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Abstract

The R package blm provides functions for fitting a family of additive regression models
to binary data. The included models are the binomial linear model, in which all covariates
have additive effects, and the linear-expit (lexpit) model, which allows some covariates
to have additive effects and other covariates to have logisitc effects. Additive binomial
regression is a model of event probability, and the coefficients of linear terms estimate
covariate-adjusted risk differences. Thus, in contrast to logistic regression, additive bino-
mial regression puts focus on absolute risk and risk differences. In this paper, we give
an overview of the methodology we have developed to fit the binomial linear and lexpit
models to binary outcomes from cohort and population-based case-control studies. We
illustrate the blm package’s methods for additive model estimation, diagnostics, and in-
ference with risk association analyses of a bladder cancer nested case-control study in the
NIH-AARP Diet and Health Study.

Keywords: constrained optimization, logistic regression, binary outcome, absolute risk, risk
difference.

1. Introduction

Logistic regression is the default approach for studying how explanatory factors are associated
with a binary outcome (Hosmer and Lemeshow 2000). In the logistic model, the log-odds are
expressed as a linear function of the regression coefficients, and the model coefficients estimate
adjusted odds ratios. In an additive regression model of binary data, the effects of covariates
are linearly related to risk, and the model coefficients estimate adjusted risk differences. The
binomial linear model (BLM) – the generalized linear model for the binomial family with an
identity link – is one example (Cox 1970; Wacholder 1986). Despite the relevance of absolute
risks and risk differences to epidemiology, finance, and other fields, few methods or software
for absolute risk and risk difference estimation exist. As with survival data (Aalen 1989;

http://www.jstatsoft.org/
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Scheike and Zhang 2003), convenient tools for additive modeling of binary data have lagged
behind tools for log-linear models because reliable estimation of additive models is technically
more challenging (Austin 2010; Spiegelman and Hertzmark 2005; Newcombe 2006; Greenland
1987).

In this paper, we introduce the R (R Core Team 2013) package blm (Kovalchik 2013), available
from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=blm.
The package provides methods to fit two types of additive regression models for binary data:
BLM, a strictly additive model, and lexpit, a more flexible model that consists of additive and
multiplicative effects, where multiplicative effects are modeled through an inverse-logit (expit)
term (Kovalchik, Varadhan, Fetterman, Poitras, Wacholder, and Katki 2013). Sections 2.1.1
and 2.1.2 detail each model and their interpretation. Section 2.2 describes the data sets to
which the models can be applied. The methods for estimation and inference are presented
in Section 2.3 and Section 2.4. We overview the blm package in Section 3. In Section 4, we
demonstrate the main uses of the package with risk association analyses of an NIH-AARP
bladder cancer case-control study.

2. Methods

2.1. Models

Binomial linear model (BLM)

Let Yτ be a Bernoulli random variable taking the value 1 if the event occurs within the time
interval τ and 0 otherwise. Under the binomial linear model, the probability of an event is a
linear function of a set of p time-independent covariates x,

P(Yτ = 1|x) = x>β. (1)

Under the BLM, each coefficient is the risk difference associated with a unit increase in
the corresponding covariate, adjusted for all other covariates of the model. As a specific
example, consider a model with a single covariate, x1, that is a zero-one indicator of exposure,
P(Yτ = 1|x) = β0 + β1x1. In this case, β0 is the expected risk of an event in the unexposed,
β0 + β1 is the expected risk for the exposed, and β1 the excess risk due to exposure.

Linear-expit model (lexpit)

The lexpit model is a generalization of BLM, which incorporates a multiplicative component
that is a function of q covariates z,

P(Yτ = 1|x, z) = x>β + expit{z>γ}. (2)

In (2), expit(x) = exp(x)/(1+exp(x)) is the inverse-logit function. When there are no additive
terms, P(Yτ = 1|x, z) = expit{z>γ} becomes a conventional logistic model, which shows that
this model is also a special case of the lexpit model.

In the lexpit, the intercept is included in the expit term so that the background risk of the
model – the risk when all remaining covariates of z and x are zero – is expit{γ0}. Like the

http://CRAN.R-project.org/package=blm
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BLM, the additive coefficients of the lexpit estimate the adjusted risk difference measures of
association for the corresponding covariate of x. The parameter exp(γj) is the odds ratio
association between the residual risk P(Yτ = 1|x, z) − x>β and the jth covariate zj . As
with logistic regression, the exponentiated regression coefficient is the odds ratio association
between two individuals with different zj exposure, fixing all other factors of the model.

2.2. Data

BLM and lexpit can be fit to binary data collected from a cohort study or from a population-
based case-control study with sufficient sampling information. In what follows, we assume
that the binary variable of interest is based on an underlying time-to-event variable and
represents the occurrence of event within a specified time interval τ , Y = I(T ∈ τ). For each
study type, the covariates (x1,x2, . . .) and (z1, z2, . . .) are the observed values at the start of
the interval τ .

Cohort study

Given a cohort study of n observations, the outcomes for the additive binomial model are the
y1, . . . , yn indicators of an event occurring during the time interval τ . The binary outcomes
can be defined in terms of the corresponding time-to-event variables t1, . . . , tn and event
indicators δ1, . . . , δn, as yi = δiI(ti ∈ τ).

Population-based case-control study

A population-based case-control study identifies all cases of an event occurring in a well-
defined population during a specified period of time τ . The population is divided into J
strata, each consisting of Nj individuals, and mj controls are sampled from each stratum
with simple random sampling. In addition to case status yij , each observation has a sampling
weight, which is the inverse inclusion probability, wij = Nj/mj for controls and wij = 1 for
cases, assuming mj << Nj for all j. In additive risk modeling, sampling information is needed
to weigh-back to the underlying cohort and, thereby, obtain estimates for the absolute risk in
the source population.

2.3. Estimation

Estimates for the parameters of the BLM and lexpit model are obtained by constrained max-
imization of a pseudo log-likelihood using a block relaxation algorithm (de Leeuw 1994). We
describe the estimation methodology for the lexpit model. Fitting for the BLM is essentially
equivalent to fitting a lexpit model with a constant expit term.

The estimates for the regression parameters Θ = (β, γ) are the solutions to the maximization
problem,

Θ̂ = argmaxΘ{
∑
i

∑
j

wijlij(Θ)}, Θ ∈ F (3)

with the constraints

F = {0 ≤ x>β + expit(z>γ) ≤ 1}, ∀x, z. (4)
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1. Initialization. Set the intercept term

expit(γ̂
(0)
1 ) =

∑
i

∑
j

wijyij/
∑
i

∑
j

wij ,

and all other parameters to zero.

2. Linear update. For the kth iteration, fix qij = expit(z>ijγ
(k)) and obtain

β̂(k+1) = argmaxβ{
∑
i

∑
j

wij [yij logit(x>ijβ + qij) + log(1− x>ijβ − qij)]},

subject to the constraint that β̂(k+1) ∈ F , where

F = {β : −qij ≤ x>ijβ ≤ 1− qij ∀xij}.

3. Expit update. At the kth iteration, fix pij = x>ij β̂
(k+1) and with IRLS obtain

γ̂(k+1) = argmaxγ{
∑
i

∑
j

wij [yij logit(pij + expit(z>ijγ)) + log(1− pij − expit(z>ijγ))]},

using iterative reweighted least squares.

4. Iterate between Steps 2 and 3 until convergence.

Table 1: Optimization procedure for lexpit model.

The objective function in Equation 3 is the weighted sum of the log-likelihood components
for binomial data, with each probability following the lexpit model,

lij(Θ) = yij log(πij(Θ)) + (1− yij) log(1− πij(Θ)),

where πij(Θ) = x>ijβ + expit(z>ijγ).

The solution to (3) would be a standard maximum likelihood problem if it were not for the
constraint that all estimated probabilities of the model be within the (0, 1) range. The space
F is termed the feasible region because it ensures the feasibility of all the fitted values of the
model. Although any covariate patterns could conceivably be specified in F , our practice is
to use an empirically-based region that is defined by the observed covariate patterns in the
study sample.

Optimization algorithm

The constrained maximization procedure uses a two-stage block relaxation approach (de
Leeuw 1994), which is summarized in Table 1. In the first stage, expit terms are consid-
ered fixed and the maximizing values for β̂ are determined with an adaptive barrier algorithm
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(Lange 1994, 2010) that, in the blm package, is implemented with the constrOptim function
of the stats package. In the second stage, the linear terms are treated as fixed, using an
offset term, and an iterative reweighted least squares algorithm with risk offset is used to
update γ̂. The block relaxation procedure is monotonic so convergence to a stationary point
is guaranteed.

Optimization for the BLM does not require Step 3, and there is no offset term (qij = 0) in

the updating of the β̂. In this case, the intercept term is incorporated into the linear part
and is initialized to β̂0 =

∑
i

∑
j wijyij/

∑
i

∑
j wij .

2.4. Inference

Variances for Θ̂ are estimated using an influence-based method. Several authors have previ-
ously described influence methods for variance estimation of complex survey statistics (Dem-
nati and Rao 2010; Graubard and Fears 2005), and the influence operator is well-known for
its use in the study of robustness (Hampel 1974). Further details of the influence function
and its use with variance estimation are given by Deville (1999).

When the influence operator, ∆{.}, is applied to an estimator, it yields an estimate of the
Gâteaux derivative and each component of this derivative is an analytic jackknife deviate –
the estimated deviation in the estimator when one observation is omitted. The variation in
the deviates generated by the influence operator can therefore estimate a statistic’s variance
in the same way as the deviates generated from jackknife resampling. In the case of the lexpit
model, using the index k = (0, 1) to denote case status, the influences for β̂ are

∆ijk{β̂} = [−H(β̂)]−1xijkwijk(yijk − x>ijkβ − expit(z>ijkγ))

and

∆ijk{γ̂} = [−H(γ̂)]−1zijkwijk(yijk − x>ijkβ − expit(z>ijkγ))

where H(θ) is the second derivative of the objective function given in Equation 3 under the
constraints F . Letting ∆ijk{Θ̂}′ = (∆ijk{β̂},∆ijk{γ̂}), be the combined influences of the ijth

observation on the parameters Θ̂, the variance estimate for Θ̂ is

V̂ar(Θ̂) =
∑
k

∑
j

njk/(njk − 1)

njk∑
i=1

(∆ijk{Θ̂} − ∆̄.jk{Θ̂})(∆ijk{Θ̂} − ∆̄.jk{Θ̂})> (5)

with njk the number of k types in the jth stratum and ∆̄.jk{Θ̂} the average influence over the

njk observations. The approximate large-sample distribution for (Θ̂−Θ) is MVN(0, V̂ar(Θ̂)),
and this result is the basis for the package’s Wald tests and confidence interval construction.

When some fitted values are at the boundary of the feasible region (either 0 or 1), large-
sample normality may not hold (Self and Liang 1987; Andrews 2000). Since the boundary
cases in lexpit affect individual fitted values, we believe standard inference should apply when
the number of constrained observations is few. However, because standard inference is not
guaranteed, active constraints should be closely monitored (as we describe in Section 4.1) and
caution taken with the interpretation of the fitted model when active constraints are present.
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3. Package description

3.1. Overview

The blm package (Version 2013.2.4.4) consists of two model classes, blm and lexpit, sup-
porting class methods, and additional functions to help diagnose the fitted model. Table 2
summarizes the main features of the package.

3.2. Model classes

The blm and lexpit are S4 class objects whose constructers and methods have been designed
to emulate the lm class. The basic syntax for fitting a blm model with cohort data is

blm(y ~ x, data)

where y ~ x is a formula and data is a data.frame. The syntax for the lexpit model has
separate formulae for the linear and expit terms of the model

lexpit(formula.linear = y ~ x, formula.expit = y ~ z, data)

but its usage is otherwise the same as blm. The slots of the modeling objects, which can
be accessed with the @ operator or the named method, contain a similar set of attributes
as the lm class. The accessor method for the model formula, model.formula, is unique

Function Description

Model Classes
blm Fits a binomial linear model
lexpit Fits a lexpit model

Class methods
coef Extractor for model coefficients
confint Compute confidence intervals for model coefficients
predict Estimate risks for specified covariates
resid Extractor for residuals
logLik Extractor for log-likelihood
summary Table of coefficients, standardd errors, t values, p values
vcov Variance-covariance of coefficients
model.formula Extractor for model formula

Diagnostic functions
EO Expected to observed within subgroups
crude.risk Crude risk estimates by a continuous covariate
gof Hosmer-Lemeshow goodness-of-fit test
LRT Likelihood ratio test
Rsquared R2 measures
which.at.boundary Index of observations at boundary (i.e., risk of 0 or 1)

Table 2: Functions of the blm package.
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to the blm/lexpit classes. In addition to the class methods listed in Table 2, the slots
include the initialization parameters of the algorithm (par.init), the log-likelihood for the
fitted (loglik) and null model (loglik.null), and the barrier.value for the constrained
optimization algorithm (barrier.value).

When the models are fit to population-based case-control data, the function call should also
include a vector of weights containing the sampling weights for each observation in the data
set and a factor for the strata argument, if the control sampling used stratification.

4. Application: Bladder cancer in the NIH-AARP Study

The NIH-AARP Diet and Health Study is the largest study of diet and health ever con-
ducted (Schatzkin, Subar, Thompson, Harlan, Tangrea, Hollenbeck, Hurwitz, Coyle, Schus-
sler, Michaud, Freedman, Brown, Midthune, and Kipnis 2001). Between 1995 and 1996, over
half a million members of the American Association of Retired Persons (AARP) responded to
a detailed questionnaire about their dietary habits and other health behaviors and all partici-
pants were followed for cancer incidence and mortality outcomes. Instructions for researchers
interested in submitting a proposal to study the NIH-AARP Diet and Health Study cohort
are available at http://dietandhealth.cancer.gov/resource.

The present analysis was based on a nested case-control study of bladder cancer within the
NIH-AARP cohort. Cases were 292 study participants over the age of 60 years at the time
of the baseline questionnaire who were diagnosed with bladder cancer (ICD-O3 C67.0-67.9)
by age 70 years. Thus, the time interval of the analysis is τ = (60, 70]. 292 controls were
randomly sampled from all individuals between ages 60 and 70 years at the time of the baseline
questionnaire who at age 70 years had never been diagnosed with bladder cancer.

4.1. Gender, smoking, and bladder cancer

Relative risk analyses have previously suggested that gender and smoking are associated
with the risk of developing bladder cancer (Freedman, Silverman, Hollenbeck, Schatzkin, and
Abnet 2011). The first model fit examines the absolute risk differences for each gender and
smoking-status subgroup.

R> library("blm")

R> data("aarp")

R> fit <- blm(bladder70 ~ female * smoke_status, data = aarp,

+ weights = aarp$w)

Here we fit a BLM with main effects for gender, smoking status categories, and each interaction
using the pre-loaded data set aarp. The variable smoke_status is a factor with levels for
Never, Curent, Former, and Unknown smoking statuses. The outcome variable bladder70

is a zero-one indicator of bladder cancer case status by age 70 years. The weights aarp$w

are the sampling fractions for each observation, which are needed to weigh the risk estimates
back to the underlying AARP cohort. Stratification was not used in this case-control study
so strata is left to take its default NULL value.

The object fit is of the blm class. One of the methods for this class is coef, which can be
used to extract the baseline risk and risk differences associated with each parameter.

http://dietandhealth.cancer.gov/resource
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R> coef(fit) * 1000

(Intercept) female

0.1946805 0.6215476

smoke_statusFormer smoke_statusCurrent

0.3220126 1.6890026

smoke_statusUnknown female:smoke_statusFormer

0.3794089 0.2214473

female:smoke_statusCurrent female:smoke_statusUnknown

2.6367932 0.1427371

This shows, for example, that the baseline absolute risk of bladder cancer by age 70, the
risk in the reference group of male never smokers, is 0.2 per 1,000 persons. The excess risk
for male current smokers is 1.7 per 1,000, corresponding to an overall absolute risk for male
current smokers is 0.2 + 1.7 = 1.9 per 1,000.

Both summary and confint can be used to assess the significance of the estimated effects.

R> summary(fit)

Estimate Std.Err t value Pr(>|t|)

(Intercept) 1.9468e-04 3.4955e-05 5.5694 3.925e-08 ***

female 6.2155e-04 1.7731e-04 3.5054 0.0004915 ***

smoke_statusFormer 3.2201e-04 1.2333e-04 2.6110 0.0092619 **

smoke_statusCurrent 1.6890e-03 7.6346e-04 2.2123 0.0273366 *

smoke_statusUnknown 3.7941e-04 5.4332e-04 0.6983 0.4852611

female:smoke_statusFormer 2.2145e-04 2.8608e-04 0.7741 0.4391990

female:smoke_statusCurrent 2.6368e-03 2.0856e-03 1.2643 0.2066348

female:smoke_statusUnknown 1.4274e-04 1.0915e-03 0.1308 0.8960017

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Converged: TRUE

R> confint(fit) * 1000

Est. Lower Upper

(Intercept) 0.1946805 0.12616976 0.2631912

female 0.6215476 0.27401928 0.9690759

smoke_statusFormer 0.3220126 0.08029532 0.5637299

smoke_statusCurrent 1.6890026 0.19265701 3.1853481

smoke_statusUnknown 0.3794089 -0.68547754 1.4442954

female:smoke_statusFormer 0.2214473 -0.33925281 0.7821473

female:smoke_statusCurrent 2.6367932 -1.45086954 6.7244559

female:smoke_statusUnknown 0.1427371 -1.99656247 2.2820367

The significance levels of summary are based on a Wald test. The confidence intervals for
confint are at the 95% level and are constructed with a large-sample approximation based
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on Student’s t distribution. Both methods of inference suggest that the main effects of gender,
and former and current smoking status are significant risk factors for bladder cancer.

To obtain the fitted values for each covariate of interest, we can use the predict method.
When predict is supplied with the fitted blm, it returns the fitted absolute risk for each
observation of the data frame used in the model’s estimation. One can also provide a data
frame with the newdata argument to compute fitted values for any covariate pattern of inter-
est. The inclusion of standard errors is specified by the logical argument se. In the following
code, we create a data frame containing the eight possible covariate types for the gender and
smoking model and obtain fitted values and standard errors for these risk types.

R> all.vars(model.formula(fit))

[1] "bladder70" "female" "smoke_status"

R> risk.types <- unique(subset(aarp, select = all.vars(model.formula(fit))))

R> risk.types <- subset(risk.types, bladder70 == 0)

R> risk.types

bladder70 female smoke_status

358 0 0 Former

489 0 0 Never

4656 0 0 Current

12193 0 0 Unknown

12922 0 1 Never

34758 0 1 Current

53309 0 1 Former

68611 0 1 Unknown

R> predict(fit, risk.types, se = TRUE) * 1000

fit se

358 0.5166931 0.1154913

489 0.1946805 0.0349551

4656 1.8836831 0.7610958

12193 0.5740894 0.5413172

12922 0.8162281 0.1709099

34758 5.1420238 1.9157903

53309 1.3596879 0.1727547

68611 1.3383741 0.9254869

Three functions for assessing the fit of the model are which.at.boundary, logLik, and
Rsquared. The method which.at.boundary provides a matrix of covariate patterns whose
predicted risks are at the boundary of the feasible region (0 or 1) according to a specified
criterion. The default criterion is a risk within 1e-6 of the lower or upper bounds of this
region. Although not a direct assessment of fit, the evaluation of the number and types of
boundary cases can be indicative of a poorly specified model and each of these observations
should be treated like potential points of influence.
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The logLik method returns an object of the class logLik and is registered with the stats4
package. Thus, the returned value can be used with applicable methods, such as AIC. How-
ever, when the blm or lexpit object is fit with weights, it is important to keep in mind
that the returned value is a pseudo-log-likelihood. Although χ2 testing does not necessarily
apply to pseudo-log-likelihoods, the measures can still be useful for informal comparisons of
improvement in fit between nested models, and the AIC for informal comparisons between
nested and non-nested models, for example, between a blm and lexpit model fit to the same
binary outcome.

The Rsquared method returns McFadden’s pseudo unadjusted and adjusted R2 statistics
(McFadden 1974). Binomial regression models do not have equivalent measure for explained
variation as the R2 of logistic regression based on ordinary least squares (OLS) . Still, these
measures that attempt to mimic the R2 of OLS can be useful for comparing the fit between
models that have been applied to the same data set, with better-fitting models having an R2

value closer to 1.

R> which.at.boundary(fit)

No boundary constraints using the given criterion.

R> AIC(fit)

[1] 5493.509

R> Rsquared(fit)

$R2

[1] 0.04318212

$R2adj

[1] 0.03965591

There are no concerns regarding cases at the boundary. We have used the logLik method
to obtain the pseudo-AIC of the model, which we can compare to any later extensions we
consider. The low R2 measures for the current model suggest that we have not greatly
improved the fit of the model over a null model and an expanded model should be considered.

4.2. Mode of effects

We next consider some simple strategies for assessing the possible functional relationship
between a continuous covariate and absolute risk. A graphical method provided by the blm
package is the risk.exposure.plot. The risk.exposure.plot is a loess scatter plot of the
unadjusted risk in subgroups defined by the covariate. The function crude.risk creates the
data frame with the estimates of the crude risk in ordered bins defined by the covariate, which
consists of overlapping groups of 20% of the supplied data set and a sliding window of 1%
of the sample size. When the output of crude.risk is plotted with risk.exposure.plot, it
provides a visual representation of the continuous relationship between absolute risk and the
continuous covariate that is not influenced by any model assumptions.
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In the code below, we use crude.risk to obtain a data frame of the unadjusted risk estimates
for bladder cancer by age 70 by dietary fiber. This returns a data frame with the population-
based risk estimates, risk, and the mean covariate value in each overlapping subgroup, x.

R> risk <- crude.risk(bladder70 ~ fiber.centered, data = aarp,

+ weights = aarp$w)

R> head(risk)

risk x

1 0.001433959 -9.364749

2 0.001293353 -9.110063

3 0.001249824 -8.864049

4 0.001167258 -8.497228

5 0.001229360 -8.227736

6 0.001229360 -7.979171

We then plot the resulting data using the risk.exposure.plot, using the argument scale to
change the y-axis to units of risk per 1,000. Additional arguments are passed to the function
scatter.smooth.

R> risk.exposure.plot(object = risk, scale = 1000, las = 1,

+ col = "royalblue", pch = 19, ylab = "Crude risk (per 1,000)",

+ xlab = "Avg. Fiber Consumption (Centered)")

Figure 1 shows the results of the plot of the crude risks. Because this gives a sense of the
functional relationship between risk and the continuous covariate, it can be useful for guiding
the choice of representation of the covariate in the blm or lexpit model. For dietary fiber,
we see a general decline in risk with greater fiber consumption, but there is an increase in
risk the intermediate range of consumed fiber. This suggests that a higher-order polynomial
for fiber on the multiplicative scale may be more appropriate than a simple linear effect for
fiber.

There appears to be a strong relationship between bladder cancer and fiber but of a non-
linear nature. We therefore expand the absolute risk model using lexpit regression. The
linear term of the model will include the same gender and smoking effects as we specified
with the BLM. The expit term will have a main effect for the continuous variable redmeat,
while fiber consumption will have a linear and quadratic term, centering fiber consumed on
the median value of the sixth category of the factor (fiber.centered). The following script
fits the described lexpit model.

R> formula.linear <- bladder70 ~ female * smoke_status

R> formula.expit <- bladder70 ~ redmeat + fiber.centered +

+ I(fiber.centered^2)

R> fit <- lexpit(formula.linear, formula.expit, data = aarp, weight = aarp$w)

The results of summary indicate that redmeat and fiber.centered are both significantly
associated with bladder cancer but suggest that the quadratic term for fiber.centered

might not be necessary.
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Figure 1: Plot of crude absolute risk of bladder cancer by age 70 (per 1,000) against dietary
fiber (centered) using risk.exposure.plot.

R> summary(fit)

Linear effects:

Estimate Std.Err t value Pr(>|t|)

female 0.00042769 0.00017732 2.4120 0.01618 *

smoke_statusFormer 0.00029654 0.00012333 2.4045 0.01651 *

smoke_statusCurrent 0.00155339 0.00076348 2.0346 0.04235 *

smoke_statusUnknown 0.00033553 0.00054331 0.6176 0.53710

female:smoke_statusFormer 0.00026832 0.00028608 0.9379 0.34867

female:smoke_statusCurrent 0.00266586 0.00208577 1.2781 0.20173

female:smoke_statusUnknown 0.00015327 0.00109153 0.1404 0.88838

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Expit effects:

Estimate Std.Err t value Pr(>|t|)

(Intercept) -9.30754468 0.20059714 -46.3992 < 2.2e-16 ***

redmeat 0.01958238 0.00293749 6.6664 6.175e-11 ***

fiber.centered -0.05197903 0.01582348 -3.2849 0.001082 **

I(fiber.centered^2) 0.00080416 0.00104696 0.7681 0.442750
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Converged: TRUE

The risk.exposure.plot provided a means of looking at a continuous covariates possible
functional relationship to the crude (unadjusted) risk. If we wanted to consider the functional
relationship after adjustment for other covariates, we could use testing approach. A test for
the inclusion of a factor in the linear or expit term can be done directly when more than
one additional covariate is included in the expit term. When this is the case, the lexpit
regression can include a linear and multiplicative term for the covariate of interest. Testing the
significance of each term provides a comparative assessment of the strength of the information
of each mode of effect. Fitting both linear and multiplicative terms is possible because the
expit transformation removes collinearity between each term. The code below shows how to
use this procedure for the variable fiber.centered.

R> fit.both <- lexpit(update(formula.linear,

+ ~ . + fiber.centered + I(fiber.centered^2)),

+ formula.expit, data = aarp, weight = aarp$w)

R> summary(fit.both)

Linear effects:

Estimate Std.Err t value Pr(>|t|)

female 4.3435e-04 1.7627e-04 2.4641 0.01403 *

smoke_statusFormer 2.9354e-04 1.1683e-04 2.5125 0.01226 *

smoke_statusCurrent 1.5583e-03 7.7170e-04 2.0193 0.04393 *

smoke_statusUnknown 3.4461e-04 5.2059e-04 0.6620 0.50826

fiber.centered 6.0702e-06 8.0784e-06 0.7514 0.45272

I(fiber.centered^2) -9.5411e-08 5.0429e-07 -0.1892 0.85000

female:smoke_statusFormer 2.7139e-04 2.8171e-04 0.9634 0.33576

female:smoke_statusCurrent 2.6586e-03 2.0833e-03 1.2761 0.20243

female:smoke_statusUnknown 1.5230e-04 1.0483e-03 0.1453 0.88453

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Expit effects:

Estimate Std.Err t value Pr(>|t|)

(Intercept) -9.3810342 0.2005971 -46.7655 < 2.2e-16 ***

redmeat 0.0195877 0.0029375 6.6682 6.122e-11 ***

fiber.centered -0.0763240 0.0158235 -4.8235 1.812e-06 ***

I(fiber.centered^2) 0.0010515 0.0010470 1.0043 0.3156

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Converged: TRUE

Both the linear and quadratic additive terms for fiber.centered are not significant. We
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therefore conclude that the simpler model with only multiplicative effects for fiber.centered
may adequately describe the risk association for this dietary variable and bladder cancer.

The overall fit of the simpler model fit can be assessed with Rsquared, EO, and the gof func-
tions. We have already described Rsquared. The EO function computes the ratio of expected
and observed counts and its 95% confidence interval within subgroups of a specified categor-
ical factor. Ratios that are not significantly different from one indicate that the model has
good internal (within the training data) calibration, while ratios significantly below (above)
suggest that the model is under-predicting (over-predicting) for those subgroups. In the script
below, we look at the internal calibration in groups defined by education level.

R> Rsquared(fit)

$R2

[1] 0.04587181

$R2adj

[1] 0.04102327

R> AIC(fit)

[1] 5475.305

R> EO(fit, aarp$educ)

E O EtoO lowerCI upperCI

< 8 yrs 16.759585 21 0.7980755 0.5203512 1.224028

8-11 yrs 57.380071 46 1.2473928 0.9343303 1.665352

High School 32.546785 35 0.9299081 0.6676683 1.295148

Some college 66.618248 69 0.9654819 0.7625556 1.222410

College+ 112.660377 114 0.9882489 0.8225154 1.187377

Unknown 6.008502 7 0.8583574 0.4092081 1.800496

In comparison to the BLM, the lexpit model has improved the pseudo R2 and AIC measures
of fit, and the model is well calibrated for all educational categories.

The function gof assesses the overall fit of the model. This function performs the Hosmer-
Lemeshow goodness-of-fit test across deciles of risk. For cohort data, this statistic is compared
to a χ2 distribution, with large values suggesting a lack of fit. For case-control data, the
function employs the adjustment proposed by Archer, Lemeshow, and Hosmer (2007) for use
with weighted estimators.

R> gof(fit)

$table

$table$cases

O E

[4.94e-05,0.000348] 7 8.659499

(0.000348,0.000551] 16 16.854658
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(0.000551,0.000829] 21 21.950468

(0.000829,0.00112] 25 30.560476

(0.00112,0.00124] 28 30.700164

(0.00124,0.00136] 31 30.361227

(0.00136,0.00156] 37 28.015231

(0.00156,0.00184] 38 29.604923

(0.00184,0.00501] 42 38.987318

(0.00501,0.00588] 47 56.279603

$table$controls

O E

[4.94e-05,0.000348] 45264.04 45262.38

(0.000348,0.000551] 36559.42 36558.56

(0.000551,0.000829] 32207.11 32206.16

(0.000829,0.00112] 29595.72 29590.16

(0.00112,0.00124] 26113.87 26111.17

(0.00124,0.00136] 23502.48 23503.12

(0.00136,0.00156] 19150.17 19159.16

(0.00156,0.00184] 17409.25 17417.64

(0.00184,0.00501] 13927.40 13930.41

(0.00501,0.00588] 10445.55 10436.27

$X2

[1] 0.8589446

$p.value

[1] 0.562016

The goodness-of-fit statistic suggests that the lexpit model’s fit is generally good across the
observed distribution of risk for bladder cancer.

Given that the good fit of current model, we can draw some preliminary conclusions about
the risk associations for bladder cancer by age 70 in the AARP population. We do this by
considering the absolute risk estimates and their 95% confidence intervals using the confint

method. First, we consider the linear terms, which are reported first in the matrix returned
by the confint method.

R> CIs <- confint(fit)

R> CIs[1:7, ] * 1000

Est. Lower Upper

female 0.4276926 0.08015648 0.7752288

smoke_statusFormer 0.2965384 0.05482000 0.5382567

smoke_statusCurrent 1.5533889 0.05700385 3.0497739

smoke_statusUnknown 0.3355341 -0.72934148 1.4004096

female:smoke_statusFormer 0.2683246 -0.29238295 0.8290322

female:smoke_statusCurrent 2.6658558 -1.42217844 6.7538900

female:smoke_statusUnknown 0.1532681 -1.98609447 2.2926306
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Smoking had the largest effect of all categorical risk factors. Among male members of the
AARP over 60 years old, current smokers had a 1.5 per 1,000 greater risk (95% CI 0.06 to
3.05 per 1,000) of bladder cancer by age 70 than never smokers. Among women members,
the excess risk increased by 2.7 per 1,000 as compared to male smokers, but this was not a
statistically significant difference (95% CI -1.42 to 6.75 per 1,000). Gender was also associated
with a greater risk of bladder cancer in never smokers. Female gender was associated with a
significant excess risk of 0.4 per 1,000 risk (95% CI 0.08 to 0.78 per 1,000) of bladder cancer
among never smokers.

R> CIs[8:11, ]

Est. Lower Upper

(Intercept) -9.3075446811 -9.70070786 -8.914381505

redmeat 0.0195823750 0.01382500 0.025339746

fiber.centered -0.0519790296 -0.08299247 -0.020965585

I(fiber.centered^2) 0.0008041563 -0.00124784 0.002856152

R> expit(CIs[8, ]) * 10000

Est. Lower Upper

0.9072883 0.6123638 1.3442341

Terms from the ‘Intercept’ down of the confint output are variables in the expit term. The
‘Intercept’ is the logit of the background risk. The reference group for the fitted model was
male never smokers, with no consumption of red meat, who 18 grams of fiber intake per day
(the centering value). The risk of bladder cancer by age 70 for this subpopulation was 0.9 per
10,000 persons (95% CI 0.6 to 1.3 per 10,000). The remaining expit terms represent log-odd
ratios conditional on all other factors in the model. Thus, for two individuals of the same
gender, smoking status, and fiber intake, the person who consumed an additional one gram
per day of red meat had a 2% greater odds (95% 1.4 to 2.6) of bladder cancer.

5. Summary

The R package blm provides easy-to-use tools to fit additive regression models for binary
data from observational studies. The blm and lexpit models directly estimate absolute risks
and adjusted risk differences for cohort and some case-control studies, making them an im-
portant addition to the statistician’s toolbox. By complementing conventional multiplicative
modeling, the tools of the blm package can help clarify how covariates affect a binary outcome.
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