustering
and tracking approach

88.8 — —

V. Vijayakumar et al.52 VICAVR database 29 features from RGB, LAB,
and YCbCr + SVM
classi¯er

92.4 — —

Our method INSPIRE-AVR dataset (total
410 vessel segments inside
RoI, unclassi¯ed vessel
segments not included)

53 features including 18
features from gradient
magnitude, 16 features from
pixel raw values, 12 from
histogram based and 6 from
¯lter responses + Relief-F
ranking followed by feature
selection using three
classi¯ers + decision fusion
scheme

93.90 95.52 92.34

Local Database (total 356
vessel segments inside RoI)

59 features including 20
features from gradient
magnitude, 19 features from
pixel raw values, 14 from
histogram based and 5 from
¯lter responses + Relief-F
ranking followed by feature
selection using three
classi¯ers + decision fusion
scheme

90.45 90.45 90.45

VICAVR (total 476 vessel
segments, unclassi¯ed vessel
segments not included)

37 features including 4 features
from gradient magnitude, 16
features from pixel raw
values, 10 from histogram
based and 6 from ¯lter
responses + PCC ranking
followed by feature selection
using three classi¯ers +
decision fusion scheme

87.82 85.08 90.79
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dataset. The use of these parameters has been mo-
tivated by Niemeijer et al.,33 and Dashtbozorg,
Mendonça, Campilho,38 who evaluated their AVR
calculation methods using parameter (a), while the
parameter (b) has been used by Ruggeri et al.88 in
order to analyze the closeness of AVRs obtained
automatically with those estimated manually. Pa-
rameter (c) is proposed here in order to analyze the
di®erence in AVR values by proposed method with
the average of AVRs by two experts. By taking the
di®erence with average of AVRs estimated by two
di®erent observers, the bias towards the AVR values
estimated by one person can be reduced. In order to
carry out the comparative analysis, two parameters,
i.e., (a) and (b), are also calculated for AVRs esti-
mated by observer 1 and 2 for INSPIRE-AVR da-
tabase to obtain inter-observer variability. This will
allow to analyze the closeness of error between (au-
tomatic and manual AVRs) and (AVRs estimated
by observer 1 and 2).

Table 8 shows the performance of our system in
AVR calculation and comparison with manual
estimations for INSPIRE-AVR database. Note that
there is considerable inter-observer di®erence in
AVRs estimated by two observers. The AVR values
calculated by our method are relatively closer to the
AVRs estimated by observer 1 as compared to the
AVRs estimated by observer 2. It is also important
to mention that our method achieved mean error of
0.0565, that is close to the inter-observer error, i.e.,

0.0520. When the mean of di®erence between au-
tomatically calculated AVRs and average of AVRs
is taken, the mean error declines to 0.0477.

Table 9 shows the results of AVR calculation for
local and VICAVR databases, where the mean error
is 0.0650 and 0.0849, respectively, larger than that
calculated for INSPIRE-AVR database. Since the
CAD systems are employed for acquiring diagnostic
assessment, the presented results in Tables 8 and 9
demonstrate that the AVRs computed by our sys-
tem can be considered as second independent
opinion obtained from an automatic \Machine
Expert". Furthermore, from the results of AVRs
calculation on pathologically diseased database, it is
revealed that our method is appreciable in provid-
ing the suitable AVR approximations.

4.7. AVR calculation comparison with

previous methods

Table 10 shows the comparison of the AVRs cal-
culated using our method with the results proposed
by other authors. The AVR calculation perfor-
mance in Ref. 33 was evaluated on INSPIRE-AVR
dataset by comparing the AVRs resulted from their
method with both observer 1 and 2. As shown in
Table 10, the mean errors reported by Ref. 33 with
respect to observer 1 and 2 are 0.06 and 0.05,
respectively, whereas these values are 0.0565 and
0.074 using our method.

Table 8. AVR calculation results for INSPIRE-AVR database.

Index Performance parameters Values

(a) Mean of di®erence between AVR Values by (automatic method and observer 1) 0.0565
Mean of di®erence between AVR Values by (automatic method and observer 2) 0.0740
Mean of di®erence in AVR Values by (observer 1 and 2) 0.0520

(b) Mean of ratios of Automatic AVRs to Manually estimated AVRs by Observer 1 1.0030
Mean of ratios of Automatic AVRs to Manual estimated AVRs by Observer 1.0129

Mean of ratios of AVRs estimated (by observer 1 to AVRs by observer 2) 1.0099

(c) Mean of di®erence of average of AVRs (estimated by observer 1 and 2) and AVRs by automatic method 0.0477

Table 9. AVR Results for local and VICAVR database.

Dataset Performance parameters Values

Local database Mean error between AVR Values by (automatic method and expert) 0.0650
Mean of ratios of Automatic AVRs to Manually estimated AVRs 1.0159

VICAVR database Mean error between AVR Values by (automatic method and expert) 0.0849
Mean of ratios of Automatic AVRs to Manually estimated AVRs 1.0623
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Although our method showed slight improve-
ment in reducing mean error between AVRs auto-
matically calculated and estimated by observer 1
than the ones given in Ref. 33, even then our
method is still appreciable. As shown in Table 10,89

evaluated their method using INSPIRE-AVR
dataset by considering AVR annotations only by
observer 1. When compared with the results pro-
posed by Dashtbozorg et al.89 on INSPIRE-AVR
database, our method showed approximately simi-
lar mean error. The third comparison is made with
the method by Mendonça et al.,40 in which auto-
matic as well as semi-automated methods are used
for AVR calculation and results are evaluated using
the AVRs estimated by observer 1. Our method
showed considerable superiority in calculating AVR
values as compared to the AVRs calculated by
Mendonça et al.,40 using automatic method. The
comparison results in Table 10 show that our
method surpasses the results reported by Niemeijer
et al.33 and Mendonça et al.,40 and presented similar
mean error when compared to the AVR results
reported by Dashtbozorg et al.89

5. Discussion and Conclusion

The proposed methodology includes seven modules:
(a) Automatic detection and segmentation of reti-
nal vessels; (b) Extraction of novel feature set
to categorize vessels; (c) Ranking of features by

Pearson Correlation Coe±cient and Relief-F
method; (d) Selection of features from ranked fea-
ture lists based on classi¯cation accuracy of three
classi¯ers; (e) Classi¯cation of vessels by hybrid
classi¯cation framework using selected feature sub-
set; (f) Calculation of width of vessels and (g) Cal-
culation of Arteriovenous Ratio. Particularly, two
feature ranking techniques (PCC and Relief-F) fol-
lowed by three classi¯ers for selection of features
with multi-decision combination method for retinal
vessel classi¯cation and subsequent AVR calcula-
tion, are evaluated in this paper for an improved
HR detection system. The e®ect of speci¯c feature
ranking techniques with the use of multiple classi-
¯ers for feature selection and incorporation of \joint
strength" of three supervised prediction models has
not been evaluated in the past, therefore, the results
obtained by the experiments can be used as a
baseline or reference for future research.

The proposed methodology o®ers comparable
results and works robustly on three databases ac-
quired from di®erent fundus cameras with di®erent
settings. The experimental evaluations highlight the
strength of proposed vessel recognition model in
capturing the relation between input features and
classi¯cation outcomes e®ectively. Particularly, the
arrangement of features and combinations of sub-
sets according to feature lists ranked by PCC and
Relief-F method have contributed to increase the
retinal vessel classi¯cation accuracy, as compared to

Table 10. Comparison of AVR estimated by the proposed method with previously proposed results.

Method Dataset Performance parameter Value

Niemeijer et al.33 INSPIRE-AVR Mean Error between AVR values (computed automatically and

provided by observer 1)1
0:061

Mean Error between AVR values (computed automatically and

provided by observer 2)2
0:0522

Dashtbozorg et al.38 INSPIRE-AVR Mean Error between AVR values (computed automatically and

observer 1)1
0.05

Mendonça et al.40 INSPIRE-AVR Mean Error between AVR values (computed automatically and

observer 1)1
0.07

Mean Error between AVR values (computed by semi-automated

method and observer 1)1
0.04

Proposed System INSPIRE-AVR dataset Mean Error between AVR values (computed automatically and

observer 1)1
0.05651

Mean Error between AVR values (computed automatically and

observer 2)2
0.07402

Local Database Mean Error between AVR values (computed automatically and
estimated by human expert)

0.0650

VICAVR dataset Mean Error between AVR values (computed automatically and
estimated by expert)

0.0849
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performance of features without ranking. The AVR
computed using the proposed method agrees with
the manually estimated AVR with an error of
0.0650, 0.0565 and 0.0849 for local database,
INSPIRE-AVR and VICAVR database, respec-
tively. Agreement observed in the experiment
results for INSPIRE-AVR database is comparable
to the inter-observer variability where the di®erence
between AVR estimations of two experts is 0.0520.
This di®erence exists due to visual perception dis-
crimination present in the observers. It can be seen
from Table 9 that the algorithm detects the subjects
su®ering from HR with less error using images of
low resolution and containing multiple retinal pa-
thologies. It is successfully demonstrated that gen-
eralized arteriolar narrowing in retinal images can
be quanti¯ed using the presented computer-aided
process which may o®er an opportunity for reduc-
tion of disease progression The experimental results
show AVR as a signi¯cant indicator for prediction
of HR in an individual. The system does not require
any complex computation; however, one of the im-
portant limitations of the proposed algorithm is its
dependency on the vessel segmentation results.
Retinal vessels are known to be deteriorated in
higher grades of HR which a®ects the vessel delin-
eation process. Therefore, enhancing the perfor-
mance of vessel segmentation is likely to improve
the classi¯cation process, providing more e±cient
and robust computer-aided analysis system.
Another constraint of our method is the limit in
vessel classi¯cation performance due to presence of
retinal pathologies since these pathologies may in-
°uence re°ectivity. Although the presence of retinal
pathologies is viewed to be less problematic in our
research, the vessel classi¯cation and AVR mea-
surement error remained high for images with the
pathological structures. The segmentation of these
pathologies from retinal images can contribute to
the vessel classi¯cation e®ectiveness. Moreover, the
sample size in our proposed research is compara-
tively small, especially for higher grades of HR. The
experimental evaluations are promising; however, in
this research we have not used all types of features
for vessel classi¯cation and it requires more inde-
pendent testing for validation of the fused classi¯-
cation scheme. Meanwhile, deep learning
technology can be the way to achieve accurate
vessel segmentation, which will form our future re-
search. The structural information of vessels may
allow acquiring better classi¯cation accuracy.
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