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Abstract

The advancement of medical imaging techniques such as fundus photography and breast
magnetic resonance imaging (MRI) has shown tremendous improvement in the quality of
multidimensional image produced. The image segmentation technology is used to parti-
tion the medical image into different regions for accurate identification and segregation
of diseased area. Hence, the medical image is a vital entity to diagnose several patho-
logical conditions. However, Multidimensional medical image analysis with automatic
segmentation techniques these medical images have problems such as:

1. lack inherent spatial resolution;

2. contains different form of noise;

3. have boundary with the similar color intensity; and

4. populated with non-uniform illumination across the image and other imaging am-
biguities.

In many clinical studies, the segmentation process can be carried out either manu-
ally or automatically. Manual segmentation for the identification of several landmarks
in medical images has been popularly considered, but is time consuming, tedious, error
prone and observer-dependent. On the other hand, automatic segmentation technique
are highly desirable because of its robustness, improved efficiency, reliability and faster
computation. Therefore, the development of an automatic segmentation technique for
the medical images has become an integral part of the medical diagnosis system that
yields a practical insight. However, achieving a desirable result from automatic segmen-
tation is still challenging. This is because; variation is seen in image features for different
cases, even when produced with same imaging technique. The broad aim of this thesis
is to identify the robust and automatic segmentation technique overcoming the issues
seen in medical images and hence can assist doctors for the evaluation and detection of
several pathologies.

The objective is fulfilled by developing automatic segmentation algorithms and pro-
vide solutions to tackle challenges associated in two different imaging modalities: fun-
dus photography (2D) and breast MRI (3D). The result is a series of work associated with
the problem identification, analysis and a desirable solution with qualitative and quan-
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titative validation. Specifically, we have strengthened the state-of-the-art by making the
following novel contributions:

1. The analysis of retinal blood vessel is crucial for finding several pathological disor-
der that manifest through human eye. Therefore, blood vessel segmentation in fun-
dus photography has great importance in medical image analysis. From the exper-
iment, we observed that the retinal images with lesions, exudate’s, non-uniformed
illuminations and pathological artefacts have intrinsic problems such as the absence
of thin vessels and detection of false vessels. In our work, we developed an auto-
matic blood vessel segmentation framework, which is effective in analysing reti-
nal blood vessels on noisy, pathological and abnormal retinal images. Initially, the
noise is minimized with image subtraction technique using morphological opera-
tion. Then, we investigated thin and thick blood vessels separately. Thin vessels
are detected using local phase-preserving denoising, line detection, local normal-
ization, and maximum entropy thresholding. Local phase-preservation denoising
removes the additional noise while preserving phase information (detailed) of the
image. Thick vessels are segmented using maximum entropy thresholding. The
performance of the proposed methods is carried in four popular databases (DRIVE,
STARE, CHASE DB1, HRF). The result shows that the proposed segmentation
method is automatic, accurate and computationally efficient. Furthermore, the pro-
posed methods is found to be superior when compared with the other methods in
the state of art.

2. The automatic optic disc (OD) segmentation is a challenging task for the images,
which are under the influence of noise, uneven illumination and pathologies. As
per the state-of-art, development of OD segmentation is still a challenging task be-
cause of several reasons such as 1) Ophthalmic pathologies causes the change of
color, shape or depth of OD 2) Retinal pathologies (exudate, lesion), sometimes
possess similar properties causing a false identification of OD. 3) Different factors
like illuminations and contrast irregularities, boundary artefacts and blurred image
edges makes segmentation complicated and requires pixel to pixel analysis. 4) Also
the texture feature of OD vary for different images, adding more challenges, thus
requiring a pre-processing step prior to the segmentation. 5) If the vessels are dense
and around OD, the identification the OD boundary becomes difficult. To solve the
above-mentioned challenges, a new method for the accurate localization and de-
tection of the optic disc is developed. The process utilizes kmeans clustering over
foreground and background estimated images to obtain the brightest cluster. The
obtained results are merged together to estimate the OD center. The OD bound-
ary is then estimated using circular Hough transform (CHT) using the radius and
center obtained in the initial step. The boundary estimation is also obtained from
superpixels method. Finally, the OD boundary pixels are identified with the geo-
metrical model over the edge information obtained from superpixels and CHT. The
experiments carried out on seven publicly available database verify the efficiency
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of proposed methods. In addition, the outstanding results while compared with
the other proposed methods in the current state of art proves the superiority of
proposed methods.

3. A novel and accurate segmentation method of the breast region of interest (BROI)
and breast density (BD) in breast MRI is proposed. The precise segmentation of
BROI and BD is challenging, especially in noisy magnetic resonance images (MRI)
due to similar intensity levels and the closely connected boundaries between BROI
and other anatomical structure such as heart, lung and pectoral muscle. The seg-
mentation of BROI is carried out in three major steps. Initially, we utilize adaptive
wiener filtering and k-means clustering to denoised image by preserving edges and
unwanted artefacts. Then, active contour based level sets is used to eliminate the
heart area from the denoised image. Initial contour points for the active contour
methods are determined by the maximum entropy thresholding and convolution
method. Finally, a pectoral muscle is removed to obtain a BROI segmentation by
using a morphological operations and local adaptive thresholding methods. The
segmentation of BD is obtained with 4 level fuzzy c-means (FCM) thresholding
methods on the result image obtained from BROI segmentation. The validation of
proposed methods is performed using the 1350 breast images from 15 female sub-
jects. The obtained result show that the proposed method is automatic, fast and
efficient.

4. The segmentation of breast lesions in breast MRI is considered as a important and
challenging task in medical image analysis. Noise, intensity similarity of lesions
and other tissues, and variable shape and size of lesion are the primary challenges
during the process of lesion segmentation. Hence, the framework for the accurate
segmentation of breast lesion from the DCE MRI image is proposed. The frame-
work is built using max flow and min cut problems in the continuous domain over
the denoised image. The proposed method is achieved in three steps. Firstly, in
the pre-processing step, the post contrast and pre-contrast image are subtracted.
This is followed by image registration that benefits by enhancing the tumor area.
Secondly, a phase preservation denoising and pixel-wise adaptive Wiener filtering
technique are used which is followed by max flow and min cut problems in the
continuous domain. A denoising mechanism clears the noise in the image by pre-
serving the useful and detailed features such as edges. Then, a tumor detection
is done using continuous max flow. Finally, morphological operation is used as a
post-processing step to further delineate the obtained results. The efficiency of the
proposed method is verified with the series of qualitative and quantitative exper-
iments carried out on 21 cases with two different MR image resolution. The ob-
tained results when compared with the manually segmented results demonstrates
the quality of segmentation obtained from the proposed method.

The segmentation experiments for all above-mentioned four proposed algorithms are
performed on Matlab R2013b running under Intel(R) core(TM) i5-4570s CPU@ 2.90 Ghz
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with 8GB of RAM. In an effort to test the performance of the proposed algorithms, both
the public and private datasets with the manually drawn ground truth image are used.
Moreover, the qualitative and quantitative measurements were used as a way to verify
the robustness of the proposed algorithms. Also, the result were compared with the
recent state-of-art which demonstrate the enhanced performance and advancement of
the proposed methods. Finally, our overall results on the proposed methods show that
the proposed algorithms are automatic, accurate and computationally efficient.
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Chapter 1

Introduction

THE study on life science is pondered as a dynamic field with the utilization of the

biological and medical information. Prior to the advancement of digital computers

and technology, the experienced specialists were responsible in analysis and processing

of medical images and had to entirely rely on their heuristic experience [9]. Moreover,

such manual analytical process are limited on extracting and detecting features from the

signals and suffers from other factors such as human errors and lack of detailed analy-

sis. In the last few decades, due to the advancements of medical sensing and imaging

technologies such as fundus photography [10] [11], magnetic resonance imaging (MRI)

[12] [13], ultra sound [14], computed tomography (CT) [15] have provided an adequate

amount of details about the interior of human body [16].

For efficient and precise diagnosis, the medical image should be clear and noise free

[17]. Noise in the medical images is the primary challenge during image analysis. Hence,

it’s essential to understand the pattern of noise and often desirable to eliminate the noise

for enhancement of useful features before further analysis. Moreover, the unclear and

closely connected boundaries between anatomical structures, non-uniform illumination

through the image and other imaging ambiguities adds an complexity during the image

analysis [18].

Image analysis can be done either manually (medical experts) or automatically (via

software) [19]. Manual analysis of medical image is a time consuming, tedious and error

prone process. On the other hand, automatic analysis carried out by using computational

resource which is immeasurably faster, more accurate and leading to significant improve-

ment in disease diagnosis of MRI medical disorders. There are many different techniques

used for the analysis of medical images such as segmentation [20] [21] [22], quantification

1



2 Introduction

Figure 1.1: Illustration of image representation in 1D, 2D and 3D.

[23], registration [24], visualization [25] etc. Among MRI medical image analyzing tech-

niques, segmentation is the primary and most crucial step. Segmentation is an process of

partitioning an image into regions based on the common features of each pixel or voxel

of image which is useful in various clinical applications [20]. This thesis is focused on

the development of automatic segmentation algorithms for the identification of anatom-

ical structures assisting doctors in detecting MRI pathological disorders. The developed

algorithms are unsupervised, computationally efficient, robust and demonstrates higher

accuracy.

1.1 Understanding the multi-dimensional image

The dimension of the image depends upon the dimensional number which can be re-

ferred as the number of independent input variable. In one dimensional space I(x), the

amplitude j = I(x) is the dependent variable (output), and there is only one independent

variable x. In two dimensional space (2D) space, an image is defined as I(x, y). The x and

y are two independent variables which denote the position at any point. A 2D image is

usually formed with thousands of tiny dots generally called pixels. The position of pix-

els is fixed and is displayed together as an image. We can introduce more independent

variable to represent the image is higher dimension which allows better visualization of
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image. For instance, a three dimensional (3D) image include additional dimension such

as depth z. Hence, 3D image can be defined as a function I(x, y, z). Figure 1.1 show the

image representation in different dimension.

1D : j = I(x)

2D : j = I(x, y)

3D : j = I(x, y, z)

Where, x = 0 . . . M − 1, y = 1 . . . N − 1 and z = 0 . . . .D − 1 denotes the spatial coor-

dinates. The values of the x, y, and z are represented as the intensity values. In digital

imaging, pixel (x and y) is the number of smallest addressable element created by phase

and frequency values [26]. Similarly, voxel is created with phase and frequency values in

addition to the slice thickness (z) [27].

1.2 Medical Imaging Systems

Medical imaging is the technique to create images of various part of human body which

can be utilized for the diagnostic and treatment purposes. Data in the form of images

are considered as an important asset in medical imaging. Medical imaging creates a

visual representation of the body interior by non-invasive methods, which are used for

diagnosis, or assist diagnosis for several medical conditions [28]. The basic concept of the

medical imaging system is shown in Figure 1.2.

Figure 1.2: Illustration of medical imaging system.

A source of energy is passed through the human body using special device which

are observed in the form of signal by the detector. The signal vary according to the dif-

ferent tissues and an image is reconstructed based on these signals. Various imaging

techniques can be found in modern medical technology. Each imaging technique uses a

different technology and source of energy to reconstruct the image. Magnetic resonance

imaging (MRI) [12] [29], computed axial tomography (CAT) [30], ultrasound [14] and
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x-ray [31] are the popular imaging techniques. MR imaging technique can detect con-

ditions such as cysts, lesions, structural abnormalities and problems with blood vessels.

Some pathological disorder can be detected via retina. There is a special camera with

low power microscope which captures a detailed fundus image of human eye known as

retinal imaging. Based on the condition of various landmark inside the eye, diagnosis

is carried out. The retinal imaging is used to monitor several diseases such as diabetic

retinopathy and hypertension in the early stages that manifest through human eyes. This

thesis mainly focuses on the automatic segmentation of different landmarks which assist

medical professionals for the identification of human diseases via MRI and retinal imag-

ing techniques.

1.2.1 Medical Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) is a technique to develop high quality images of the

human body parts. Originally, the MRI is based on the principles of spectroscopic tech-

nique, nuclear magnetic resonance (NMR) [32]. NMR is a technique to obtain microscopic

chemical and physical information about molecules. MRI scanner uses radio waves, mag-

netic fields and gradients to produce a detailed image as shown in Figure 1.3. It does not

involve x-rays and ionization radiation, hence posses low risk. The main component of

the MR scanners are main magnet, shim coils and the computer control. Main magnets

polarizes the sample and the shim coils is used for correcting shifts in the homogeneity

of the main magnetic fields.

To generate an MRI, a person is placed in the MRI scanner which creates a strong

magnetic field around the object to be imaged. Initially, the energy generated from the

oscillating magnetic field is applied to the object at the appropriate resonance frequency

to excite the hydrogen atom that is available inside the human body. The excited hydro-

gen atom produces the radio frequency signal which is measured by the receiving coil.

The radio signal is used to produce the position information using the gradient coils by

varying the magnetic field. The intensity of the received signal is measured and plotted.

Hence, an image slices is reconstructed from the RF signal.

The coils that produce RF pulse are rapidly switched on and off, to produce an MRI

scan. The transmitted RF pulses can focus on particular tissues or abnormalities. The
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Figure 1.3: Illustration of MR scanner [1].
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different tissues relax at different rates when RF pulse is switched off. The relaxation

time is measured in two ways. T1 relaxation and T2 relaxation. T1 and T2 relaxation

are the time taken by the magnetic vector and axial spin to return to its resting state

respectively.

For a breast MRI, an object is place in the table and the breast is positioned on the

opening of the table. Breast MRI requires an injection of contrast agent in the left or right

arm which goes into the vein during the scanning process. The agent increases the quality

of images where the tissues are clearer and the abnormalities are detected more easily.

On the other hand, Dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) [33] [34] is the series of 3D MRI scans. It is generated to from 4D (3D spatial + time)

before and after the injection of contrast agent. The analysis is carried out through the

intensity variation of MR signals before and after the injection of contrast agents over

time.

Image acquisition of MRI

The process of acquisition is carried out with a breast surface coil. Initially, T1 weighted

high quality image sequence is collected and the process is repeated for MRI frames be-

fore Gadolinium (Gd)- based contrast agent is injected. The process continues for several

minutes. This method is commonly known as T1 measurement. A multiple frames with

DCE 3D gradient echo sequence (GRE) is utilized to measure the kinetics of contrast

agents in the lesions. To distinguish this kinetic feature, a high temporal resolution in the

range of 40 to 120 seconds per dynamic acquisition is required. Moreover, for retrieving

morphological features such as margins, shapes and internal structures, high spatial res-

olution is desirable that is acquired up to 512 in many clinical scanners. To identify struc-

tures such as cysts, fibro adenomas, and lymph nodes, a pre-contrast T2-weighted image

sequence is acquired. The above-mentioned method provides MR image sequences with

different properties and can be used for the analysis and segmentation of lesions [65].

Figure 1.4 shows the image before and after the contrast agent is injected. DCE MRI

without injecting contrast agent is shown in Figure 1.4 (a). Since the lesion has not been

enhanced, it is difficult to differentiate between lesions and healthy tissues. After injec-

tion of contrast agent, the intensity of lesion is changed. The enhanced lesion is high-
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Figure 1.4: (a) Image before contrast agent is applied (b)Image after contrast agent is
applied (c)Subtraction between (b) and (a)

lighted by a red color as shown in Figure 1.4 (b). The images obtained before and after

the injection of contrast agent are subtracted. Hence, it produces an image with distinct

lesion as shown in Figure 1.4 (c). The above displayed images in Figure 1.4 is simple

and lesion can be easily labeled. Normally, artificial noise is found all over the images.

When the lesion is labeled, some of the noise from the tissue region is also highlighted

and detected as a lesion resulting in the requirement of the development of a computer

aided method to analyze the lesion.

1.2.2 Fundus photography

Retinal imaging is the technique of capturing a photograph of th interior of the human

eye using a low powered microscopic camera. The images produced by this technique

provides reproducible high resolution images. The image are easily available and compli-

ant to the image enhancement. The important anatomical structures such as blood vessel,

optic disc, optic cup, fovea and macula can be visualized in the image. The characteris-

tics of these structures are studied to document the presence of disorder and monitor

their change over time. Furthermore, the identification of lesions is also important for

the detection of pathology.

Image acquisition of retinal image

Fundus photography is captured with a fundus camera specialized with a low powered

microscope. The fundus cameras are described by the optical angle of acceptance of the

lens. The angle of acceptance vary from 20◦ to 140◦. The angle of 30◦ is considered as the
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Figure 1.5: Basic structure of human eye (a) fundus photography (b) different anatomical
structure of fundus photography [2]

normal angle of view which creates a magnification of 2.5 times. Moreover, 45◦ to 140◦is

a wide angle view, however provides less retinal magnification. An angle of view less

than 20◦ is narrow angle view. The advantage of considering the larger wide angle view

is to provide a thorough documentation for the improved detection of retinal pathology.

However, the image disadvantages, such as deformation of image due to the spherical

shape of globe, misrepresentation of color intensity and higher equipment cost make

it less popular. Hence, 30◦, angle of acceptance trends to be standard methods during

fundus photography.

1.3 Motivation

The image generated from wide variety of medical imaging system are interpreted man-

ually by the expert radiologist [35]. The obtained information are used by the doctors for

the diagnosis of several diseases.

The interpretation of result is time consuming for the doctors as it requires trials, rep-

etitions and validations. The medical image generated from different medical imaging

techniques includes huge amount of information. With the advancement of the technol-

ogy, the number of size and dimension is increased where more information are available.

The increased size and dimension makes it challenging for the expert radiologist to accu-

rately diagnose the disease. For doctors, it’s a tedious and time consuming work. Hence,
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Figure 1.6: (a) Illustration of (a) Manual Analysis (b) Automatic Analysis

a finely tuned automatic segmentation algorithms needs to be developed which can as-

sist doctors to accurately diagnose the disease with less effort. Also, it can be used for the

early detection of disease and diagnostic error. The illustration of manual and automatic

analysis is shown in Fig.1.6.

The image processing techniques involves efficient extraction of various information

such as volume, shape, and motion by preserving the original data precision. MRI re-

search efforts are done in different fields such as pre-processing, enhancement, segmen-

tation, feature extraction and classification, for processing and analyzing the medical im-

ages. Among them, segmentation is considered as the most important and challenging

area in medical analysis. Hence, this thesis will mostly focus on the automatic segmen-

tation frameworks to identify varieties of landmarks in fundus photography and breast

MRI.

Segmentation is the process of classifying pixels/voxels that are homogeneous and

later extracting these regions of interest. The accurate and automatic segmentation of

medical images is considered as the vital step during diagnosis, clinical studies and treat-

ment planning. Automatic segmentation methods assist to provide solution for larger

number of cases with the same accuracy. The automatic segmentation can be done with

different type of machine learning approach. These approach can be divided into super-

vised and unsupervised segmentation methods.

The supervised segmentation method is the technique in which the system is trained

based on the training set of image and the inferred function is produced. If the output of

the function is discrete, it’s called classifier and if it’s continuous, it’s called as regression
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Figure 1.7: (a) Illustration of (a) Supervised Learning and (b) Unsupervised Learning

function. Hence, the supervised learning approach requires the ground truth before the

training process and the output is predicted based on it. To solve the problems using

supervised algorithm, a series of steps is followed as shown below:

1. Prepare the training set.

2. Determine the features of the prepared training data set. This set is prepared after

gathering the information, either from human expert or measurements. Thereafter,

the features are transformed into feature vectors. The number of feature vectors

should be appropriate to achieve effective high dimensional data processing.

3. Select the learning algorithm, and run the learning algorithm in the training data

set. We can fix and adjust the parameters to optimize the performance which is

known as validation set. This validation set is obtained after cross validation with

training set.

4. Finally, the performance is analyzed by testing with test dataset.

In unsupervised segmentation method, initially dataset is not labeled. Hence, this

method does not require human intervention. They are more subjective and there is no

simple goal for the analysis. It is used to find the indirect hidden structures, patterns or
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features to analyze new data. Unsupervised segmentation methods are computationally

efficient. It is not always possible to obtain labeled data for training purpose and create

the supervised segmentation model. However, with unsupervised learning, a model can

be created which can solve MRI problems with less computation and without the prior

knowledge of labels.

Automatic segmentation techniques for medical images rely on the properties and

feature of the images extracted from the imaging system. For example, MRI, mammog-

raphy or fundus photography will require a different segmentation algorithm. The chal-

lenge is due to the contrast in image quality and drastic variation in shape and size of the

landmarks to be segmented. Moreover, images are often corrupted with different kind of

noise and artifacts which adds complexity in accurate segmentation. Medical images are

often observed with low contrast and similar intensity values between different anatom-

ical structures. It becomes considerably difficult to produce the desirable segmentation

results. Hence, the development of accurate and automatic segmentation frameworks is

a absolute necessity.

1.4 Challenges

Image segmentation can be used in the medical imaging field to study about body struc-

ture, identification of the pathological region and assist doctors for the diagnosis of dis-

ease. Automatic segmentation also aids medical experts to accurately achieve a reliable

results while using a larger data sets.

Automatic segmentation of different anatomical structures from medical image is al-

ways a difficult task. Prior to the segmentation, one should always take care of image

conditions and quality. Moreover, noise developed during acquisition period makes

automatic segmentation tough. Several other factors such as illumination, insufficient

resolution and low contrast also make it challenging and difficult in distinguishing the

different anatomical structures. Hence, an accurate results are difficult to obtain from a

simple segmentation algorithms. Furthermore dealing with the high dimensional images

is also an challenging job where segmentation process often requires high computational

time. The appearance and features of the image acquired from different acquisition tech-
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niques differs markedly. Hence, a automatic method developed for one type of image for

the segmentation of various shapes and structures cannot be applied to the other type

of image acquired from different imaging techniques. However, it can be done with the

modification of parameters used in the algorithm.

This thesis contributes to addressing different segmentation challenges in multidi-

mensional images. Especially in two imaging modalities: fundus photography (2D) and

Breast MRI (3D) which are explained below.

1.4.1 Fundus photography

Fundus photography captures a digital image of the back portion of human eye. The im-

age captures a different landmarks such as optic nerve, blood vessels, macula and fovea.

The analysis of these landmarks is carried for wide variety of ophthalmic conditions that

manifest through human eye.

For example, a increased pressure inside the eye can severely damage the optic nerve

which is refereed as glaucoma. Experts can use fundus photography to detect the changes

and recommend the appropriate solutions [36]. With the study of fundus photography,

doctors can observe the details in retina and detect the damage caused to the retina from

diabetes (diabetic retinopathy) [37]. Some retinal landmarks which are not visible on

a flurescein angiogram can be easily observed in fundus photography. As a result, the

interpretation of fluorescein angiography can be done accurately.

Fundus photography is also used to assist the interpretion of fluorescein angiogra-

phy because certain retinal landmarks visible in fundus photography are not visible on a

fluorescein angiogram.

The retinal images with lesions, exudate’s, nonuniform illuminations and other patho-

logical artifacts have intrinsic limitations under which unreliable results such as wrongly

identified blood vessels, optic nerve, macula and fovea during segmentation. Manual

segmentation of these landmarks is a tedious and the result may vary between the ex-

perts. Hence, automatic segmentation of these landmarks should be the primary require-

ment either for diagnosis or early detection of the disease that manifest through retina.

In order to deal with the challenges, we have proposed a robust and accurate framework

for the segmentation of two important structures 1) blood vessels and 2) optic disc (OD)
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from the fundus photography.

1.4.2 DCE MRI

DCE MRI is utilized for detection, diagnosis and staging of the breast cancer. Based on

the evaluation of multiple risk factors, 15% to 20% lifetime risk is associated with women

to get cancer [38] [39]. American Cancer society (ACS) has recommended screening from

DCE MRI, to reduce the risk of cancer by detecting it in the early stage [40]. Cancer at

an early stage is curable. Manual delineation is tedious, time consuming because of large

amounts of data to be analyzed. Hence, the segmentation of breast lesions is becoming

popular to improve the diagnostic accuracy and computation time. It is observed that the

cancer detection sensitivity in DCE MRI is high, but specificity is low [41]. The improved

system with the lowest false positive (high specificity) will save a cost for additional

treatment and biopsies [42] [43]. Also, it reduces a woman’s anxiety and tension. DCE

MRI inherits low SNR, motion artifacts and high inter-patient variability.

As the performance of the existing techniques are moderate, the is still a requirement

of segmentation accuracy. Hence, we have developed a novel algorithms for accurate

and automatic segmentation of 1) breast region of interest (BROI) 2) breast density (BD)

and 3) breast lesions.

1.5 Thesis aim and objectives

This thesis is aimed to develop novel framework for addressing the aforementioned chal-

lenges in automatic segmentation of medical images. The segmentation challenges are

addressed in two imaging modalities.

Fundus photography (2D)

• Automatic segmentation of blood vessels

• Automatic segmentation of optic disc

MRI (3D)

• Automatic Segmentation of BROI and BD

• Automatic Segmentation of breast lesions
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1.5.1 Automatic segmentation of blood vessels

Each retinal image shows unique properties with respect to retinal boundaries, optic discs

and different diseases. Moreover, vessel crossing, bright or dark lesions, low contrast, un-

even illumination, and noise further complicate the segmentation process for an accurate

result. The major limitations in state-of art methodologies which makes automatic seg-

mentation more complicated are 1) Extraction of thin vessels in retinal images is difficult

2) Both non-uniform illumination and noise in the image are responsible for false 3) closer

vessels are merged. 4) Retina is assumed to be healthy and free of bright and dark lesions

in the most of the segmentation techniques reported in the literature. However, the ex-

istence of bright or dark lesions can considerably degrade the quality of retinal vessel

detection and even make the result unusable. (5) The existing algorithms are validated

and tested on a small number of retinal images, which are not enough for algorithms

justification. Hence, we aimed to develop a fully automated and novel blood vessel seg-

mentation algorithm to remove above mentioned complications.

1.5.2 Automatic segmentation of optic disc (OD)

In the state-of-art, development of accurate OD detection and segmentation are still fac-

ing challenges because of several reasons such as 1) Ophthalmic pathologies causes the

change of color, shape or depth of OD 2) Retinal pathologies (exudate, lesion), some-

times possess similar properties causing a false identification of OD. 3) Different factors

like illuminations and contrast irregularities, boundary artifacts and blurred image edges

makes segmentation complicated and requires pixel to pixel analysis. 4) Also the texture

feature of OD vary for different images, adding more challenges, thus requiring a pre-

processing step prior to the segmentation. 5) If the vessels are dense and around OD, the

identification the OD boundary becomes difficult. Although, the results obtained from

the proposed localization techniques of OD in the state of the art is considerable, the pre-

cise and automatic segmentation of OD boundary is still a challenging task and requires

a detailed analysis around the boundary of OD. Hence, we aimed to develop a fully au-

tomatic algorithm that accurately segments the optic disc especially from pathological

images.
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1.5.3 Segmentation of Breast region of interest (BROI) and breast density (BD)

Fully automatic, accurate and fast segmentation of BROI still require much attention

because of several reasons: 1) Breast structures in different breast MR images are un-

symmetrical 2) Manual correction is required around the boundary area of breast. 3)

A bilateral asymmetry between left and right breast region requires separate analysis.

4) Pectoral muscle and breast region which is found to be closely attached possesses

similar color intensity. This results in high false positive. 5) Several methods in the

state-of-art are supervised and require prior information before the segmentation. Simi-

larly for BD segmentation, we note that there is a significant range of studies carried out

in a semi-automated segmentation using an interactive thresholding method and user-

assisted clustering methods. These non-automated methods are subjective and create

inter and intra-reader variability. Hence, to address this above mentioned challenges, we

aim to develop a fully automated framework for the segmentation of BROI and BD.

1.5.4 Automatic segmentation of Breast lesions

Early detection of tumors from breast MR images is significant because it saves life. The

segmentation of breast MR image provides a detailed and accurate information such as

shape, size and type of lesion which is vital in diagnosis of breast cancer. Manual seg-

mentation of lesions from the DCE MRI is a tedious and time consuming task even for a

qualified specialist. Hence, it is difficult to include in the clinical routine. On the other

hand, automatic segmentation is fast and can include MRI quantitative information of

the breast area for the accurate results. This process will assist doctor for the accurate

identification of the problem in the early stage. However,the automatic segmentation is

a challenging task because of the irregular shape, boundaries and similar intensity dis-

tributions across the image. Hence, accurate segmentation of lesions is still a challenging

task and requires a detailed analysis around the boundary of lesions. Prior to the seg-

mentation, it is essential to enhance the MR image because the current image technique

produces a low contrast image which makes hard to differentiate between normal and

lesion area especially around the boundary. Moreover, the removal of noise plays a vital

role while preserving the important information such as boundary and edges of MR im-



16 Introduction

age to produce the accurate segmentation with computational efficiency. Hence, we aim

to develop a fully automatic framework for the segmentation of breast lesion.

1.6 Thesis contribution

This thesis offers an innovative analytical and methodological framework for the auto-

matic segmentation in two different imaging modalities. The developed algorithm will

assist for the segmentation of different areas in images. The major contribution in terms

of theoretical and practical aspects in two different imaging modalities are as listed be-

low:

1. The detailed review on the most important automatic segmentation techniques in

multidimensional medical images is demonstrated.

1.6.1 Retinal Imaging

2. Accurate and robust algorithm for the segmentation of blood vessels is developed

using maximum entropy incorporating line detection and phase-preserving denois-

ing. The study shows potential to assist medical doctors in improving screening

accuracy of retinal imaging.

• An automatic, accurate and computationally efficient framework for retinal

blood vessel segmentation is proposed.

• A preprocessing step that includes background estimation and subtraction to

eliminate non-uniform illumination and noise.

• Local phase preserving denoising works efficiently for thin vessel extraction.

• Treating thin and thick vessels separately allows accurate segmentation of reti-

nal vessels.

3. An algorithm for the accurate segmentation of optic disc is developed. The algo-

rithm is capable of dealing with the images with retinal pathologies which shares

similar color intensity causing the false identification of OD and its boundary. This

requires a preprocessing prior to the segmentation.
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• An automatic, accurate and computationally efficient framework for optic disc

segmentation is proposed.

• A pre-processing step that reduce the noise, and uneven illumination across

the images is developed

• Estimation of optic disc region of interest (OD-ROI) is done with kmeans clus-

tering and circular hough transform (CHT) incorporating linear filtering.

• Edge information are obtained from simple linear iterative clustering (SLIC)

Superpixels and CHT.

• Developing a geometrical model over the edge information obtained from

SLIC Superpixels and CHT allows accurate segmentation.

1.6.2 Breast MRI

4. An algorithm for automatic and fast segmentation of breast region-of-interest (ROI)

and density in 3D MRIs is developed. This study proposes an innovative, fully

automatic and fast segmentation approach to identify and remove landmarks such

as the heart and pectoral muscles before BROI and BD segmentation.

• An automatic, accurate and computationally efficient framework for breast

region of interest (BROI) and breast density (BD) segmentation is proposed.

• A machanism to minimize the influence of noises, preserve edges and remove

unwanted artifacts for accurate results is developed.

• The segmentation of heart area is obtained with active contour level set method.

The method involves calculation of initial contour by using maximum entropy

thresholding and convolution technique, to develop accurate segmentation.

• The pectoral muscle is closely connected and possess similar color intensity

with BROI. This results in false positives and requires manual corrections. The

segmentation method to automatically and efficiently detect pectoral muscle

is developed

5. An algorithm that automatically segments breast lesion from the MR images is de-

veloped
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• An automatic and efficient unsupervised segmentation method is proposed.

• Breast MR image is enhanced using image registration followed by image sub-

traction.

• An mechanism to reduce the noise while preserving important information of

breast MR image is developed.

• A fast segmentation approach using using max flow and min cut problems in

continuous domain is developed.

• A post processing step using morphological approach is developed to further

delineate the obtained result.

1.7 Thesis Organization

The organization of the chapters in this thesis is shown in Fig. 1.8.

A brief description of each chapter is outlined below.

• Chapter 1 identifies the challenges of automatic segmentation methods in two imag-

ing system 1) Fundus photography and 2) MRI Image. The objectives of the thesis

are then defined accordingly to solve the mentioned challenges. Afterward, a brief

summary of the methodology followed in each proposed algorithms for solving

different problems throughout the thesis is listed. Finally, the contribution of the

conducted research is presented.

• The literature review of existing work falling into the scope of multidimensional

medical images is explained in Chapter 2. The literature review helped to analyze

the effectiveness and advantage of different techniques. To solve the segmentation

problem, these techniques are used in the proposed framework as per the require-

ment. State of art for each proposed segmentation is explained in detail in each

chapter.

• The retinal images with lesions, exudates, non-uniformed illuminations, and patho-

logical artifacts have intrinsic problems such as the absence of thin vessels and

false vessels detection. To solve these problems, Chapter 3 proposed a novel algo-

rithm which involves separation of background images to minimize the influence of
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noise, non-uniformed illuminations, and lesions. We develop two different strate-

gies to segment thin and thick blood vessels. Thin blood vessels are identified by

taking benefits of local phase-preserving denoising, line detection, local normaliza-

tion, and maximum entropy thresholding. To remove noise and preserve detailed

blood vessels information, phase-preserving denoising technique is used. The tech-

nology takes advantage of log-Gabor wavelet responses in the complex domain to

preserve the phase information of the image. Thick vessels are extracted and bina-

rized via maximum entropy thresholding. The performance of the proposed algo-

rithm is tested on four popular databases (DRIVE, STARE, CHASE DB1, HRF). The

results demonstrate that the proposed segmentation process is automatic, accurate

and computationally efficient.

• Optic disc (OD) localization and segmentation is an important procedure for the

automatic screening of optic nerve head abnormalities. There are several methods

proposed for the localization and segmentation of OD. However, precise bound-

ary segmentation is still challenging for the images, which are under the influence

of noise, uneven illumination, and pathologies. Hence, to solve this problem, we

proposed a novel algorithm that includes identification of the OD region of interest

(OD-ROI) and boundary pixels in Chapter 4. The process begins with the Kmeans

clustering algorithm, which is applied to the foreground and background estimated

images, to obtain the brightest cluster. The resulting clusters are merged together

and the highest weight value is calculated as the approximation of the OD center.

Secondly, the OD-ROI is estimated by comparing the radius and center information

obtained using a circular Hough transform (CHT) with the approximated center

from the initial step. Finally, the OD boundary pixels are identified with the geo-

metrical model over the edge information obtained from superpixels and CHT. We

have verified our method for segmenting OD using seven databases and shown to

be superior while compared with the other proposed methods in state of the art.

• Chapter 5 proposed a novel and accurate segmentation of the breast region of in-

terest (BROI) and breast density (BD) which is considered as a significant challenge

during the analysis of breast MR images. Most of the existing methods for breast

segmentation are semi-automatic and limited in their ability to achieve accurate re-
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sults. This is because of difficulties in removing landmarks from noisy magnetic

resonance images (MRI) due to similar intensity levels and the close connection

to BROI. This study proposes an innovative, fully automatic and fast segmentation

approach to identify and remove landmarks such as the heart and pectoral muscles.

The BROI segmentation is carried out with a framework consisting of three major

steps. Firstly, we use adaptive Wiener filtering and k-means clustering to minimize

the influence of noises, preserve edges and remove unwanted artifacts. The second

step systematically excludes the heart area by utilizing active contour based level

sets where initial contour points are determined by the maximum entropy thresh-

olding and convolution method. Finally, a pectoral muscle is removed by using

morphological operations and local adaptive thresholding on MR images. Prior to

the elimination of the pectoral muscle, the MR image is subdivided into three sec-

tions: left, right, and central, based on the geometrical information. Subsequently, a

BD segmentation is achieved with 4 level fuzzy c-means (FCM) thresholding on

the denoised BROI segmentation. The proposed method is validated using the

1350 breast images from 15 female subjects. The pixel-based quantitative analy-

sis showed excellent segmentation results when compared with manually drawn

BROI and BD. Furthermore, the presented results in terms of evaluation metrics:

Acc, Sp, AUC, MR, P, Se, and DSC demonstrate the high quality of segmentation

using the proposed method. The average computational time for the segmentation

of BROI and BD is 1 minute and 50 seconds.

• Segmentation of lesions in breast MR images is an important task in medical im-

age analysis, which plays a significant role in detecting abnormal lesions. Detec-

tion of breast lesions is usually done by the manual process by expert radiologist,

which is a long and tedious process. Therefore in Chapter 6, the development of

computerized segmentation method will assist doctors for the quicker identifica-

tion of the problem in the early stage saving unnecessary biopsies and expensive

tests. The automatic segmentation of lesion from the diseased breast MR image

is still a challenging task because of the irregular shape, boundaries and similar

intensity distributions across the image. Furthermore, the presence of noise adds

complexity to achieve accurate segmentation results. The supervised techniques
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are considered effective, but its efficiency depends upon a large amount of labeled

dataset used for the training purpose beforehand. On the other hand, the unsuper-

vised technique does not require labeled dataset and produce results without prior

knowledge. In this chapter, we propose a fully automatic unsupervised method

using max flow and min cut problems in the continuous domain over the denoised

image. It is observed that a graph model over the denoised model is efficient in

producing an accurate result using fewer iteration. The proposed framework is di-

vided into three parts. In the pre-processing step, the post contrast and pre-contrast

image are subtracted which is followed by image registration. This potential bene-

fit of this process is to enhance the lesion area. The second step is lesion detection

where max flow and min cut problems in the continuous domain are applied af-

ter noise removal. The useful features of the image are preserved using the phase

preservation denoising and pixel-wise adaptive Wiener filtering technique. Finally,

the unwanted area in the obtained result is removed in a post-processing step using

morphological operation. The performance of the proposed method is tested qual-

itatively and quantitatively on 21 cases with two different MR image resolution.

The result obtained from the proposed method when compared with the manually

segmented images demonstrates the high quality of segmentation results.

• Chapter 7 concludes the thesis which includes research objectives and the task ac-

complished to achieve the thesis aims. Also, we provide a brief description on fu-

ture enhancement in the algorithm development for medical image segmentation.
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Chapter 2

Segmentation techniques in
multidimensional medical images

IMAGE segmentation is one of the most important step for the extraction the impor-

tant areas from medical image [44] [20]. Moreover, automatic segmentation of the de-

sired region of interest (ROI) assist doctors at diagnosing diseases accurately in less time

[45]. Moreover, this system can help to reduce the diagnostic errors that are inevitable in

human [46].

There are several automatic segmentation methods which has been applied in the re-

cent medical images analysis. Some of the popular and important image segmentation

techniques are thresholding based technique [47] [48], region based technique [49] [50],

edge based technique [51] [52], clustering based methods [53] [54], and deformable mod-

els [55] [56].

In the remainder of this section, we will review in detail about the above-mentioned

image segmentation techniques. The organization of this chapter is summarized in Fig. 2.1

2.1 Thresholding based segmentation technique

Thresholding is one of the most popular and simple image segmentation technique. The

pixels of an image is divided with respect to the threshold value which is calculated

using the intensity level. Thresholding technique is basically divided into three cate-

gories. Global thresholding [57], Local adaptive thresholding [58], and Maximum en-

tropy thresholding [59].

23
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Figure 2.1: Organisation of literature review
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Figure 2.2: Example of global thresholding [3]

2.1.1 Global Thresholding

Global thresholding is considered to be effective when the intensity distribution between

background and foreground is highly distinct. In this technique, a single threshold value

is applied to all the pixels in the image. Let us consider a single threshold value, ’T’ for

the input image I(x, y). ’T’ is calculated using the image features. The output image,

O(x, y) is obtained as the binary image after thresholding. The output image is obtained

as shown in Eq. (2.1)

O(x, y) =


1 i f I(x, y) > T

0 i f I(x, y) ≤ T
(2.1)

This thresholding technique works very well if the histogram has a clear valley be-

tween two regions as shown in Fig. 2.2

The thresholding value T can be calculated using several techniques such as Otsu,

Histogram analysis, iterative, maximum correlation and clustering. The goal of the Otsu

thresholding method [60] is to find the optimal thresholding value for global threshold-

ing technique. Initially, the image is divided into two-pixel class. Next, the bimodal

histogram and the threshold is selected to minimize the intra-class variance of black and

white pixels which is carried out to measure the pixel distribution in each side of the

threshold(background or foreground) by the iterative process for all the possible thresh-

old values. Let the variance of the two-class be σ0 and σ1, then the Otsu method searches
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the threshold the minimizes the intraclass variance as shown in Eq. (2.2)

σ2
w(T) = w0(T)σ2

0 (T) + w1(T)σ2
1 (T) (2.2)

where w0 and w1 are the weight probabilities of the classes separated by threshold T

as shown in Eq. (2.3) and Eq. (2.4) respectively. The class probability is calculated from

the ’L’ bins of histograms.

w0(T) =
T−1

∑
i=0

p(i) (2.3)

w1(T) =
L−1

∑
i=T

p(i) (2.4)

Histogram-based technique [61] is used to calculate the thresholding value by plot-

ting the histogram of the image. The image is thresholded to separate the two regions:

foreground and background. Moreover, this technique can be used to separate the re-

gions with all possible homogeneous region in the image. Let us consider the two peaks

H1 and H2 of the histogram. The threshold value, T is calculated as shown in Eq. (2.5)

and Eq. (2.6):

T = (H1 + H2)/2 (2.5)

T = minH(u) (2.6)

where, u ∈ [P1, P2] and H(u) is the histogram value at greylevel u between P1 and

P2.

Iterative thresholding [62] is the improved version of Otsu thresholding technique the

includes iteration. During the first iteration, the threshold value from the traditional otsu

method is derived and the mean greyscale values of the two classes is calculated. In the

second iteration, instead of two class separation, the image is separated into three class

based on the two mean greyscale value calculated in the previous step. The three classes

are defined as background, foreground and the region to be determined (TBD). The class-

less than the smaller mean is categorized as background. Similarly, the class larger than
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the bigger mean is categorized as foreground and the remaining class is categorized as

TBD. The next iteration is carried out by keeping the pre determined background and

foreground area unchanged and the same procedure is repeated in the TBD region. The

iteration is stopped after fulfilling the pre-set criteria.

2.1.2 Local Adaptive Thresholding

This thresholding technique calculates different thresholds for each pixel. The calculated

threshold value is dependent upon the intensity information of neighboring pixels. This

technique typically takes greyscale or color images as an input and outputs a binary

image. This technique works well with the images having strong illumination gradient.

For the estimation of the threshold, two approaches (i) the Chow and Kaneko approach

[63] and (ii) local thresholding are used.

Chow and Kaneko initially classify an image into overlapping sub-images. The his-

togram of sub-images is investigated and finally, the optimum threshold for sub-image

is calculated. This method is computationally expensive, hence not suitable for the real-

time application. On the other hand, local thresholding approach calculates the threshold

value by calculating the mean and median of the sub-image. A function that calculates

the mean and median of local intensity distribution is utilized. This technique works well

when there are enough foreground and background pixels in the neighborhood. How-

ever, on the image margins, there won’t be enough pixels in the neighborhood so the

mean will be close to the mean of center pixels. Hence, to solve this problem, a constant

value C can be introduced. The new threshold value is calculated with using mean and

C. As a result, all the pixels which do not have background pixels in their neighborhood

are set to background. Hence, produce an segmentation. The following step is followed

for the calculation of local threshold.

1. The image is convolved with the statistical operator: mean or median.

2. The original images are subtracted from the convolved image.

3. Finally, a threshold from the resultant image with mean and constant, C is calcu-

lated.
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2.1.3 Maximum entropy thresholding

This thresholding technique is based on maximizing the Shannon entropy [64] i.e. the

maximization of the information measure between object and background. Entropy is

considered as one of the effective information to describe an image. Hence, we can calcu-

late the entropy information of the distribution of gray levels to partition the target image

to produce a thresholded image. Evidence shows that the performance of 2D maximum

entropy method is effective than 1D maximum entropy method. 2D maximum entropy

thresholding is based on the normalized histogram of the gray image whose value ranges

from 0 to 255.

Let us consider an image that required binarization. Let Ih(i) be the normalized his-

togram of that image and t indicates the threshold to be determined.

imax
∑
i=0

Ih(i) = 1 (2.7)

The Entropy of vessel pixel Hvessel(t) is given by Eq. (2.8)

Hvessel(t) = −
t

∑
i=0

Ih(i)

∑t
j=0 Ih(j)

log
Ih(i)

∑t
j=0 Ih(j)

(2.8)

Similarly, the entropy of background pixel Hbg(t) is given by Eq. (2.9)

Hbg(t) = −
imax

∑
i=t+1

Ih(i)

∑imax

j=t+1 Ih(j)
log

Ih(i)

∑t
j=t+1 Ih(j)

(2.9)

Hence, Optimal threshold by maximizing the background and vessel pixels can be

calculated as Eq. (2.10)

T2 = argt=0.....imax MaxHvessel(t) + Hbg(t) (2.10)

The final binary image using T is calculated as Eq. (2.11)

I4 =


1, I3 < T2

0, otherwise
(2.11)

Maximum entropy thresholding [65] can be an important technique during the seg-
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Figure 2.3: Illustration of segmentation carried out with maximum entropy thresholding
in breast MRI image.

mentation process in the medical imaging area. Fig. 2.3 illustrates the effectiveness of

maximum entropy thresholding during the segmentation of medical images. We have

experimented this technique with the breast MRI image having a tumor. The experiment

shows that if the parameter is adjusted, a good segmentation result can be obtained.

2.2 Edge based Segmentation technique

Edge is considered as one of the most important information regarding the shapes of the

objects in an image. The images contain several objects in different forms such as lin-

ear and circular. The different objects have a variety of image gray level and geometric

properties. Using these image features, the extraction of important areas is carried out

incorporating computer vision, image processing algorithms and object recognition ap-
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Figure 2.4: A generalized line detection [4]

plications. There are several edge detection techniques [66]. This section describes some 

of the important edge based technique.

2.2.1 Linear structure detection

Linear structure detection is an effective method to segment linear structures in medical 

image [67]. The basic line detection is illustrated in Fig. 2.4. At each pixel position (i, j), 

an average gray level is computed on the window of size WxW pixels. Twelve lines 

of length W pixels at 12 different orientations with an angular resolution of 15 degrees 

passing through the centered pixels are identified as shown in Fig. 2 .4. The gray level of 

each line is calculated and the line with the highest level is selected as the winning line 

[4].

On the other hand, the line detection operation is carried out by using the kernel as 

per the orientation and particular width of the line [4]. Let us consider a line response of 

single pixel width and line kernels with directions of 0◦, 45◦, 90◦and 135◦as shown below,
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Figure 2.5: Illustration of line detection:single pixel width and +45◦orientation
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Fig. 2.5 shows the illustration of general line detection. Fig. 2.5 (a) and (b) are the

original image and the response image using kernel +45◦and single pixel width respec-

tively. It is observed that the horizontal and vertical lines are not detected however, the

lines with the 45◦orientations are clearly detected. In the medical image, segmentation

of thread-like structures such as blood vessels is vital. Hence this technique can be used

for the detection of such structures. Fig. 2.6 show the blood vessel detected in different

orientations. Fig. 2.6 (a) is the original green channel retinal image. (b),(c), (d) and (e) is

the response images in four different orientation. This method is especially effective in

detecting the thin structures which are difficult to segment.

2.2.2 Hough transform

Hough transform is the popular feature extraction technique which can be used for the

segmentation of certain shapes such as line, circle and eclipse by the voting process [68]

[69]. Furthermore, the algorithm can be extended to extract a more complicated shape. In

medical image segmentation, Hough transform can be a used to extract several important
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Figure 2.6: Illustration of line detection in 4 orientation: medical image (fundus pho-
tography). Line kernels with directions of (a)90◦(vertical) (b)180◦(horizontal) (c) 45◦(d)
135◦as shown below, respectively

landmarks.

Let us consider a line segment AB as shown in the Fig. 2.7 and a single edge point

(x, y) in a line segment AB. There could be the infinite number of lines which passes

through this selected point. Each line can be represented as shown in Eq. (2.12)

Figure 2.7: A generalized line segment

y = mx + b (2.12)

Where m is a slope, b is a y-intercept. Any line that passes through the edge points

(x, y) can be characterized in the slope-intercept space (m, b). Therefore, all lines that pass

through points (x, y) have a unique value for y intercept b, for every m. The y intercept is

derived from the equation as shown in Eq. (2.13)

b = y−mx (2.13)

In (m, b) space, the set of (m, b) values forms a line in (m, b) space. The voting process

is carried out on every point for each possible line passing through it and counted in the

accumulator. The line with the highest number of vote is then selected. The process can

be extended to detect the circle as well. Initially, we need to parameterize the circle of the
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Figure 2.8: A generalized line segment

arbitrary size (x, y, R). Now the objective is to find the (a, b) coordinates of the centers

which are calculated as shown in Eq. (2.14).

a = x− Rcos(t)

b = y− Rsin(t)
(2.14)

The locus of point (a, b) of the circle should have the center of the circle at one point.

The circle around the edge point with the common center is counted in the accumulator.

The object with the highest vote will be selected as a required circular object.

The common steps that are followed by the Hough transform are given below:

1. Estimate the anticipated feature points in the image.

2. For each feature point, observe the possibility that passes through the feature point

and counts the vote in the accumulator. Every shape has to be parameterized ac-

cordingly.

3. Find the local maxima of the vote. Select the desired one and reconstruct it into

image space.

The illustration of the most prominent circular object detected using Hough transform

in the given radius limit is shown in Fig. 2.9. In this figure, the optic disc is detected from

the retinal fundus image using a circular Hough transform.
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Figure 2.9: Illustration of circular object detection using hough transform in medical im-
age.

2.3 Clustering based segmentation technique

Clustering is an unsupervised learning problem which deals with detecting a structure

in a collection of unlabeled data [70]. The objects which are similar in some way are

grouped together as shown in Fig. 2.10. Here the object is identified with the two criteria

1) distance and 2)color. If the distance of the two or more object is close, they are clus-

tered in the same class. This clustering technique based on the closeness of the object is

referred to as distance-based clustering. Clustering can be done based on the features of

two or more objects. If the features of objects are similar, they are clustered at the same

cluster. In Fig. 2.10, it is clustered according to the color intensity feature of objects. The

main purpose of clustering is to determine an inherent group from unlabeled data. The

clustering requires the criteria to be defined by a user so that it fits a problem to produce

the best result.

Clustering algorithms are classified as 1)Exclusive clustering [71] 2)overlapping clus-

tering [72] 3)hierarchical clustering [73] 4)probabilistic clustering [74]. Firstly, the object

belonging to the definite cluster cannot be assigned to another cluster. i.e the data are

clustered in an exclusive way. Secondly, in overlapping clustering, each point may be-

long to the different cluster but with the different degrees of membership. It used fuzzy

sets of cluster data. Thirdly, the hierarchical clustering algorithm is based on the union
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Figure 2.10: Representation of cluster

between the two nearest clusters. Finally, if the clustering is based on a completely prob-

abilistic approach, then it’s called probabilistic clustering.

In the following section, some of the important clustering approach used for the seg-

mentation is explained.

2.3.1 Fuzzy C means clustering

Fuzzy C means (FCM) clustering is based on the minimization of the following objec-

tive function Eq. (2.15) [75] [76]. The center of the cluster is calculated as shown in

Eq. Eq. (2.16) using the membership matrix, Uxy. The membership matrix is updated

according to the position of the cluster centre. The change in the membership matrix

is calculated and compared with old membership matrix. If the objective function is

minimized, the process is stopped otherwise a new center of clusters is determined and

membership matrix is updated according to the new centers. The process continues until

the objective function is minimized as shown in Eq. Eq. (2.15).

Om =
N

∑
x=1

C

∑
y=1

Um
xy||zx − Cy||2, 1 ≤ m ≤ ∞ (2.15)

where N and C are the number of data points and number of cluster centers respectively.

Uxy represents the membership function of x(th) data and y(th) cluster center.m and Cy

are the fuzziness index ≥ 1 and y(th) cluster center. The membership function Uxy and
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Figure 2.11: Illustration of 3 level FCM. (a) Original MRI image (b) Segmentation of breast
density using FCM

cluster centers Cy are calculated as shown in Eq. (2.16) and Eq. (2.17):

Uxy =
1

∑C
z=1(

||zx−Cy||
||zx−Cz|| )

2
m−1

(2.16)

Cy =
∑N

x=1 Um
xy.zx

∑N
x=1 Um

xy
(2.17)

The membership function Uxy and cluster centers Cy is calculated and repeated unless

maxij{|Uz+1
xy −Uz

xy|} < ε, where ε is the termination iteration between 0 and 1. Each pixel

of the image is assigned to the respective cluster with the highest membership value.

FCM can be used for the segmentation of various landmarks in medical images. Figure

Fig. 2.11 shows the illustration of breast density segmented using level 3 FCM [77]. First
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column depict the original breast MRI and the result obtained from FCM is shown in

second column. The experiment shows that FCM could be a useful tool for medical image

segmentation.

2.3.2 Kmeans clustering

Kmeans clustering is a simple clustering technique with low computational complexity

and the produced cluster do not overlap [78]. This unsupervised technique is widely

used to solve low-level image segmentation problems. For ’K’ clusters, the algorithm

calculates the initial cluster centers ’Ck’ randomly. Then, the distance between cluster

centers and each pixel is calculated. There are several methods to calculate the distance.

However one of the most used methods is Euclidean distance. The pixel is assigned to

the nearest cluster. Once all the pixels are assigned to the initial centers, the centroid is

updated and the distance between the updated center and the pixels are calculated [79].

The process is repeated until there is no change. Let us consider an image I(x, y). The

image has to be divided into k number of cluster. Kmeans clustering is applied according

to the following steps.

1. Initialize the number of cluster k, randomly. Also the centre for each cluster Ck is

calculated.

2. For each pixel, Euclidean distance d is calculated between the centre and each pixel

of an image as shown in Eq. (2.18).

d = ||p(x, y)− ck|| (2.18)

3. The pixels are assigned to the nearest centre.

4. After all the pixels are assigned to the clusters, the new centroid is calculated as

shown in Eq. (2.19)

Ck =
1
k ∑

y∈Ck

∑
x∈Ck

p(x, y) (2.19)

5. Repeat the process until same results are obtained.
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Figure 2.12: Illustration of 10 cluster K-means in Breast MRI image

Figure Fig. 2.12 presents the color distribution of cluster produced by 10 cluster K-

means. This algorithm seems to be very effective for medical images and is widely used.

In Figure Fig. 2.12, blue color in the color bar (k=1) signifies the darkest and red color

(K=10) represents the brightest intensity. The 1st and 2nd cluster represent air back-

ground and partial lung area respectively. Moreover, clusters 3 to 10 characterize breast

region of interest (BROI), pectoral muscle, heart, some region of lung and breast density

(BD). Hence, most of the useful information can be represented above cluster 3.

2.3.3 Hierarchical clustering

The hierarchical clustering is an algorithm that clusters similar pixels into the same clus-

ters [73]. Each cluster is distinct from each other and the object within the cluster are

broadly similar. The process begins by considering each observation as a separate cluster.

Secondly, closer clusters are identified and merged together. The similarity of the clus-

ters is measured using different distance metrics. One of the popular and widely used

distance metric methods is Euclidean distance. The output of the hierarchical clustering

is a dendrogram. A dendrogram is a diagram which shows the hierarchical relationship
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Figure 2.13: Representation of cluster

between the objects in the image. The initial step in the hierarchical clustering is to deter-

mine which elements to be merged as a cluster [80]. Hence, we take the closest element

considering the shortest distance using the Euclidean distance. Fig. 2.13(a) show the ex-

ample of hierarchical clustering where raw data are merged together in different steps.

After partitioning the second row, the dendrogram provides clusters as {1 2} {3 4 5 6} {7

8 9} and {10} as shown in Fig. 2.13(b). The clustering of third row yields cluster as {1 2}

{3 4 5 6 7 8 9} {10}. The measured distance between two clusters can be either complete

linking clustering or single linking cluster. Let us consider the two clusters be A and B.

The maximum distance between the objects is referred to as complete linking clustering

as shown in the Eq. (2.20).

max{d(x, y) : x ∈ A, y ∈ B} (2.20)

Moreover, the minimum distance between the objects of the cluster is also measured

which is referred to as a single linking cluster as shown in the Eq. (2.21).

min{d(x, y) : x ∈ A, y ∈ B} (2.21)

2.3.4 Mean shift clustering/segmentation

Mean shift algorithm begins with specifying a window around the data point and cal-

culating the mean of the data point citeaminikhanghahi2017surveyṪhereafter, the center
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of the window is shifted according to the mean. It’s repeated until it converges. This

advanced and powerful clustering technique is used for image segmentation using the

generalized kernel approach. During the image segmentation, the image features such as

color, gradient, textures, etc is extracted. Based on these features, we initialize windows

at the individual pixel locations and the mean is calculated. Finally, until convergence,

the mean shift is performed for each window. Also, the windows with the same peak are

merged together to produce the final result.

The process of the mean shift algorithm is explained. Let us consider n data points Xi,

where i = 1, ......., n on a d dimensional space Rd. The Kernel density estimator calculated

with kernel K(x) and window radius h is given by Eq. (2.22).

f̂K =
1

nhd

n

∑
i=1

K(
x− xi

h
) (2.22)

The mean shift is performed on the class with radially symmetric kernels satisfying

the Eq. (2.23)

K(x) = ckk(||x||2) (2.23)

where k(x) is defined as the profile of the kernel for x ≥ 0 and ck represents the nor-

malization constant. Hence, the density gradient estimation is carried out with further

algebraic manipulations to achieve as the Eq. (2.24):

∇ ˆf (x) =
2ck,d

nhd+2 [
n

∑
i=1

g(|| x− xi

h
||2)]︸ ︷︷ ︸

term1

[
∑n

i=1 xig(|| x−xi
h ||2)

∑n
i=1 g(|| x−xi

h ||2)
− x]︸ ︷︷ ︸

term2

(2.24)

where g(x) = -k’(x) represents the derivative of the selected kernel. The term1 is the

density estimator at x. The term2 is the mean shift vector (m). m is proportional to the

density gradient estimate at point x calculated using kernel k. The mean shift process is

summarized in three steps;

Firstly, calculate the mean shift vector m(xt
i ).

Secondly, translate density estimation window: x(i t + 1) = xt
i + m(xt

i ).

Finally, iteration of the first and second step is carried out until convergence i.e. ∇ f (xi) =

0.
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Figure 2.14: Representation of superpixel maps (a) Original Image (b) manual segmen-
tation by expert (c) superpixel map (k=200) (d) reconstruction of the segmentation from
superpixel map [5]

2.4 Superpixels based segmentation

In computer vision, many algorithms use pixel-grid representation which cannot repre-

sent the real boundary or edges. It would be efficient to detect the meaningful entities

by partitioning an image into segments not in grids which are called as superpixels [81].

IT is observed that superpixel map has various advantages during segmentation. First,

the complexity of the image is reduced since hundreds of thousands of pixels are con-

verted to few hundreds of superpixels. Hence, it is computationally efficient. Second,

most of the structures in the image is preserved because superpixels have resulted from

over-segmentation. Hence, while moving from pixel-grid to superpixels map, there will

be a little loss.

The example of super pixels is depicted in Fig. 2.14. The comparison of the segmenta-

tion obtained from the ground truth is shown in Fig. 2.14 (b). The superpixels in Fig. 2.14

(d) show that most of the structures are preserved i.e. can produce highly accurate seg-

mentation.
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Figure 2.15: Difference between search criteria between standard k-means and SLIC. (a)
Kmeans algorithm : distance is calculated from cluster centre to every pixel in the entire
image.(b) SLIC computes distance from each cluster centre to pixels and the pixel search
are narrowed down within 2S X 2S region.

2.4.1 SLIC superpixels

The superpixels should be fast, easy to implement and produce efficient results. How-

ever, the existing state of the art does not satisfy the above-mentioned criteria [82] [81].

Simple linear iterative clustering (SLIC) is a technique to produce superpixels utilizing

the local clustering of pixels by adopting kmeans with an important distinction. Firstly,

the rate of distance calculation during optimization is reduced. The search space is lim-

ited for the area proportional to the superpixels size as shown in the Fig. 2.15. Secondly,

the color and spatial contiguity are combined while calculating the weighted distance.

This results in control over the size and compactness of superpixels.

In SLIC, the K is considered as the input parameter, which is a preferred number of

equal sized superpixels. Let us consider the number of pixels in the image is N. N/K can

be considered as the approximate size of each superpixel and S =
√
(N/K) is the grid

interval.

The cluster generation is carried out in [labxy] which is a 5-dimensional space. [lab] is

the pixel color vector in CIELAB color space [83] and xy is a normal pixel position. The

clustering process begins by choosing the clustering center CK = [lK, aK, bK, xK, yK]
T with

the regular grid interval S.

The approximate area of the superpixel is SxS. Hence, we can safely assume that

pixels allied with the current cluster centre lie within the area of 2Sx2S on xy plane as
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Figure 2.16: Illustration of SLIC algorithm on medical image (Fundus photography)

shown in Fig. 2.15. The search is carried out within this area for the pixel which is near to

this cluster centre. Once all the pixels are allied to the nearest cluster centre, the cluster

centre is updated and adjusted by calculating the mean vector [lk,ak,bk,xk,yk]T of all the

pixels associated within the cluster. The residual error is calculated using L2 norm be-

tween new and previous cluster. Finally, the process is repeated until the error converges

and Euclidean distances are the popular distance measure in most of the clustering tech-

niques. The, Euclidean distances in CIELAB space are meaningful and works well for the

small distance. If the distance surpasses the limit, it begins to outweigh the similarities

resulting bad boundaries. Hence, the distance measured in SLIC is followed instead of

simple Euclidean norm in 5D:

The distance measure, DMs is defined as follows in Eq. (2.25):

where, DMs is the summation of lab distance and the xy plane distance normalized by

the grid interval S. m controls the compactness of the superpixels.

Fig. 2.16 show that superpixels generated by SLIC algorithm for the retinal image.

dlab =

DMs = dlab + (m/S)Xdxy√
(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =
√
(xk − xi)2 + (yk − yi)2

(2.25)
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2.5 Region based segmentation technique

The region in the images are defined as the group of connected pixels which has sim-

ilar properties [84] [61]. Segmentation comprises of partitioning an image into a set of

regions based on the similarity. The appropriate thresholding technique is also required

for region-based segmentation. The region-based methods are effective with the images

having some common properties such as 1) the image with intensity values 2) the unique

pattern and textures for each region and 3)spectral profiles of multidimensional image

data. These properties are combined and used to produce efficient segmentation. Also,

the effectiveness of these techniques depends upon the type of data. The region-based

segmentation techniques mainly include the following methods.

2.5.1 Region growing

In the region growing method, the pixels are associated or disassociated to the region

[85] [86]. Pixels within the same region are compared for the similarity with the neigh-

boring pixels. The similarity of pixels is measured based on the different features such

as intensity, texture, and shape. If the result is positive, the pixel is added to grow the

region.

The growing process starts from initially selected pixels from the user. Thereafter,

the pixels in the neighborhood are verified whether they belong to the same region. The

process is repeated until all the pixels are classified. The process is terminated based

on the termination criterion defined by the user. Region growing method often works

efficiently then edge-based segmentation.

2.5.2 Region splitting and merging

In this method, two basics techniques: splitting and merging are used for the segmenta-

tion of the image into various regions [61] [87]. Firstly, splitting refers to the iteratively

dividing an image into several regions having similar characteristics. Secondly, merging

refers to combining similar adjacent regions.

Let I be the original image to be segmented. Let all pixels in the region satisfy some

similarity constraint. Based on the similarity, the region is split. The process of region
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Figure 2.17: Region splitting and merging tree.

splitting and merging is carried out in the following step.

Step1: The region R1 equals to I.

Step2: Split the images into the different regions (R1, R2, R3) based on the similarity

between the pixels in the image, I. However, I4 is not divided in the step.

Step 3: Let’s split I4, which are not divided in the previous step. Split I4 based on the

similarity between the pixels.

The process is repeated to obtain the best segmentation.

2.6 Deformable method

In the image domain, the defined curve or surfaces are deformed under the influence

of internal or external forces. The internal force is defined within the curve or surface

and designed to keep the smooth model. The external force is computed from the image

data and it assists to move the curve or surface towards an object boundary or features.

Deformable models offer robustness against image noise and boundary gaps over the

extracted boundary information by integrating coherent and consistent boundary infor-

mation. The deformable model can achieve sub-pixel accuracy which is highly desirable
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for medical imaging application [88] [89].

2.6.1 Parametric deformable model/ Active contour/surfaces

Traditionally known as an active contour model, a parametric deformable model also

referred to as snakes are used for delineating the outline of the objects in a noisy image

[90]. This model has been widely used in different medical imaging areas for applications

like shape recognition, edge detection and especially on segmentation [91]. An active

contour model defines a curve or surface that changes its shape and position to satisfy the

predefined conditions [92]. Initially, snakes were introduced by Kass et al [93] and use the

energy minimization spline guided by the internal elastic energy (constraint force) and

external elastic energy (image force) which pulls towards the different shape and edges.

Snake Model

An snake is a curve that changes its location and shape until it satisfies predefined condi-

tions to produce a segmentation [93]. A simple elastic snake C is defined as the paramet-

ric curve C(s) = (x(s).y(s). The parameter C varies from A to B, hence all the interme-

diate points fall within the range. The total energy E uses the sum of three energy terms

during the energy minimization process as shown in Eq. (2.26).

E =
∫ B

A
E(C(s))ds =

∫ B

A
Eint(C(s)) + Eext(C(s)) + Ec(C(s))ds (2.26)

where Eint and Eext is the internal and external force of the snake. The internal force

increases when its bent or stretched. The external force decreases when the snake moves

closer to a part of the image.

E =
∫ B

A
α||γ′(s)||2 +

∫ B

A
β||γ′′(s)||2ds− δ

∫ B

A
|| 5 (GnxI)||2(γ(s))ds + Ec (2.27)

Internal elastic energy take into account 1) contour behavior in terms of smoothness

and 2) curvature model of the curve. These two terms are defined as the first and second
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derivatives of the contour respectively as as shown in Eq. (2.28)

Eint =


∮

C ||γ
′
(s)||2 +

∫ B
A β||γ′′(s)||2ds, if the contour is closed.∫ B

A ||γ
′
(s)||2 +

∫ B
A β||γ′′(s)||2ds, if the contour is not closed.

(2.28)

The movement of the curve depends upon the application and user. Hence, to deter-

mine the influence of the movement, the constants α and β are introduced as shown in 

Eq. (2.29):

Eint =
∫ B

A
α||γ′(s)||2 +

∫ B

A
β||γ′′(s)||2ds (2.29)

External elastic energy is defined b y t he b ehavior w here t he s nake i s a ttracted by 

some shapes and edges of the original image. For this purpose, the gradient information 

can be used since it possesses local extrema and monotonic behavior. Hence, the external 

elastic force is represented as shown in Eq. (2.30)

Eint =


∮

C || 5 I)||2(γ(s))ds, if the contour is closed.∫ B
A || 5 I)||2(γ(s))ds, if the contour is not closed.

(2.30)

Where I is an input image and5 is the gradient function.

5 I = (
∂I
∂x

,
∂I
∂y

) (2.31)

To enforce the convergence to the local minimum, Gaussian smoothing, Gn is intro-

duced as shown in Eq. (2.32)

Eext = −δ
∫ B

A
|| 5 (GnxI)||2(γ(s))ds (2.32)

where δ is a weighting parameter which allows increasing the visibility of the gradient

field by the snakes.
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Active contour without edges

The segmentation of different landmark from medical images is a tedious task. In tradi-

tional active contour methods, the evolution of the contour depends upon the gradient

of the image [94] [95]. Active contour without edges is the technique based on Mum-

ford–Shah functional [96] and can evolve and detect boundaries that are not necessarily

defined by the gradient. This method can produce an accurate segmentation even for the

noisy image [97].

Let us consider two forces of the initial contour C, be F1(C) and F2(C). F1(C) is the

force to shrink the contour and F2(C) is the force to expand the contour. These two forces

are balanced when they reach the desirable boundary of the interested object. The mini-

mal partition problem used to minimize an energy is represented in Eq. (2.33) :

F(c1, c2, C) = F1(C) + F2(C) =
∫

inside(C)
|Io − c1|2dx +

∫
outside(C)

|Io − c2|2dx (2.33)

The iteration process is controlled by level set formulation as shown in Eq. (2.34).

C = {(x, y)|φ(x, y) = 0

F(c1, c2, C) =
∫

Ω
(Io(x, y)− c1)

2H(φ)dxdy +
∫

Ω
(Io(x, y)− c2)

2(1− H(φ))dxdy

+v
∫

Ω
|∇H(φ)|

(2.34)

Where H(.) is the heaviside function and Io(x, y) is the input image. To obtain the

minimum of F, F′s derivatives is found and set to zeros and c1 and c2 and φ is updated

in Euler-Lagrange as shown in Eq. (2.35).

c1(φ) =

∫
Ω Io(x, y)H(φ(t, x, y))dxdy∫

Ω H(φ(t, x, y))dxdy

c2(φ) =

∫
Ω Io(x, y)(1− H(φ(t, x, y)))dxdy∫

Ω(1− H(φ(t, x, y)))dxdy
∂φ

∂t
= δ(φ)[vdiv(

∇φ

|∇φ| )− (Io − c1)
2 − (Io − c2)

2]

(2.35)

where δ(.) is the Dirac function.
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Figure 2.18: Region splitting and merging tree.
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Figure 2.19: Boundary extraction using Active contour without edges.

Fig. 2.18 shows the evolution of contour in different scenarios. Let us consider every-

thing in black as −1 and rest as +1. C1 and C2 in the Eq. (2.33) is interpreted as the mean

value within and outside the contour C respectively. The Io represents the entire image.

Fig. 2.19 shows the minimization of energy. There are four different cases discussed.

1. If the initial contour C is outside the object, F1(C) > 0 and F2(C) ≈ 0.

2. If the initial contour C is inside the object, F1(C) ≈ 0 and F2(C) > 0.

3. If the initial contour C is both inside and outside of the object, F1(C) > 0 and

F2(C) > 0.

4. IF the initial contour C is on the boundary of the object i.e the energy is minimized

C = C0, F1(C) = 0 and F2(C) = 0.
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Figure 2.20: Region splitting and merging tree.

Fig. 2.19 shows the segmentation obtained from active contour without edges. the

boundary of the lesion from breast MRI image is obtained in 10 iterations.

2.6.2 Non-parametric deformable model/ Level set method

The non-parametric deformable model/ Level set method is used as a tool for the numer-

ical analysis of surfaces and shapes without using object parameterization [98][99]. This

method is effective especially for the shapes that changes its topology i.e. time-varying

objects. When the object splits into two it’s difficult to describe the transformation by

parameterizing the boundary of the shape.

The illustration of level set methods can be explained from Fig. 2.20.In the figure, the

first object in the upper left corner has a distinct and well-behaved boundary. Below that

object, a graph of the level set function ψ is plotted that determines the shape of the object

depicted by red surface. Similarly, the xy plane is depicted by the blue flat surface. When

the shape or contour itself is a set of points in the boundary, the boundary of the shape is

then the zero level set of ψ. The object in the upper row is changing its shape and finally

splits into two as seen in the Fig. 2.20. The Level set method would be very effective to

detect during such deformations.

For a given image I, let ψ(x, y) be the level set function to define the shape or con-

tour. If the contour is zero level set of the level set function, then the contour C becomes
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Figure 2.21: Contour change in level set method.

Eq. (2.36):

C = {(x, y)|ψ(x, y) = 0} (2.36)

Moreover, the inside and outside region of the curve are explicitly defined as:

The level set function is updated as the values of ψ is changed to fit on the shape of the

object as shown in the Fig. 2.21. Some region which has negative values will transform

into positive and vice versa.

2.7 Graph based methods

The graph-based method rely on graph partitioning [100] [101]. Image is initially treated

as graph G and the vertices of the graph are composed of pixels. The edge of each object

in the image has a weight and is determined by the related vertices. Let G be the graph of

the image I. Let set of subgraph SG1, SG2, SG3, ......., SGn is extracted from graph G such

that K ∈ 1, 2, 3, ....., n, ∀i, j, vi, vj ∈ SGk between vi and vj.where i 6= j and v is the vertices.

The demonstration of the image segment into the graph is shown in Fig. 2.22. Initially,

the pixel of image is assigned with the vertices’s to represent the image as graph. Based

ψ(x, y) =


> 0, inside the contour.

= 0, contour.

< 0, outside the contour.

(2.37)



2.7 Graph based methods 53

(b) 

(d) 

• 

(c) 
Figure 2.22: Demonstration of graph partitioning (a) Original Image (b) Graph with ver-
tices (each pixel is assigned with vertices) (c) Graph partitioning according to the weight
of vertices. (d) Final segmentation image

on the weight of vertices’s the graph is either connected or disconnected to create the

segment.

2.7.1 Graph cut methods

The graph cut method is popular because of its good mathematical basis and success-

fully obtained good results in another field of image processing. Graph cut constructs an

image-based graph and provides a global optimal solution of energy minimization func-

tions. However, it is computationally expensive because it uses global optimum. Also,

the graph cut is known for over-segmentation. Several works have already been done

to improvise the graph cut algorithm. To improve the speed of graph cut methods, the

algorithms based on the reduction of graph nodes have been proposed in the literature

[102]. Watershed algorithm [103] is the widely used approach in the graph cut method

that is applied to the gradient image. The watershed algorithm can be used on certain
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image section instead of the whole image. Interactive based graph cut method is incor-

porated with the user interaction to improvise the segmentation results. It is considered

to be more effective especially for the target image whose accuracy requirement is high.

In this method the interested object areas can be selected either by choosing the inter-

ested object area or by selecting the seed point [104]. In [105] [106] follows the interactive

graph cut method where seeds are iteratively added until the accurate segmentation is

obtained. Similarly, [107] chooses object and background seeds are selected for only one

time to construct graphs with a reasonable weight. The graph cut approach is considered

better for the objects with a weak background.

Active contours, level sets, live wire, and graph cut are categorized as energy base

segmentation methods that establish an objective (energy) function [105] [108]. The en-

ergy function reaches a minimum level when the image is segmented. In live wire, users

identify seeds and have to be located at the object boundary. The constructed energy

function is minimized for the optimization of the curve position. Moreover, in the level

set and active contour, the initial curve is provided and based on the predefined curve;

a minimum valued energy function is generated. These methods are very sensitive to

the initially set curve and utilize boundary information. Also, these methods cannot ob-

tain global optimal results. However, graph cut is a segmentation method where energy

function is constructed based on the boundary and region information and can achieve

global optimal results.

Consider a graph G = (V, E) where V denotes a series of vertices and E denotes

edges of the graph. Each vertex V is composed of two types of nodes. 1. Neighborhood

node (pixel in the image) and 2. Terminal node (s-source and t-sink). Neighborhood

node relates the pixels and terminal node consists of a source (s) and sink (t). The graph

is called a s− t graph where s is a foreground (an object that is segmented) and t is the

background mode.

Edges E are also of two types 1. n − link that are related to neighboring pixel and

t − link that are related to the terminal pixel. Each edge is assigned to a non-negative

weight, which is also known as cost. Cost is a summation of all weights We of edges and

denoted by |C|.
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Figure 2.23: Illustration of s-t graph

|C| = ∑
e∈C

We (2.38)

The cut with the minimum cost is called min-cut calculated by achieving maximum

flow. Fig. 2.23 shows the graph obtained from the s-t graph to get the minimum cut by

dividing the graph. The curve is divided into two disjoint subsets S and T s ∈ S, t ∈ T

and S ∪ T = V. S and T corresponds to the object and background.

2.8 Conclusion

In this chapter, we reviewed popular segmentation techniques which are widely used in

the analysis of multidimensional medical image analysis. Multidimensional image anal-

ysis is becoming more popular and can be used for the identification of several diseases

from the image generated from the different imaging source.The algorithms should be

carefully designed so that the final anatomical structure is not lost in the image. Also,

robustness, precision, accuracy and time consumption to produce result should be con-

sidered while developing algorithm. Hence, we take an advantage of several methods to

develop a framework to produce the required output. Some of the important techniques

which are explained in this chapter are being used in our work. Hence, we will get into

more details about some techniques in the succeeding chapters.





Chapter 3

Accurate Blood Vessel Segmentation

3.1 Introduction

THE manifestation of diseases in retinal images is an important investigative indica-

tor of various medical syndromes in relation to eye and body. The ophthalmic dis-

eases such as diabetic retinopathy [109], [110], retinal artery occlusion [111] and choroidal

neovascularization [112] could be identified from the different characteristics of blood

vessels. To identify these features, blood vessel segmentation is an important and pri-

mary step. There are two ways of blood vessel segmentation: manual and automatic

[113]. Manual segmentation of blood vessels in an image is complex and exceptionally

time consuming that requires training and skill. Hence it is commonly acknowledged by

the medical community that automatic segmentation is significantly valuable for accurate

and speedy identification of blood vessels. It is vital to have automatic and accurate seg-

mentation algorithm for retinal images to develop a diagnostic system for the treatment

of ophthalmic disorders.

Several solutions have already been proposed for segmentation of retinal vessels. Pre-

ceding research on the development of methods for blood vessel segmentation can be

categorized as supervised [114], [115] or unsupervised segmentation [116] - [117]. Seg-

mentation with supervised methods is basically reliant on training sets such as manually

This chapter is derived from:
• D Pandey, X. Yin, H. Wang, and Y. Zhang, ”Accurate vessel segmentation using maximum entropy

incorporating line detection and phase-preserving denoising” Computer Vision and Image Understand-
ing, Volume 155, Pages: 162-172, 2017.
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segmented gold standard classifications. The information is used to differentiate retina

images as vessels or non-vessels. In supervised segmentation methods, a training process

such as support vector machines (SVMs) [118], [119], k-nearest neighbors [120], artificial

neural networks (ANN) [121], Gaussian mixture models (GMM) [122], [123] are imple-

mented. In contrast, unsupervised segmentation methods are independent of training

datasets, hence are more appropriate to a broader range of imaging modalities. Unsuper-

vised segmentation techniques have been proposed by a wide range of approaches such

as texture mapping [117], thresholding techniques [124], vessel tracing/tracking [125],

[126], multi-scale approaches [127], model based approaches [128], [129], active contour

models [130], morphological processing [131], [132], and matched filter approaches [133].

Also, each retinal image shows unique properties with respect to retinal boundaries, optic

discs and different diseases [134]. Moreover, vessel crossing [135], bright or dark lesions

[136], low contrast [137], uneven illumination [138], and noise [139] further complicate

the segmentation process for an accurate result.

A line detector proposed by [118] calculates the average pixel intensity of lines in

different orientations and the line with highest average intensity is selected. This tech-

nique is effective in dealing with the vessels comprising central light reflex, especially

for the long lines. In [118], the length of line detector is fixed. Hence, when two vessels

are closer, it tends to merge together. Also, it produces false vessels at vessel crossovers.

A solution was proposed by [8] using generalized multiscale line detector by varying

a length. A shorter line length can be detected efficiently but introduces background

noise in the segmented results. Moreover, the same weight assigned for the different line

length in [8] produces considerably higher noise and the false vessels near optic disc. It

is also observed that the method is ineffective in dealing with the pathological images

with bright or dark lesion. Hence the issues observed in the current state of the art that

restrict in developing an accurate vessel segmentation algorithm can be summarized as:

I) Both non-uniform illumination and background noise of the images are responsible

for false vessels. II) Detection of dim and thin vessels in retinal images is a greater chal-

lenge. Very few researcher treat thick and thin vessels separately, which results in higher

false positives. III) Closer vessels are merged. IV) Most of the blood vessel segmentation

algorithms assume that retina is healthy and free of bright and dark lesions [7]. How-
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ever, the existence of bright or dark lesions can considerably degrade the performance

of blood vessel segmentation and even make the result unusable due to detected lesions.

To overcome the aforementioned problem, we propose an accurate retinal blood vessel

segmentation method. The underlying technique of proposed solution involves summa-

tion of filter responses while detection of centerlines in different orientations. Generally,

for line detection twelve different orientations are involved [8], [140], [141]. However,

it is suggested in [142], four different orientations are sufficient to detect the blood ves-

sels with reduced computational complexity. In addition, phase-preserving denoising

technique before the centerline detection is highly effective especially for the accurate

detection of thin and dim vessels with significantly reduced noisy pixels.

The original RGB retinal images consist of red, green and blue channels. Red chan-

nel is the brightest color channel and blue channel displays poor dynamic range. Thus,

detailed blood vessels are not represented. In contrast, green channel exhibits highest

contrast between blood vessels and background. Hence, green channel image is selected

for retinal blood vessels segmentation method [143]. The process begins with a pre-

processing step to eliminate non-uniform illumination and noise in fundus image. This

step includes background estimation and subtraction. The background estimation is car-

ried out with a morphological opening approach and subtracted from the green channel

fundus image. It aims in reduction of drastic variation of illumination and noise existed

in the fundus images during pixel classification. Furthermore, optic disc and pathologi-

cal regions such as bright lesion are treated as background during estimation since these

pixels are brighter than the blood vessels and background. Additionally, we contribute a

method to accurately segment thin and thick blood vessels from retinal fundus images.

Thick blood vessels are clear, distinct and easier to detect while thin vessels are smaller in

size, dim and show bad contrast. It is also observed that the gray level intensity and ge-

ometrical correlations between thin and thick vessels are different. Hence, thick and thin

blood vessels have different characteristics and needs to be segmented using separate

approaches. To handle thick vessels, our approach uses threshold technique which can

change the threshold value according to the image property. However, in order to detect

thin vessels, the proposed approach utilizes a basic line detection method incorporat-

ing a phase-preserving denoising technique, local normalization and maximum entropy.
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phase-preserving denoising method significantly removes the noise closer to the blood

vessels and line detection methods detects the detailed blood vessel from the denoised

image. Local normalization is further used to correct the remaining non-uniform illumi-

nation in an image. Our algorithm is efficient, computationally fast and evaluated with

four publicly available databases: the DRIVE database [144], the STARE database [145],

the CHASE DB1 [146] and High-resolution fundus image (HRF) [147]. The outcome of

our method is compared with the recent results produced in the literature which confirms

that our method outperforms the existing solutions.

Rest of the chapter is structured as follows. A detailed review of the models used for

retinal vessel segmentation is discussed in Section 3.2. Section 3.3 provides an explana-

tion of the new proposed method. In section 3.4, experimental results are analyzed and

compared to the methods in the literatures. Section 3.5 concludes the work in the chapter.

3.2 Overview of the Approach

In the following section, we explain our motivations to use MRI different models for

retinal vessel segmentation.

3.2.1 Retinal background estimation and subtraction

The important and primary pre-processing step in our algorithm is background estima-

tion. This process normalizes and reduces the non-uniformed intensity distribution. The

normalized image is obtained by the subtraction of background estimation from an in-

verted green image. The background estimation is acquired by performing a morpholog-

ical opening operation. The normalized image is computed using Eq. (3.1).

I1 = Ig − Ibg (3.1)

where I1 labels normalized images , Ig labels inverted green images and Ibg labels back-

ground estimations. The background estimation satisfies Eq. (3.2).

Ibg = ∪
{
(Se) | (Se) ⊆ Is

}
, (3.2)
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where Se indicates a disc shaped structuring element with radius of R, Is is the set of

Ig and ∪ denotes union of set. The background estimation Ibg is given by geometric

interpretation where unions of all translations of structuring elements Se fit the entire

image Ig. Therefore, the size of Se must be estimated such that its value is larger than the

width of the blood vessel. The width of the vessels is not likely greater than 15 pixels as

per our observation, so we have considered the size of Se as 15.

3.2.2 Local Phase-Preserving denoising of retinal images

Denoising process involves transformation of noisy images into some domain where

noise components are more easily recognized. To remove noise, a thresholding procedure

is implemented and the transformation is reversed to reconstruct a noise-free image. The

denoising method is associated with a complex valued log Gabor wavelet filter where

amplitude information is decomposed while preserving important phase information of

an image [148]. The process begins with calculating amplitude and local phase data at

each point of a retinal image. This is performed by utilizing log-Gabor wavelet filter [149]

that has a Gaussian transfer function viewed on a logarithmic frequency scale. The am-

plitude information of the wavelet filtered image depicts that most of the energy is con-

centrated in the middle. However, the local phase information is distributed throughout

the image over all frequencies. The amplitude or phase information alone is not capable

of reconstructing the image efficiently. Hence, we follow the phase-preserving technique

while shrinking the amplitude information in different scaling factors and orientations.

Let us consider an image I(x, y). The image response for even symmetric (Me
n) and odd

symmetric (Mo
n) wavelets at scale n is given by Eq. (3.3). The amplitude An(x, y) and

phase φn(x, y) at a wavelet scale n are calculated as Eq. (3.4) and Eq. (3.5) respectively.

[Ren(x, y), Imn(x, y)] = [I(x, y)×Me
n, I(x, y)×Mo

n] (3.3)

where Ren(x, y) and Imn(x, y) are the real and imaginary parts of the complex valued

frequency component.

An(x, y) =
√

Ren(x, y)2 + Imn(x, y)2 (3.4)
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φn(x, y) = atan2(Imn(x, y)/Ren(x, y)) (3.5)

While denoising, a noise threshold at each wavelet scale is determined and the am-

plitude of the filtered vector is shrinked leaving the phase unchanged. Hence, we cal-

culate the complex valued wavelet response by preserving the phase information while

shrinking the amplitudes over different wavelet scales and orientations. An image can be

reconstructed by summing the remaining even-symmetric filter responses over all scales

and orientations. The estimation of noise threshold is determined from mean and vari-

ance of Rayleigh distribution. The mean and variance of the Rayleigh distribution R(x)

in Eq. (3.7) are given by µR and σ2
R in Eq. (3.7).

R(x) = x/σ2e−(x)2/2σ2
(3.6)

µR = σ
√

π/2, σ2
R =

4− π

2
σ2 (3.7)

where σ is the scale parameter of the rayleigh distribution.The noise threshold τ1 is cal-

culated as,

τ1 = µR + cσR (3.8)

where, c specifies the standard deviation values of noise to reject. It is related to an ideal

wave shape. It is assumed that lower value of c produces an ideal wave shape [148]. If

the value of c is high, thin vessels are treated as noise and removed. Hence, we tuned the

value of c equal to 1.

To make a robust estimation, mean (µR) is replaced with the median (M) response of

rayleigh distribution,

M = σ
√

2ln(2) (3.9)

where M labels median responses. At each scale and orientation, noise threshold is cal-

culated and processed. Finally the reconstructed image which is labeled as I2.
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3.2.3 Linear structure detection

Blood vessels can be observed in all possible orientations and size. It is necessary to select

the set of directional filters, whose responses can be merged together, in order to detect

retina vessels at all the possible directions. After observation, we found that the particular

line kernels with horizontal (0◦), diagonal (45◦, 135◦), and vertical (90◦) directions can be

used as an alternative to any other conventional line detection solutions [142].

Let us consider line kernels with directions of 0◦, 45◦, 90◦and 135◦as shown below,

respectively. −1 −1 −1

2 2 2

−1 −1 −1

 ,

−1 −1 2

−1 2 −1

2 −1 −1

 ,

−1 2 −1

−1 2 −1

−1 2 −1

 ,

 2 −1 −1

−1 2 −1

−1 −1 2


We convolve each matrix with the denoised image I2 to obtained the four different image

responses in four directions. All of the filtered responses are merged together to produce

final image I3. Using k0◦ , k45◦ , k90◦ and k135◦ to label the line kernels, the image I3 can be

expressed as:

I3 = k0◦ ∗ I2 + k45◦ ∗ I2 + k90◦ ∗ I2 + k135◦ ∗ I2. (3.10)

However, there are MRI weaknesses in relation to basic line detection. For exam-

ple, surrounding vessels are likely to get merged and the extension produced around the

cross-sections tends to generate false vessels. To address the above mentioned problems,

a phase-preserving denoising method is used, which allows elimination of noise for an

image without losing the properties of blood vessels. Because of center light reflex [135],

some of the vessels tend to be torn apart that can be observed in the Fig. 3.6(a). In addi-

tion, since the width of a line detector is equal to single pixel, some thick vessels cannot

be detected. To address these problems, we perform thick vessel detection that will be

represented in Section 3.3.

3.2.4 Local normalization

This process uses mean and variance in a local neighborhood to correct the non-uniform

illumination or shading artifacts [150] after line detection. In this process, mean and vari-
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ance are calculated in each pixel within the locally defined block size of 10× 10. Local

mean map of the image carries low frequency information and local variance map rep-

resents high-frequency information specifically the edge information of image. It is ob-

served that the pixels around the edges show higher local variance values and local mean

map is dominated by uneven illumination. After subtracting local mean map from a reti-

nal image, we can adjust the global uneven illumination from the image. Similarly, after

dividing it by its variance map, the resultant retinal image allows clear edge with reduced

uneven illumination. The local normalization L(x, y) of the image I3(x, y) that corrects

non-uniform illumination or shading artifacts is computed according to Eq. (3.11).

L(x, y) =
I3(x, y)− µL(x, y)

σL(x, y)
(3.11)

where µL(x, y) and σL(x, y) are the estimation of local mean and local standard deviation

of the input image. After local normalization, denoising technique is used again, which

further removes noise with preserved edges as shown in Eq. (3.12).

I4(x, y) = denoise(L(x, y)) (3.12)

3.2.5 Maximum Entropy Thresholding for Binarization

The segmentation of blood vessels from the background images requires an appropriate

threshold technique which can change threshold value according to image property. We

use maximum entropy to select the optimal thresholding value to binarize the final im-

age. This method utilizes normalized histogram of an image whose value ranges from 0

to 255 to determine the threshold value. Let us consider an grayscale image that requires

binarization and let Ih(i) be the normalized histogram of that image where i takes values

from 0 to 255 and t indicates the threshold to be determined.

imax

∑
i=0

Ih(i) = 1 (3.13)

Entropy of vessel pixel Hvessel(t) is obtained as:
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Hvessel(t) = −
t

∑
i=0

Ih(i)
∑t

j=0 Ih(j)
log

Ih(i)
∑t

j=0 Ih(j)
(3.14)

Similarly, entropy of background pixel Hbg(t) is given as:

Hbg(t) = −
imax

∑
i=t+1

Ih(i)

∑imax
j=t+1 Ih(j)

log
Ih(i)

∑t
j=t+1 Ih(j)

(3.15)

Hence, optimal threshold τ2 by maximizing the background and vessel pixels, can be

calculated as:

τ2 = arg max(Hvessel(t) + Hbg(t)) (3.16)

The final binary image I5 using τ2 is computed as:

I5(x, y) =


1, I4(x,y) < τ2

0, otherwise
(3.17)

3.3 Proposed vessel segmentation method

The proposed approach to segment retinal blood vessels consists of four steps: A) image

pre-processing, B) thin blood vessel detection, C) thick blood vessel detection, and D)

image post-processing, as shown in Fig. 3.1. The green channel inverted image is used

because it exhibits better contrast between vessels and background.

3.3.1 Image pre-processing

This image pre-processing strategy is to achieve normalized images via separating back-

ground images from inverted green channel images. This aims to improve retina image

quality via correcting non-uniform illumination. Fig. 3.2 illustrates the effectiveness of

the image pre-processing approach. Fig. 3.2 (a), (b), (c) are the inverted green channel

image, the background estimated image and the resultant image after subtraction of (b)

from (a), respectively. The blood vessels as seen in Fig. 3.2 (a) have been dissolved after

estimation of background using morphological opening operation, the result of which is
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Figure 3.1: The proposed functional diagram of retinal vessel segmentation.



3.3 Proposed vessel segmentation method 67

illustrated in Fig. 3.2 (b). After subtracting the estimated background image i.e. subtract-

ing Fig. 3.2 (b) from Fig. 3.2 (a), we obtain the clear blood vessels as shown in Fig. 3.2 (c),

where the influence of noise and non-uniform illumination has been reduced and does

not contain strong lesions or bright spots as seen in the original image (Fig. 3.2 (a)).

Figure 3.2: Subtraction of the estimated background from an inverted green channel im-
age. (a) The inverted green channel image. (b) The estimated background image. (c) The
resultant image after subtraction of the estimated background from the inverted green
channel image.

3.3.2 Thin Vessel Detection

The original retinal image contains MRI types of noises such as photo-electronic noise,

impulse noise and structured noise. It is necessary to remove these noises to identify and

preserve detailed blood vessel. Therefore, following the preprocessing step, the phase-

preserving denoising method is applied before and after the analysis of line structure

and local normalization. According to [142], four orientations of the line structure de-

tector (filter) are sufficient to extract the blood vessels from the noise reduced image. To

further remove the illumination inequality existing in the extracted blood vessels, local

normalization is utilized for image enhancement with corrected and smooth edges of the

blood vessels. Furthermore, the resultant image is binarized with the threshold value

generated from a maximum entropy method [117], represented in section 2.5. After bi-

narization, the area of each connected component is calculated. At this point, most of the

blood vessel pixels are connected with each other. The binarized image contains smooth

edged blood vessels including some background noise. To remove the background noise,

a morphological dilation operation is performed and the area of each connected compo-

nent is calculated. According to our experiment with four databases as mentioned before,

we found that small areas with size less than 20 pixels were envisioned as noise and are
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Figure 3.3: Filter responses of the retinal images obtained according to different scaling
factors. (a) Scaling factor of 1. (b) Scaling factor of 2. (c) Scaling factor of 8.

removed. Finally, we convolve the dilated image with the binarized image in order to

extract the thin blood vessels.

Figure 3.4: Illustration of denoised retinal image after reconstruction with scaling factor
of 2 and 15 orientations using Gabor wavelet filter.

For phase-preserving denoising, wavelet scaling factor and orientation are two im-

portant prospects. When the scaling factor is low, filter response to noise is high and

could treat useful information as noise. With the increased value of the scaling factor,

filter response to the noise is decreased. Hence, scaling factor should be chosen carefully.

Before the line structure detection, scaling factor should be low with an aim to remove

noise. After local normalization, preservation of blood vessels is important requiring

high scaling factor.
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With several experiments and optimization, we choose a scaling factor of 2 before line

structure detection, for optimum noise removal. After local normalization, as the noise

is already removed, we use high scaling factor of 8 to preserve blood vessel informa-

tion and to provide contrast between vessels and background. Fig. 3.3 (a), (b), and (c)

demonstrates the filter response of a retinal image via phase-preserving denoising with

the scaling factors of 1, 2, and 8, respectively.

The high quality of the reconstructed retinal image undeniably depends on the fea-

ture extraction with Gabor wavelet filters that use scaling factors and orientations. Larger

scaling factors and orientations tradeoff with the computational time. The process begins

with constructing a Gabor features by taking 2 scales and 15 orientations using Gabor

wavelet filters. The image to be denoised is now convolved with the constructed Ga-

bor features, thus generating 15 different feature vector responses with the same size as

shown in Fig. 3.4. The final image is obtained by summing the responses over all scales

and orientations.

Figure 3.5: Illustration of resultant images obtained without (as shown in (a) and (b))
and with (as shown in (c) and (d)) phase-preserving denoising. (a) The resultant image
before using line detection. (b) The resultant image after using local normalization. (c)
The denoised image with scale factor of 2 and 15 degrees of orientation before using line
detection. (d) The denoised image with scaling factor of 8 and 15 degrees of orientation.
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Figure 3.6: Illustration of blood vessel segmentation results by using the proposed meth-
ods according to (a) thin vessel detection; (b) thick vessel detection; (c) post-processing
for improved image quality by superimposing of the image between (a) and (b). Red-
dotted rectangles in (a) show detected thin blood vessels that is not discovered using
thick vessel detection as shown in red dotted rectangles in (b). Red-dotted circles in (a)
demonstrate the limitation of the proposed thin vessel detection where thick blood ves-
sels are torn apart. The limitation is solved when conducting thick vessel detection as
illustrated in the red dotted circles in (b).

Thin vessel detection in a noisy image shows greater challenge. The procedure to re-

move noise will lead to the loss of true blood vessel information. Also, the noisy pixels

are merged with true vessels resulting in the false positives. Fig. 3.5 compares the resul-

tant images with or without using phase-preserving denoising. Fig. 3.5 (a) and (b) are the

results before using line detection and after the local normalization, both of which are

processed with absence of phase-preserving denoising. Similarly, Fig. 3.5 (c), (d) are the

results before using line detection and after using local normalization operation but with

phase-preserving denoising. It is clearly seen that, denoising technique is able to remove

a tremendous amount of noise without losing vessel properties as shown in Fig. 3.5 (c),

(d).

3.3.3 Thick Vessel Detection

Thick blood vessel detection is conducted in parallel with thin vessel detection following

the pre-processed step. The image after being processed is binarized with the threshold

value obtained from the maximum entropy. The result image contains blood vessels and

noise. We calculate the area of each connected component and remove the components

whose areas consist of 20 pixels or less. The resultant image obtained after this process

contains only thick vessels.
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3.3.4 Post-processing

The detected thin and thick vessels are merged together via superimposition. The noise

in the merged image is not always removed especially to the image with lesions and

unusual illumination. Hence, we perform morphological dilation operations using a disc

shaped structuring element with radii of 3 pixels. This morphological operation allows

the remaining component to grow by 3 pixels from the edge along all the direction, which

connects all the vessels nearby. The area of each connected component is searched. We

remove the area with 500 pixels or less as noise areas from the dilated image. Finally,

we convolve the dilated image with the merged image. The obtained segmented image

is compared with manually drawn ground truth images available at the experimented

databases.

Fig. 3.6 shows the resultant images from phase 1 (thin vessel detection) and phase 2

(thick vessel detection). The red dotted circles in Fig. 3.6 (a) illustrate that thick vessels

are torn apart due to center light reflex. However, thin vessels can be detected effectively

as shown in red dotted boxes in Fig. 3.6 (a). Fig. 3.6 (b) demonstrates the results from

phase 2 where thick vessels are efficiently detected. We merge the two solutions from

both phases to overcome the noise issues. Fig. 3.6 (c) is the final results where resultant

images from both phases are superposed together. As a result, the final images contain

most of vessels including both thick and thin vessel trees.

3.4 Performance Evaluation and Results

3.4.1 Image Source and Experimental Evaluation Criteria

The performance of this proposed segmentation is evaluated through images taken from

publicly available databases: the DRIVE, the STARE, the CHASE DB1 and HRF. These

databases are widely used, popular and contain varieties of images including both healthy

and pathological images that are taken using different cameras under different environ-

mental conditions. These databases consist of ground truth and masks that have been

manually segmented by experts. The DRIVE database is composed of total 40 color reti-

nal images. The images were collected from diabetic retinopathy screening program in
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the Netherlands. These images were taken from canon CR5 non-mydriatic 3-CCD camera

with 45 degree field of view (FOV). Among the 40 images, 20 images are categorized as

test databases and the remaining as training databases. The images were compressed and

kept in JPEG format. The STARE database contains 20 images. Out of these images, 10

are pathological images. The images were captured with TopCon TRV-50 fundus camera

at 35 degree field of view. Two observers were involved in the segmentation manually.

The CHASE DB1 database contains 28 retinal images from 14 patients. Among them 14

images were taken from Child Heart and Health Study. The HRF database contains three

categories of images : 15 images of healthy images, 15 images of diabetic retinopathy

retinas (DR) and 15 images of patients with glaucoma (G).

Among two types of the images in the DRIVE database, 20 images from the test

database are utilized for the qualitative assessment of proposed algorithm. Also, we

utilize the entire sets from STARE and CHASE DB1 databases that contain 20 and 28 im-

ages respectively. Among three categories of HRF database, we have utilized the images

with DR and G which includes pathological retinal images.

Two different ground truth images were provided that were manually segmented by

two experts in the first three databases. The ground truth image that were manually seg-

mented by the first observer of each database are used to verify the result. For HRF, only

one set of manually segmented ground truth images are available. Also, the performance

of these experiments using our algorithms is compared with the results via existing meth-

ods in state of the art, in terms of sensitivity (Se), specificity (Sp), area under ROC curve

(AUC), accuracy (Acc), and Matthews correlation coefficient (MCC). This quantitative as-

sessment is performed with pixel based classification technique. Every pixel is classified

either as a vessel or background. As the result, there are 4 combinations: two classi-

fications and two misclassifications. Classification refers to true positive (TP) and true

negative (TN) whereas misclassification refers to false positive (FP) and false negative

(FN) [113]. These measures are defined as the following equations.

Acc =
TP+TN

TP+FP+TN+FN
(3.18)

Se =
TP

TP+FN
(3.19)
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Sp =
TN

TN+FP
(3.20)

Note that TP and TN specify the correctly acknowledged vessel pixels and back-

ground pixels whereas FP and FN specify the incorrectly acknowledged vessel pixels and

background pixels. The symbols Se and Sp are respectively the proportion of positives

and negatives that are correctly identified.

We use MCC as another metric to measure the quality of binary classification that

takes two values (normally 0 and 1) among resultant analyzed images (prediction values)

and the ground truth images (actual values). It satisfies Eq. (3.21)

MCC =
TP
N − S× P√

P× S× (1-S)× (1-P)
(3.21)

where, N = TN+TP+FN+FP , S = TP+FN
N , P = TP+FP

N

This measurement method is commonly considered as one of the best ways to de-

scribe the confusion matrix [151] of TP, TN, FP, and FN where the amount of samples in

the two classes differs noticeably. As an example, the non-vessel pixels are significantly

varied compared with the vessel pixels. The value of MCC varies between -1 to +1 and

prediction is efficient if the value is high.

To achieve the non-parametric performance measurement, receiving operating char-

acteristics (ROC) curve [151] is used, which estimates tradeoff between sensitivity and

specificity. It is a binary classifier that is plotted by using different values of the indepen-

dent threshold in a certain interval. The value is calculated in each threshold point and

represents the false positive rate i.e. (1-Sp) on x-axis and true positive rate (Se) on y-axis.

The ROC curve is regarded as an ideal curve as a point (0, 1) when it is closer to the top

left corner, which offers perfect value i.e. 1 as area under curve (AUC) and considered

as an excellent result when AUC value is above 90%. Note that, AUC is the measure of

predictive performance.

3.4.2 Results and Discussion

This section presents the experiment executed to evaluate the performance of the de-

signed algorithm for the segmentation of retinal blood vessels. These experiments are
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Figure 3.7: (a), (b), (c) are the final retinal vessel segmentation results for three 
databases, DRIVE, STARE and CHASE DB1. Similarly (d), (e), (f) are the 
manually segmented ground truth result. (g), (h), (i) are the result from B-COSFIRE 
[6].
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carried out on each image from mentioned databases. All experiments are performed on

Matlab R2013b running under Intel(R) core(TM) i5-4570s CPU@ 2.90 Ghz with 8 GB of

RAM.

Table 3.1: This table lists the resultant performance using DRIVE database in terms of
sensitivity, specificity, AUC, accuracy (Acc) and MCC. The results using the proposed
algorithm are compared with the results using the methods in literature.

Methods Se Sp AUC Acc MCC
Supervised Method

Staal emphet al.[114] - - 0.9520 0.9441 -
Soares et al.[152] 0.7332 0.9782 0.9614 0.9466 -
Ricci and Perfetti et al.[118] - - 0.9633 0.9595 -
Marin et al.[153] 0.7067 0.9801 0.9588 0.9452 -
Fraz et al.[154] 0.7406 0.9807 0.9747 0.9480 -

Unsupervised Method
Martinez-perez et al.[155] 0.7246 0.9655 - 0.9344 -
Al-Rawi et al.[140] - - 0.9435 0.9535 -
Ricci and Perfetti et al.[118] - - 0.9558 0.9563 -
Al-Diri et al.[156] 0.7282 0.9551 - - -
Lam et al.[157] - - 0.9614 0.9472 -
Fraz et al.[154] 0.7150 0.9760 0.8460 0.9430 -
Nguyen et al.[8] - - - 0.9400 -
Yin et al.[117] 0.7556 0.9656 - 0.9475 -
B-COSFIRE [6] 0.7655 0.9704 0.9614 0.9442 0.7475
Zhao et al.[158] 0.7420 0.9820 0.8620 0.9540 -
PROPOSED METHOD 0.8106 0.9761 0.9650 0.9623 0.7681

The improved segmentation results can also be observed visually. Resultant segmen-

tation is automatically acquired using our approach, which is compared with the manu-

ally segmented images by the first observer for each database (ground truth). To demon-

strate the improvement, the results obtained are compared with the B-COSFIRE segmen-

tation results. Fig. 3.7 (a), (b), (c) are the results using the proposed automatic segmen-

tation from randomly selected images associated with DRIVE, STARE and CHASE DB1

respectively. Fig. 3.7 (d), (e), (f) illustrates the manually segmented ground truth images

and Fig. 3.7 (g), (h), (i) are the segmented results from B-COSFIRE [6]. The results ob-

tained from our methods, while compared with ground truth and B-COSFIRE results,

show that the proposed algorithm is able to pick up fine details of blood vessels, and

allows least errors compared with the ground truth. It is further validated according to

the resultant quality metrics listed in Table 3.1 - Table 3.3.
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Figure 3.8: ROC curves for DRIVE, STARE and CHASE DB1, represented by blue, red
and green lines, respectively, using the proposed algorithm.

Table 3.2: This table lists the resultant performance using STARE database in terms of
sensitivity, specificity, AUC, accuracy (Acc) and MCC. The results using the proposed
algorithm are compared with the results using the methods in literature.

Methods Se Sp AUC Acc MCC
Supervised Method

Staal et al.[114] - - 0.9614 0.9516 -
Soares et al.[152] 0.7207 0.9747 0.9671 0.9480 -
Ricci and Perfetti et al.[118] - - 0.9680 0.9646 -
Marin et al.[153] 0.6944 0.9819 0.9769 0.9526 -
Fraz et al.[154] 0.7548 0.9763 0.9768 0.9534 -

Unsupervised Method
Mendonca et al.[142] 0.6996 0.9730 - 0.9479 -
Martinez-perez et al.[155] 0.7506 0.9569 - 0.9410 -
Ricci and Perfetti et al.[118] - - 0.9602 0.9584 -
Al-Diri et al.[156] 0.7521 0.9681 - - -
Lam et al.[157] - - 0.9739 0.9567 -
Fraz et al.[154] 0.7310 0.9680 0.8500 0.9440 -
Nguyen et al.[8] - - - 0.9320 -
B-COSFIRE [6] 0.7716 0.9701 0.9563 0.9497 0.7335
Zhao et al.[158] 0.7800 0.9780 0.8740 0.9560 -
PROPOSED METHOD 0.8319 0.9623 0.9547 0.9444 0.7523

Table 3.1, Table 3.2 and Table 3.3 further endorse the effectiveness of the proposed

algorithm in terms of Acc, AUC, Sp, Se, and MCC using all the three databases. The
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Table 3.3: This table lists the resultant performance using CHASE DB1 database in terms
of sensitivity, specificity, AUC, accuracy (Acc) and MCC. The results using the proposed
algorithm are compared with the results using the methods in literature.

Methods Se Sp AUC Acc MCC
Supervised Method

Fraz et al.[154] 0.7224 0.9711 0.9712 0.9469 -
Unsupervised Method

B-COSFIRE [6] 0.7585 0.9587 0.9487 0.9387 0.6802
PROPOSED METHOD 0.8106 0.9530 0.9633 0.9494 0.6922

results we achieve on all the three databases outperform the results using most of existing

literature.

We choose five supervised methods designed by research groups such as [Staal em-

phet al. [114], Soares et al. [152], Ricci et al. [118], Marin et al. [153], Fraz et al. [154]] and

ten unsupervised methods from the research work carried out by [Martinez-Perez et al.

[155], Al-Rawi et al. [140], Ricci et al. [118], Al-Diri et al. [156], Lam et. al [157], Fraz et

al. [154], Nguyen et al. [8], Yin et al. [117], B-COSFIRE [6], Zhao et al. [158]] to analyze

the DRIVE database, the results of which are compared with our segmentation results. In

terms of sensitivity, AUC and accuracy, our method outperforms almost all of the recent

research outcomes. The results regarding specificity are similar when using the proposed

algorithm and the algorithms in literature. According to STARE databases, results associ-

ated with specificity, accuracy and AUC using our algorithm are highly comparable with

most of the results using the state of the art methods. Especially, sensitivity using the

proposed segmentation is significantly high. Similarly, for the CHASE DB1, sensitivity

is marginally better and specificity, AUC and accuracy calculated using our method is

highly comparable with two existing methods such as [Fraz et al. [154], B-COSFIRE [6]].

Fig. 3.8 shows the ROC curve for DRIVE, STARE and CHASE DB1, respectively, using

our algorithm. The x-axis represents the value of (1-specificity), and y-axis represents the

value of sensitivity. The parameter AUC can be further calculated by measuring the area

under the ROC curve.

The parameter MCC is calculated according to the mentioned three databases using

the proposed algorithm and B-COSFIRE. Our result shows improved vessel segmenta-

tion performance and outperforms B-COSFIRE [6]. In the work represented by Zhao et

al.[158], AUC was defined as (Se + Sp)/2. If we follow this definition, our results re-
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Figure 3.9: Comparison of resultant blood vessel segmentation on the abnormal retinal
images. (I) The image with dark lesion, (II) The image with bright lesion, and (III) The
image with optic disc. The images on the first column are the inverted green channel
images. Similarly second, third, and fourth columns are the manually segmented ground
truth images, segmented results using proposed methods and the results achieved by I.
(d), Saffarzadeh et al. [7]; II. (d), B-COSFIRE [6]; and III. (d), Nguyen et al. [8] respectively.
We use red dotted circles in III to spot the optic disc regions.

lated to DRIVE and STARE are 0.8933 and 0.8971, respectively, which are still higher than

0.8620 and 0.8740(the results represented in Zhao et al. [158]).

3.4.3 Computation time

The computational time in the proposed algorithm mainly depends upon the number of

orientations and scales. The number of scales and orientations should be determined so

that most of the blood vessels are preserved. We execute our experiments for MRI times

to optimize the solution and the experiment takes less than 7 seconds for processing each

of the images selected from DRIVE and STARE databases and the analysis of each image

from CHASE DB1 database takes less than 16 seconds. The total time required to process

a single image of HRF database was less than 22 seconds. The experiment mentioned

in Table 3.4 is conducted using our computer system. The configuration of the system

is mentioned in Section 4.2. Table 3.4 shows that the execution time of our algorithm is

significantly less than the other recent approaches tested on the same hardware.
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Table 3.4: Performance analysis in terms of execution time for processing single image of
databases (Drive and Stare).

Methods Computation Time
PROPOSED METHOD 7s
B-COSFIRE [6] 10s
Yin et al.[117] 24s

3.4.4 Performance on Bright lesion, Dark lesion and Optic Disc

It is important to know that presence of bright and dark lesions will degrade the per-

formance of resultant image segmentation. Non-uniformed bright or dark lesions with

diverse intensity patterns are incorrectly classified as blood vessels. In addition, the im-

aged optic disc region appears to be brighter than the other portions in a retinal image,

which tends to produce false vessels. In our framework, three steps are designed to

reduce the amount of noise and the influence of uneven illumination artifacts. As an

initial step, we adopt background estimation and subtraction operations to weaken the

influence of noise and uneven illumination. After that, the phase-preserving denoising

and local normalization methods are used to further remove artifacts. Finally, the ar-

eas of connected components in the binarized image are calculated and smaller areas are

deleted. However, most of the existing literature only represents their work based on the

retinal images and does not analyze pathological retinal images. In order to make com-

parison with our proposed algorithm, we use recent techniques in literature to analyze

pathological images. The results show that our method is much advanced in processing

retinal images with pathology. Fig. 3.9 shows the comparison of our results with three of

the recent algorithms and ground truth images using DRIVE and STARE databases. We

select the pathological images in terms of dark lesions as shown in Fig. 3.9 I(a), bright

lesions in Fig. 3.9 II(a) and imaged optic disc in Fig. 3.9 III(a). The resultant segmented

image according to the method afforded by Saffarzadeh et al. [7] is illustrated in Fig. 3.9

I(d). In this figure, most of the dark lesions are wrongly detected as blood vessels. Fig. 3.9

II(d) shows the segmented result produced by the algorithm developed by B-COSFIRE

[6]. It is observed that in the region of bright lesion, thin and dim blood vessels are in-

correctly removed. The segmented result from Nguyen et al. [8] is illustrated in Fig. 3.9

9 II(d), which shows false blood vessel detection near the optic disc. Our segmentation
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enables to correctly detect both thin and thick vessels with clearly removed dark lesions

as shown in Fig. 3.9 I(c). In the region of bright lesions, our algorithm allows both thin

and dim vessels to be detected without missing details, as shown in Fig. 3.9 II(c). In the

optic disc region indicated by red dotted circles as shown in Fig. 3.9 III(c), false blood

vessels in the circled regions that are wrongly detected in Fig. 3.9 III(d) have been no-

ticeably removed via using the proposed algorithm. Our approach provides accuracy of

the detected blood vessels as illustrated in Fig. 3.9 (I-III)(c), which well match the ground

truth images displayed in Fig. 3.9 (I-III)(b).

Table 3.5: This table lists the resultant performance using two sets of pathological images
on the HRF database (Diabetic Retinopathy (DR) and Glaucomatous (G)) in terms of sen-
sitivity, specificity, AUC, and accuracy (Acc). The results using the proposed algorithm
are compared with the results using the methods in literature.

Methods Se Sp AUC Acc
DR

Yu et al.[159] 0.7604 0.9625 - 0.9460
Roberto et al.[160] 0.6997 0.9787 - 0.9554
Odstrcilik et al.[147] 0.7463 0.9619 0.9589 0.9445
PROPOSED METHOD 0.8025 0.9629 0.9590 0.9576

G
Yu et al.[159] 0.7890 0.9662 - 0.9518
Roberto et al.[160] 0.7566 0.9785 - 0.9603
Odstrcilik et al.[147] 0.7900 0.9638 0.9704 0.9497
PROPOSED METHOD 0.8224 0.9781 0.9697 0.9641

To further study the performance of our method in pathological images, we have

conducted an experiment on the two sets of HRF databases which includes pathologi-

cal images. Table 3.5 show the results in terms of Se, Sp, AUC and Acc. For both sets

of pathological images(DR and G), Se and acc are marginally better. Sp and AUC are

highly comparable with the results presented by the existing algorithms. Hence, the per-

formance results that we achieve are significantly better than most of the results demon-

strated by recent algorithms.

3.5 Conclusion

In this chapter, we propose a novel framework for automatic retinal vessel segmentation

by combining line detection and phase-preserving denoising with an application of mor-
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phological reconstruction and maximum entropy. This framework has been tested on the

four popular and publicly available databases, DRIVE, STARE, CHASE DB1 and HRF.

The quantitative analysis in terms of different evaluation metrics (Se, Sp, AUC, Acc, and

MCC) demonstrates significantly improved segmentation quality using our algorithm

when compared to the recent retinal image segmentation techniques. Particularly, our

experimental investigation shows that the proposed method can be used for effective

analysis of retinal vessels on abnormal retinal images with bright or dark lesions and

optic disc since the recent techniques seldom perform quantitative analysis of retinal im-

ages with pathology. The presented approach can act as a strong tool for the retinal blood

vessel segmentation.





Chapter 4

Automated optic disc localization and
segmentation using retinal fundus

images

4.1 Introduction

Human retina manifests several systemic diseases such as glaucoma, diabetic retinopathy

(DR), etc. that causes abnormalities like blurred central vision or a blind spot in the

center of the visual field finally leading to blindness [161][162]. Therefore, early diagnosis

of these diseases is essential to identify the changes in anatomical structures, such as

the optic disc (OD), optic cup, vasculature, and retinal pathologies [163]. During the

screening of glaucoma and DR, the shape and the visual aspects of OD are considered as

important features. Hence, the detection and segmentation of OD is the preliminary step

for the development of computer-assisted diagnosis (CAD) system [164][165].

Several solutions have already been proposed for segmentation of optic disc detection

and segmentation. A morphological based segmentation [166][167] have been proposed

that extracts OD contour by using techniques such as stochastic watershed algorithms,

connected component, and adaptive mathematical morphology. [168][169] discusses the

deformable model that uses active contour, template matching and supervised gradi-

This chapter is derived from:
• D Pandey, X. Yin, H. Wang, and Y. Zhang, ”Automated optic disc localization and segmentation

based on superpixel method incorporating clustering and Hough transform using retinal fundus im-
ages” Artificial Intelligence in Medicine, 2019.(Under Review)

83
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ent vector flow snake. Pixel based classification methods using k-nearest and super

pixels classifiers are discussed in [170]. Some of the remarkable works have been ex-

plained. Zhu et al. [171] proposed a segmentation method using edge detection and

Circular Hough Transform (CHT) to detect the center and radius of the circle. The au-

thor concluded that the performance of the CHT depends upon the circular shape and

showed a weak performance in non-circular OD. A new approach using iterative thresh-

olding method incorporating connected component analysis to approximate the center

of OD followed by the OD extraction by using an active contour model was proposed

by Siddalingaswamy et al [172]. The model based approach using CHT, and the sta-

tistical model was proposed by Yin et al. [173]. After pre-processing, CHT is used to

approximate the center and radius of OD. A disc boundary is fine-tuned using statistical

deformable model. Lu et al [174] proposed an automatic OD segmentation method uti-

lizing a circular transformation. The transformation is based on circular boundary and

color formation through the OD boundary concurrently. The accuracy was increased via

the preprocessing step, median filtering, and OD probability map. A modified Chan-Vese

model using the red channel and texture features is proposed by Joshi et al [168]. Hsiao et

al. [169][13] proposed a method that detects the contour using a canny edge detector and

Hough transform. In the next step, supervised gradient vector flow (SGVF) snake model

is used for segmentation by updating and classifying the contour points in each iteration.

Moreover, Tjandrasa et al. [175][33] have proposed a new OD segmentation method us-

ing Hough transform as an initial level set for contour detection in a grayscale image.

A morphological approach using mathematical morphology is proposed by Welfer et al.

[166]. First, the coarse detection of OD boundary is performed and later results are im-

proved in the second step. Morales et al. [167] used principal component analysis (PCA)

to extract the gray scale image and segmentation is carried out using generalized distance

function, stochastic watershed, and geodesic transformations. This method achieved an

accuracy of 86.89% with 110 retinal images of DRIONS dataset. Cheng et al.[170] pro-

posed a method that classifies each super pixel as disc or non-disc using histogram and

texture features. The process is followed by the deformable model to achieve the final

contour of OD. Abdhullah et al. [176] proposed an algorithm based on morphological

operations, the circular Hough transform and the grow-cut algorithm. To enhance the
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OD and remove the retinal vasculature and other pathologies, morphological operators

are used. The center of OD is determined by the Hough transform and the segmenta-

tion of OD boundary is achieved using a graph-cut algorithm. Marin et al. (2015) [177]

proposed a two-step automatic thresholding on a morphologically processed bright en-

hanced region to get a reduced region of interest, followed by the application of circular

Hough transformation (CHT) to get the OD center and OD region. Superpixels provides

information about local and coherent regions. Cheng et al. [170] proposed a statistical

approach OD segmentation using a histogram based superpixels method.

The literature study shows the challenges of OD detection and segmentation as (1)

Ophthalmic pathologies causes of the changes of color, shape or depth of OD. (2) Reti-

nal pathologies (exudates, lesions) sometimes possess similar properties causing a false

identification of OD [178]. Several factors like boundary artifacts, blurred image edges,

illuminations, and contrast irregularities make segmentation difficult and require pixel

to pixel analysis [176]. A texture of OD varies from images, adding more challenges, thus

requiring a preprocessing step prior to the segmentation [179]. Also, the vessels around

an OD creates difficulty during segmentation [176]. Although the localization process of

OD in the state of the art is considerable, the precise and automatic segmentation of OD

boundary is still a challenging task and requires a detailed analysis around the boundary

of OD [165]. Superpixel algorithm has been widely used for the medical image segmen-

tation and displays an excellent segmentation ability of the images with strong structures

and clear edge information [180]. However, it is less likely that OD with pathologies and

uneven illumination can posses above mentioned properties [176][165]. Hence to over-

come these problems, we propose a novel framework based on superpixel incorporating

CHT, morphological operation, and Kmeans clustering.

The process begins with the pre-processing step to estimate the background (BG) im-

age and foreground (FG) image utilizing the morphological operation to separate the

blood vessel from the inverted green channel image [65][181]. The image without the

blood vessel is termed as BG image and the image only with blood vessel is termed as

FG image. In the second step, the algorithm estimates the optic disc region of interest

(OD-ROI) and are carried out in two separate steps 1) Localization of OD and 2) Approx-

imation of OD boundaries. The localization process utilizes the clustering information
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based on the intensity of images obtained from Kmeans clustering on BG and FG images

[182]. The obtained information from BG and FG images are merged together to find

the pixel with maximum weight using linear filtering [183]. Thirdly, the circular Hough

transform (CHT) is used to approximate the OD boundary over the Kmeans clustered BG

image. This process helps to obtain the potential radius and the center of OD. However,

the center obtained from CHT is not always effective for the diseased retinal image which

has dim OD, bright and dark lesion and the image with uneven illumination. Hence, we

compared the centers obtained from CHT with the center calculated from the localization

of OD. After finalizing the center, we draw the OD boundaries using the radius obtained

from CHT. The concurrent circle with 20 pixels is drawn on the obtained OD boundaries

to achieve the OD-ROI. Finally, the segmentation of OD begins with the extraction of

edge information using superpixels [184][82]. Unlike other methods [170] [180], the clas-

sification steps are not adopted to determine the OD or non-OD superpixels. However,

the geometrical model is constructed over the edge information obtained from superpix-

els and CHT within OD-ROI. This process incorporates the pixel by pixel comparison

between the obtained edges within OD-ROI and eventually, the final boundary of OD is

extracted.

The rest of the chapter is organized as follows. In section 4.2, the proposed method-

ology is presented. Performance evaluation and experimental results are discussed in

section 4.3. Conclusion and discussion are given in section 4.4.

4.2 Methods

The proposed method for OD segmentation consists of three stages: 1) Preprocessing us-

ing morphological operation. 2) Localization and detection of OD based on edge detec-

tion, using Kmeans clustering algorithm and Hough transform and 3) the segmentation

of optic disc acquired by comparison of the edges from super pixels and Hough trans-

form. Fig. 4.1 shows a schematic of the method’s work-flow.
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Figure 4.1: The schematic representation of a OD segmentation algorithm.
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4.2.1 Retinal Background and Foreground Estimation

This is an important pre-processing step to reduce the noise and uneven illumination

across the images. First, we resize the fundus image to make the process computation-

ally efficient especially for the images with high resolution. The resized image has the 565

rows whereas the columns are calculated accordingly to preserve the aspect ratio. Since

the original fundus image contains unwanted noise and uneven illumination. Noise sup-

pression and smoothing can be done with Gaussian filtering. However, the gaussian filter

can create edge distortion and vanishing problem. Hence, to preserve edges during noise

reduction, we use a pixel-wise adaptive Weiner filtering technique [185]. The method es-

timates the mean and standard deviation of the local neighborhood of each pixel and

preserves detailed edges. Thereafter, the morphological opening operation is performed

in the inverted green channel image to obtain the background estimation which excludes

the retinal blood vessels and uneven illumination. FG image includes main blood ves-

sels and is obtained after subtracting BG image with the inverted green channel image as

shown in Eq. (4.1).

IFG = IG − IBG (4.1)

where IFG = Normalized image , IG = Inverted green image, IBG = Background estima-

tion

Background estimation IBG is provided by geometric interpretation via a union of

all translations of structuring elements Se that fit entirely within the image IG as shown

in Eq. (4.2). The size of Se is estimated such that its value is larger than the width of

the blood vessel. Since the width of the vessels is not likely greater than 15 pixels, we

consider the size of Se as 15 [65]. The background is estimated that cannot completely fit

the objects larger than 15 pixels to achieve the background image.

IBG = ∪
{
(Se) | (Se) ⊆ Is

}
, (4.2)

where Se = Structuring element with radius R , Is is the set of IG and ∪ is the union of

set.
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Figure 4.2: Background and Foreground estimation from the inverted green channel im-
age. (a) The inverted green channel image. (b) The background estimated image. (c)
The foreground estimated image obtained after the subtraction of estimated background
from the inverted green channel image.

4.2.2 Estimation of OD-ROI

After the preprocessing step, the ROI extraction is performed in two steps. 1) Localization

of OD and 2) Estimation of OD boundaries.

Localization of OD

In the healthy retinal image, the OD region is considered as the brightest area of fundus

green image. Most of the information about OD in contained in BG and can be easily lo-

calized using BG image. However, retinal pathological images with bright, dark lesions

and non-uniform illuminations resemble similar color intensity properties which adds

complexity during the localization of OD ROI. Hence, the intensity feature from the BG

image stand-alone is not sufficient for the accurate result. Hence, we analyze the inten-

sity information from BG as well as FG images separately to achieve the efficient output.

We utilized the kmeans clustering technique to cluster the whole image on the basis of in-

tensity properties. The brightest clusters are used to select a pixel with maximum weight

score in OD.

K-means clustering technique is an unsupervised, yet very powerful clustering method

that produces results which are close to the human observations [186]. The K-means clus-

tering technique is used to partition the image into the number of k clusters according

to the color intensity value of each pixel. K-means clustering method follows two major

steps to divide an image into k number of clusters. Initially, k centroid points are calcu-
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Figure 4.3: Illustration of resultant images obtained with 5 cluster Kmeans clustering
method from BG and FG images in-terms of pixel intensity. (a),(d) are the original images.
(b),(e) are the clustering results obtained from BG image. (c),(f) are the clustering results
form the FG image.

lated for the provided k clusters and each pixel in an image is allocated to the nearest

cluster. The Euclidean distance between each pixel and the nearest centroid is calculated

and the centroid is updated until the convergence has been reached.

Ikmeans1 = kmeans(IBG) f or BG image

Ikmeans2 = kmeans(IFG) f or FG image
(4.3)

where, Ikmeans1 and Ikmeans2 are the edge map image after K-means clustering for BG and

FG images.

The number of cluster in our case is fixed as 5 because the experimented images show

that 5 clusters have sufficient intensity information of OD. Fig. 4.3 shows the result ob-

tained from the kmeans clustering method with 5 clusters. The resultant image of kmeans

clustering algorithm in BG and FG images separately is shown in Fig. 4.3 (b)(e) and (c),(f)

respectively. Thereafter, the brightest cluster is selected in the resultant image and the

weight of each pixel is calculated using linear filtering method. From the experiment,
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the window size is considered as 50 x 50. The pixel which has maximum weight score is

selected as the location of OD. Ikmeans1 and Ikmeans2 are the resultant image after kmeans

clustering for BG and FG images respectively as shown in Eq. (4.3).

Although OD is the brightest area of the retinal images, the areas that contain patholo-

gies and uneven illumination sometimes posses the similar properties of OD [187]. As a

result, the pixel outside the OD is sometimes identified as the location of OD. Hence, the

brightest cluster obtained after kmeans clustering in BG and FG images alone may not

be accurate enough to identify the correct location of OD. To overcome this problem, the

resultant brightest cluster from BG and FG images are merged together before calculating

the maximum weight score. In FG images, the central part is the brightest area due to the

presence of dense blood vessel. Hence, the combined weight score of the pixel within the

OD region is maximum when compared with the pixel from other areas.

Illustration of the selection of maximum weight score obtained using BG, FG, and

BG+FG is depicted in Fig. 4.4. It is observed that maximum weight score calculated

using separate BG and FG image increases the possibility of wrong OD localization. This

is because of the similar color intensity in different areas and OD. However, the weight

score, if calculated after superimposing BG and FG image, is able to produce the weight

score for the accurate detection of OD.

In the Fig. 4.4, blue, green and red dots show the maximum weight score calculated

from BG, FG and BG + FG images respectively. As observed in Fig. 4.4 (a) and (b), maxi-

mum weight score calculated using FG and BG separately is not within the OD location.

However, the weight calculated using BG + FG images in both cases is within OD loca-

tion. The BG and FG images are combined and the maximum weight score is calculated

as shown in Eq. (4.4).

Ikmeans = Ikmeans1 + Ikmeans2

I(u, v) =
k/2

∑
i=−k/2

(
l/2

∑
j=−l/2

w(s, t)Ikmeans(u + s, v + t))

Imax(u, v) = max(I(u, v))

(4.4)

where, Ikmeans is the merged resultant image. I(u, v) is the output image pixel as the

linear combination of intensity value in the local neighborhood of the pixel Ikmeans(u, v)
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Figure 4.4: Illustration of the selection of maximum weight using BG, FG and BG+FG.
Blue diamond shape represents the resultant maximum weight from BG images. Green
rectangle shape represents the resultant maximum weight from FG image. Red circular
shape represents the resultant maximum weight from (BG+FG) combined image.

and mask, k = 50. Imax(u, v) is the pixel inside the OD.

Estimation of OD boundaries

The localization of OD is followed by the estimation of OD boundary. The estimation

process is done using BG image with circular hough transform (CHT) where the edges are

initially extracted by K-means clustering and canny edge detection. CHT is the algorithm

that detects the circular objects in the image based on the Eq. (4.5).

X = a + Rxcos(θ)

Y = b + Rxsin(θ)
(4.5)

where (a, b) is the central point of the detected circle and R is the radius of the most

prominent circle selected from the circles obtained using CHT [188]. The experimental

analysis from the databases shows that the size of OD is approximately between 40 to

80 pixels in the resized fundus images. The circle candidates are obtained by a voting

method in the Hough parameter space and stored in an accumulator matrix. We search

the circular shape within the range and select the most prominent circles.

Let us consider a location obtained from OD localization as L(a, b). The prominent

circles are obtained using CHT as shown in Eq. (4.6):
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(i, j, r) = CHT(Ikmeans1, Rmin, Rmax) (4.6)

where, h(xo, yo) and r are the centers and radius of prominent circles. Ikmeans1 is the edge

map image after K-means clustering in BG image. Rmin and Rmax denotes the minimum

and maximum radius limit of OD to search.

We choose 3 prominent circles out of which one should be selected to fix the radius,

r and estimated boundary of OD, as displayed in Fig. 4.5. Moreover, we measure the

distance from the center to the point obtained from the previous step (localization of

OD). The circle with the closest distance is selected to fix the radius of OD. It is also vali-

dated with the experiment that the localization of OD is accurate for most of the images.

However, for the few difficult images, there are probabilities of incorrect OD localization.

Hence, the localization is further validated by comparing the distance between the points

obtained from localization and the center of the most prominent circle from CHT meth-

ods. We validate the obtained result as accurate if the calculated distance is within the

radius of the selected prominent circle. For the cases, where distance is greater than the

radius, the point obtained from CHT is considered as a center. The experiment shows

that the proposed localization methods are very efficient in detecting the OD location.

The distance between two points L(a, b) from CHT and Imax(u, v) from OD localiza-

tion is calculated as in Eq. (4.7):

D =
√
(Imaxu− a)2 + (Imaxv− b)2 (4.7)

If D < r, draw circle with (Ikmeans(u, v), r) else (L(a, b), r).

Finally, we draw two concentric circles with 20 pixels inside and outside the obtained

circle which is the estimated OD region of interest (OD-ROI) as shown in Fig. 4.6(a).

4.2.3 Segmentation of OD

After the estimation of ROI, the edges of the OD should be determined. The obtained

edge information from the detection process only provides the estimation of OD bound-
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Figure 4.5: Illustration of three prominent circle obtained from CHT. a,b and c are the
distance measured from the centre of each prominent circle to the point calculated from
localization of OD.

ary which is not accurate. Hence, for optic disc segmentation, we use the edge feature

obtained from SLIC (Simple Linear Iterative Clustering) based superpixels method and

the CHT. thereafter, a geometrical model is created on the edge information obtained

from the SLIC and CHT.

SLIC based super pixel method performs a local clustering of pixels in 5-D space on

CIELAB color space which is perceptually uniform color space [170]. This color space

uses pixel color vector (L, a, b) and pixel coordinate (x, y) while clustering. SLIC gener-

ates a superpixel built over the color intensity similarity and the proximity in the image

plane, resulting in a better segmentation. The distance measured in 5D space using Eu-

clidean distance is not possible without normalizing the spatial distances. Hence, SLIC

uses a new distance measure considering the size of a super pixel which generates ap-

proximately equal super pixels. For superpixels generation, SLIC is the adaptation of

K-Means but avoids redundant distance calculation. A weighted distance measure is

the combination of color and spatial proximity and compactness of super pixels which

delivers control over the size.

Let us consider input as the desired number of approximately equal-sized superpixels

K. For an image with N number of pixels, the size of super pixels is N/K and the center
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Figure 4.6: Illustration of results obtained from CHT and SLIC. (a) Red circle is the re-
sult from CHT. The green and blue circles are the concurrent circles which are drawn 20
pixels inside and outside of the circle obtained from CHT. (b)The resultant segmentation
obtained from SLIC.

of the superpixel at every grid interval is S =
√

N/K. Let us initialize a cluster Ck.

This algorithm choose I super pixels with cluster centers, Ck = [Lk, ak, bk, xk, yk]
T where,

k = [1, K] at regular interval S.

After initializing the cluster centers Ck, it is necessary to move seed locations cor-

responding to the lowest gradient position in a 3 x 3 neighborhood to select an edge

ignoring a noisy pixel. Hence, the image gradient ISP(x, y) is calculated as in Eq. (4.8).

ISP(x, y) =‖ IBG(x + 1, y)− I(x− 1, y) ‖2 + ‖ IBG(x, y + 1)− I(x, y− 1) ‖2 (4.8)

where, ISP(x, y) is the lab vector corresponding to the pixel position (x, y) and ||.|| is

the L2 norm which takes both color and intensity information in consideration.

Each pixel in the image IBG is associated with the nearest cluster center according

to the distance measured as shown in Eq. (4.8). Then the cluster centers are updated

based on the average labxy vector of all the pixels of that particular cluster. The process

is repeated until the residual error E meets the threshold E ≤ threshold.
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The distance measure, DMs is defined as follows Eq. (4.9):

DMs = dlab + (m/S)Xdxy

dlab =
√
(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =
√
(xk − xi)2 + (yk − yi)2

(4.9)

where, DMs is the summation of lab distance and the xy plane distance normalized by

the grid interval S. m controls the compactness of the superpixels.

Fig. 4.6 (b) shows the result of segmentation produced by SLIC superpixel algorithm

in the BG image. It is observed that SLIC is able to provide accurate segmentation since

it produces several partitions near the object boundary. The features such as color, ap-

pearance, the texture should be extracted for the superpixels classification as OD or non

OD region. The classification technique is performed with several procedures requiring

enormous processing time and memory. Hence, to get rid of these processing steps, the

developed method constructs the geometrical model over the segmentation results ob-

tained from SLIC and CHT within OD-ROI as shown in Fig. 4.7. The process begins by

drawing the straight line intersecting the center and concentric circle from each point

of hough circle. Secondly, we search the nearest possible edge pixel from each point

of hough circle within the OD-ROI by measuring the euclidean distance between each

point. We record the nearest point as the edge pixel. The process is repeated for all the

available points of hough circle. Finally, an updated boundary for OD is acquired and

curve fitting is applied to best fit the series of boundary pixels.

Let us consider a centre point of the hough circle as h(x0, y0) as Fig. 4.7 (b). An con-

centric circles C1 and C2 is drawn outside and inside the hough circle C respectively

and termed as OD-ROI. From each point of hough circle, a line that intersects the centre

point, h(x0, y0), C1 and C2 is drawn. The illustration of the geometrical model is seen

in Fig. 4.7(b). For each line, C(x0, y0) is the point on hough circle, C2(xmin), ymin)) is the

point on inner circle and C1(xmax, ymax) is the point on outer circle. We search the nearest

edge points on both the direction from each hough point i.e. (xmin, ymin) ← (x0, y0) →

(xmax, ymax). All the obtained points are connected to get the OD boundary. The bound-

ary is further improvised by applying curve fitting [189].
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Figure 4.7: Illustration of geometrical model constructed over the edge information ob-
tained from CHT and SLIC.

4.3 Performance evaluation and results

4.3.1 Image databases and performance metrics

The experiments are performed on Matlab 2016b running under Intel(R) core(TM) i5-

4570s CPU@ 2.90 Ghz with 8GB of RAM. The performance of the proposed method is

evaluated on the publicly available 7 databases. DRIONS DB [190], MESSIDOR [191],

INSPIRE AVR [192], DRIVE [193], CHASE DB [194], DIARETDB0 [195], DIARETDB1

[196]. These databases contain healthy as well as pathological images that are taken using

different camera and environmental conditions. DRIVE is a publicly available database

which has 40 color fundus images out of which 7 images have pathology. The images

are divided into two groups, training set, and test set. MESSIDOR database contains

1200 images among which 540 are healthy and 660 with diabetic retinopathy. The im-

ages in this databases are captured in three ophthalmological departments by a research

program sponsored by the French Ministries of Research and Defense using the 3CCD

color video camera on Topcon TRC NW6 non-mydriatic retinograph, with 45 degrees

of FOV. DIARETDB0 and DIARETDB1 are acquired in Kuopio University Hospital, Fin-

land using the digital fundus camera with 50 degrees of FOV. DIARETDB0 contains 130

color fundus images that include 20 normal and 110 pathological images. DIARETDB1

contains 89 color fundus images with 4 normal and 84 pathological images. CHASE DB
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database contains 28 retinal images from 14 patients obtained from the Child Heart and

Health study. This database includes 9 and 10 years old children of different ethnic ori-

gin. DRIONS DB is the public database which consists of 110 color digital retinal images.

Among 110 images, 50 images are pathological. For evaluation, we have to use the man-

ually labeled OD which is available online for each database. The manual segmentation

of OD as the groundtruth is available.

The ground truth of DRIONS DB and INSPIRE AVR database is provided by [190]

and [192]. Also the ground truth of MESSIDOR, DRIVE, CHASE DB, DIARETDB0, DI-

ARETDB1 is publicly available from [197]. The performance of the proposed algorithm

is experimented and compared with the existing methods in-terms of eight parameters:

area under ROC curve (AUC), accuracy (Acc), sensitivity (Se) or Recall, Specificity (Sp),

precision (P), misclassification rate (MR), DICE coefficient (DSC) and Overlap coefficient

(Oc) [198][199]. This quantitative analysis is the pixel-based classification method where

each pixel are either classified as OD or non-OD region. As a result, there are 4 possi-

bilities: True Positive (TP), True Negative (TN), False Positive (FP) and False Negative

(FN) [200]. TP and TN refer to the classification whereas FP and FN refer to the misclas-

sification. TP and TN denote the pixel which is correctly identified as OD region pixels.

Similarly, FP and FN signify the pixels which are incorrectly identified as OD region pix-

els. A signify the segmentations obtained from the proposed methods and G” signify the

ground truth which is manually segmented. These metric are defined as the following

equations.

Acc =
TP+TN

TP+FP+TN+FN
(4.10)

P =
TP

TP+FP
(4.11)

Se =
TP

TP+FN
(4.12)

Sp =
TN

TN+FP
(4.13)
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MR =
FP+FN

TP+FP+TN+FN
(4.14)

DSC =
2(A∩GT)

A + GT
∗ 100% (4.15)

OC =
(A∩GT)
A∪GT

∗ 100% (4.16)

Acc is defined as the total number of classified pixels which are correctly identified

to the number of total pixels in an image. Se and Sp are the metrics which are derived

from the proportion of positive and negative pixels in the ground truth image that is

truly identified. P is the ratio of correctly predicted positive observations and total pre-

dicted positive observations.P indicates the reproducible measurements even the value

is far from the acceptable range which distinguishes it from the accuracy. A metric MR

is the misclassification rate which measures the frequency of the wrong prediction. MR

rate is considered excellent when the value is close to zero and positive. DSC is the over-

lap based metric that measures the similarity between segmented OD via automatic and

manual method. To further verify the efficiency of the proposed algorithm, we calcu-

lated a metric known as Oc. This metric is the similarity measure related to the jaccard

index which measures the overlap between automatically and manually segmented OD.

We calculate metric, AUC from receiving operating characteristics (ROC) curve, which is

used to estimate the trade-off between Se and Sp [201]. To achieve this non-parametric

performance measurement, the curve is plotted with a false positive rate (1-Sp) on the x-

axis and true positive rate (Se) on y-axis using different threshold values within a certain

interval. The value greater than 90% is considered to be an excellent result and the ROC

curve is considered as an ideal curve when its closer to the top left corner which offers a

perfect value i.e. 1.
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4.3.2 Results and Discussion

OD Localization

This section presents the results of automatic localization of the OD localization and is

listed down in Table 4.1. The proposed method was able to locate the OD with high ac-

Figure 4.8: Illustration of experimental results on different types of images form different
databases. Automatic segmentation is represented with the white colour and the oph-
thalmologist labelled boundary is represented with the green colour.
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Table 4.1: Performance analysis of OD localization.

Database No. of Image OD detected Accuracy (%)
DRIONS 110 109 99.09

INSPIRE AVR 40 39 97
MESSIDOR 1200 1190 99.1

DRIVE 40 40 100
DIARETDB0 110 108 99.18
DIARETDB1 89 89 100
CHASE DB1 28 28 100

Table 4.2: Performance measure of OD segmentation in different databases in terms of
accuracy, sensitivity, specificity, precision, misclassification rate, DICE coefficient (DSC),
Overlap coefficient (Oc) and AUC.

Database Acc Se Sp P MR DSC Oc AUC
DRIONS-DB 0.9981 0.9402 0.9988 0.9676 0.0030 0.9246 88.42% 0.9800

INSPIRE 0.9977 0.9377 0.9991 0.9638 0.0022 0.9496 90.43% 0.9721
MESSIDOR 0.9985 0.9581 0.9989 0.9300 0.0013 0.9411 88.99% 0.9788

DRIVE 0.9965 0.9079 0.9988 0.9876 0.0030 0.9046 82.7% 0.9965
DIARETDB0 0.9971 0.9119 0.9986 0.9358 0.0027 0.9208 85.40% 0.9596
DIARETDB1 0.9973 0.9546 0.9983 0.9306 0.0026 0.9408 88.82% 0.9758
CHASE DB1 0.9954 0.9520 0.9968 0.9034 0.0043 0.9270 86.28% 0.9779

curacy. The experiments are conducted with seven databases which have approximately

1600 images and with several challenging conditions due to pathologies such as a bright,

dark lesion, non-uniform illuminations. It is clear that under any challenging circum-

stances, the proposed method is able to locate the OD with high accuracy. The accuracy

is close to 100% on most of the experimented databases. It is worth mentioning that the

detection of OD is an important initial step to achieve efficient OD segmentation results.

OD Segmentation

The segmentation results achieved from the proposed OD boundaries estimation method

is presented in this section. Fig. 4.8 shows the example of visual comparison of auto-

matically and manually acquired OD segmentation. The green oval shaped boundary

is the manually segmented ground truth results of OD whereas the white oval shaped

boundary is the automatically obtained segmentation results. It is observed that the au-

tomatically segmented results have good agreement with manually segmented ground
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Table 4.3: The results using the proposed algorithm are compared with the results using
the methods in literature in terms of accuracy, sensitivity, specificity, precision, misclassi-
fication rate, DICE coefficient (DSC), Overlap coefficient (Oc) and AUC.

Database Acc Se Sp P MR DSC O AUC
DRIONS-DB

Morales et al. 2013 [167] 0.9934 - - 0.9281 - 0.9084 - -
Abdullah et al. 2016 [176] 0.9549 0.8508 0.9966 0.9966 - 0.9102 85.1% -
Zahoor et al. 2017 [202] 0.9986 0.9384 0.9973 0.9463 - - 87.40% -

Proposed Method 0.9987 0.9402 0.9988 0.9676 0.0030 0.9246 88.42% 0.9800
INSPIRE

Behdad et al. 2014 [203] 0.9958 0.9144 0.9980 - - 0.9168 - -
Proposed Method 0.9977 0.9377 0.9991 0.9638 0.0022 0.9496 90.43% 0.9721

MESSIDOR
Morales et al. 2013 [167] 0.9949 - - 0.9300 - 0.8950 - -
Sohini et al. 2015 [197] 0.9956 0.9043 - - - - 83.73% 0.9710

Abdullah et al. 2016 [167] 0.9989 0.8950 0.9995 0.97946 - 0.9339 87.93% -
Zahoor et al. 2017 [202] 0.9980 0.8309 0.9993 0.9136 - - 75.61% -

Proposed Method 0.9985 0.9581 0.9989 0.9300 0.0013 0.9411 88.99% 0.9788
DRIVE

Welfer et al. 2013 [166] 0.8354 0.9981 0.8876 - 0.9084 39.40% -
Salazar et al. 2014 [204] 0.9412 0.7512 0.9982 - - - - -
Morales et al. 2013 [167] 0.9903 - - 0.8544 - 0.8169 - -
Sohini et al. 2015 [197] 0.9960 0.8780 - - - - 80.67% 0.9561
Basit et al. 2016 [205] - 0.8921 0.9921 0.6930 - - 61.88% -

Abdullah et al. 2016 [176] 0.9672 0.8188 0.9966 0.8728 - 0.8720 78.60% -
Zahoor et al. 2017 [202] 0.9980 0.8309 0.9993 0.9136 - - 75.61% -

Proposed Method 0.9965 0.9079 0.9988 0.9876 0.0030 0.9046 82.7% 0.9965
DIARETDB1

Welfer et al. 2013 [166] - 0.6341 0.9981 0.8704 - 0.9084 57.16% -
Morales et al. 2013 [167] 0.9957 - - 0.9229 - 0.8930 - -
Sohini et al. 2015 [197] 0.9963 0.8815 - - - - 80.22% 0.9596
Basit et al. 2016 [205] - 0.7347 0.9944 0.7049 - - 54.69% -

Abdullah et al. 2016 [176] 0.9772 0.8510 0.9984 0.9263 - 0.8910 85.1% -
Zahoor et al. 2017 [202] 0.9937 0.9706 0.9949 0.8991 - - 87.34% -

Proposed Method 0.9973 0.9546 0.9985 0.9306 0.0026 0.9408 88.82% 0.9758
DIARETDB0

Sohini et al. 2015 [197] 0.9956 0.8660 - - - - 77.61% 0.9333
Proposed Method 0.9971 0.9119 0.9986 0.9358 0.0027 0.9208 85.40% 0.9596

CHASE DB1
Sohini et al. 2015 [197] 0.9914 0.8962 - - - - 80.82% 0.9467

Abdullah et al. 2016 [176] 0.9579 0.8313 0.9971 0.9261 - 0.9050 83.2% -
Proposed Method 0.9954 0.9520 0.9968 0.9034 0.0043 0.9270 86.28% 0.9779
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Figure 4.9: Illustration of segmentation performance (a) Presence of pathologies (b) poor
contrast (c)uneven illumination (d) noisy images.

truth. Hence, the proposed algorithm efficiently extract the edge information of OD with

negligible error. The segmented results are further validated with the evaluation ma-

trices (AUC, Acc, Se, Sp, P, MR, DSC, O) as shown in Table 4.2 and are evaluated for

seven databases. The obtained results using the proposed method outperform most of

the existing literature as shown in Table 4.3.

We choose the few existing methods reported recently from 2013 to 2017 as shown in

Table 4.3. As observed in the literature, the accuracy calculated from Zohoor et al 2017

[202] in the DRIVE database is slightly high compared with the proposed method. How-

ever, the other results achieved by the proposed algorithm are better. Also, the welfare

et al 2013 [166] result associated with DSC in the DRIVE database is seen better but is

highly comparable with the proposed method. According to Chase DB1 database, the re-

sults associated with specificity is highly comparable with the results obtained with the

proposed method. Other than that, the results obtained from the proposed method are
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marginally better than the results calculated with the existing methods.

The computational time of the proposed work mainly depends upon the kmeans

clustering, obtaining hough circle and superpixels. Since the images are resized while

maintaining aspect ratio, the execution time differs slightly on different databases. The

experiment takes on an average of 6.3s, 10.2s, 8.8s, 5.8s 7.2s, 7.3s, and 6.8s for DRIONS,

INSPIRE, MESSIDOR, DRIVE, DIARETDB1, DIARETDB0, and CHASE DB1 respectively

which is considerably low. The total computational time is highly dependent upon the

configuration of the computer system and simulation software version. Hence, the com-

parison of computational time with other methods are not shown.

Performance on the presence of pathologies, noise and uneven illumination

It is important to know that the presence of pathologies, noise, and uneven illuminations

reduce the performance of OD segmentation. Initially, we use the Weiner filter to reduce

the influence of noise and uneven illumination artifacts. Although the effect of noise and

uneven illumination is reduced after filtering, the lesions that posses the similar proper-

ties of OD make the detection and segmentation difficult. The proposed method com-

bines the edge information obtained from background and foreground image to detect

the OD location. We compare the location obtained from the kmeans clustering method

and CHT to further verify whether the detected point is within the OD and finalize a

location of OD. For the segmentation, we merge the edge information obtained from

superpixel and CHT. This process allows us to compare the edge information of OD ob-

tained from CHT and superpixels in-depth and select the right edge pixel. Hence, our

method turns out to be robust against noise, lesions, and uneven illumination. Some ex-

amples are displayed in Fig. 4.9 where (a) is an image with the presence of a lesion (b)

with poor contrast (c) with uneven illumination and (d) with a Gaussian and salt pepper

noise. Out methods is able to detect and accurately segment the OD in all the four cases

successfully.
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Figure 4.10: ROC curve using the proposed algorithm.

4.4 Conclusion and Discussion

In this chapter, we propose a novel framework for automatic estimation of OD-ROI and

segmentation of OD. OD-ROI is achieved by the application of kmeans clustering. CHT

and OD segmentation are obtained using the geometrical model over the edge infor-

mation acquired from SLIC and CHT. This framework has been tested on seven pub-

licly available databases, DRIONS-DB, INSPIRE, MESSIDOR, DRIVE, DIARETDB1, DI-

ARETDB0, and CHASE DB1. These databases include images with different resolutions

and pathological conditions. The experiment shows that the proposed method is accu-

rate, computationally efficient and is effective for abnormal retinal images with uneven

illumination and several pathological conditions. The quantitative analysis in terms of

eight evaluation metrics(Acc, Se, Sp, P, MR, DSC, O, and AUC) shows the outstanding

segmentation results when compared with the recent OD segmentation techniques. This

method can be used as a part of automatic computer aided diagnosis systems for early

detection of glaucoma.

To obtain the robust OD segmentation, we considered several factors that degrade
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the fundus images such as noise, uneven illumination and the pathologies such as bright

and dark lesions. Initially, our approach incorporates the noise removal technique while

preserving edges. The estimation of OD-ROI is carefully considered utilizing the cluster-

ing algorithm on separate BG and FG images obtained from morphological steps. Later,

the obtained location points are compared with the results obtained from CHT to opti-

mize the produced results. For final segmentation, our method utilizes edge information

which is obtained from SLIC and CHT algorithms. The edge information obtained alone

from SLIC or CHT cannot contribute a precise segmentation. Also, the over-segmentation

from SLIC could provide a false edge and has to be identified properly. Hence, our ap-

proach i.e by using a geometrical model over the edges obtained from SLIC and CHT is

able to find the boundary of OD accurately resulting reliable and robust segmentation.

The necessity of feature extraction for the classification of OD and non-OD pixels are

eliminated saving the processing time and memory.

In the future, we will concentrate on measuring the variation of cup-to-disc ratio for

the automated detection of glaucoma. Moreover, we will direct our research for fovea

detection that is partially dependent on the result of OD segmentation



Chapter 5

Automatic and fast segmentation of
breast region-of-interest (ROI) and

density in Magnetic Resonance
Imaging (MRI)

5.1 Introduction

Breast cancer is a major cause of death in women [206]. It is reported that, in a life-

time of women worldwide, one in eight will develop breast cancer [207, 208]. Also, the

reported statistics reveal that over 2 million women are suffering from breast cancer in

the US alone [209]. To reduce the mortality rate from breast cancer, early diagnosis and

treatments are essential [210]. MRI is a well-established imaging technique to identify

and mitigate breast diseases by generating a series of 3D images that a radiologist uses

to manually detect the diseased part and identify problems[211, 212]. The manual pro-

cess is time consuming because of the high number of images [213, 214]. Hence, au-

tomatic computer-algorithm based image analysis has become essential for performing

computer-aided detection and diagnosis, which aim to provide prompt output and help

radiologist to accurately locate the diseased area.

This chapter is derived from:
• D. Pandey, X. Yin, H. Wang, M.-Y. Su, J.-H. Chen, J. Wu, and Y. Zhang, “Automatic and fast seg-

mentation of breast region-of-interest (roi) and density in MRIs” Heliyon, vol. 4, no. 12, p. e01042,
2018..

107



108
Automatic and fast segmentation of breast region-of-interest (ROI) and density in

Magnetic Resonance Imaging (MRI)

The main objective of this study is to segment the breast region of interest (BROI) and

breast density (BD) from breast MRIs. First, BROI segmentation can serve as the funda-

mental step for avoiding irrelevant structures such as unwanted background and organs

like the heart, liver, and chest, improving efficiency and accuracy during further analysis

like tumor segmentation [215]. Tumor segmentation in breast MRIs is considered to be

a laborious and error-prone procedure. Also, tumors normally reside inside the BROI.

Therefore, prior to tumor segmentation, it is essential to identify the BROI [216]. BROI

segmentation is also useful for applications such as BD measurement [217] and perfor-

mance improvement of DCE-MRI in terms of pharmacokinetics-model calibration (PMC)

[217, 218]. During PMC, the properties of the interior chest wall should be determined,

which requires pectoral muscle segmentation [219]. Second, the ratio of BD can be con-

sidered as a strong indicator for the estimation of breast cancer risk. Also, breast tissue

pattern asymmetry in left and right breast is considered to be an abnormal biological

process that leads to cancer [220]. BD does not have a distinct shape and pattern and

may be found anywhere within the image. Moreover, intensity inhomogeneity is a com-

mon problem within breast MRIs since the bias field adds more challenges by producing

similar intensity around the BROI.

For BROI segmentation, different techniques have been reported in the literature. Er-

tas et al. [221], performed morphological operation and intensity thresholding for the

segmentation. However, the results are better when the chest wall has high contrast. Sev-

eral other methods such as intensity histogram [222, 223], wavelet analysis [224, 225] and

active contour [226,227], fuzzy c-means [228,229], region growing [230,231] are proposed.

The performance of these methods rely on the contrast between the border regions and

can fail in the cases that have similar intensity distribution. A fully automated method

reported by Wang et al. [232] extracts breast area on non-fat-suppressed MRI images. The

author explained that the properties of pectoral muscle and the breast-air boundaries are

similar in 3D and exhibit smooth sheet like surfaces and use a Hessian-based filter to sup-

press the lower contrast and non-specific shapes. However, this method does not include

breast density segmentation and may not produce an accurate mask. Khalvati et al. [233]

reported a multi-atlas segmentation algorithm that creates a breast atlas with the help

of phase congruency. This segmentation process is reliant upon the shape and intensity



5.1 Introduction 109

based registration prior to the segmentation. Gubern-Merida et al. [234] proposed a prob-

abilistic atlas based approach for breast segmentation. However, the accuracy depends

upon the size and variability of the database and requires an atlas that is representative of

the population, which is computationally expensive. An edge based approach was pro-

posed by [235] that is independent from the visible contrast between the breast ROI and

chest wall. This method calculates cost function using edge information obtained from

tunable Gabor filter. The precision of this method depends upon the information from

the adjacent slices and accurate initial-border determination. Despite the advancement in

BROI segmentation, fully automatic, accurate and fast segmentation of BROI still require

much attention. This is because: 1. MR breast imaging contains breast structures in differ-

ent shapes and no clear boundary of breast landmarks, which requires manual correction

[236]. 2. There is a bilateral asymmetry between left and right breast regions requiring

separate analysis [237]. 3. The pectoral muscle is closely attached and possesses similar

intensity to the BROI which gives false positives and requires manual corrections [238].

4. It is observed from the literature that several existing methods are supervised and re-

quire prior information before the segmentation process which results in computational

complexity [239]. For BD segmentation, we note that there is a significant range of studies

carried out in a semi-automated segmentation using an interactive thresholding method

[240][241] and user-assisted clustering methods [242]. These non-automated methods are

subjective and create inter- and intra-reader variability [243]. It can be time-consuming,

and therefore unsuitable for processing larger databases. To cope with above-mentioned

difficulties, some attempts on automated methods have been studied such as adaptive

thresholding [244], atlas-based method [245], Gaussian distribution curve fitting [246],

hierarchical support vector machine [247], and Otsu thresholding algorithm [248]. It is

observed that supervised methods provide more accurate results, but require a complex

and costly labelling and analysis by expert radiologists prior to segmentation. Hence, for

automatic segmentation of BD, unsupervised methods produce efficient results. Also,

the most effective way to minimize computation time is to reduce the number of pixels

processed. To overcome these problems, we propose a novel framework which is fully

automatic, unsupervised, fast and efficient. The proposed model is divided into two

steps: 1. BROI segmentation 2. BD segmentation.
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During BROI segmentation, First, we aim to de-noise the MR image and precisely re-

move air-background using pixelwise adaptive wiener filtering (PAWF) technique [249]

[250] and k-means clustering [251]. PAWF technique can preserve the edges and high

frequency parts of an image unlike a normal filtering technique and k-means clustering

will automatically cluster the whole image on different group, based on the correlation

of pixels intensity. Second, the heart area, a brighter part of image is segmented using ac-

tive contour level-set method [252]. The novelty in this method involves the calculation

of initial contour by using maximum entropy thresholding and convolution technique

[117, 253], which provides accurate segmentation and reduction of computation speed.

Third, the segmentation of the pectoral muscle is performed. The orientation of the pec-

toral muscle and breast density of the left, right, and central area of the breast are dif-

ferent. Hence, we apply a morphological operation on a different orientation to enhance

the gap between the pectoral muscle and breast density. The resultant image is binarized

using an adaptive thresholding technique to exclude the pectoral muscle. Finally, we use

polynomial curve fitting [254] to smoothen the acquired BROI segmentation. During BD

segmentation, initially, we de-noise the result image from BROI segmentation. It is ob-

served from the experiment that, the volume and intensity of BD in left and right breasts

are different, hence, the single threshold value could not provide accurate segmentation.

We divide the BROI segmentation image according to its geometrical information and

calculate a different threshold value for left and right breast using four level FCM [255].

This study calculates FCM within the BROI rather than on an entire image.

Rest of the chapter is organized as follows. A detailed methodology of the segmen-

tations (BROI and BD) is reported in Section 5.2 which includes the explanation of elim-

inating unwanted landmarks. In section 5.3, the experimental results are analyzed and

discussed. Finally, a concluding remark drawn in this study is given in Section 5.4.

5.2 METHODS

The general workflow for BROI and BD segmentations is illustrated in Fig. 5.1. Each step

is successively explained in the following sections.



5.2 METHODS 111

Slices of DCE 

MRI

Noise removal by pixelwise adaptive 

wiener filtering to preserve edge

K-Means Clustering to clear up the 

air-background Area

Inverted image for better contrast 

Morphological operation on left, 

center and right area separately

Local adaptive thresholding

Preparation of image Pectoral muscle Segmentation

Segmented BROI

Noise removal by pixelwise adap�ve 

wiener filtering to preserve edge

Combined method (Fuzzy cmean 

threshoding and mean value 

histogram) on le!,  and right BROI 

Segmentation Process BD

Segmented BDSegmented BROI

Active contour level set method 

incorporating maximum entropy 

thresholding for initial contour 

detection

Heart area segmentation

Polynomial curve fitting

Segmentation Process BROI

Figure 5.1: General workflow of segmentation procedure to extract BROI and BD.

5.2.1 SEGMENTATION METHODOLOGY OF BROI

Pre-processing Step

The process begins with rescaling the image to the fixed size so that each image in the

different databases posses similar properties. The rescaled image dimension equals 328

on the row whereas the columns are calculated accordingly, to preserve the aspect ratio.

The original breast MRIs are fundamentally corrupted by random noise from the image

acquisition process that leads to uncertainties during the measurement of any quantita-

tive biomarker [256]. Hence, pre-processing the rescaled image is an important step for

removing undesirable noise such as additive white Gaussian noise (AWGN) and irrele-

vant details that affect the BROI segmentation. Gaussian filtering has been thoroughly

studied for noise suppression and smoothing [257]. This process blurs an image with

Gaussian function and involves a convolution mask where pixel values are modified ac-

cording to the neighboring pixels. However, the Gaussian filter is not always suitable

for denoising since it also removes high-frequency signal components leaving a blurred

edge or boarder as shown in Fig. 5.2(a) [258]. The edge preserving denoising technique

should be adopted as the edges are the important features during segmentation. Hence,

we apply a pixelwise adaptive wiener filtering technique that effectively removes the

noise while preserving the edges [259][260]. The denoised result image obtained from

Gaussian filter has blurred edges. However, the result from pixelwise adaptive wiener
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Figure 5.2: Illustration of filtering technique in regards to the accurate edge preservation
(a) Gaussian filter (b) pixelwise adaptive wiener filter.

filtering technique show that sharp edges are preserved as shown by the red arrowhead

in Fig. 5.2(a) and (b).

Let us consider the pixel position (i, j) and the window mask of WM around its neigh-

borhood. We conducted experiments to see the effect of different window size in the MR

images. We found out that the use of larger window size clears the noise but destroys

the useful edge information. On the other hand, the use of smaller window size are not

capable of clearing the noise from the image. Based on our experiment, we fixed the win-

dow size (WM) as 10x10. The value presented is suitable for the database we have used.

However, it can be slightly optimized to suit the other database of MR image.

The pixelwise adaptive wiener filter is given by Eq. (5.1) [261]:

Idenoised(i, j) = mf +
σ2

f − v2

σ2
f

(Inoisy(i, j)−mf) (5.1)

where, mf and σ2
f is the local mean and variance. v2 is the average value of σ2

f across

noisy image i.e. Inoisy. The computation of local mean and mf and variance σ2
f is provided

Eq. (5.2):
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mf = (XY)−1 ∑
i,j∈M

Inoisy(i, j)

σ2
f = (XY)−1 ∑

i,j∈M
(I2

noisy(i, j)−m2
f )

(5.2)

where X and Y are the horizontal and vertical arrays of pixels in the window mask.

Figure 5.3: Illustration of (a)Color distribution of MRI image using 10 clusters of the K-
means clustering algorithm. (b) Resultant binarised image after removing noise and first
two layers.

The color distribution of the denoised MRI image is studied using K-means clustering

method as presented in Fig. 5.3. This method follows two steps that divide a set of data

into k number of clusters. Initially, k centroid is calculated and the data point is allocated

to the cluster as the nearest centroid from the particular data point. The distance between

the centroid and the data point is calculated with the Euclidean distance. Once the data

point is clustered, a new centroid is recalculated and the procedure is repeated until con-

vergence has been reached [262]. We clustered an image into 10 different colors (k=10)

which is sufficient to observe the level of detail of landmarks and their color distribution.

In Fig. 5.3(a), blue color in the color bar (k=1) signifies the darkest and the red color(k=10)

represents the brightest intensity area. Let us consider a set of n data points as d1, d2, ....dn

and k cluster has centroid as c1, c2, ....ck. The number of clusters in our case is 10. Initially,

we select random centroid points and assign elements di to the cluster Oj as presented in

the Eq. (5.3). Now, update the center of cluster Oj and repeat until the centroid converges
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using Eq. (5.3).

Oj = {di : ||di − cj||2 ≤ ||di − ct||2, 1 ≤ t ≤ k} (5.3)

During the experiment conducted on 15 MR breast scans, we discovered that 1st and

2nd cluster always represent air background and partial lung area. These clusters do not

possess useful information and can be eliminated. Moreover, clusters 3 to 10 character-

ize BROI, pectoral muscle, heart, some region of lung and BD. This means that most of

the useful information can be represented above cluster 3 and is preserved as shown in

Fig. 5.3(b). Note that we have conducted experiments with different cluster numbers and

is empirically set as 10.

Heart area segmentation

In the MR images, heart area, the central part of the image appears to have the brightest

intensity in the image and differs in shape and size. It is observed that some images

have low contrast and close boundaries which creates complication in the segmentation

process. The elimination of this area is vital for the accurate segmentation of the BROI.

We obtained 10 clusters in the previous section. From our experiment, we noticed that

the last four clusters are the brightest clusters in terms of color intensity and cover heart

area and gradually spread towards the pectoral muscle and BROI as shown in Fig. 5.4(a),

(b). Hence, we combine these clusters and use the active contour level set method [252]

to segment heart area. The active contour model uses level set method to evolve its initial

contour. The detection of boundaries rely on the mumford–Shah segmentation technique

[263] for the evolution process of contour. Hence, the objects with discontinuous and

undefined boundaries can be detected with this model. The process begins by detecting

an initial contour point for the evolution process. The initial contour point is detected

using maximum entropy thresholding and convolution method [253][117]. Initially, a

preprocessed image is binarized with maximum entropy thresholding. A convolution

process is carried out between the binarized image and a square window of 50 pixel x 50

pixel. Note that, we fixed our window size from several experiments. The convolution
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between image I(i, j) and the mask image h(u, v) is given by Eq. (5.4):

C(i, j) =
∞

∑
u=−∞

(
∞

∑
v=−∞

I(i− u, j− v)h(u, v)) (5.4)

where (i, j) is the dimension of the image to be convolved and (u, v) is the dimension of

mask image. h(u, v) is the coefficient of mask image at position (u, v). The centre of the

window point provides a weighted sum of each pixel in the binarized image. The pixel

that gives the highest weighted sum as an initial contour point is considered. We draw

a circle (initial contour, C) from the initial contour points. Let us consider two forces of

the initial contour C, be F1(C) and F2(C). F1(C) is the force to shrink the contour and

F2(C) is the force to expand the contour. These two forces are balanced when they reach

the desirable boundary of the interested object. The minimal partition problem used to

minimize an energy is represented in Eq. (5.5):

F(c1, c2, C) = F1(C) + F2(C) =
∫

inside(C)
|Io − c1|2dx +

∫
outside(C)

|Io − c2|2dx (5.5)

In this work, the initial contour is located around the mid section of the heart area as

shown in Fig. 5.4(b). Moreover, F1(C) is always zero and F2(C) is greater than 0, hence,

we always expand initial contour (C). When the initial contour C reaches the equilibrium,

F1(C) and F2(C) becomes zero, and segmentation is achieved. The iteration process is

controlled by level set formulation as shown in Eq. (5.6).

C = {(x, y)|φ(x, y) = 0

F(c1, c2, C) =
∫

Ω
(Io(x, y)− c1)

2H(φ)dxdy +
∫

Ω
(Io(x, y)− c2)

2(1− H(φ))dxdy

+v
∫

Ω
|∇H(φ)|

(5.6)

Where H(.) is the heaviside function and Io(x, y) is the input image. To obtain the min-

imum of F, F′s derivatives is found and set to zeros and c1 and c2 and φ is updated in
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Figure 5.4: Elimination process of heart area. a)10 clustered MRI image b)Four brightest
cluster c)Final segmented heart area.

Euler-Lagrange equation as shown in Eq. (5.7):

c1(φ) =

∫
Ω Io(x, y)H(φ(t, x, y))dxdy∫

Ω H(φ(t, x, y))dxdy

c2(φ) =

∫
Ω Io(x, y)(1− H(φ(t, x, y)))dxdy∫

Ω(1− H(φ(t, x, y)))dxdy
∂φ

∂t
= δ(φ)[vdiv(

∇φ

|∇φ| )− (Io − c1)
2 − (Io − c2)

2]

(5.7)

where δ(.) is the Dirac function. The experiment shows that, the heart area normally

resides within this circular radius of 80 pixels from the initial contour points. Hence, we

permit the evolution process only on the circular area of 80 pixel radius from the initial

contour point and will stop automatically. This process improves accuracy and saves

computational time. The final segmented heart area is represented by blue as shown in

Fig. 5.4(c).

Pectoral muscle segmentation

The other important step is identifying the pectoral muscle. This step is vital because

pectoral muscle and BROI shares a similar pixel intensity especially in the presence of

dense BD [264][265], making segmentation difficult and inaccurate. Hence, we include

shape and geometrical information of the pectoral muscle and BD in MRIs obtained using

the several experiments. The pectoral muscle is attached just below the BROI and above

the lung and heart region ans spreads towards the bottom left and right corner as shown
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Figure 5.5: Identification of pectoral muscle area using a morphological operation. (a)
MRI image. (b) A 2D image slice is divided into three different areas : 1) left 2) right
and 3) central breast area. Each area is processed with a morphological operation in
different orientation that develops a response image. These response images are merged
to produce a single image.

in Fig. 5.5(a). Also, the BD is found to be thick in the BROI region and gradually becomes

narrower and ends at the left and right corner. In the narrow section, the pectoral muscle

and BD are closely connected. However, there is a small space between these two regions

in MR images. We use a morphological opening operation to make this gap smooth and

clear. Moreover, we use local adaptive thresholding for the binarization of the resultant

image obtained from morphological opening operation. Finally, the greatest area from

the connected-component labeling is selected as a pectoral muscle.

Fig. 5.5(b) depicts the model for producing a response image in each orientation. It is

observed that the angle of inclination of left breast tissue near the pectoral muscle varies

between 180 to 270 degrees and right breast tissue near the pectoral muscle varies be-

tween 270 to 360 degrees as demonstrated by the green lines in Fig. 5.5(b) respectively.

Similarly, the breast tissue inclination in the central area is 0 degree. To generate a re-

sponse image using morphological opening operation in different orientation, we divide

a denoised image obtained after eliminating the heart area into 1. Left breast area 2. Right

breast area and 3. Central breast area using shape and geometrical information. Hence,

a five response image on the left and right breast areas with 15 degree increment in an-

gle of inclination and 1 response image on central breast area with 0 degree orientation

is generated. The separate response images are generated using morphological opening

operation with the structuring elements in terms of lines in different orientations and the
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response images are merged together. The morphological opening operation is found to

be very effective in smoothing the space between the breast tissue and pectoral muscle.

This operation eliminates the objects that are smaller than the line structuring element

with the scale of 5 pixel in different orientations to reconstruct the remaining shape of

the objects. Let Ih be the denoised image after eliminating the heart area. Morpholog-

ical opening operation performs both erosion and dilation using the same structuring

elements on the image and satisfies Eq. (5.8):

Irs = ∪
{
(Se) | (Se) ⊆ Is

}
, (5.8)

where Se indicates a line shaped structuring element with the scale of 5 pixel in differ-

ent orientations, Is is the set of Ih and ∪ denotes union of set. The response image Irs

is given by geometric interpretation where unions of all translations of structuring ele-

ments Se fit the entire image Ih. The important thing to noticed here is that the brightest

feature smaller than the scale of line structuring elements in their respective orientation

is greatly reduced in terms of intensity. Also,it eliminates small specularities and textural

fluctuations.

Fig. 5.6 show the images, before and after the morphological opening operation in the

left and right breast areas. Fig. 5.6 I ((a) and (b)) are the original image of left and right

breast areas respectively. After the morphological opening operation, the gap between

the pectoral muscle and BD is clear and smooth as shown in Fig. 5.6 II ((a) and (b)) on the

left and right breast areas. After the morphological opening operation, an adaptive local

thresholding is used separately in three different areas to segment the pectoral muscle.

In the global thresholding approach, a single thresholding value is produced for a whole

image based on the global characteristics of the image. In contrast, adaptive local thresh-

olding calculates a local thresholding value based on the characteristics of the window

around the pixel, i.e. it changes the threshold value dynamically in the image. Since the

calculation of a local threshold based on the histogram is computationally expensive, we

have chosen a local threshold value calculated using the statistical parameter, mean and

local intensity distribution. Adaptive local thresholding typically takes a grayscale input

image and produces a binary image Ib(x, y) as an output as shown in Eq. (5.9) which is
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Figure 5.6: Illustration of morphological opening operation to obtain a separation be-
tween pectoral muscle and breast tissues. (I) The original image of left and right breast
area (II) The resultant image after using morphological opening operation on left and
right breast area.

dependent upon the window size.

Ib(x, y) =


0 I(x, y) ≤ T(x, y)

1 otherwise
(5.9)

Ib(x, y) is the binarized image, I(x, y) ∈ [0, 1]. The threshold value T(x, y) is achieved

using sauvola’s technique. This technique uses mean, m(x, y) and standard deviation

δ(x, y) to calculate the threshold value of each pixel within a defined window size as

shown in the Eq. (5.10):

T(x, y) = m(x, y)[1 + k(
δ(x, y)

R
)] (5.10)

where R is the maximum value of standard deviation and fixed as 128 for the grayscale

image. k is the bias and takes the positive value between [0.2,0.5]. Since the algorithm is

not very sensitive of k , we calculate the threshold value without involving k as shown in

Eq. (5.11):

T(x, y) = m(x, y)[1 + (
δ(x, y)

R
)] (5.11)
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Figure 5.7: Response of different window size during adaptive thresholding. Resulting
image obtained from adaptive thresholding using different window size (5, 10, 20, 30,
and 50) respectively I) on left breast area II) on right breast area.

The smaller window size is found to be more sensitive to noise and generates unusable

white pixels around the image. Increasing the window size will produce a denoised

and clear image and tends to merge the edges. Hence it is necessary to select the right

window size of our requirement for the segmentation of the pectoral muscle. We have

conducted an experiment to find the right window size as shown in Fig. 5.7. The first

and second row in Fig. 5.7 shows a resulting image from adaptive thresholding using

different window size on left and right breast respectively. A window size of 5, 10, 20,

30, and 50 pixels are considered, which is depicted in Fig. 5.7 I ((a), (b), (c), (d), and (e))

on left breast and Fig. 5.7 II ((a), (b), (c), (d), and (e)) on right breast respectively. It is

observed that a window size of 20 pixels is found to be suitable to produce an accurate

results.

A resultant image from left, right and central part of the image are merged together to

produce a single image. To segment the pectoral muscle, we remove the area above the

central point which is highlighted in blue as shown in Fig. 5.8(a). Note that the central

point is already detected in the previous steps. Fig. 5.8(b) shows the remaining part after

the upper region is removed. Finally, a pectoral muscle is segmented by extracting the

greatest area using the connected-component labeling as shown in Fig. 5.8(c).



5.2 METHODS 121

Figure 5.8: Illustration of extraction of pectoral muscle after local adaptive thresholding.
(a) Resultant image of local adaptive thresholding. The blue in upper part represents the
area above the central point of breast image and lower part represents the heart area (b)
Resultant image after removing a area above the central point and heart area. (c) Extrac-
tion of pectoral muscle by selecting the greatest area of connected-component labeling.

5.2.2 SEGMENTATION METHODOLOGY OF BD

We segmented a BD with thresholding method using fuzzy c-means clustering technique.

The MRI images are noisy and the literature reveals that the conventional FCM is not

efficient to produce a threshold for noisy image and sometimes produces false positives

in the segmented images [266]. Hence, we denoised the obtained BROI segmentation.

Also, high-level FCM is required to produce efficient results which are computationally

expensive. To cope with the computing problem, we used conventional FCM clustering

method within the BROI area.

FCM clustering is based on the minimization of the following objective function [267]

as shown in the Eq. (5.11). First of all, we define a number of clusters, C = 4 and the ran-

dom initialization of membership matrix in Eq. (5.13) is done. The centre of the cluster

is calculated as shown in Eq. (5.14) using the membership matrix, Uxy. The membership

matrix is updated according to the position of the cluster centre. The change in the mem-

bership matrix is calculated and compared with old membership matrix. If the objective

function is minimized, the process is stopped otherwise a new center of clusters is de-

termined and membership matrix is updated according to the new centers. The process
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continues until the objective function is minimized as shown in Eq. (5.12).

Om =
N

∑
x=1

C

∑
y=1

Um
xy||zx − Cy||2, 1 ≤ m ≤ ∞ (5.12)

where N and C are the number of data points and number of cluster centers. Uxy rep-

resents the membership function of x(th) data and y(th) cluster center.m and Cy are the

fuzziness index ≥ 1 and y(th) cluster center. The membership function Uxy and cluster

centers Cy are calculated as shown in Eq. (5.13) and Eq. (5.14):

Uxy =
1

∑C
z=1(

||zx−Cy||
||zx−Cz|| )

2
m−1

(5.13)

Cy =
∑N

x=1 Um
xy.zx

∑N
x=1 Um

xy
(5.14)

The membership function Uxy and cluster centers Cy is calculated and repeated unless

maxij{|Uz+1
xy −Uz

xy|} < ε, where ε is the termination iteration between 0 and 1. Each pixel

of the image is assigned to the respective cluster with the highest membership value. We

conducted the experiment on FCM with several clusters. According to the experiment,

FCM with 4 clusters is found to be effective for producing an accurate thresholding value.

A threshold value is produced by averaging the mean of maximum and minimum value

of the third cluster. Moreover, it is observed that the mean histogram intensity of left

and right BROI is different. Hence, we calculated separate thresholds by using 4 level

FCM of left and right BROI. The obtained segmentation result is accurate with faster

computation.

Fig. 5.9 shows the mean histogram of intensity information in the left and right BROI.

For demonstration, we choose six MR images and observed that the right BROI has a

higher intensity level as compared with the left BROI. Thus, we came to the conclusion

that a single thresholding value produced by thresholding would not be sufficient to

achieve high accuracy in the segmentation of BD. To solve this problem, we divided a

BROI image into three different areas following similar steps during BROI segmenta-

tion. Since, the central area has no BD, we focus on the left and right BROI. Fig. 5.10

demonstrates the left (blue solid arrowhead) and right (blue dotted arrowhead) BROI re-
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Figure 5.9: Mean value of histogram in terms of intensity of the left and right BROI.

Figure 5.10: A process to obtain BD from BROI from breast slices.
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spectively. We conducted our experiment separately on the left and right BROI to extract

BD and later resultant images are merged to produce the final result.

Ethics statement

Human studies were approved by Victoria University Committee and by the Institutional

Review Board. MR imaging was conducted in accordance with guidelines defined by

Affiliated Zhongshan Hospital of Dalian University to achieve safe and reliable scanning.

The experiment was approved specifically by the ethics committee. Written consent was

obtained from each case subject after the imaging procedures had been conveyed.

5.3 RESULTS AND DISCUSSION

5.3.1 Image source and evaluation criteria

The experiment was performed on 15 female subjects (T1-weighted MR scans) with an

age range between 22 and 54 years without any symptom of breast diseases. It was

performed on a Philips Achieva 3.0T scanner using the turbo spin echo pulse sequence

without fat suppression. Each patients MR scan covers entire breast with the total num-

ber of 90 image slices with 2 mm thickness. The other imaging parameters considered

are: TR/TE = 645/9.0 ms, echo train = 5, slice gap = 0, phase encoding R-L, bandwidth

per pixel = 174 Hz, field of view = 330 mm, imaging matrix = 328 × 384, and parallel

imaging with SENSE factor = 2. The presented database consist of the variety of breast

sizes, shapes, and breast tissues patterns. The proposed algorithm is applied to the indi-

vidual slices to complete a 3D breast volume using Matlab R2013b running under Intel(R)

core(TM) i5-4570s CPU@ 2.90 GHz with 8GB of RAM.

The performance of the proposed algorithm is tested with the quantitative analysis

using a pixel-based classification technique where pixels are classified as BROI, BD or

background. As a result, each pixel in the images are classified as classification (true

positive (TP) and true negative (TN)) and misclassification (false positive (FP) and false

negative (FN)). Based on these classified prediction, the performance of our algorithm is

compared in terms of Accuracy (Acc), Precision (P), Sensitivity (Se) or Recall, Specificity

(Sp), Area under ROC curve (AUC), Misclassification rate (MR), Dice similarity coeffi-

cient (DSC) and Jaccard Coefficient [268][269][270][271]. These performance metrics are
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defined as shown in Eq. (5.15) to Eq. (5.21):

Acc =
TP+TN

TP+FP+TN+FN
(5.15) P =

TP
TP+FP

(5.16)

Se =
TP

TP+FN
(5.17) Sp =

TN
TN+FP

(5.18)

MR =
FP+FN

TP+FP+TN+FN
(5.19) DSC =

2(A∩GT)
A + GT

∗ 100% (5.20)

JC =
A∩GT
A∪GT

∗ 100% (5.21)

TP and TN denote the pixel that is correctly identified as BROI/BD or background

pixels. Similarly FP and FN represent the incorrectly identified BROI or BD, and back-

ground pixels. A and GT denotes automatically and manually obtained segmentations.

Acc is the measure of the total number of correctly classified pixels (sum of true posi-

tives and true negatives) to the number of total pixels in an image [253, 272]. Precision

is the proportion of correctly predicted positive observations to the total predicted pos-

itive observations [269]. Although both accuracy and precision depict the closeness of

measurement to an actual value, precision reflects the reproducible measurements even

if they are far from accepted value. The metrics Se and Sp are derived respectively from

the proportion of positive and negative pixels in the ground truth image that are truly

identified [273, 274]. A result with high sensitivity and specificity are considered as an

accurate segmentation. A metric misclassification rate or error rate MR is the measure of

how often the predictions are wrong. The best misclassification rate is 0.0 and the worst

is 1.0. Also, receiving operating characteristics (ROC) curve [151] is used to estimate the

trade-off between Se and Sp that is considered as non-parametric performance measure-

ment. The ROC curve can be considered as a binary classifier and is plotted with the

different values of independent threshold values within a certain interval. A curve rep-

resenting a false positive rate (1-Sp) on the x-axis vs true positive rate (Se) on the y-axis

is plotted. The ROC curve is the measure of predictive measure and is considered as an

ideal curve when it is closer to the top left corner. The value of AUC greater than 90%

is considered to be an excellent result. To further validate the performance of the devel-

oped algorithm, we have calculated an overlap based metrics known as Dice similarity

coefficient (DSC) and Jaccard coefficient (JC) (DSC) [275]. It is the measure of overlap

between two binary images to demonstrate the segmentation performance. The value of
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these overlap based metrics ranged from 0 (no overlap) to 1 (perfect overlap).

5.3.2 BROI segmentation results

Fig. 5.11 shows the comparison of results produced by the proposed BROI segmentation

method with the ground truth image which is manually segmented by an expert radiolo-

gist. The images with different size and shape are considered for the demonstration and

yield the accurate segmentation results. First column ((a) (d) and (g)) shows the ground

truth image whereas second column ((b), (e), and (h)) and third column ((c), (f), and (i))

shows the automatically segmented results respectively. In order to further validate the

robustness of the proposed BROI segmentation, we performed the quantitative analysis

using 8 metrics. Table 5.1 shows the performance of the proposed model in terms of

accuracy, specificity, area under ROC curve, misclassification rate, precision, sensitivity

and Dice similarity coefficient. Note that the values presented is the table are the average

value of each slice in the MR image. Experiment shows that the obtained results are accu-

rate while compared with the manual segmentation. In terms of accuracy, specificity and

AUC, all the results are above 95%, proving the effectiveness of the proposed algorithm.

It is observed that, the algorithm demonstrates a very good result with a minimum of

88% and maximum of 96% precision rate. The sensitivity of the proposed algorithm is

high with an average value of 95.73%. The overlap ratio demonstrated by the Dice simi-

larity and Jaccard coefficient is high with an average of 96.35% and 92.86% respectively.

5.3.3 BD segmentation results

Fig. 5.12 shows the comparison of results produced by the proposed BD segmentation

method and ground truth image which is manually segmented by an expert radiologist.

The images with different level of breast tissue are considered for the demonstration and

yield the accurate segmentation results. First column ((a) (d) and (g)) shows the ground

truth image whereas second column ((b), (e), and (h)) and third column ((c), (f), and (i))

shows the automatically segmented results respectively. In order to further validate the

robustness of the proposed BD segmentation, we performed the quantitative analysis

using 8 metrics. Table 5.2 shows the performance of the proposed model in terms of
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Figure 5.11: Results of BROI segmentation on the MRI images with different levels of BD
and different breast shapes. The images in the first column are the manually segmented
ground truth images. Similarly, second and third columns are the automatically seg-
mented results with the proposed method and its mask on the original image to visually
inspect the accuracy.
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Figure 5.12: Results of BD segmentation on the MRI images with different levels of BD
and different breast shapes. The images in the first column are the manually segmented
ground truth images. Similarly, second and third columns are the automatically seg-
mented results with the proposed method and its mask on the original image to visually
inspect the accuracy.
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Table 5.1: This table shows the resultant performance of BROI segmentation using the
proposed method in 15 different cases in terms of accuracy (Acc), specificity (Sp), area
under the curve (AUC), misclassification rate (MR), precision (P), sensitivity (Se) or recall,
and Dice similarity coefficient (DSC).

DB Acc Sp AUC MR P Se DSC JC
1 0.9776 0.9830 0.97 0.0224 0.9425 0.9473 0.9555 0.9147
2 0.9648 0.9740 0.96 0.0398 0.8921 0.9413 0.9475 0.9002
3 0.9803 0.9783 0.99 0.0197 0.8800 0.9937 0.9564 0.9164
4 0.9871 0.9898 0.98 0.0129 0.9588 0.9591 0.9888 0.9778
5 0.9578 0.9554 0.95 0.0389 0.8960 0.9602 0.9599 0.9024
6 0.9819 0.9848 0.97 0.0181 0.9402 0.9414 0.9424 0.8910
7 0.9814 0.9845 0.97 0.0174 0.8873 0.9501 0.9647 0.9318
8 0.9897 0.9912 0.96 0.0122 0.9347 0.9123 0.9674 0.9368
9 0.9699 0.9671 0.97 0.0301 0.8945 0.9733 0.9542 0.9124
10 0.9829 0.9824 0.99 0.0171 0.9489 0.9868 0.9874 0.9751
11 0.9682 0.9644 0.99 0.0318 0.9421 0.9928 0.9867 0.9737
12 0.9834 0.9866 0.98 0.0166 0.9246 0.9420 0.9632 0.9290
13 0.9709 0.9728 0.98 0.0291 0.9272 0.9468 0.9568 0.9171
14 0.9795 0.9800 0.98 0.0205 0.9021 0.9679 0.9548 0.9135
15 0.9853 0.9888 0.98 0.0147 0.9301 0.9447 0.9673 0.9366
Avg 0.9773 0.9789 0.97 0.0228 0.9201 0.9573 0.9635 0.9286

accuracy, specificity, area under ROC curve, misclassification rate, precision, sensitivity

and Dice similarity coefficient. Note that the values presented is the table are the aver-

age value of each slice in the MR image. Experiment shows that the obtained results are

accurate and highly comparable with results obtained from the manual segmentation. In

terms of 3 metrics (accuracy, specificity and AUC), the results are above 95%, proving

the effectiveness of the proposed algorithm. It is observed that, the algorithm demon-

strates an outstanding result with an average of 95.05% precision rate. The overlap ratio

demonstrated by the Dice similarity and Jaccard coefficient is high with an average of

91.60% and 84.53% respectively. In terms of sensitivity, resultant values are slightly low

but satisfactory values compared with other parameters. This is because some part of the

BD has very low intensity and could be missed during the segmentations.

5.3.4 Discussion

Obtaining automatic, fast and accurate segmentation of the BROI and BD from MR im-

ages is a significant and challenging problem. The breast images can be found in different
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Table 5.2: This table shows the resultant performance of BD segmentation using the pro-
posed method in 15 different cases in terms of accuracy (Acc), specificity (Sp), area under
the curve (AUC) and misclassification (MR), precision (P), sensitivity (Se) or recall, and
Dice similarity coefficient (DSC).

DB Acc Sp AUC MR P Se DSC JC
1 0.9879 0.9898 0.96 0.0133 0.9514 0.8140 0.9046 0.8260
2 0.9799 0.9854 0.96 0.0321 0.9701 0.8190 0.9321 0.8728
3 0.9874 0.9872 0.97 0.0126 0.9549 0.8199 0.8946 0.8092
4 0.9912 0.9897 0.96 0.0088 0.9301 0.8145 0.8984 0.8155
5 0.9478 0.9701 0.93 0.0522 0.9647 0.8075 0.9141 0.8417
6 0.9885 0.9819 0.97 0.0115 0.9611 0.8110 0.9231 0.8571
7 0.9749 0.9814 0.97 0.0354 0.9302 0.8297 0.9145 0.8424
8 0.9845 0.9989 0.94 0.0155 0.9482 0.8176 0.9108 0.8362
9 0.9855 0.9676 0.96 0.0212 0.9444 0.8412 0.9402 0.8871
10 0.9788 0.9701 0.97 0.0277 0.9589 0.8250 0.9001 0.8183
11 0.9612 0.9627 0.98 0.0388 0.9628 0.8555 0.9374 0.8821
12 0.9888 0.9797 0.97 0.0112 0.9494 0.8002 0.9045 0.8256
13 0.9659 0.9645 0.97 0.0341 0.9579 0.8109 0.9141 0.8417
14 0.9873 0.9823 0.96 0.0127 0.9312 0.8125 0.9214 0.8542
15 0.9898 0.9781 0.95 0.0102 0.9415 0.8212 0.9306 0.8702
Avg 0.9800 0.9793 0.96 0.0225 0.9505 0.8199 0.9160 0.8453

shapes, sizes and density patterns. Moreover, the pectoral muscles are closely connected

and shares similar intensity distribution with BROI. Hence, the initial identification of

landmarks such as lung, heart and pectoral muscle is a vital step to facilitate the efficient

BROI and BD segmentation process.

This study performs a stepwise analysis on landmarks such as lung, heart, and pec-

toral muscle and gradually eliminates them to achieve the final segmentation results.

Prior to the landmark identification, we utilized the pre-processing step which improves

the segmentation process. During the heart segmentation, an active contour level set

method is used on the last 4 clusters from k-means clustering obtained during the pre-

processing step. These 4 clusters are the brightest and the experiment shows that the

heart region lies within these clusters. Active contour uses the level set method to create

a force to either shrink or expand the contour from the initial contour point. The ini-

tial contour point is always selected approximately around the centre of the heart region

using the maximum entropy thresholding and convolution method. We fix the initial

contour (circle) at the radius (5 pixel) from the initial contour point. This is because we

wanted to expand the contour from the central area of heart and limit it beyond the circu-
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Table 5.3: Comparison of accuracy using three and four clustered FCM on BROI after
segmentation.

Database ACC with 4 level FCM ACC with 4 level FCM
(single threshold) (double threshold)

1 0.9601 0.9776
2 0.9421 0.9648
3 0.9656 0.9803
4 0.9611 0.9871
5 0.9594 0.9578
6 0.9658 0.9819
7 0.9470 0.9814
8 0.9523 0.9897
9 0.9349 0.9699
10 0.9231 0.9829
11 0.9451 0.9682
12 0.9532 0.9834
13 0.9475 0.9709
14 0.9546 0.9795
15 0.9529 0.9853

Avg 0.9509 0.9773

lar radius of 80 pixels. We observed that circular radius of 80 pixel is sufficient to identify

the heart area from the rescaled image. Furthermore, the segmentation is obtained within

a few iterations which results in faster computation time.

During pectoral muscle segmentation, the image is divided into three sections. The

angular orientation of the pectoral muscle and breast density boundary is different in

three different sections. So, each segment needs to be analysed separately. Also, the

analysis of smaller segments reduces the processing time. Finally, the resultant image

from the three segments are merged to generate the final segmented image. In the next

step, we preserved the breast area above the central point to have fewer components for

the extraction of the pectoral muscle as shown in Fig. 5.8 (a), (b).

The image obtained from BROI segmentation is further processed for BD segmenta-

tion. In the conventional method, the 4 level FCM thresholding technique is used to de-

velop a single threshold valve for the entire image which includes both breasts. However,

the analysis of the mean histogram based on the intensity of left and right breasts showed

that the left and right breast have dissimilar mean intensity. Hence, the BROI is divided

into three sections based on their geometrical information and the 4 level FCM threshold-
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Table 5.4: Quantitative comparison of performance of BROI and BD segmentation using
the proposed method with the recently developed other approaches.

Acc Sp Se DSC JC
BROI

Gallego et al. 2012 [276] - - 0.8900 0.8800 0.7900
Wu et al. 2013 [271] - - - 0.9500 -

Ivanovska et al. 2014 [?] - 0.9900 0.9800 0.9600 -
Gubern et al. 2015 [234] - - - 0.9400 -

Jose et al. 2015 [248] - - - 0.9220 -
Khalvati et al. 2015 [233] - - - 0.9400 -

Milenkovic et al. 2015 [235] - - - 0.961 -
Doran et al. 2017 [277] - - - 0.924 0.8590
Aida et al. 2017 [278] 0.9733 0.9810 0.9491 0.9630 0.9290

PROPOSED METHOD 0.9773 0.9789 0.9573 0.9635 0.9286
BD

Ivanovska et al. 2014 [?] - 0.9900 0.8100 0.8300 -
Gubern et al. 2015 [234] - - - 0.80 -
Thakran et al. 2018 [279] - - 0.8900 0.9000 0.8400
PROPOSED METHOD 0.9800 0.9793 0.8199 0.9160 0.8453

ing is applied separately to develop two threshold values for left and right breasts. It is

observed that accuracy of separate thresholding in left and right BROI is better than the

single thresholding technique as shown in Table 5.3. Furthermore, since varied thresh-

olding uses smaller area, the process became faster.

The proposed method was tested with 15 different MR images developed form the

same imaging technique with different scenarios i.e variety of breast sizes, shapes and

BD patterns. The result demonstrates that, our method accurately segments BROI and

BD in the different scenarios which can also be observed with the segmentation result as

shown in Fig. 5.11 and Fig. 5.12. To evaluate the performance of the proposed method,

eight evaluation metrics are calculated. The obtained results shows that the proposed

method is efficient for the segmentation of BROI and BD from MR images.

We choose nine recent methods in the literature such as [276], [271], [?], [234], [248],

[233], [235], [277], and [278] to analyze the BROI segmentation and three methods such as

[?], [234] and [279] for the BD segmentation, the results of which are compared with the

proposed method. The quantitative comparison is done with the available five metrics

(Acc,Sp,Se,DSC and JC) as shown in Table 5.4. In terms of Acc and DSC, our method

outperforms all the recent results for both BROI and BD segmentation. JC obtained from
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the proposed method is marginally better or comparable with the existing literature. The

results associated with Sp and Se are highly comparable with most of the results.

For automatic BROI and BD segmentation, we have compared our DSC value with

different methods in the literature. In the model based method followed by Gallego et al.

[276], a mean Se, DSC and JC obtained was 89%, 88% and 79%. The processing time taken

to run was less than a minute to segment BROI per volume with the size of 256 x 128 x 45.

The edge based approach followed by Wu et al. [271] demonstrates an average DSC rate

of 95%. The processing time taken for BD segmentation was 4.5 minutes with MR image

of 256 x 256 x 56 per volume. Gubern et al. [234] and Kalvati et al. [233] use the atlas based

method and showed that the mean DSC obtained was 94%. Gubern-Merida et al. [234]

reported a computational time of 8 min for BROI and BD segmentation for the image

of 256 x 128 x 96 per volume. Similarly, Kalvati et al. [233] showed that the processing

time for his method was 2 min for BROI segmentation for the MR image of 94 x 94 x 44

per volume. A automatic BROI segmentation in the axial breast MR images proposed by

Milenkovic et al. [235] obtained a overall DSC value of 96.1% and the computational time

was 4.1 minutes on the MR image of 448 x 448 x 144 per volume for BROI segmentation.

The computation time in the proposed algorithm mainly depends upon the resolution

of the MR images and the clusters for the Kmeans and Fuzzy cmean clustering technique

used for the experiments. The number of clusters should be determined so that the BROI

and BD regions can be preserved with faster execution of the algorithm. We execute our

algorithm for the several times to optimize the solution and the experiments takes an

average of 1 minute and 50 seconds for BROI and BD segmentation with the resolution

of 384 x 384 x 90 per volume. The execution time of our algorithm is significantly less

than the other recent approaches tested on the similar hardware. The performance can

be further improved with the implementation of GPU.

Breast MR databases are not available online. Results presented in the state of art are

calculated from their own private databases. Hence, it is not always suitable to compare

the results developed from different databases. Furthermore, during the segmentation

process, the various methods might have several assumptions and considerations that

make direct comparison problematic. For instance, Wang et at. [232] results are depen-

dent upon the presence of fat in the anterior side of chest wall and Wu et al. [271] does
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not consider challenging cases. Also, the processing speed depends upon the resolution

of MR image of different databases.

5.4 CONCLUSION

In this chapter, we proposed an automatic method for the accurate segmentation of the

BROI and BD. BROI segmentation is achieved by combining pixelwise adaptive filtering,

k-means clustering and morphological operations with the application of local adaptive

thresholding. BD segmentation is obtained by a combined method using fuzzy c means

thresholding and mean value histogram. These frameworks have been tested on 15 dif-

ferent cases that comprised of different shapes and density patterns. Furthermore, quan-

titative analysis was carried with different evaluation metrics (Acc, Sp, AUC, MR, P, Se,

DSC and JC) to demonstrate the segmentation quality when compared with manually

segmented results by an expert. Most particularly, it is observed that the proposed algo-

rithm is highly effective on breast MRIs with dense BD that has an similar intensity level

to the area near the pectoral muscle. The presented model can act as a preliminary step

that further assists in the diagnosis of breast cancer.



Chapter 6

Automatic breast lesion segmentation
in denoised MRIs using continuous

max-flow algorithm

6.1 Introduction

BREAST cancer occurred due to the abnormal growth of cells around the breast lob-

ules or ducts [280]. The growth of the cell is uncontrollable and can spread to

the other part of the body. Hence, breast cancer is the most common cancer diagnosed in

women that causes death after lungs cancer. Early diagnosis and treatment of such cancer

are essential to improve the survival rate. There are several medical imaging modalities

used for the diagnosis of breast cancer, which may include mammography [281], ultra-

sound [282], biopsy CT scan [283] and MRI scan [284] [285]. Among imaging techniques,

dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides a three di-

mensional high resolutions images with the accurate anatomical information that is not

available with the other two widely used techniques: mammography and ultrasound.

Therefore it is the most common and important tool for breast cancer diagnosis which

provides relatively accurate results. However, manual segmentation of such imaging

techniques for the suspicious breast lesion is a tedious and time-consuming task due to

This chapter is derived from:
• D Pandey, X. Yin, H. Wang, and Y. Zhang, ”Automatic breast lesion segmentation in denoised MRIs

using continuous max-flow algorithm” IEEE access,2019.(Under review)
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the large number of data [286]. Hence, automatic lesion segmentation method is essential

for accurate and efficient lesion delineation [287]. The development of the algorithm for

automatic lesion segmentation is challenging mainly due to the noise, the similar inten-

sity in different tissues and variability of shape and size between patients [288].

In the literature, several methods have been proposed using supervised and unsu-

pervised methods for lesion segmentation on MRI images. Supervised methods require

a large amount of previously labeled data by an expert. The goal is to develop a trained

system to classify different objects labels. Initially, the dataset is divided into training

and testing data. Some of the popular supervised approaches are K-Nearest Neighbors

(KNN) [289], random forests (RF) [290], SVM [291] [292], Bayesian and deep learning,

which is one of the advance supervised technique [293] [294]. Since the labeled and big

datasets are required, the process is complex and computation expensive to achieve an

efficient result. In contrast to that, the unsupervised method requires training models

or prior knowledge of the required segmentation labels [50]. The algorithm framework

relies on the different features such as region, boundary texture, and edges that are pre-

sented on the image. Although supervised techniques are popular, it requires a large

volume of labeled data. In real clinical application, it’s challenging to get sufficient la-

beled data because of limited patients and time constraints. It is likely that neighboring

pixels tend to take the same label and has a low number of connected components. This

is because labeling has are highly structured and correlated with complex dependencies

that are hard to train as there are pixels or voxels up to millions. Moreover, optimiza-

tion becomes complex since the whole labeling should be expressed as one optimization

problem. Hence, if the input feature vector has a high dimension, it’s hard to model the

learning problems.

On the other hand, unsupervised techniques rely on the patterns (feature vectors)

belonging to the same object. The features can be studied and defined as per the require-

ment. Among several unsupervised segmentation techniques, some of the important

techniques are 1) Clustering based such as fuzzy Cmeans and Kmeans [295] 2) Edge

based segmentation that relies on the fact that pixels are distinct in the background

and foreground [296]. 3) Region-based segmentation such as region growing and re-

gion splitting-merging [297]. Here the seed selection is considered as an important step.
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Another important and popular segmentation technique is energy-based segmentation

where the result is obtained by minimizing the constructed energy function [298]. Several

methods, which relies on energy function. Some of the popular segmentation methods

includes Live wire [299], active contour [97], level sets [300] and graph-based [301]. Ac-

tive contour and level set methods use the boundary information to construct the energy

function and the performance relies on the initial curve. However, graph-based segmen-

tation utilizes region and boundary information to produce a globally optimal solution

[51]. Also, the discrete optimization graph-based methods have become popular because

of its performance in medical image segmentation [302] [303]. In this method, the images

are partitioned into several sub-graphs that represents a meaningful object in the image.

Initially, the image is transformed in the form of a graph where pixels, region or voxel

represents the structured grid of the graph. One of the main drawbacks of such method

is the grid bias by penalizing the spatial directions resulting in the adverse effect on com-

putation. The study shows that such a problem can be solved by formulating max flow

and min cut problems in continuous domain [304].

Also, the unsupervised segmentation techniques currently face several difficulties.

The presence of unavoidable noise during the breast DCE MRI acquisition has a greater

effect of the accurate segmentation. The task is further complicated by geometric distor-

tions and non-uniform illumination in the tissues. Furthermore, patient movement dur-

ing acquisition may blur or even wipe out the border between the lesion and background

tissue. Hence, prior to the segmentation process, a good denoising algorithm to eliminate

noise while preserving the useful information and structure is required. Manual segmen-

tation is not only tedious but also subject to intra observer and inter observer variability

especially with the breast with dense breast tissues. Image features of the other structures

such as lymph, breast tissues, and the blood vessel may resemble with the breast lesion

with ends with false negative results. Hence, to solve the aforementioned challenges,

we proposed a fully automatic and unsupervised framework that is able to produce an

accurate lesion segmentation. The framework incorporates a graph method (solved by

formulating max flow and min cut problems in the continuous domain) with denoising

methods and morphological operations. It is observed that although the continuous max

flow (CMF) algorithm is able to reduce the iterations avoiding the computational load,
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the segmentation quality heavily depends upon the denoising process prior to the execu-

tion.

The lesion segmentation begins with the preprocessing step to eliminate the common

background signals and to improve the contrast of breast lesions. This step is carried out

by using image registration followed by the subtraction between pre and post-contrast

images. Thereafter, we use the phase preservation denoising and adaptive Weiner filter-

ing, significantly reducing noise and unwanted artifacts while preserving the important

features such as edge and boundary required for the segmentation. A process is followed

by CMF algorithm to obtain the segmentation. Finally, we use a morphological operation

on the resultant image to remove the unwanted region to obtain the final result.

Rest of the chapter is organized as follows. A detailed review of used methods used

for the breast lesion segmentation is discussed in section 6.2. In section 6.3, the proposed

lesion segmentation method is explained. Section 6.4 discusses the experimental results

and discussion. Finally, a concluding remark drawn in this study is given in Section 6.5.

6.2 Materials and methods

6.2.1 Image subtraction after registration

The important and primary pre-processing step in our algorithm is subtraction between

pre and post contrast images [305]. This process makes it easier to characterize lesions by

eliminating common background signals. The resultant image is obtained with the im-

proved contrast in breast lesion. However, the performance of subtraction depends upon

the image pre and post images acquisition. The patient should not between the whole

imaging session, which is not always feasible. These unintended movements creates a

misalignment of images sequence [306]. Hence, it requires image registration prior to the

segmentation. Image registration is the geometrical transformation of one image to the

other. The normalized image is obtained from the subtraction of pre contrast image from

the post contrast image after the registration.

Isub = Ipost − Ipre (6.1)
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where, Ipost and Ipre are the post and pre contrast image sequence. Isub labels the

image obtained from the subtraction of Ipre from the Ipost after registration.

Let Ireg is the registered image. The Post-contrast image is registered with respect

to the pre-contrast image. The misalignment between pre and post contrast image is

removed using the registration algorithm “imregtform” routine in Matlab. Furthermore,

“imregconfig” defines the similarity metric and optimization method. The registration

procedure is based on the affine transformation and bicubic interpolation.

Ireg = registration(Ipost) (6.2)

Isub = Ireg − Ipre (6.3)

Affine transformation model This section discusses the affine transformation model

which was used during the image registration [307]. Let us consider pre and post contrast

DCE MRI image as Ipre and Ipost that was generated from the same imaging technique.

Ireg is the registered image. In our case, pre-contrast image Ipre is considered as the fixed

image and the post-contrast image Ipost is the moving image. Also, p and q are the co-

ordinates for fixed and moving image. The relationship between Ireg(p) and Ipost(p) is

given as shown in Eq. (6.4)

Ireg(p) = Ipost(A(q)) ⇐⇒ Ipost(q) = Ireg(A−1(p)) (6.4)

where A is the affine transformation. The affine transformation is the product of

four geometric transformations, translation, rotation, scaling and skew as shown in first,

second, third and fourth metrics respectively.

1 0 tx

0 1 ty

0 0 1

 .

θc −θs 0

θs θc 0

0 0 1

 .

1 k 0

0 1 0

0 0 1

 .

sx 0 0

0 sy 0

0 0 1


The dot product of these metrics is obtained as shown below:sxθc sy(kθc − θs) tx

sxθs sy(kθs + θc) ty

0 0 1


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where tx and ty are the shift of positive value towards left and up. θis defined as the

rotation which is measured in the clockwise direction. k is a shear factor and sx, sy are the

change of scale in x and y-direction respectively.

6.2.2 Local phase-preserving denoising

Denoising of DCE MR images is an important process during breast lesion segmentation

[308]. Denoising is a process in which the image is transformed into some domain such

that the noise component is easily identified. The noise is then removed and transformed

back into a noise-free image. Among several denoising algorithms, wavelet transforma-

tion is considered very efficient to distinguish between the signal and noise in the image.

Also, the image is consist of two important information magnitude and phase. It is seen

that the previous denoising mechanism on breast MRI has not considered this important

information, phase i.e. phase information is not preserved [65]. Phase information is

important not only for the perception but also for the image enhancement.

The phase preservation denoising methodology utilizes the log Gabor wavelet filter.

The image is initially decomposed into amplitude and phase information at each point

of slices in of DCE MRI. The observation shows that most of the amplitude information

is concentrated on the center and the phase information is distributed throughout the

image. It is seen that amplitude or phase information alone is not sufficient in recon-

structing the noise-free image while preserving the important image features. Hence,

we designed a phase preserving technique for breast DCE MRI image that shrinks the

amplitude information in different scaling factors and orientations.

Let us consider an image I(x, y) as a signal vector. Response vector for even symmet-

ric (Me
n) and odd symmetric (Mo

n) wavelets at scale n is given by Eq. (6.5). The amplitude

An(x) and phase φn at a wavelet scale n is calculated as Eq. (6.6) and Eq. (6.7) respectively.

[Ren(x, y), Imn(x, y)] = [I(x, y)×Me
n, I(x, y)×Mo

n] (6.5)

where Ren(x, y),Imn(x, y) is real and imaginary part of complex valued frequency

component.
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An(x, y) =
√

Ren(x, y)2 + Imn(x, y)2 (6.6)

φn(x, y) = atan2(Imn(x, y)/Ren(x, y)) (6.7)

while denoising, a noise threshold at each wavelet scale is determined and the mag-

nitude of the filtered vector is shrunk leaving phase unchanged. Hence, the complex-

valued wavelet response is utilized where the phase is preserved while the amplitude

is shrunk over different wavelet scales and orientation. Estimation of a signal can be

reconstructed by summing the remaining even-symmetric filter response over all scales

and orientations. The estimation of the noise threshold is determined from the mean and

variance of Rayleigh distribution. The mean and variance of the Rayleigh distribution R

is given by µR and σ2
R in Eq. (6.9).

R(x, y) = (x, y)/σ2e−(x,y)2/2σ2
(6.8)

µR = σ
√

π/2, σ2
R =

4− π

2
σ2 (6.9)

where σ2 is the scale parameter of the Rayleigh distribution.The noise threshold is calcu-

lated as,

τ1 = µR + cσR (6.10)

where c specifies the standard deviation values of noise to reject. It is related to the ideal

wave shape. It is assumed that the lower value of c produces an ideal wave shape. We

tuned the value of c to be fixed and equal to 1.

To make a robust estimation, mean (µR) is replaced with the median (M) response of

Rayleigh distribution,

M = σ
√
−2ln(1/2) (6.11)

here M labels median response. In each scale and orientation, the noise threshold is

calculated and processed. Finally, the reconstructed image is obtained as I2.
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6.2.3 Adaptive wiener filtering

The edge-preserving denoising technique should be adopted as the edges are the impor-

tant features during lesion segmentation. Hence, we apply an adaptive Wiener filtering

technique to smoothen the image while preserving the edges [259][260].

The adaptive Wiener filter is given by Eq. (6.12) [261]:

Idenoised(i, j) = mf +
σ2

f − v2

σ2
f

(Inoisy(i, j)−mf) (6.12)

where, mf and σ2
f is the local mean and variance. v2 is the average value of σ2

f across

noisy image i.e. Inoisy. The computation of local mean and mf and variance σ2
f is provided

Eq. (6.13):

mf = (XY)−1 ∑
i,j∈M

Inoisy(i, j)

σ2
f = (XY)−1 ∑

i,j∈M
(I2

noisy(i, j)−m2
f )

(6.13)

where X and Y are the horizontal and vertical arrays of pixels in the window mask.

6.2.4 CMF based lesion segmentation

Continuous max flow (CMF) [309] method is a graph-based approach and found to be

very effective to label the important regions in the image. Let us consider a problem

of partitioning continuous image domain Ωto partition into two region or labels: fore-

ground and background. There are two terminals: source and sink.

There are three concerning flows: Fs, Ft and F are the source, sink and spatial flow as

shown in the Fig. 6.1. Let x be the image position and each image position x ∈ Ω.

Fs(x) ≤ Cs(x), Ft(x) ≤ Ct(x), |F(x)| ≤ C(x); ∀x ∈ Ω (6.14)

and the flows are conserved as

Ft − Fs + divF = 0; ∀x ∈ Ω (6.15)
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Figure 6.1: Continuous Max flow with two labels.

Hence, the max flow problem for the total flow from source to sink for two labels is given

by

max

Fs,Ft,r

∫
Ω

Fsdx (6.16)

Let us consider a problem of partitioning continuous image domain Ω to partition for

i = 1...........n region or label. There are three concerning flows : Fs(x), Fi(x)andri(x) are

the source, sink and spatial flow as shown in the Fig. 6.2. Let x be the image position and

each image position x ∈ Ω. In n label max flow model of Ωi where i = 1...n are given in

parallel.

At each position x ∈ Ω, Fs(x) stream from s to x for each label i = 1.......n Hence,

the source field is same and there is no constraint for the source flow Fs(x) for n label

partition.

Fi(x) and ri(x) are constrained by the capacities ρ(Li, x) and Ci(x), i = 1.....n.

The flow are conserved as

(divri − Fs + Fi)(x) = 0, i = 1......n (6.17)

Hence, the max flow problem for the total flow from source to sink for n labels is given



144
Automatic breast lesion segmentation in denoised MRIs using continuous max-flow

algorithm

Figure 6.2: Continuous Max flow with n labels.

by
max

Fs,F,r
{P(Fs, F, r)

∫
Ω

Fsdx} (6.18)

Potts model is considered as a powerful tool for image segmentation [310]. The multi-

region segmentation through potts model can be mathematically expressed as shown in

Eq. (6.19).

min

Ωi
n
i=1

n

∑
i=1

∫
Ωi

Ci(x)dx + α
n

∑
i=1
|∂Ωi| (6.19)

where |∂Ωi| is the perimeter of each disjoint subdomain Ωi, i = 1...n. Ci(x), i = 1...n is the

cost of assigning the specified position x ∈ Ω to the region Ωi. The segmentation problem

can be solved using convex relaxation potts model which is derived from Eq. (6.19) as

shown in Eq. (6.20)

min

u∈S

n

∑
i=1

∫
Ω

ui(x)Ci(x)dx +
n

∑
i=1

∫
Ω

ω(x)|∇ui|dx (6.20)

where ui(x),i = 1....n defines the function of the segmented region Ωi.S is the convex

constrained set of u(x) = (u1(x), .....un(x))
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Figure 6.3: The proposed functional diagram of retinal vessel segmentation.

6.3 Proposed lesion segmentation method

The proposed segmentation approach consists of three steps: 1) image pre-processing 2)

lesion detection and 3) image post-processing as shown in Fig. 6.3.

6.3.1 Image Pre-processing

This process is used to achieve a more enhanced normalized image to ease the detection

of the lesion. It is performed by digitally subtracting the pre-contrast image that is an

unenhanced T1 weighted sequence from the post-contrast image obtained after the ad-

mission of the contrast agent. Prior to the image subtraction, image registration should

be carried out. Image registration resolves the misalignment of the pre and post contrast

image originated due to the unintentional movement during imaging. Fig. 6.4 shows that
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Figure 6.4: Illustration of image registration algorithm in DCE MRI. (a) Image before
registration is applied (b) Image after registration is applied.

image before and after the registration.

The subtraction operation removes native T1 signal and hence the remaining en-

hancement is effective to accurately detect the lesion. This process is seen competent

to the image where enhancement is critical to detect the complicated cysts. The Fig. 6.5

illustrates the effectiveness of image subtraction. Fig. 6.5 (a-c) are the pre-contrast, post-

contrast and the resultant image after the image subtraction respectively.

6.3.2 Lesion segmentation

DCE MRI contains noise due to the fluctuations in the receiver coil and from the elec-

trically conducting tissue. The presence of noise in the DCE MRI image increases the

complexity and leads towards the misinterpretation. It is necessary to remove this noise,

minimize the new artifacts and preserve kinetic enhancement information and fine struc-

tural details. Therefore following the pre-processing step, the phase preservation denois-

ing method is applied. Also, it is essential to smoothen the image while sharpening the



6.3 Proposed lesion segmentation method 147

(a) (b) (c)

(f)(e)(d)

Figure 6.5: Subtraction of the pre-contrast from the post-contrast image. (a), (d) pre-
contrast image. (b), (e) Post-contrast image. (c), (f) The resultant image after subtraction
of the pre-contrast image from Post-contrast image

edges during the lesion segmentation. Hence, after phase preservation denoising, we

applied an adaptive Wiener filtering technique.

There are two important considerations for phase preservation denoising method,

orientation and wavelet scaling factor. Low scaling factor refers to filter response to noise

is high. Eventually, the increased value of the scaling factor will reduce the filter response

to the noise. The selection of scaling factor should be done carefully because the low

scaling factor could treat useful information as noise and remove. Also, high scaling

filter could be ineffective for noise removal. With several experiments and optimization,

we use the scaling factor as 8 which preserves the fine structural details and increase the

contrast between the lesion and background. Fig. 6.6shows the filter response of a DCE

MRI image via phase preservation denoising with the different scaling factor.

The process of denoising begins with the construction of Gabor features using wavelet

filters. The slices of DCE MRI is then convolved with the constructed Gabor features.

AS a result feature vector response will be generated. For example, if 2 scales and 15

orientations are considered, it generates 15 different feature vector responses of slices as
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Figure 6.6: Filter responses of the DCE MR images obtained according to different scaling
factors. (a) Scaling factor of 1. (b) Scaling factor of 3. (c) Scaling factor of 8.

Figure 6.7: Illustration of phase preserved DCE MRI after reconstruction with scaling
factor of 2 and 15 orientations using Gabor wavelet filter..

shown in Fig. 6.7. Hence, the final denoised image is obtained by summing the responses

over all scales and orientations.

The image is denoised to some extent however, smoothing is required before the ap-

plication of CMF to achieve the accurate segmentation. At this point, smoothing is re-

quired while preserving edges as well as the boundary. Edges and boundaries are the

high-frequency areas and bilateral filtering is efficient to remove noise in these areas.

Hence, we applied bilateral filtering to preserve edges and boundaries while smoothing

the images.

The continuous max-flow algorithm was performed on the denoised MRI image ob-
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Figure 6.8: Illustration of resultant images obtained without phase-preserving denoising
and bilateral filtering. (a), (c) The resultant image from the subtraction of the pre-contrast
from the post-contrast image. (b), (c) The resultant image after using phase-preserving
denoising and bilateral filtering
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tained from the phase preservation denoising. Initially, Each pixel of image slices in the

DCE MRI is connected to the source S and sink T in the continuous plane. Also, we con-

sider that each pixel is associated with three flows: source, sink, and spatial flow. The

source flow is directed from source S towards sink T. The spatial flow is determined by

the strength of interaction with its neighborhood pixels. For the noisy image with low

SNR, the capacity values of all the pixels would confine the solutions within local minima

thus failing to determine the global optimum. Hence, prior to the application of the CMF

method, the phase preservation denoise is used that clears the noise of the image and

preserve the important features of the image. Additionally, the use of bilateral filtering

on the phase preserved image will smoothen the image while preserving edges.

6.3.3 Image Post-Processing

Based on the observed result from the earlier section, the post-processing of the image is

required. Morphological erosion and dilation operation were used to remove the bound-

ary of edges. secondly, the nearby components are connected together and the biggest

area among the connected component are searched and preserved. Rest of the areas are

considered as noise and removed. The obtained segmented image are compared with

manually drawn available ground truth image from the expert. Fig. 6.10, Fig. 6.11, and

Fig. 6.12 shows the resultant image obtained after the post-processing. It is observed that

post-processing plays a vital role to further precisely segment the lesions.

6.4 Performance evaluation and results

6.4.1 Data acquisition and evaluation criteria

The experiment is conducted on Windows 10 (×64), with Intel Core i5 CPU, 2.9GHZ and

8GB RAM. We validate the proposed algorithm on the image generated from the 1.5T

scanner. The imaging parameters for DCE-MRI were: TR/TE = 4.5/1.8 ms, a matrix size

= 512 × 512, with the number of signal averages set to 1, a field of view of 30 cm, and a

slice thickness of 1.5 mm. The gray-level range of MRIs is 0–255. There are total 23 cases

in with 19 cases with a size of 512 x 512 x 96 and 4 cases with the size of 480 x 480 x 160. All



6.4 Performance evaluation and results 151

cases have one pre-contrast and 4 post-contrast imaging frames were acquired. Ground

truth images are available for all the cases which are manually labeled by doctors.

The performance of the denoised image before and after phase preservation denoising

is demonstrated by calculating the peak signal-to-noise ratios (PSNR).

Furthermore, The quantitative assessment of the proposed algorithm is tested with

the eight parameters: area under ROC curve (AUC), accuracy (Acc), sensitivity (Se) or

Recall, Specificity (Sp), precision (P), misclassification rate (MR), DICE coefficient (DSC)

and Overlap coefficient (Oc). These parameters are based on pixel-based classification

technique where each pixel on the slice of DCE MRI is classified as lesion or background.

In the pixel-based classification technique, there are four combinations. : two classifica-

tions and two misclassifications. Under classification, true positive (TP) and true neg-

ative (TN) refers to the pixels which are correctly identified. Misclassification refers to

the false positive (FP) and false negative (FN) which are incorrectly identified as a lesion.

SG signify the segmentations obtained from the proposed methods and GT” signify the

ground truth which is manually segmented. These metrics are defined as the following

equations.

Acc =
TP+TN

TP+FP+TN+FN
(6.21)

Se =
TP

TP+FN
(6.22)

Sp =
TN

TN+FP
(6.23)

P =
TP

TP+FP
(6.24)

Er =
FP+FN

TP+FP+TN+FN
(6.25)

Vs = 1− FN-FP
2 * TP+FP+FN

(6.26)
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DSC =
2(SG∩GT)

SG + GT
∗ 100% (6.27)

JC =
(SG∩GT)
SG∪GT

∗ 100% (6.28)

Acc is defined as the total number of classified pixels which are correctly identified

to the number of total pixels in an image. Se and Sp are the metrics which are derived

from the proportion of positive and negative pixels in the ground truth image that is

truly identified. P is the ratio of correctly predicted positive observations and total pre-

dicted positive observations.P indicates the reproducible measurements even the value

is far from the acceptable range which distinguishes it from the accuracy. A metric error

rate (Er) is the misclassification rate which measures the frequency of the wrong predic-

tion. Er is considered excellent when the value is close to zero and positive. Volumetric

Similarity is a measure of the volume of the segments that indicated similarity. It is the ab-

solute difference divided by the sum of the compared volumes. DSC is the overlap based

metric that measures the similarity between segmented OD via automatic and manual

method. To further verify the efficiency of the proposed algorithm, we calculated a met-

ric known as Oc. This metric is the similarity measure related to the Jaccard index which

measures the overlap between automatically and manually segmented OD. We calculate

metric, AUC from receiving operating characteristics (ROC) curve, which is used to esti-

mate the trade-off between Se and Sp [201]. To achieve this non-parametric performance

measurement, the curve is plotted with a false positive rate (1-Sp) on the x-axis and true

positive rate (Se) on y-axis using different threshold values within a certain interval. The

value greater than 90% is considered to be an excellent result and the ROC curve is con-

sidered as an ideal curve when its closer to the top left corner which offers a perfect value

i.e. 1.

6.4.2 Results and Discussion

The original DCE MRI image is noisy. The segmentation of the breast lesion from the

noisy image degrades the performance of the algorithm. Hence, phase preservation de-

noising is used to remove the unwanted noise and artifacts from the image. The image
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enhancement can be observed visually as shown in Fig. 6.8 and is also tested by calculat-

ing the PSNR value before and after denoising as shown in Section 6.4.2. Since the data

set consist of an image with two resolution, we have divided the total number of images

into two groups (G1 and G2) to test the PSNR value obtained before and after denoising.

It is observed that PSNR value in both the group has a significant improvement as shown

in Section 6.4.2.

The obtained segmentation results can be observed visually. Fig. 6.9 show the re-

sultant lesion segmentation obtained from the proposed method. The proposed method

is able to segment the breast lesion. However, the segmentation result includes some

unwanted areas as a false positive which require further processing. Hence, the post-

processing step is carried out in the obtained resultant image. Fig. 6.10,Fig. 6.11 and

Fig. 6.12 show that the post-processing step is able to remove most of the unwanted areas

from the obtained resultant images. The method while compared with the ground-truth

image, show that the proposed method is able to efficiently segment the lesion as de-

picted in Fig. 6.13. Fig. 6.13 (a, d and g) are the manually segmented ground truth image

by an expert radiologist. Fig. 6.13 (b, e, and h) are the final result obtained from the

proposed method. Fig. 6.13 (c, f and i) show that the overlap between the lesion area in

the original image and the result obtained from the proposed method. The result shows

that the proposed method is able to segment the lesion area accurately which is further

validated by the quantitative analysis as shown in Table 6.2 and Table 6.3.

Table 6.1: Quantitative comparison of performance of lesion segmentation using the pro-
posed method with the ground-truth image.

Average PSNR
Dataset Subtracted Image After denoising
G1 21.36 ± 0.7 32.54 ± 0.42
G2 20.82 ± 0.21 34.19 ± 0.53

Table 6.2 and Table 6.3 show the quantitative result obtained from the proposed method

when compared with the ground-truth image. In all cases, we have achieved outstanding

results. The average result in both the group is highly comparable with the ground-truth

image.

The experiment shows that the results obtained from the proposed methods when

compared with the results obtained from the recent methods outperform or highly com-
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Figure 6.9: Illustration of resultant lesion segmentation obtained by using the proposed
method before post-processing. Each row (a)-(b)-(c), (d)-(e)-(f), and (g)-(h)-(i) are the
lesion segmented from slices from the same MR images.

parable as shown in Table 6.4. It is observed that Acc, Sp, Vs, and AUC obtained from the

proposed method are above 95%, proving the effectiveness of the proposed algorithm.

Also, in terms of overlapping metrics (DSC and JC), the obtained result outperforms or

highly comparable with the existing methods with an average of 91.63% and 85.35% re-

spectively. When comparing with the result obtained from the recently proposed method,
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Figure 6.10: Illustration of resultant lesion segmentation obtained by using the proposed
method after post-Processing. First row (a, b, c) represents the original image and second
row (d, e, f)represents the final result i.e segmented tumors.

Accuracy was observed to be better than all of the other methods except Marrone et al.

2013. However, the result is highly comparable. The result obtained from the proposed

method outperforms all the existing methods in terms of DSC and JC with an average

value of 91.63% and 85.35%.

Segmentation of lesion from breast DCE MR image is a significant and challenging

job. To achieve the level of accuracy as mentioned before we went through several ex-

periments and finally came across the presented solution. The lesion can be found in

various shapes and intensity in different slices of DCE MRI. Moreover, DCE MRI images

are populated with noises during image acquisition because of untended movement of

the object. To overcome this problem, we concluded that image registration is required

as the initial step. Furthermore, it is observed that the segmentation process is further
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Figure 6.11: Illustration of resultant lesion segmentation obtained by using the proposed
method after post-Processing. First row (a, b, c) represents the original image and second
row (d, e, f)represents the final result i.e segmented tumors.

complicated by geometric distortion and non-uniform illumination in the tissues. Hence,

to preserve most of the useful information of the image while removing the noise, we

utilized the phase preservation denoising algorithm in the registered image followed by

pixel-wise adaptive Wiener filtering to preserve the sharp edges. Thereafter, we use the

graph-based approach i.e CMF to label the important region of the image. This method

is found to be effective to solve the segmentation problem while allocating the minimum

parameter. Hence, reducing the iteration time to obtain a faster segmentation. However,

it was observed that the efficiently this process depends upon the denoising process prior

to the application of the CMF algorithm. The CMF algorithm was experimented with or

without using the preprocessing step. The experiment shows that the results obtained

with the preprocessing steps are accurate in segmenting the lesion area. the result ob-

tained without the preprocessing step includes a lot of unwanted areas, especially near
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Figure 6.12: Illustration of resultant lesion segmentation obtained by using the proposed
method after post-Processing. First row (a, b, c) represents the original image and second
row (d, e, f)represents the final results i.e segmented tumors.

the lesion area.

The experiment shows that CMF algorithm was able to produce a resultant image that

includes most of the lesion area. However, the image still includes some unwanted area

in the image which is depicted in Fig. 6.9. Hence, we have included a post-processing

operation to remove the unwanted part. Initially, morphological dilation operation with

the disc-shaped structuring element with the radii of 5 pixels is used. This operation

allows growing by 5 pixels from the edges along with all directions. This process will

preserve the not connected lesion, especially near the lesion area. The process is followed

by searching each connected component and preserving the biggest area. The convolu-

tion process is carried out with the dilated image with the resultant image to obtain the

final lesion segmentation.
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Figure 6.13: Illustration of resultant lesion segmentation obtained by using the proposed
method after post-Processing. First row (a, b, c) represents the original image and second
row (d, e, f)represents the final results i.e segmented tumors.

6.5 Conclusion

In this chapter, we proposed an automatic and fast lesion segmentation method from

breast DCE MRI image. The produce accurate lesion segmentation, we have used im-

age registration before image subtraction as a preprocessing step. Furthermore, a phase

preservation denoising and adaptive Wiener filtering followed by CMF technique which

is a graph-based approach are applied in the preprocessed image. Finally, post-processing

is carried out to remove the unwanted remainings except for lesion. This framework has

been tested with 23 different DCE MRI cases with resolutions. The quantitative analy-
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Table 6.2: Quantitative comparison of performance of lesion segmentation using the pro-
posed method with the ground-truth image.

Cases (G1) Acc Se Sp P Er Vs DICE JC Auc
1 0.9933 0.9081 0.9968 0.9242 0.0023 0.9912 0.9161 0.8451 0.98
2 0.9921 0.9152 0.9841 0.9365 0.0069 0.9878 0.909 0.8569 0.97
3 0.9789 0.9231 0.9799 0.9388 0.0052 0.9921 0.9256 0.8654 0.96
4 0.9888 0.9012 0.9969 0.9219 0.0042 0.9874 0.9158 0.8475 0.97
5 0.991 0.897 0.9912 0.9127 0.0035 0.9789 0.92 0.8489 0.97
6 0.9699 0.8999 0.9879 0.9099 0.0058 0.9856 0.909 0.8585 0.98
7 0.9956 0.9258 0.9799 0.9123 0.0069 0.9956 0.9158 0.8741 0.99
8 0.9874 0.9265 0.9936 0.9223 0.0063 0.9961 0.9146 0.8461 0.99
9 0.9715 0.9241 0.9752 0.9234 0.0042 0.9816 0.9256 0.849 0.96
10 0.9865 0.9125 0.9858 0.9145 0.0043 0.9777 0.9241 0.851 0.97
11 0.9784 0.8812 0.9912 0.9156 0.0078 0.9713 0.9174 0.8479 0.98
12 0.9953 0.8845 0.9873 0.9215 0.0061 0.9782 0.916 0.859 0.99
13 0.9741 0.9178 0.9932 0.93 0.0039 0.9745 0.9292 0.8513 0.96
14 0.9799 0.9167 0.9889 0.92 0.004 0.9878 0.902 0.8467 0.97
15 0.9898 0.909 0.9798 0.912 0.0043 0.9923 0.9088 0.8419 0.98
16 0.9632 0.8821 0.9712 0.909 0.004 0.9891 0.9087 0.8521 0.98
17 0.9787 0.8928 0.9912 0.9097 0.0047 0.9858 0.9087 0.8484 0.99
18 0.9963 0.9181 0.9963 0.9312 0.0068 0.9799 0.9145 0.8546 0.96
19 0.9879 0.9099 0.9874 0.9012 0.0054 0.9889 0.9191 0.861 0.97
Avg 0.9845 0.9076 0.9877 0.9195 0.0051 0.9856 0.9158 0.8525 0.97

Table 6.3: Quantitative comparison of performance of lesion segmentation using the pro-
posed method with the ground-truth image.

Cases(G2) Acc Se Sp P Er Vs DSC JC Auc
1 0.9674 0.9191 0.9926 0.909 0.0052 0.9826 0.9193 0.8321 0.97
2 0.9874 0.9221 0.9874 0.9258 0.0045 0.9948 0.9201 0.8596 0.99
3 0.9742 0.8989 0.9858 0.9123 0.0054 0.9797 0.9078 0.8679 0.98
4 0.9931 0.9182 0.9745 0.9097 0.0068 0.9889 0.9183 0.8545 0.97
Avg 0.9805 0.9145 0.9850 0.9142 0.0054 0.9865 0.9163 0.8535 0.977

sis in terms of 9 metrics shows that significant improvement of the segmentation quality

while compared with the recent segmentation technique. The proposed unsupervised

doesn’t require any prior knowledge and can work with most of the medical images

with a slight modification of the parameters.
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Table 6.4: Quantitative comparison of performance of lesion segmentation using the pro-
posed method with the recently developed other approaches.

Acc DSC JC Sp Se
Li et al. 2018 x 0.89 0.81 x 0.88
Rasti et al. 2017 0.9639 x x 0.9487 0.9773
Jayender et. Al 2014 0.9 0.77 x x 1
Darryl et al. 2014 x 0.76 x x x
Marrone et al 2013 98.7 x x 0.989 0.71
Proposed Method(G1) 0.9845 0.9158 0.8525 0.9873 0.9076
Proposed Method(G2) 0.9805 0.9163 0.8535 0.985 0.9145



Chapter 7

Conclusions and Future Directions

7.1 Summary and Conclusions

THIS thesis work mainly focuses on the development of automatic segmentation

methods on multidimensional medical images using unsupervised techniques. Med-

ical images analysis especially automatic segmentation process is one of the complex and

sensitive tasks that possess several challenges. The major challenges are the noise devel-

oped during the image acquisition process, alike intensity tissues all over the image and

uncertain boundary. Moreover, high dimensional images often required a huge amount

of time and the features in the different areas should be carefully studied to achieve an

accurate output. The accuracy and the preciseness should be verified by qualitative and

quantitative metrics for the quicker evaluation of the segmentation results.

Automatic segmentation of vital human body parts in the medial images plays an im-

portant role in the identification of different diseases and assists doctors for the accurate

and fast detection of diseased areas. Hence, the prime motivation for the development

of automatic segmentation algorithms on multidimensional medical images is the signif-

icant reduction of the cost in terms of processing time and effort taken during the tedious

manual segmentation done by experts. Furthermore, automatic segmentation, which is

capable of producing an accurate result and is considered as a key job in clinical appli-

cations. However, simple segmentation algorithms failed to produce an accurate result.

Hence, this research project is focused on addressing issues during image segmentation

in two imaging modalities: fundus photography (2D) and DCE MRI (3D).

The fundus photography (2D) is an imaging technique that captures images of the

back portion of the human eye. The image produced by fundus photography includes

161
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important landmarks such as optic nerve, blood vessels, macula, and fovea. The study of

these landmarks reveals a wide variety of ophthalmic conditions that manifest through

the human eye. The study showed that the images, especially with the pathological arti-

facts such as lesions, exudates, non-uniform illuminations, has high chances of producing

unreliable results. This is because of wrongly identified landmarks such as blood vessels,

optic nerve, macula, and fovea during automatic segmentation. Hence, the automation

of the accurate segmentation process of the above-mentioned landmarks is still a chal-

lenging task.

DCE MRI (3D) is an advanced imaging technique that produces detailed images in

three dimensions, which are capable of accurate detection, diagnosis and staging of the

breast cancer with high precision (including high reproducibility) and low bias. Manual

segmentation of lesion in DCE MRI is a tedious task because of the huge amount of data

to be analyzed. In addition, the improved system with the lowest false positive (high

specificity) should be cheaper for additional treatment and biopsies. The performance of

the existing segmentation methods are moderate and has lots of room for the improve-

ment especially during the development of the automatic segmentation method.

Hence, the main objectives of the presented research work is the development of

novel algorithms addressing the above-mentioned segmentation challenges in fundus

photography and MR images. The developed algorithms are the solutions for:

• Automatic segmentation of blood vessels in fundus photography.

• Localization and detection of Optic Disc in fundus photography.

• Automatic segmentation of BROI and BD in MR Images.

• Automatic breast lesion segmentation in DCE MR Images.

7.2 Addressing the research objective

In this thesis, we have conducted a thorough literature review, proposed novel algo-

rithms and verified the results using several experiments to improve the current state-of-

the-art in fundus photography and MR Image. In order to solve the segmentation prob-
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lem, we developed four novel segmentation framework including fundus photography

and MR images.

In term of fundus photography, firstly, we proposed a novel framework, which is ca-

pable of segmenting blood vessels automatically with high accuracy. This method is es-

pecially effective in analyzing retinal blood vessels on noisy, pathological and abnormal

retinal images. Secondly, we proposed a novel and effective framework for automatic

estimation of OD-ROI and segmentation of OD. This proposed algorithm is capable of

segmenting OD accurately by using a geometrical model over the edge information of

OD and is effective for abnormal retinal images with uneven illumination and several

pathological conditions. The efficiency of proposed algorithms is tested with the exper-

iment carried out in publicly available databases. Moreover, the efficiency of both the

algorithms is validated in term of quantitative as well as qualitative analysis.

In term of MR image, Firstly, we proposed an automatic method for the accurate seg-

mentation of BROI and BD from breast MR images. This proposed algorithm is highly

effective when breast MR images include dense breast tissues. This process can act as a

preliminary step during the diagnosis of breast cancer. Secondly, we proposed a novel

lesion segmentation algorithm for breast DCE-MR Image. The method is effective in

producing an accurate result for noisy DCE MR Images. The efficiency of proposed algo-

rithms is tested with the experiment carried out in MRI databases with available ground

truth images. Also, the efficiently of both algorithms are validated in term of quantitative

and qualitative analysis.

To sum up, the main contribution of this thesis is as follows:

• Chapter 1 provides an overview and compressive review for the state-of-art in med-

ical image segmentation. This chapter further elaborates the importance of auto-

matic segmentation in medical images especially in the fundus photography and

breast MRI.

• Chapter 2 provides an overview and compressive review for the state-of-art in med-

ical image segmentation. This chapter further elaborates the importance of auto-

matic segmentation in medical images especially in the retinal image and breast

MRI.
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• Chapter 3 discus about the framework for the automatic and accurate segmenta-

tion of blood vessel from the retinal fundus images. It discusses the different is-

sues in the retinal image that creates a problem in obtaining accurate segmentation

problems and provides solutions. The proposed research work is efficient when

compared with the rest of the other methods in the literature.

• Chapter 4 discus about a novel framework for the automatic and accurate segmen-

tation of optic disc from the retinal fundus images. This chapter identifies the chal-

lenges during OD segmentation process and provides an accurate solution. The

experimental result shows that the proposed research work is accurate and shown

to be superior when compared with the other proposed methods in the state of art.

• Chapter 5 discus about the framework for the automatic and accurate segmentation

of BROI and BD from MR images. It explains the importance of BROI and BD in

breast MR images. Furthermore, this chapter explores the challenges during the

segmentation process and provide a feasible solution. The experiment results show

that the proposed methods can develop high-quality segmentation when compared

with the manually drawn BROI and BD.

• Chapter 6 discus about the framework for the automatic and accurate segmenta-

tion of breast lesion from DCE MR images. This paper discusses the challenging

issues during breast lesion segmentation. The identification and solution to those

challenges are presented in the chapter. Also, the experiment was conducted which

proves that the proposed method produces high quality of segmentation results

when compared with the manually segmented results.

7.3 Future direction

Although many research efforts have investigated the automatic segmentation techniques

in fundus photography and breast MR images, there are still several gaps and challenges

to be explored in the future. The algorithms presented in this thesis are unsupervised and

hence they are database specific. To test the results with new database, some parameters

may required to be adjusted.
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The research work presented in this thesis can be directed to following future works

for further enhancement in the algorithm development for medical image segmentation.

7.3.1 Automatic segmentation on Fundus photography

The segmentation of different anatomical structure in retinal images such as blood ves-

sels, optic disc, macula, and abnormal lesions is significant for the detection and diagno-

sis of pathologies that manifest through human eyes. Most importantly, accurate analy-

sis of blood vessel and optic disc provides crucial information for the pathologies such

as Diabetic Retinopathy (DR), glaucoma, hypertension, and Age-related Macular Degen-

eration (AMD). In this thesis, we have presented a novel method for the accurate seg-

mentation of blood vessel and optic disc. The proposed algorithm is only tested with

the publicly available databases. The proposed techniques can be further tested with

the databases, which are acquired in different environmental conditions and images. If

necessary, we can optimize parametric values as well.

The main advantage of the proposed blood vessel segmentation technique is to iden-

tify the pixels as vessels and non-vessels, automatically and accurately. The proposed

segmentation technique is highly capable of detecting both thick and thin blood vessels

in both the healthy and pathological retinal images. The extracted blood vessels can fur-

ther be used to identify diabetic retinopathy. Diabetic retinopathy occurs when the tiny

blood vessels in the back portion of eye deteriorate. The algorithm will also be used

for the development of Computer-aided diagnosis tool using artificial intelligence (deep

learning). This blood vessel extracted from the algorithm can be classified by experts

as either healthy or pathological. Moreover, classified information can be used for the

training purpose. In addition, the proposed method can be further used for detecting

vessel-like structure in any imaging modalities. However, manipulation of a parameter

might be required.

The proposed optic disc segmentation technique is capable of segmenting the optic

disc accurately which can be further extended for the segmentation of optic cup. The

information of optic disc and optic cup can be used to identify the damage happened on

the optic nerve to detect the pathological condition called glaucoma. Glaucoma can cause

the cup to get bigger in an oval pattern. Hence, measuring the cup to disc ratio is one
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of the effective methods to detect whether the optic nerve is glaucomatous or not. The

proposed algorithm can be used for the development of the computer-aided diagnosis

system using deep learning, which is considered as one of the effective methods of de-

tecting pathologies. However, there will be a requirement of the optic disc and optic cup

segmentation identified as a healthy or pathological for the training purpose. The expert

can do the classification manually or an automatic algorithm can be developed for it.

7.3.2 Automatic segmentation on Breast MR Image

In breast MRI analysis, segmentation is used for the visualization of breast anatomical

structures especially for evaluating the changes in breast and identifying the pathologi-

cal regions. Since manual segmentation is tedious and time-consuming; there is always

a requirement of developing an automatic segmentation technique. However, the de-

gree of complexity is high for automatic segmentation of any important landmarks in

volume images (MRI). Any effective and accurate algorithms can be incorporated into

a computer-aided diagnosis system to assist the doctors for the diagnosis of breast can-

cer. In this thesis, we have presented a novel method for the accurate segmentation of

BROI, BD and Breast lesion that can be used for the diagnosis of a pathological condition

detected in MR images.

We have developed a novel method that can automatically and efficiently segment

the BROI and BD. BROI is the area where the lesion resides. This can be extended for

breast lesion detection. Since the breast lesion algorithm runs in a small area, the com-

putation time can be tremendously reduced. On the other hand, we have developed an

automatic breast density segmentation algorithm. Breast density is a strong risk factor

and the indicator of breast cancer. The study can be further directed for the quantitative

measure of textural and morphological features of different patterns and degree of breast

density. The study can be directed not only towards the estimation of the quantity of

breast dense tissues but can also assist in developing the strategies in fatty and dense

regions to observe for the abnormalities at the early stage.

We have developed an automatic segmentation technique for the lesion detection of

breast MR images. This technique can accurately segment the suspicious lesions. After

the identification of breast lesion, the study can be further extended to classify the ob-
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tained result as benign or malignant by the analysis of various textural, morphological or

other features. Hence, It can become an important tool for the diagnosis and treatment of

breast cancer during the early stages.

Deep learning is considered as one of the effective and widely used methods for the

classification of the lesion. However, there are lots of pre-processing work required be-

fore the training process. For the development of machine and deep learning approach,

manual segmentation of breast ROI is required which can be replaced with our proposed

automatic algorithm. This is because the developed algorithm for BROI segmentation

presented in this thesis is effective in segmenting the different anatomical structures of

breast volume images.

7.4 Final Remarks

Medical image analysis is essential for accurate and fast identification of several patho-

logical conditions. The automatic segmentation method plays a vital role during the

medical image analysis to produce an accurate result. In this thesis, we explored and con-

tributed novel automatic segmentation methodologies for two popular imaging modal-

ities: 1) fundus photography and 2) Breast MRI. The automatic segmentation of blood

vessel and localization and detection of Optic disc is performed in fundus photography.

In the second part of this thesis, the automatic segmentation of breast region of interest,

breast density, and breast lesion segmentation is developed. The proposed segmenta-

tion techniques are unsupervised and is applicable for multidimensional medical image.

The research outcome tested on public and private dataset shows that the proposed tech-

niques are able to produce clear, accurate and concise segmentation result. The obtained

result vividly demonstrates that the methodologies presented in this thesis makes a im-

portant contribution to the respective state-of-art in terms of fundus photography and

breast MR images.
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