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Abstract  13 

The objective of this study is to investigate how the specific heat capacity (cp) value of a material changes with 14 

respect to temperature and heating rate of that material. In-depth knowledge in the variation of cp will provide 15 

a better knowledge of the thermo-physical properties of these materials and will increase the capabilities and 16 

fidelity of computational fluid dynamics (CFD) based fire modelling. The models and simulations are reliant 17 

on input data gained through experimentation and this allows for the present study to provide such input data 18 

and trends, which are useful in understanding how fires respond in different situations. The value of cp in relation 19 

to the rate of temperature change has been measured using differential scanning calorimetry (DSC) and hot disk 20 

analysis (HDA). This study encapsulates the determination of cp values, trends and equations for poly(methyl 21 

methacrylate (PMMA), pinewood, pinewood char and two fabrics: cotton and wool. The cp values were found 22 

to increase with the sample temperature and for two fabrics, they vary with the change in heating rate. The 23 

derived equations show that cp values from DSC and HDA are comparable. To include these relationships in 24 

CFD-based fire models, a set of suggestions have been made. 25 

 26 
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 28 

Nomenclature: 29 

s Heating rate, K min-1 30 

C Specific heat, J g-1 K-1 31 

cp  Specific heat capacity, J g-1 K-1  32 

cp,a  Specific heat capacity, J g-1 K-1 33 

cr Specific heat capacity of reference sample, J g-1 K-1 34 

𝑑𝐻

𝑑𝑡
  Heat flow to the sample, mW 35 

𝒅𝑯𝒓

𝒅𝒕
  Heat flow to the reference material, mW 36 

H Enthalpy, J 37 

m Mass, g 38 

mo  Sample mass, g 39 

mailto:khalid.moinuddin@vu.edu.au


 2 of 15 

2 

 

mr  Reference mass, g 40 

𝑝 Pressure constant 41 

Q Heat flow, J 42 

ΔQ Change in heat flow, mW 43 

T Temperature, °C or K 44 

ΔT Change in temperature, °C or K 45 

1 Introduction 46 

Fire models and simulations are much more cost effective in determining important factors that contribute 47 

to fire behaviour, prevention, suppression and control. Full and medium-scale experimentation in compartment 48 

fire testing, however, is cost prohibitive. This constraint therefore requires the use of numerical fire modelling 49 

which needs input parameters from a controlled miniature and/or bench-scale testing environment to gather 50 

fundamental experimental data. It is imperative that the data from experimental testing and analysis are able to 51 

validate models of fire behaviour [1]. More accurate predictions of fire can lead to a better understanding of the 52 

associated fire risk and reliable fire prevention and systems can be implemented to reduce the risk. This is 53 

economically beneficial for insurers, building owners and clients, who would benefit from a reduction in fire 54 

damage subsequently reducing the cost of a fire incidence. 55 

Poly(methyl methacrylate (PMMA), pinewood, cotton and wool are some common materials that are used 56 

throughout the building and manufacturing industry. These materials have a wide range of uses and are found 57 

in diverse environments in which they are typically clustered. In instances where these materials are exposed to 58 

a fire situation, the surrounding temperature varies as the fire grows or declines and the materials can be heated 59 

with different heating rates. With regard to the heating rate of the material, the accurate measurement of specific 60 

heat capacity (cp), among other thermo-physical and flammability parameters, is required for input values for 61 

computational fluid dynamics (CFD) based fire models such as fire dynamic simulation (FDS) [2] to improve 62 

fidelity. A variation in heating rate is known to have an effect on the thermo-physical properties of different 63 

materials [3, 4] and cp has an influence on many thermo-physical processes that occur during a fire including 64 

ignition point, phase change and chemical interactions during pyrolysis. The cp value is useful when determining 65 

regions of thermal activation, volatilization and pyrolysis, therefore, studies are needed to focus on estimating 66 

cp of the materials. In CFD based fire simulations, it is crucial that accurate input values are used including 67 

variations in terms of temperature, heating rate, heat flux etc. [5]. Small scale testing can be used to accurately 68 

determine the cp value of the materials as a prerequisite for simulation but also to verify if these simulations are 69 

predictive of large fires [6].  70 

The cp value can be determined using numerous methods with varying degrees of accuracy and sources of 71 

errors with different calorimetry instruments [7] including the differential scanning calorimeter (DSC) and hot 72 

disk analyser (HDA) apparatus. These instruments can provide a range of thermo-physical data for a wide range 73 

of materials and are readily commercially available. The DSC can provide quantitative and qualitative data on 74 

transitions of materials with temperature, heating rate, degradation environment, and can be used to estimate 75 

cp, thermal conductivity (k), latent heat, transition temperature and enthalpy [4, 7]. However, the DSC requires 76 

significant effort in post-processing the raw data to obtain cp and k values. Moreover, the thermal behaviour of 77 

the material studied is normally compared with a reference material such as sapphire making the process time 78 

consuming and expensive. The HDA instrument can be used to determine the thermal diffusivity, k and cp and 79 

its companion software provides these values readily. The primary variance between the two instruments is that 80 

the DSC gives cp as a function of both heating rate and temperature, whereas the HDA provides the data as a 81 
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function of temperature only. Differential thermal analysis (DTA) is another technique closely related to the 82 

DSC, however, the DSC can provide greater accuracy and is the preferred method of determining cp [8]. 83 

Although literature exists on the effect of temperature on PMMA and various species of pinewood, there are 84 

few reports of the effect of heating rate on pinewood char, cotton and wool [9]. Goodrich [9] observed that there 85 

are substantial difficulties with materials of a similar nature to cotton and wool which may account for the lack 86 

of conclusive research in this particular area.  87 

For some materials, especially those undergoing endothermic reactions, heating rates higher than 5 K min-88 

1 are recommended for thermal analysis [10] and are considered to be macroscopic heating rates. Therefore, in 89 

the present study, cp was measured as a function of the rate of temperature change for heating rates of 50, 100 90 

and 200 K min-1 with these high heating rates likely to occur in building fires. Using DSC measurements, raw 91 

data was obtained using the sapphire method [11] and cp was calculated using post processing in MATLAB. 92 

Using the same materials, experiments using HDA equipment were performed where the sample was heated in 93 

an oven until a thermocouple attached to the sample showed that it reached the desired temperature then the cp 94 

value was measured at that temperature. The data from both sets of apparatus was used to develop possible 95 

equations for use in fire engineering applications and also within fire modelling algorithms. 96 

2 Materials and Methods  97 

2.1 Concept of Specific Heat Capacity for Determination for using DSC 98 

cp is the amount of thermal energy (J) that is required to change the temperature of 1 g of material by 1 K 99 

at constant pressure and expressed in J g-1 K-1. Thermodynamically, cp is determined by the equation:  100 

𝑐𝑝 = (
𝜕𝐻

𝜕𝑇
)𝑝 (1) 

where, H is enthalpy; T is temperature of the system; p is the pressure constant.  101 

The derivation of cp can also be expressed as: 102 

𝑐𝑝 =
𝛿𝑄

𝑑𝑇
∙

1

𝑚
 (2) 

where, Q is heat; m is mass. The amount of energy or heat that is exchanged for the change in temperature from 103 

T1 to T2 for a given mass m and specific heat cp (T). 104 

𝑄 = 𝑚 ∫ 𝑐𝑝(𝑇)
𝑇2

𝑇1

𝑑𝑡  (3) 

The characteristic equation that is used to determine the cp from DSC is: 105 

𝑐𝑝 =
∆𝑄

∆𝑇
  (4) 

Equation (4) can be utilised using the DSC curves of the heat flow and physical quantity. 106 

Taking into account the heating rate, cp can be calculated using the following formula: 107 

𝑐𝑝 =
1

𝑚𝑜 ∙ 𝛽𝑠

∙
𝑑𝐻

𝑑𝑡
  (5) 

where s is the heating rate of the sample; mo is the sample mass; 
𝑑𝐻

𝑑𝑡
 is the blank curve corrected heat flow to 108 

the sample. The sample is required to be stable throughout the heating range in order to determine the specific 109 

heat.  110 

Depending on the method used to determine cp, if a sample or known reference material is used then cp is 111 

calculated by: 112 
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𝑐𝑝=

𝑚𝑟

𝑚𝑜

∙
𝑑𝐻/𝑑𝑡

𝑑𝐻𝑟/𝑑𝑡
∙ 𝑐𝑟  (6) 

where mr is the reference mass; cr is the specific heat capacity of the reference mass; 
𝑑𝐻𝑟

𝑑𝑡
 is the heat flow of 113 

the reference. The temperature range for this study was selected up to which no thermal degradation (mass loss) 114 

occurs in order to avoid a mass correction for the evaluation of the cp. Thermogravimetric analysis data from a 115 

previous study [12] and a concurrent study [13] show that PMMA, pine and cotton have minimal mass loss up 116 

to 300 °C and for wool up to 275 °C. Therefore, only results up to these regions are evaluated. 117 

The concept, and experimental technique to obtain HDA data can be found in [5, 12]. It should be noted 118 

that HDA does not require calibration since the Krapton sensor infused with nickel wire is calibrated by the 119 

manufacturer. The data affected by the contact sensor resistance lies in the non-linear region at the start of the 120 

experiment and is thus automatically remove from the calculation of material properties [14]. The following 121 

sections describe the DSC method for obtaining the cp. 122 

2.2 Obtaining cp using DSC 123 

2.2.1 Sample Preparation 124 

The samples of PMMA were crushed into small granules approximately 1 mm2 or smaller. Pinewood dust 125 

and parings of approximately 0.6-1 mm2 were used. The cotton and wool samples were cut into small fragments 126 

ranging between 0.5 and 1.2 mm2. Sample masses between 1.3 and 4.2 mg were used to ensure that the DSC 127 

could obtain a suitable measurement signal. The sample weights also ensured the crucibles were not over filled 128 

which potentially could have hindered the measurement of heat flow. Aluminium crucibles of 40 μL capacity 129 

were used in a Mettler Toledo DSC instrument [15]. Weighing errors were minimised with the use of a 130 

microbalance. Additionally, samples were reweighed when consistency between samples varied. The samples 131 

were placed in a conditioning unit prior to being encapsulated in the crucibles to reduce the moisture content in 132 

the materials, and also to verify the affect that moisture content has on materials when determining cp. The 133 

relative humidity of the conditioning unit where the samples were kept was approximately 50% at 23°C.  134 

2.2.2 Experimental/operating procedure 135 

The DSC instrument was fully calibrated by the indium standard prior to sample measurements [16]. 136 

During the measurement, an inert atmosphere was created under a nitrogen flow of 50 mL min-1. This represents 137 

an atmosphere in the absence of air which occurs when during flaming combustion thus preventing air reaching 138 

the burning material. The sapphire method for cp determination was used as this method produces an accuracy 139 

that is within ± 2% [10, 12]. This method has been experimentally noted to have a variation of ± 5% for the 140 

value of sapphire material [17]. 141 

A “baseline” or blank measurement was performed for each heating rate (50, 100 and 200 K min-1) in 142 

order to determine the signal bias in the system. This was obtained by determining the response of both crucibles 143 

when empty and allows for the signal bias to be removed from the data. A reference test for each heating rate 144 

was performed to ascertain the difference between the sapphire reference material with well-defined known 145 

specific heat values and the experimental sample. All of the results obtained were blank curve corrected and 146 

performed in triplicate.  147 

There are two predominant methods of sealing the sample crucibles, namely without lid pinholes [4, 18], 148 

and with pinhole pierced lids [19]. Rath et al. [20] compared the used of an open pan and one with a lid pinhole 149 

and found that the presence of the lid effected both the heat flow and exothermic thermal effect of the sample. 150 

Other studies have also shown the effect of heat rate on samples and also the uncertainty of the results from 151 

DSC [21, 4, 22]. From these studies, it appears that the pinhole lid has a minimal effect depending on whether 152 
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gasses are released from the sample during the heating process. The test material and the reference were placed 153 

into individual aluminium crucibles which were then sealed with pierced lids. The data from the DSC was 154 

recorded, then analysed using MATLAB in order to obtain the cp from the data. Taking into account the 155 

uncertainty of sample mass, variations between samples and DSC accuracy [21, 23], the standard error was 156 

estimated to be ±3-5%. 157 

3 Results and Discussion 158 

With all four materials, we either observe moisture evaporation or phase transition (such as melting) or 159 

both. Such physical phenomenon involves enthalpy changes which are not part of the specific heat capacity. In 160 

literature [24] a combination of the specific heat capacity and additional enthalpy changes are describes as 161 

"apparent specific heat capacity" and we use cp,a  as the symbol of it. We have plotted "apparent specific heat 162 

capacity" in Figures 1-7. However, the equations of cp were determined from data and trends of the experimental 163 

data excluding enthalpy changes. The equation type has been selected for fire engineering purposes and CFD-164 

based fire modelling simulations. Fire engineering has been emphasized over computer simulations, as fire 165 

engineers are more reliant on desktop computational methods since they typically do not have access to 166 

extensive experimental data resources and simulation computation. This has therefore limited the calculations 167 

to linear and polynomial equations.  168 

3.1 PMMA 169 

Figure 1 shows the cp,a of PMMA tested between 25 and 300 °C at different heating rates between 50 and 170 

200 K min-1. However, the data below 70 °C for 200 K min-1 and 45 °C for 100 K min-1 are excluded due to 171 

uncertainty in the initial measurement. 172 

 173 

 

Figure 1. Apparent specific heat capacity variance of PMMA. The hatched pattern shows exemplar phase 

transition enthalpy as well as the difference between the specific heat capacity and the apparent specific heat 

capacity. 
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It can be observed that between 120 °C and 145 °C there is a peak in all cp,a - temperature profiles which 175 

is an indication of transition from a solid state to a melted state. As an example, phase transition enthalpy for 176 

100 K.min-1 profile is shown as hatched pattern and this shows the difference between the specific heat capacity 177 

and the apparent specific heat capacity. This transition was also observed by Gaur et al. [25] and Soldera et al. 178 

[26] as shown in Figure 1. For this reason, the cp values are obtained using HDA up to 100 °C as the equipment 179 

is only designed to obtain the data from a solid state where no phase change of material or significant 180 

degradation of material takes place. The cp values from HDA are also plotted in Figure 1 and the data between 181 

two apparatus are markedly comparable. The cp values from the DSC (excluding phase transition range) have 182 

been averaged as the heating rates ranged from 50 to 200 K min-1 and the averaged profile is presented in Figure 183 

1. Undertaking a least squares analysis, we obtain a relationship presented as Eq (7), where T is in °C: 184 

cp (DSC) = 0.0066 T + 0.8755 kJ g-1 K-1 (r2=1.0) (7) 

This equation follows the cp profile obtained for 200 K min-1 prior to melting,, after melting the equation 185 

follows the cp profile obtained for 50 K min-1. Both HDA data and Eq (7) (averaged cp from DSC) are compared 186 

with other literature studies. Data from Assael et al. [27] and Jansson [28] show linear relationships and their 187 

values are close to the values obtained in the current study. Prior to and after melting, linear relationships are 188 

also observed by Gaur et al. [25] and Soldera et al. [26]. Overall literature values are close to those in the current 189 

study. 190 

3.2 Pinewood: Virgin and Char 191 

Figure 2 and Figure 3 show the cp,a values of virgin pinewood. A peak bordering 100°C in the HDA data 192 

represents a moisture affected region with similar peaks more pronounced in the DSC data. At lower heating 193 

rates, the peaks are higher although they occur over a smaller temperature range. As the water evaporates at 100 194 

°C, we can assume that these regions are affected by moisture content and its evaporation. Figure 2 shows this 195 

region affected by evaporation which ends between 170 °C at a heating rate of 50 K min-1 (moisture evaporation 196 

enthalpy is shown by hatched pattern) and 217 °C at a heating rate of 200 K min-1 for the data obtained using 197 

the DSC. Above these temperatures, the cp value increases with temperature.  198 

In Figure 3, data beyond the moisture affected region is represented up to 300 °C. The cp value changes 199 

with the rate of heating are apparent within one thermal set, comprising data of 50 to 200 K min-1. The values 200 

in 100 and 200 K min-1 are is close to each other in relative terms and the values of 50 K min-1 are higher which 201 

may be due to the effect of thermal transport. The sudden drop at 240 °C for the data obtained at 50 K min-1 can 202 

be attributed to pressure from vapour being released from the timber causing the seal and pinhole on the crucible 203 

lid to widen. This sudden endothermic peak in the data accounts for the shape of the graph. 204 

In Figure 3, literature data [29-32] from dry wood is also presented although it should be noted that Gupta 205 

et al. [29] used a DSC to measure the cp at 5 K min-1 heating rate. Moreover, the literature data [29-31] is only 206 

reported up to 140 °C, whereas the current study values are extended to 300 °C. From 160 to 300 °C, the cp 207 

values from the DSC have been averaged (without endothermic data) with the profile presented in Figure 3 and 208 

a relationship presented as Eq (8) is obtained undertaking a least squares analysis, where T is in °C: 209 

cp (DSC) = 0.004 T + 0.6554 kJ g-1 K-1 (r2=0.94) (8) 

Eq (9) can be derived from the HDA data (excluding the data within the moisture affected region) [5], 210 

where T is in °C:  211 

cp (HDA) = -10-5 +0.0057 T + 0.9904 kJ g-1 K-1 (r2=0.98) (9) 
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Figure 2. Apparent specific heat capacity variance of pinewood (moisture influenced region). The hatched 

pattern shows exemplar moisture evaporation enthalpy. 

 

Figure 3. Apparent specific heat capacity without moisture evaporation region of pinewood 

The DSC data could not be compared with the literature data since up to 170°C, the data is moisture 212 

affected. Yet, the HDA appears to be comparable with the literature data giving us confidence in our 213 

experimental procedure. Literature values show similar trends that conform to the current data given different 214 
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species of timber. They show the values at lower temperature ranges that are not affected by the moisture 215 

evaporation region and can be attributed to using completely dry wood for experiments. It should be noted that 216 

a diverse range of timbers exist and that even variation exists within the same species of timber.  217 

Figure 4 shows the cp,a of pinewood char tested where the samples were superfluous from larger scale 218 

testing. The time taken between testing allowed moisture to penetrate the samples by the time DSC tests were 219 

conducted and this is observed in the results obtained. The enthalpy change in the moisture affected region can 220 

be observed in Figure 4 for the DSC experiments. Moisture evaporation enthalpy for 50 K.min-1 profile, as an 221 

example, is shown as hatched pattern which can be considered the difference between the specific heat capacity 222 

and the apparent specific heat capacity. Since the HDA data is not affected by moisture, this data shows an 223 

overall increase in cp with increasing temperature with the data from either side of the moisture region presented 224 

in Figure 4.  225 

 226 

Figure 4. Variation of cp,a (DSC data) and cp (HDA data) with temperature for pine char. The hatched pattern 227 

shows exemplar moisture evaporation enthalpy. 228 

Increasing linear relationships with temperature proposed by Gupta et al. [29], Gronli et al. [31] and 229 

Koufopanos et al. [33] are presented in Figure 5 along with the current study data (moisture affected DSC data 230 

are excluded). At the lower end of the temperature range, the data from the aforementioned studies show values 231 

that are comparable to the HDA data of flat-pine char obtained is more aligned with the literature data. From 232 

the HDA data, Eq (10-11) was derived [5], where T is in °C:  233 

Structural pine cp (HDA) = 0.00655 T + 1.0897 kJ g-1 K-1 (r2=0.96)  (10) 

Flat pine cp (HDA) = 0.00394 T + 0.6456 kJ g-1 K-1 (r2=0.83) (11) 
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The DSC data shows that between 50 and 200 K min-1, the effect of heating rate (thermal transport) on cp is not 234 

significant. The empirical relations that were observed between temperature and cp outside the area affected by 235 

moisture evaporation is presented in Figure 5 with Eq (12) determined: 236 

cp = 0.0028 T + 0.8587 kJ g-1 K-1 (r2=0.88) (12) 

Extrapolation of the data obtained by Koufopanos et al. [33] and Gupta et al. [29] shows consistency with the 237 

DSC data of the present study. In this case, the data of Koufopanos et al. [33] runs almost equivalent with Eq 238 

(12).  239 

 240 

Figure 5. Variation in cp for pinewood char excluding the moisture affected region 241 

3.3 Cotton and Wool Fabrics 242 

Figure 6 shows variation in the cp,a for cotton and similar to pinewood, the moisture content results in 243 

enthalpy change in the vicinity of 100°C. The region of moisture evaporation can be observed in Figure 6, 244 

though this is a subtle representation. The sudden spike in cp values observed at around 260 °C for all heating 245 

rates can be attributed to the phase transition occurring in the cellulose structures within the cotton [34]. In all 246 

cases this is a significant but not unexpected spike since the cellulose content of cotton is around 90% [35]. As 247 

an example, moisture evaporation and phase transition enthalpy for 50 K.min-1 profile are shown as hatched 248 

patterns and these show the difference between the specific heat capacity and the apparent specific heat capacity. 249 

The HDA data is also plotted in Figure 6 and a steadily increasing trend in the cp is observed after the 250 

moisture evaporation region (hatched pattern) was removed. The HDA data generally conforms to the same 251 

characteristic trend present for the DSC with cp values that are comparable. Literature value for cotton from 252 

Harris [36] at lower temperature is presented in Figure 6 which falls slightly above the range of the DSC values, 253 

but below HDA, for values at the lowest temperatures presented. 254 

To obtain a quantitative trend, the data related to the moisture evaporation and phase transition regions 255 

were removed. Then, from 40 to 290 °C, the cp values from the DSC have been averaged for the heating rates 256 
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50 to 200 K min-1. It can be observed the cp –temperature profiles from these three heating rates are close to 257 

each other implying that the effect of thermal transport is not significant. This averaged profile is also presented 258 

in Figure 6 and Eq (13) [where T is in °C] was obtained by a least square’s regression analysis: 259 

cp (DSC) = 0.0052 T + 0.9255 kJ g-1 K-1 (r2=0.99) (13) 

Similarly, Eq (14) was derived from the HDA data [5] where T is in °C: 260 

cp (HDA) = 0.0024 T + 1.6238 kJ g-1 K-1 (r2=0.78) (14) 

 261 

Figure 6. Variation of apparent specific heat capacity for cotton. The hatched pattern shows exemplar 262 

moisture evaporation and phase transition enthalpy as well as the difference between the specific heat 263 

capacity and the apparent specific heat capacity. 264 

Figure 7 shows the variation of cp,a for wool tested using both the DSC and HDA apparatus, though HDA 265 

experiments were not conducted beyond 200 °C. Wool is affected by moisture evaporation in the same manner 266 

as cotton and pinewood. Both the DSC and HDA data shows that shortly after the initiation of heating, the 267 

moisture affected region is apparent. Phase transition regions are observed in the DSC data which can be 268 

attributed to the decomposition within the fibres of wool or swelling decrystallisation of various types of amino 269 

acids present in wool [30, 31]. This can also contribute to the secondary peak and linear increase observed as 270 

the acids break down into base constituents above the temperature of 225 °C [37, 38]. Similar to cotton data 271 

presentation in Figure 6, the moisture evaporation and phase transition enthalpy for 50 K.min-1 profile are shown 272 

as hatched patterns. 273 

To obtain a quantitative trend, all DSC data were analysed excluding the moisture evaporation and phase 274 

transition. The DSC obtained cp values were averaged over all three heating rates data in three regions: (i) from 275 

25 to 68 °C, (ii) from 180 to 240 °C, and (iii) from 260 to 275 °C. Undertaking a least squares analysis of the 276 

average profile, the relationship obtained is presented in Eq (15) for the DSC data and in Eq (16) for the HDA 277 

data [5], where T is in °C: 278 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300

A
p

p
ar

en
t 

Sp
ec

if
ic

 H
ea

t 
C

ap
ac

it
y 

/k
J 

· g
-1

K
-1

 

Temperature /OC

DSC@50K.min-1 DSC@50K.min-1 (moisture)

DSC@100K.min-1 DSC@100K.min-1 (moisture)

DSC@200K.min-1 DSC@200K.min-1 (moisture)

HDA HDA-correlation

Harris Average

Linear (Average)

cp_HDA= 0.0024T + 1.6238

cp_DSC= 0.0052T + 0.9255

Phase 
transition 
area



 11 of 15 

11 

 

cp (DSC) = 910-7  T3 -0.000355 T2 + 0.04237 T - 0.06137 kJ g-1 K-1 (r2=0.94) (15) 

cp (HDA) = 6 10-5  T2 - 0.0126 T + 1.85 kJ g-1 K-1 (r2=0.91) (16) 

In general, the data from both test apparatus are comparable except at low temperatures. Figure 7 also 279 

presents a comparative literature value for sheep wool as reported by Tuzcu [39] which is slightly higher than 280 

the values from the current study although it should be noted that this literature data did not take into account 281 

temperature or heating rate. It can be observed that while the heating rate is varied, before and after the moisture 282 

evaporation region (until the phase transition occurs), cp values differ considerably implying significant effect 283 

of thermal transport. 284 

 285 

Figure 7. Variation of apparent specific heat capacity for wool. The hatched pattern shows exemplar moisture 286 

evaporation and phase transition enthalpy as well as the difference between the specific heat capacity and the 287 

apparent specific heat capacity. 288 

A summary of the correlations developed for the tested materials is presented in Figure 8 and in general, 289 

it can be observed that as the temperature increases there is an increase in the cp values. As shown, the difference 290 

between HDA and DSC measurements are not substantial. For each material, at a specific temperature, the 291 

values intersect and moving away from this intersection point, the difference increases. The maximum 292 

difference ranges for PMMA, pine, pine char, cotton and wool are ±0.6, ±0.3, ±0.2, ±0.6 and ±0.7 kJ kg-1 K-1.  293 

In the supplementary material, a method is recommended to enable the optimized use of the data.  294 
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Figure 8. Correlations of cp for (a) PMMA, (b) pinewood, virgin and char, (c) cotton, and (d) wool with 295 

temperature 296 

4 Conclusions 297 

The cp values of common building materials tested with DSC and HDA apparatus are presented in this 298 

study with their trends determined with respect to temperature. The primary objective is to use the obtained cp 299 

values in CFD-based fire simulations for fire engineering and research purposes. While the HDA measurement 300 

did not involve any heating rate, DSC measurements were conducted at heating rates of 50, 100 and 200 K min-301 

1 as these are likely to occur in substantial fires. DSC materials were roughly measured over a temperature range 302 

of 25 to 300 °C except for wool up to 275 °C. HDA measurements were conducted from 30 to 100 °C for 303 

PMMA, 30 to 225 °C pinewood, 25 to 150 °C for char and 30 to 200°C for cotton and wool. 304 

Of all the materials tested, PMMA was the only material not affected by moisture content and PMMA, 305 

cotton and wool all showed phase transitions at ~125°C, ~260°C and ~245°C respectively. For similar materials, 306 

literature data was generally comparable to the data obtained in the current study data although typically at 307 

lower temperatures. This further supports the results obtained at higher temperatures and at different heating 308 

rate in the current study. 309 
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The DSC measurements of cp values did not change significantly for PMMA and pine char between 310 

heating rates adopted in this study. For pine and cotton slight decrease as heating rate increased are observed. 311 

On the other hand, for wool cp values considerably increased as heating rate increased. The effect of thermal 312 

transport varies due to chemical composition, physical and structural properties. It is also noted that the 313 

materials have different fibrous and cellulose structures.  314 

Analysis of the DSC and HDA cp values for the various materials studied enabled the development of 315 

empirical relationships. The relationships were developed from regions where phase changes were not 316 

occurring, and regions not affected by moisture evaporation. The relationships show that the difference between 317 

HDA and DSC are not substantial. These relationships can be used as input values for CFD-based fire 318 

simulations and models and all materials except for wool showed a linear increase of cp values with increasing 319 

temperature. A second and third order curvilinear increase were observed for the cp values with HDA and DSC 320 

measurement for wool. Some suggestions are made, in the supplementary material, for how to include these 321 

relationships in CFD-based fire models. The enhanced accuracy of the data will assist in providing higher 322 

fidelity simulations of fire scenarios which can be utilised in order to develop improved designs for reducing 323 

fire risk.  324 
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