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Abstract
The Jensen divergence is used to measure the difference between two probability
distributions. This divergence has been generalised to allow the comparison of more
than two distributions. In this paper, we consider some bounds for generalised
Jensen divergence of twice differentiable functions with bounded second derivatives.
Evidently, these bounds provide approximations for the Jensen divergence of twice
differentiable functions by the Jensen divergence of simpler functions such as the
power functions and the paired entropies associated to the Harvda-Charvát functions.
MSC: 26D15; 94A17
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1 Introduction
One of the more important applications of probability theory is finding an appropriate
measure of distance (or difference) between two probability distributions []. A number
of these divergence measures have been widely studied and applied by a number of math-
ematicians such as Burbea and Rao [], Havrda and Charvát [], Lin [] and others.
In Burbea and Rao [], a generalisation of Jensen divergence is considered to allow the

comparison of more than two distributions. If � is a function defined on an interval I of
the real line R, the (generalised) Jensen divergence between two elements x = (x, . . . ,xn)
and y = (y, . . . , yn) in In (where n ≥ ) is given by the following equation (cf. Burbea and
Rao []):

Jn,�(x, y) :=
n∑
i=

[


[
�(xi) +�(yi)

]
–�

(
xi + yi


)]
()

for all x, y ∈ In × In. Several measures have been proposed to quantify the difference (also
known as the divergence) between two (or more) probability distributions. We refer to
Grosse et al. [], Kullback and Leibler [] and Csiszar [] for further references.
We denote by Sn

Sn =

{
(x, . . . ,xn) ∈ In,

n∑
i=

xi = 

}
, I = [, ].
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Utilising the family of functions, for α ∈ R+,

�α(t) :=

⎧⎨
⎩(α – )–(tα – t), α �= ,

t log t, α = ,

by Havrda and Charvát in [] to introduce their entropies of degree α, Burbea and Rao []
introduced the following family of Jensen divergences:

Jn,α :=

⎧⎨
⎩(α – )–

∑n
i=[


 (x

α
i + yα

i ) – ( xi+yi )α], α �= ,


∑n

i=[xi logxi + yi log yi – (xi + yi) log( xi+yi )], α = ,

that can be defined on Sn × Sn with the convention that  log =  for α ∈ R+. We note
that the divergence Jn, is also known as the Jensen-Shannon divergence [].
These measures have been applied in a variety of fields, for example, in information

theory []. The Jensen divergence introduced in Burbea and Rao [] has its applications
in bioinformatics [, ], where it is usually utilised to compare two samples of healthy
population (control) and diseased population (case) in detecting gene expression for a
certain disease. We refer the readers to Dragomir [] for the applications in other areas.
In a recent paper by Dragomir et al. [], the authors found sharp upper and lower

bounds for the Jensen divergence for various classes of functions �, including functions
of bounded variation, absolutely continuous functions, Lipschitzian continuous functions,
convex functions and differentiable functions.We recall some of these results in Section ,
which motivates the new results we obtain in this paper.
In this paper, we provide bounds for Jensen divergence of twice differentiable function�

whose second derivative �′′ satisfies some boundedness conditions. These bounds pro-
vide approximations of the Jensen divergence Jn,� (cf. ()) by the divergence of simpler
functions such as the power functions (cf. Section ) and the above mentioned family of
Jensen divergences Jn,α (cf. Section ). Finally, we apply these bounds to some elementary
functions in Section .

2 Definitions, notation and previous results
In this section, we provide definitions and notation that will be used in the paper. We
also provide some results regarding sharp bounds for the generalised Jensen divergence
as stated in Dragomir et al. [].

2.1 Definitions and notation

Throughout the paper, for any real number r > , we define r′ to be its Hölder conjugate,
that is, /r + /r′ = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/267
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Definition  (Bullen []) If s is an extended real number, the generalised logarithmic
mean of order s of two positive numbers x and y is defined by

L
[s](x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ 
s+ (

ys+–xs+
y–x )] s if s �= –, ,±∞,

y–x
log y–logx if s = –,

e (

yy
xx )


y–x if s = ,

max{x, y} if s = +∞,

min{x, y} if s = –∞,

()

and L[s](x,x) = x.

This mean is homogeneous and symmetric [, p.]. In particular, there is no loss in
generality by assuming  < x < y. Note also that

L
[s](x, y) =

(∫ y

x

[
( – t)x + ty

]s dt)/s

for  < x < y and s ∈ [,∞). This mean generalises not only logarithmic mean (when s =
–), which is particularly useful in distribution of electrical charge of a conductor, but also
arithmetic mean (when s = ) and geometric mean (when s = –).
We use the following notations for Lebesgue integrable functions: for any Lebesgue in-

tegrable function g on [a,b], we define, for a ≤ x≤ y ≤ b,

‖g‖[x,y],p :=
∣∣∣∣
∫ y

x

∣∣g(s)∣∣p ds∣∣∣∣
/p

if p≥  and g ∈ Lp[a,b];

and for g ∈ L∞[a,b], we denote ‖g‖[x,y],∞ := ess sups∈[x,y] |g(s)|.
We recall that a function f : [a,b] → R is absolutely continuous on [a,b] if and only if

it is differentiable almost everywhere in [a,b], the derivative f ′ is Lebesgue integrable on
this interval and f (y) – f (x) =

∫ y
x f

′(t)dt for any x, y ∈ [a,b].

2.2 Previous results
In a recent paper by Dragomir et al. [], the authors provide sharp upper and lower
bounds for the Jensen divergence for various classes of functions�. Some results are stated
in the following.

Theorem  (Dragomir et al. []) Assume that � : [a,b]→R is absolutely continuous on
[a,b]. Then we have the bounds

∣∣Jn,�(x, y)
∣∣ ≤ 


×

⎧⎪⎪⎨
⎪⎪⎩

∑n
i= |yi – xi|‖�′‖[xi ,yi],∞ if �′ ∈ L∞[a,b],∑n
i= |yi – xi|

p–
p ‖�′‖[xi ,yi],p if �′ ∈ Lp[a,b],p > ,∑n

i= ‖�′‖[xi ,yi],

≤ 


×

⎧⎪⎪⎨
⎪⎪⎩

‖�′‖[a,b],∞ ∑n
i= |yi – xi| if �′ ∈ L∞[a,b],

‖�′‖[a,b],p ∑n
i= |yi – xi|

p–
p if �′ ∈ Lp[a,b],p > ,

n‖�′‖[a,b],
()

for any x = (x, . . . ,xn), y = (y, . . . , yn) ∈ [a,b]n.

http://www.journalofinequalitiesandapplications.com/content/2013/1/267
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Moreover, if the modulus of the derivative is convex, then we have the inequality

∣∣Jn,�(x, y)
∣∣ ≤ 



n∑
i=

|yi – xi|
[∣∣∣∣�′

(
xi + yi


)∣∣∣∣ + |�′(xi)| + |�′(yi)|


]

≤ 


n∑
i=

|yi – xi|
[∣∣�′(xi)

∣∣ + ∣∣�′(yi)
∣∣]

(≤ ∥∥�′∥∥
[a,b],∞δ(x, y)

)
()

for any x = (x, . . . ,xn), y = (y, . . . , yn) ∈ [a,b]n, where δ(x, y) = 

∑n

i= |yi – xi|.
The constant / is best possible in both inequalities.

Some more assumptions for � lead to the following results.

Theorem  (Dragomir et al. []) Let � : [a,b] → R be a differentiable function on the
interval [a,b] of real numbers R.

(i) If the derivative �′ is of bounded variation on [a,b], then

∣∣Jn,�(x, y)
∣∣ ≤ 



n∑
i=

|yi – xi|
∣∣∣∣∣
yi∨
xi

(
�′)∣∣∣∣∣

≤ 


b∨
a

(
�′) n∑

i=

|yi – xi|

=



b∨
a

(
�′)δ(x, y) ()

for any x = (x, . . . ,xn), y = (y, . . . , yn) ∈ [a,b]n.
The constant / is best possible in both inequalities ().

(ii) If the derivative �′ is K -Lipschitzian on [a,b] with the constant K > , then

∣∣Jn,�(x, y)
∣∣ ≤ 


K

n∑
i=

(yi – xi) =


KJn,(x, y) ()

for any x = (x, . . . ,xn), y = (y, . . . , yn) ∈ [a,b]n, where

Jn,(x, y) =



n∑
i=

(yi – xi).

The constant / is best possible in ().

Motivated by these results, we state bounds forJn,� for twice differentiable functions�

with some boundedness conditions for the second derivative in the next sections.

3 Approximating with Jensen divergence for power functions
In this section we provide some bounds for the generalised Jensen divergence for twice
differentiable function � : I ⊂R →R, whose second derivative �′′ is bounded above and

http://www.journalofinequalitiesandapplications.com/content/2013/1/267
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below in the following sense:

γ ≤ t–p

p(p – )
�′′(t)≤ � ()

for some γ < � and p ∈ (–∞, )∪ (,∞) and all t ∈ I ; and

δ ≤ t–q

q(q – )
�′′(t) ≤ � ()

for some δ ≤ �, some q ∈ (, ) and all t ∈ I . These conditions enable us to provide approx-
imations of the Jensen divergence for � via the functions f (t) = tp for p �= ,  and t ∈ R+,
i.e.

Jn,(·)p =
n∑
i=

[


(
xpi + ypi

)
–

(
xi + yi


)p]
.

Lemma  (Dragomir et al. []) Let � : [a,b]→ R be a differentiable function and let the
derivative �′ be absolutely continuous. Then

∣∣Jn,�(x, y)
∣∣

≤
⎧⎨
⎩


‖�′′‖[a,b],∞ ∑n

i=(yi – xi) if �′′ ∈ L∞[a,b],
‖�′′‖[a,b],r

(r′+)/r′+/r′
∑n

i= |yi – xi|+/r′ if �′′ ∈ Lr[a,b], r > .
()

We refer to [] for the proof of the above lemma.

Lemma  Let � : [a,b] → R be a twice differentiable function and  < a < b < ∞. If �′′

satisfies (), then

∥∥∥∥
(

� –
γ + �


(·)p

)′′∥∥∥∥
[a,b],∞

≤ p(p – )
� – γ


max

{
ap–,bp–

}
; ()

and

∥∥∥∥
(

� –
γ + �


(·)p

)′′∥∥∥∥
[a,b],r

≤ p(p – )
� – γ


(
L
[(p–)r](a,b)

)p–, r > , ()

where L[s] is the sth generalised logarithmic mean.

Proof Note that condition () is equivalent to

γ p(p – )tp– ≤ �′′(t) ≤ �p(p – )tp–

since p(p – ) > . This is also equivalent to

∣∣∣∣�′′(t) – p(p – )
γ + �


tp–

∣∣∣∣ ≤ p(p – )
� – γ


tp–. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/267
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We take the supremumof both sides to obtain (). For r > , we note that () is equivalent
to

∥∥∥∥�′′(t) – p(p – )
γ + �


tp–

∥∥∥∥
[a,b],r

=
(∫ b

a

∣∣∣∣�′′(t) – p(p – )
γ + �


tp–

∣∣∣∣
r

dt
)/r

≤ p(p – )
� – γ



(∫ b

a
tr(p–) dt

)/r

= p(p – )
� – γ


(
L
[r(p–)](a,b)

)p–,
which proves (). �

Theorem  Let � : [a,b] → R be a twice differentiable function and  < a < b < ∞. If �′′

satisfies (), then
∣∣∣∣Jn,�(x, y) –

γ + �


Jn,(·)p (x, y)

∣∣∣∣
≤

⎧⎨
⎩


p(p – )(� – γ )max{ap–,bp–}∑n

i=(yi – xi) if �′′ ∈ L∞[a,b],
p(p–)(�–γ )

(r′+)/r′+/r′ L
[(p–)r](a,b)

∑n
i= |yi – xi|+/r′ if �′′ ∈ Lr[a,b], r > .

Proof Since any differentiable function is absolutely continuous,wemay employ Lemma.
Combining this with Lemma , we have

∣∣∣∣Jn,�(x, y) –
γ + �


Jn,(·)p (x, y)

∣∣∣∣
≤

⎧⎨
⎩


‖(� – γ+�

 (·)p)′′‖[a,b],∞ ∑n
i=(yi – xi),


(r′+)/r′+/r′ ‖(� – γ+�

 (·)p)′′‖[a,b],r ∑n
i= |yi – xi|+/r′ ,

≤
⎧⎨
⎩


p(p – )�–γ

 max{ap–,bp–}∑n
i=(yi – xi),


(r′+)/r′+/r′ p(p – )�–γ

 (L[(p–)r](a,b))p–
∑n

i= |yi – xi|+/r′ ,

as desired. �

We omit the proofs for the next results as they follow similarly to those of Lemma  and
Theorem .

Lemma  Let � : [a,b] → R be a twice differentiable function and  < a < b < ∞. If �′′

satisfies (), then

∥∥∥∥
(

� –
δ +�


(·)q

)′′∥∥∥∥
[a,b],∞

≤ q( – q)
� – δ


max

{
aq–,bq–

}
; ()

and
∥∥∥∥
(

� –
δ +�


(·)q

)′′∥∥∥∥
[a,b],q

≤ q( – q)
� – δ


(
L
[r(q–)](a,b)

)p–, r > , ()

where L[s] is the sth generalised logarithmic mean.

http://www.journalofinequalitiesandapplications.com/content/2013/1/267


Kikianty et al. Journal of Inequalities and Applications 2013, 2013:267 Page 7 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/267

Theorem  Let � : [a,b] → R be a twice differentiable function and  < a < b < ∞. If �′′

satisfies (), then

∣∣∣∣Jn,�(x, y) –
δ +�


Jn,(·)q (x, y)

∣∣∣∣
≤

⎧⎨
⎩


q( – q)(� – δ)max{aq–,bq–}∑n

i=(yi – xi) if �′′ ∈ L∞[a,b],
q(–q)(�–δ)

(r′+)/r′+/r′ (L
[(q–)r](a,b))p–

∑n
i= |yi – xi|+/r′ if �′′ ∈ Lr[a,b], r > .

4 Further approximations
In this section, we present approximations for Jn,� by utilising the family of the Jensen
divergence

Jn,α := (α – )–
n∑
i=

[


(
xα
i + yα

i
)
–

(
xi + yi


)α]
, α �= ; ()

and

Jn,(x, y) :=



n∑
i=

[
xi logxi + yi log yi – (xi + yi) log

(
xi + yi


)]
. ()

Although Jn,α is defined for α ∈ R+ in [], we may let α to be negative in (), and for
α = , we define

Jn,(x, y) :=
n∑
i=

[
log

(
xi + yi


)
–


(logxi + log yi)

]
. ()

Theorem  Let � : I ⊂ (,∞) → R be a twice differentiable function on I . If �′′ satis-
fies (), then

γ (p – )Jn,p(x, y) ≤ Jn,�(x, y) ≤ �(p – )Jn,p(x, y) for any x, y ∈ In. ()

Furthermore, if �′′ satisfies (), then

δ(q – )Jn,q(x, y)≥ Jn,�(x, y) ≥ �(q – )Jn,q(x, y) for any x, y ∈ In. ()

Proof Weconsider the auxiliary function gγ ,p : I →R defined by gγ ,p(t) = �(t)–γ tp, where
p ∈ (–∞, )∪(,∞).Weobserve that gγ ,p is twice differentiable on I and the secondderiva-
tive is given by

g ′′
γ ,p(t) = p(p – )tp–

[
t–p

p(p – )
�′′(t) – γ

]
for any t ∈ I.

Utilising condition () and since p(p – )tp– >  for t ∈ I , we deduce that g ′′
γ ,p(t) ≥  for

any t ∈ I which means that gγ ,p is convex on I . Since for a convex function g : I → R we

http://www.journalofinequalitiesandapplications.com/content/2013/1/267


Kikianty et al. Journal of Inequalities and Applications 2013, 2013:267 Page 8 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/267

have that Jn,g(x, y) ≥ , then we can write that

 ≤ Jn,gγ ,p (x, y) =
n∑
i=

[
gγ ,p(xi) + gγ ,p(yi)


– gγ ,p

(
xi + yi


)]

=
n∑
i=

[
�(xi) +�(yi)


–�

(
xi + yi


)]
– γ

n∑
i=

[
xpi + ypi


–

(
xi + yi


)p]

= Jn,�(x, y) – γ (p – )Jn,p(x, y),

and the first inequality in () is proved. To prove the second inequality in (), we consider
the auxiliary function g�,p(x, y) : I → R with g�,p(x, y) = �tp – �(t), for which we perform
a similar argument; and we omit the details.
Now, if q ∈ (, ) and if we consider the auxiliary function ψδ,q(x, y) : I → R with

ψδ,q(x, y) = �(t) – δtq, then ψ is twice differentiable and

ψ ′′
δ,q(x, y) = tq–q(q – )

[
t–q�′′(t)
q(q – )

– δ

]
≤  for any t ∈ I

since q ∈ (, ). Therefore ψδ,q is concave on I , which implies that Jn,ψδ,q (x, y) ≤  for any
x, y ∈ In and, as above, we obtain

Jn,�(x, y) ≤ δ

n∑
i=

[
xqi + yqi


–

(
xi + yi


)q]
= δ(q – )Jn,q(x, y).

The second inequality in () follows by considering the auxiliary function ψ�,q(x, y) : I →
R with ψ�,q(x, y) = �tq –�′′(t), and we omit the details. This completes the proof. �

Theorem  Let � : I ⊂ (,∞) → R be a twice differentiable function on I . If there exist
the constants ω < 
 such that

ω ≤ t�′′(t) ≤ 
 for any t ∈ I, ()

then we have the bounds

ωJn,(x, y) ≤ Jn,�(x, y)≤ 
Jn,(x, y) for any x, y ∈ In. ()

If there exist the constants λ <� such that

λ ≤ t�′′(t) ≤ � for any t ∈ I, ()

then we have the bounds

λJn,(x, y) ≤ Jn,�(x, y) ≤ �Jn,(x, y) for any x, y ∈ In. ()

Proof Consider the auxiliary function gω, : I → R with gω,(t) = �(t) + ω log t. We ob-
serve that gω, is twice differentiable, and by () we have g ′′

ω,(t) = t–(t�′′(t) – ω) ≥ 

http://www.journalofinequalitiesandapplications.com/content/2013/1/267
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for any t ∈ I , then we can conclude that gω, is a convex function on I . Therefore we have
Jn,gω, (x, y)≥  for any x, y ∈ In, which implies that

 ≤ Jn,�(x, y) +ω

n∑
i=

[
logxi + log yi


– log

(
xi + yi


)]

= Jn,�(x, y) –ωJn,(x, y)

and the first inequality in () is proved. Now, consider the auxiliary function g
, : I →R

with g
,(t) = –
 log t –�(t). Then g ′′

,(t) = t–(
– t�′′(t)) for any t ∈ I ; and by () it is

a convex function on I . By similar arguments, we deduce the second inequality in ().
To prove the second part of the theorem, consider the auxiliary function gλ, : I → R,

gλ,(t) = �(t) – λt log t. We observe that gλ, is twice differentiable and g ′′
λ,(t) := �′′(t) – 

t λ,
for t ∈ I . Since by ()we have g ′′

λ,(t) = t–(t�′′(t)–λ) ≥  for all t ∈ I , thenwe can conclude
that g ′′

λ, is a convex function on I . The proof now follows along the lines outlined above
and the first part of () is proved. The second part of () also follows by employing the
auxiliary function g�, : I →R, g�,(t) = �t log t –�(t); and this completes the proof. �

5 Applications to some elementary functions
We consider the approximations mentioned in Section  for some elementary functions.
We consider the function �(t) = e–t for t ∈ [a,b]⊂ [, ] and have the following bounds

for all x, y ∈ [a,b]n:

ae–aJn,(x, y) ≤ Jn,�(x, y)≤ be–bJn,(x, y),

ae–aJn,(x, y)≤ Jn,�(x, y)≤ be–bJn,(x, y),



e–bJn,(x, y)≤ Jn,�(x, y) ≤ 


e–aJn,(x, y).

In what follows, we apply these bounds to the above function on the interval [., ], where
x = (., ., ., . . . , ) and y = (, . . . , ) (cf. Figure ).

Discussion In this example, the best lower approximation (amongst the three) is given
by 

e
–Jn,(x, y), and the best upper approximation is given by e–Jn,(x, y), where x =

(., ., ., . . . , ) and y = (, . . . , ). However, it remains an open question whether this
is true in general.

We consider the Havrda-Charvát function

�α(t) =

⎧⎨
⎩(α – )–(tα – t) if α �= ,

t log(t) if α = .

For α = , we have the following bounds for all x, y ∈ [a,b]n:

aJn,(x, y) ≤ Jn,�(x, y) ≤ bJn,(x, y) for [a,b]⊂ [,∞);

aJn,(x, y) ≤ Jn,�(x, y)≤ bJn,(x, y) for  ≤ a ≤  ≤ b < ∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/267
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Figure 1 Bounds for generalised Jensen divergence, �(t) = exp(–t).

Figure 2 Bounds for generalised Jensen divergence, Havrda-Charvát function.

We have the following bounds for all x, y ∈ [a,b]n:

αaαJn,(x, y)≤ Jn,�(x, y) ≤ αbαJn,(x, y) for α ≥ ,α �=  and [a,b]⊂ [,∞),

αaα–Jn,(x, y) ≤ Jn,�(x, y)≤ αbα–Jn,(x, y) for α >  and [a,b]⊂ [,∞).

In Figure , we apply these bounds to the above function on the interval [., ], where
x = (., ., ., . . . , ), y = (, . . . , ), α = /.

http://www.journalofinequalitiesandapplications.com/content/2013/1/267
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Figure 3 Bounds for generalised Jensen divergence, Havrda-Charvát function.

Figure 4 Bounds for generalised Jensen
divergence, Havrda-Charvát function.

We also have, for all x, y ∈ [a,b]n,

γ (p – )Jn,p(x, y) ≤ Jn,�(x, y) ≤ �(p – )Jn,p(x, y)

for p ∈ (–∞, )∪ (,∞), where

� = α
bα–p

p(p – )
and γ = α

aα–p

p(p – )

for α ≥ p and [a,b]⊂ [,∞).
In Figure , we apply these bounds to the above function on the interval [., ], where

x = (., ., ., . . . , ), y = (, . . . , ), α =  and p = /, .
Similarly, we have, for all x, y ∈ [a,b]n,

δ(q – )Jn,q(x, y)≥ Jn,�(x, y) ≥ �(q – )Jn,q(x, y)

for q ∈ (, ) and α > , where

� = α
aα–q

q(q – )
and δ = α

bα–q

q(q – )

http://www.journalofinequalitiesandapplications.com/content/2013/1/267
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for [a,b]⊂ [,∞). In Figure , we apply these bounds to the above function on the interval
[., ], where x = (., ., ., . . . , ), y = (, . . . , ), q = / and α = .

Discussion In this example, the best lower approximation (amongst the five) is given
by (.)/Jn,/, and the best upper approximation is given by (/)Jn,(x, y), where
x = (., ., ., . . . , ), y = (, . . . , ). However, it remains an open question whether
this is true in general.
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