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Abstract
There is evidence from human twin and family studies 
as well as mouse and rat selection experiments that 
there are considerable interindividual differences in the 
response of cardiorespiratory fitness (CRF) and other 
cardiometabolic traits to a given exercise programme 
dose. We developed this consensus statement on 
exercise response variability following a symposium 
dedicated to this topic. There is strong evidence from 
both animal and human studies that exercise training 
doses lead to variable responses. A genetic component 
contributes to exercise training response variability.
In this consensus statement, we (1) briefly review the 
literature on exercise response variability and the various 
sources of variations in CRF response to an exercise 
programme, (2) introduce the key research designs 
and corresponding statistical models with an emphasis 
on randomised controlled designs with or without 
multiple pretests and post-tests, crossover designs and 
repeated measures designs, (3) discuss advantages 
and disadvantages of multiple methods of categorising 
exercise response levels—a topic that is of particular 
interest for personalised exercise medicine and (4) 
outline approaches that may identify determinants and 
modifiers of CRF exercise response. We also summarise 
gaps in knowledge and recommend future research to 
better understand exercise response variability.

Introduction
Physical inactivity and low levels of cardiorespira-
tory fitness (CRF) are major threats to public health. 
In response, leading health authorities worldwide 
recommend that all adults accumulate 150 min/
week of physical activity/exercise.1–3 However, 
the findings from numerous investigations demon-
strate an extraordinary interindividual variability in 
response to a standard dose of exercise wherein a 
substantial number of adults do not improve CRF 
beyond the day-to-day variability in response to 
physical activity consistent with current recom-
mendations.4–6 The issue of individual response to 
treatment is, therefore, one of the most important 
in exercise medicine, yet attempts to quantify indi-
vidual response are rare and not optimal from a 
design and analytical perspective.7 

The underlying premise of this report is that the 
topic of individual response to standardised exer-
cise has been neglected. However, quantifying indi-
vidual response to exercise is complex. Here, we 
describe special designs and analytic considerations 

required for studies aimed at assessing individual 
response. Our objective is to provide the reader 
with a variety of options that may be used to address 
individual variability to exercise training.

For the purpose of illustration, the emphasis of 
the consensus is on CRF because this is the pheno-
type for which we arguably have the most exten-
sive body of data, and it is an established marker 
of cardiovascular disease risk and mortality. CRF is 
an equally powerful predictor of mortality risk as 
traditional risk factors like hypertension, smoking, 
obesity, hyperlipidaemia and type 2 diabetes.8 Low 
CRF is a well-established risk factor for all-cause and 
disease-specific mortality9 in blacks and whites,10 
both sexes,11 various body mass index groups,12 
different age groups,13 14 apparently healthy 
people10 and in patients with diabetes,15 16 cardio-
vascular disease10 or hypertension.17 Improving 
CRF reduces cardiovascular disease morbidity and 
mortality.8

It is essential to distinguish between intrinsic and 
acquired CRF. Intrinsic CRF is the level that people 
have when they are sedentary and non-trained. In 
contrast, acquired CRF is the new level achieved 
as a result of regular exercise.18 Our consensus 
focuses exclusively on ‘acquired CRF’. Although 
increasing physical activity is a primary determinant 
of improvement in CRF at the group level, there 
is a growing body of evidence that the response 
to regular exercise varies substantially among 
individuals.

Not all people respond the same way to a given 
dose of exercise
Studies in the 1980s documented increases in CRF 
from 0 up to about 50% in response to a stan-
dardised dose of exercise.19–21 Some participants 
were considered CRF non-responders, as their 
CRF improvement did not exceed the measurement 
error. A genetic basis for varied CRF response to a 
given exercise was shown in pairs of monozygotic 
twins and nuclear families and studies involving 
selective breeding in rodents.22

However, concerns have been raised about the 
true magnitude of response variability as well as 
maximal trainability.22–24  Randomised controlled 
trials (RCTs) are frequently considered the most 
appropriate study design to quantify exercise 
training response variability.25 26 However, even 
with this classical design, there are multiple analyt-
ical challenges before conclusive evidence on 
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response variability is achieved.23 27 Sports and exercise medi-
cine is not the only field facing this challenge of individual 
treatment responses. Treatment response is one of the most 
important issues in many areas of clinical medicine. A more 
personalised approach to exercise would have to be based on 
rigorously performed trials and panels of biomarkers serving 
as a foundation for developing appropriate exercise response 
diagnostics.

In this context, an international group of researchers with 
experience in characterising individual response to exercise 
convened in Baton Rouge, Louisiana, at the Pennington Biomed-
ical Research Center on 12 and 13 October 2017 to discuss the 
topic of individual variability in response to physical activity 
and exercise training. The purpose of this document is to 
summarise the consensus reached among the symposium partic-
ipants on key topics. It is presented as a narrative review. Ample 
time was set aside for discussion of the critical topics during the 
symposium, and dissensions were largely resolved at that time. 
The remaining divergent views were further addressed during 
the manuscript development phase of the consensus document. 
The manuscript was reviewed and approved by all participants 
and coauthors. Current knowledge on individual variability of 
CRF response to exercise programmes in humans and rodents 
is reviewed. We present a brief summary of the evidence for a 
genetic contribution of exercise response variability in rodents 
and humans. We describe our consensus on research designs 
most appropriate for investigating exercise response variability 
questions followed by a summary of analytical strategies that 
seemed to be appropriate. Finally, the statement outlines gaps 
in knowledge and future research needs along with a number of 
recommendations.

Review of human and animal exercise studies
Human studies
Genetic studies were the first to document a varied CRF 
response to exercise training in sedentary volunteers. Several 
human studies, where the funding bodies did not finance the 
use of control groups, addressed genetic questions. These exper-
imental studies were based on pairs of monozygotic twins and 
nuclear families.21 28–31 They found considerable interindividual 
responses to single-dose exercise programmes for maximal 
oxygen uptake (VO2max), other indicators of endurance fitness 
and multiple cardiometabolic risk factors.

There are many possible reasons why the response to exercise 
may be varied: non-genetic biological and behavioural factors, 
measurement error and day-to-day fluctuation. If these were 
the only causes, there would be no significance within mono-
zygotic pair resemblance or no familial aggregation for exercise 
response. In fact, the data showed the opposite, that  is, that 
response variance is not randomly distributed. This is evidence 
of a familial/genetic component, accounting for 30%–60% of the 
variance adjusted for age, sex, ethnicity and other concomitants, 
depending on the nature of the response trait.21 28 30–32 Addi-
tional support regarding CRF response being partly explained by 
genetics, along with cardiometabolic or morphological pheno-
types, can be found in publications based on the HERITAGE 
Family Study.22 33–47

In aggregate, these human studies show that heritability, after 
adjusting for baseline CRF, age, sex and body mass, accounts for 
about 50% of the CRF response variance. To date, no studies 
have examined the heritability of CRF responses to maximal or 
near-maximal exercise doses.

Animal studies
Animal model experiments provide strong support for genetic 
contribution to variation in CRF trainability. Just as in human 
studies, experiments conducted in mice and rats confirm large 
interindividual differences in response to a given exercise 
regimen, and second, the response variance entails a strong 
genetic component. Two experimental strategies have been 
employed to study the pattern of CRF exercise response vari-
ability in rodents: comparing differences in training response 
among panels of inbred strains and among animals selectively 
bred for low or high trainability for several generations. An 
inbred strain is one that has been brother–sister mated for at 
least 20 generations and thus is more genetically uniform, much 
like monozygotic twins. Selection experiments, however, use 
genetically diverse populations.

Inbred rodent strain comparisons
Among a panel of 10 of the most commonly used inbred rat 
strains, there was a fourfold change in maximal treadmill running 
distance (∆DIST), a surrogate of CRF trainability, between the 
strains that ranked the lowest and highest for exercise response 
(ranging from −80 m to  +239 m, respectively). The variance 
components for ∆DIST show that sex and initial body weight 
had no significant influence when compared with the effect 
of strain (ie, genotype) on trainability.48 Supportive evidence 
for the presence of a strong genetic component to CRF train-
ability has also been generated using inbred mouse strains.49 50 
For example, comparing CRF response (calculated as change in 
time run to exhaustion) of 24 inbred mouse strains to a 4-week 
exercise training programme, a fourfold difference was observed 
between the lowest and highest performing strains, ranging from 
a decrease of 2.2 min to an increase of 8.7 min.49 The extent to 
which CRF trainability is determined by genotypes (heritability 
in the broad sense) reached 0.58 for the change in time run and 
0.54 for the gain in total work performed.

Selective breeding for trainability
The most convincing observations for a genetic hypothesis 
come from selection experiments performed in rats.51 Maximal 
running distance was measured before and after an 8-week stan-
dardised absolute exercise programme on the treadmill. The 
∆DIST was used as a measure of exercise response. The study 
showed that, on average, a population of genetically heteroge-
neous rats (N:NIH) exhibited a 140 m gain in running capacity 
in response to training, with wide interindividual differences 
that ranged from −339 m to +627 m. After 15 generations of 
two-way selection, rats bred as ‘low response trainers’ (LRT) 
on average experienced a decline of 65 m in maximal running 
distance with training, while ‘high response trainers’ (HRT) 
improved on average by 223 m (figure 1).

Interestingly, in N:NIH outbred rats that are genetically 
heterogeneous and more likely to resemble diversity among 
humans, the female animals responded to training better than 
males, and the animals that were heavier after training had a 
lower training response. Across 15 generations of selection for 
low and high exercise response, the initial CRF before training 
was phenotypically similar for the LRT and HRT selected lines. 
Overall, the LRT and HRT models of Koch and Britton provide 
strong evidence that selection for the gain in CRF as assessed 
by ∆DIST is independent of initial exercise capacity and body 
weight but highly related to the underlying genetic selection, just 
as was suggested by human twin and family studies.
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Figure 1  Preclinical animal model evidence for variation in training response: (A) frequency distribution for the change in running capacity (ΔDIST) 
for 152 genetically heterogeneous N/NIH rats shown in ascending order (males and females combined). The lowest and highest 10th percentile 
animals were used as founders to start low response trainer (LRT) and high response trainer (HRT) selected lines. Dotted line indicates the population 
mean change in running capacity with training. (B) Percentile rank score for the change in running capacity (ΔDIST) for LRT rats from generation 15 of 
selection arranged from lowest to highest. (C) Percentile rank score for the ΔDIST for HRT rats from generation 15 of selection arranged from lowest 
to highest. Dotted lines indicate the mean change in running capacity for the LRT and HRT selected lines. Adapted from Koch et al.48

As further evidence of variability in exercise training respon-
siveness, several studies show LRT and HRT respond differ-
entially to other types of exercise training. For instance, HRT 
respond to high-intensity aerobic interval training with a 40% 
increase in VO2max and accompanying gains in cardiac function, 
whereas LRT fail to improve VO2max.52  Compared with the 
HRT, LRT rats exhibit impaired skeletal muscle angiogenesis53 
and mitochondrial biogenesis54 in response to chronic endur-
ance training (absolute or relative) and diminished expression 
in genes regulating skeletal muscle remodelling response to a 
single acute bout of exercise.53 This impressive response to selec-
tion reveals that there is extensive covariation between the trait 
selected for and underlying biological mechanisms impacting 
trainability (CRF in this case).

Human studies designed to investigate CRF response 
variability
The vast majority of studies on the effects of chronic exercise 
on CRF focus on main effects and group differences and ignore 
interindividual CRF response variability. Studies specifically 
designed to determine the variability of response to exercise 
report an extraordinary heterogeneity in CRF response. There 
is variability in improvement to a standardised dose of exercise 
ranging from no gain in VO2max to about 1 L improvement of 
O2 uptake.

Here we summarise the findings of selected studies that exam-
ined individual variability in CRF (VO2max) response to endur-
ance-type exercise training. The selection criteria used to identify 

suitable trials included: (1) recruitment of previously sedentary 
adults, (2) exercise interventions were standardised and super-
vised, (3) intervention duration was 12 weeks or greater, (4) 
study examined variability in CRF response and (5) included 
aerobic/endurance-type exercise. Combination (endurance and 
resistance) and resistance-only exercise were not considered. 
Eight studies met the inclusion criteria, with all but two having 
sample sizes of at least 30 participants (range 18–720). Table 1 
provides a description of the study designs, exercise programmes, 
study population and mean change in CRF.

The data summarised in table 1 support two important obser-
vations. First, in response to a standardised exercise programme, 
the heterogeneity of response for CRF is substantial: a finding 
consistent with the human and animal exercise genetic studies 
summarised in the previous section. Second, there are a number 
of important methodological issues that need to be considered 
when interpreting the variability in CRF response attributed to 
exercise.

Standardisation of exercise dose
When comparing the variability of CRF response across indi-
viduals within a given study, one assumes that the exercise dose 
was ‘standardised’. In other words, was the workload performed 
between individuals calculated to ensure that the absolute and/
or relative workloads were similar across all participants? Exer-
cise dose (amount) may be standardised by establishing time 
limits for exercise duration and/or using caloric expenditure 
targets per session. Among the studies described in table 1, the 
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methods used to standardise the exercise prescription varied 
widely. For example, four of the studies standardised exer-
cise by prescribing the same relative intensity, duration and 
frequency of exercise,4 20 55–57 whereas three trials used weekly 
caloric expenditure targets to standardise the exercise dose. 
For example, DREW study participants were randomised into 
a control group or one of three treatment groups of increasing 
exercise dose, 4, 8 or 12 kcal per kilogram of body weight per 
week (KKW), at a fixed intensity of 50% of CRF.6 Since exercise 
intensity was fixed in DREW, exercise frequency and duration 
could vary to meet the weekly energy expenditure goals. Ross 
and de Lannoy5  randomised participants into a control group 
or one of three exercise groups that differed in amount and/
or intensity, with each intervention group prescribed a caloric 
target (energy expenditure) for each exercise session. Although 
the absolute amount and/or intensity of exercise was fixed (ie, 
high or low amount), the relative amount of time required to 
achieve the prescribed exercise amount varied across individuals. 
Conversely, the aerobic training group of the HART-D study was 
assigned an exercise dose of 12 KKW, but frequency, intensity 
and duration were not fixed.58

Within fully supervised and RCTs, the method used to stan-
dardise the exercise programme varies substantially. A concern 
is whether the variability in the method used allows for a proper 
quantification of the true variability in exercise response for a 
given, quantifiable exercise dose.

Exercise adherence
In its simplest form, adherence is defined as the number of 
sessions attended compared with the number prescribed. 
However, in addition to simply attending a session, to compare 
individual CRF response to exercise, it is imperative that the 
participants exercise at the prescribed dose each session. For 
instance, adherence may be defined as the kilocalories expended 
during exercise divided by the kilocalories prescribed. The 
studies described in table  1 monitored heart rate to ensure 
participants maintained the prescribed power output or exercise 
heart rate for each exercise session. One potential limitation of 
using heart rate to monitor exercise intensity is the potential for 
cardiovascular drift, or a gradual increase in heart rate during 
prolonged moderate-to-vigorous exercise despite maintenance 
of a constant work rate. Thus, in this scenario, work rate would 
decrease to keep heart rate constant, as was done in HERITAGE, 
which could result in the participant exercising at the proper 
heart rate but a lower power output. However, this drift is 
seldom observed at exercise intensities and durations commonly 
used in the studies reported to date. For instance, in the DREW 
clinical exercise trial of three different exercise doses (4, 8 and 
12 KKW) performed for 6 months, little evidence of cardiovas-
cular drift was found, with less than 1% of all exercise sessions 
showing evidence of drift.59

All eight studies reported high adherence rates (table  1). 
However, not all studies accounted for adherence in their reports 
regarding variability in CRF responsiveness. For example, in 
the Lortie et al,20 HERITAGE,4 HART-D,58 and Ross  et  al5 
studies, only participants with adherence >95%, ≥95%, ≥70% 
and  ≥90%, respectively, were used for the analyses. In the 
remaining four studies, despite the mean adherence of each exer-
cise group being greater than 85%, it is unclear how or whether 
the authors accounted for individuals with lower adherence 
levels. Hence, even though adherence is not a major issue in the 
studies reviewed in table 1, the extent to which differences in 

adherence variability contribute to variation in CRF responsive-
ness across studies cannot be determined.

Distinguishing CRF response from non-response
Distinguishing those who ‘respond’ to exercise from those who 
do not respond (so called non-responders) remains a source 
of considerable confusion. Common to all studies in table  1, 
investigators did not use a control group to account for the 
variability in CRF response that is not due to exercise. Thus, 
it is not possible to account for the portion of the individual 
response due to day-to-day or biological variability (see next 
section for detail). Apart from this limitation, multiple defini-
tions were used to distinguish CRF response from non-response 
(table 1). For example, two studies defined CRF non-response 
as a change ≤0 L/min,6 57 whereas one analysis of the HART-D 
study defined non-response as a change less than 5%, which the 
authors deemed as a clinically significant change.60 Other studies 
have used a day-to-day variability, within-subject coefficient of 
variation (CV) of 5.6% from the literature to define VO2max 
response.56 61 Few studies have used technical error (TE), a 
combination of measurement error plus day-to-day variability, to 
define CRF response. When the latter was used in HERITAGE, 
the threshold suggested for the definition of a ‘true response’ 
was much higher than what is typically used based on CVs.22 
Ross  et  al5 defined non-response as a change in VO2max less 
than 1 TE, which was calculated as 204 mL/min in their study.

In summary, large individual differences in CRF response 
(range: −33% to +118%) have been observed across the eight 
exercise training studies independent of exercise duration (20 
weeks to 12 months), amount, intensity and study population. 
These studies provide evidence that CRF non-response for a 
given exercise dose occurs even in fully supervised exercise inter-
ventions. At present, there is no consensus regarding how best to 
quantify individual variability and define classes of responders to 
exercise training. The inherent strengths and limitations associ-
ated with various approaches to quantifying individual response 
to exercise that accounts for the variability not attributable to 
exercise (measurement errors plus day-to-day variability) are 
discussed in the next section. One central question that has not 
been addressed until now is whether the CRF response pattern 
to a given exercise dose is reproducible. The only evidence that 
the CRF training response is reproducible comes from a small 
study reported more than three decades ago conducted with six 
subjects who agreed to retrain with the same 15-week exercise 
programme after a detraining period of 7 weeks.62 This is clearly 
an area in need of more research.

Research designs and analytical strategies
Conceptual understanding of individual response to exercise
Best practices for the design, conduct and analysis of studies 
comparing mean effects between groups are well established, and 
the implication of various design and analytic choices are widely 
understood. However, the special design and analytic consider-
ations required for studies aimed at assessing individual response 
are less widely appreciated.23 25–27 63 Several recent articles have 
addressed statistical issues related to individual response to exer-
cise training, and several tools have been made available to help 
design and analyse such studies.27

The central statistical challenge in assessing individual 
response is that, unlike with group means, the random error in 
observed individual responses is not diminished with increasing 
group size. The variance of observed response (sometimes called 
gross response variability) will always overestimate the true 
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interindividual response variance because it includes variance 
due to random error, which can account for most or all of the 
observed interindividual variability.

We clarify that by individual response to an exercise 
programme, we mean the error-free change in an individual that 
is caused by the exercise intervention under study. The observed 
change is the sum of the change caused by the intervention, plus 
the change that would have occurred in the absence of inter-
vention (eg, with a control treatment), plus various sources of 
error such as measurement error and day-to-day biological vari-
ability. Separating the true interindividual response variance from 
other sources of variance is essential to any analysis of individual 
response and to the investigation of its underlying biology.

We focus our discussion to studies that measure CRF, under 
similar conditions and using the same methods in each study 
participant before and after (and perhaps during) an exercise 
intervention.

Sources of variation of the dependent variable
When measuring CRF before and after an intervention, the 
observed change for individual i from intervention group j 
(denoted ΔCRFij) is the sum of the following three components:
A.	 True group j population mean change denoted μj (this is an 

unknown constant).
B.	 True individual i deviation from the group j population mean 

change denoted αij (this is the sum of B.1 and B.2).
B.1. Deviation due to permanent traits (sex and genetics).
B.2. Deviation due to changing traits (acquired or environ-
mental such as age, diet, lifestyle and other transient traits). 
Note that since we are considering this component part of 
the true individual change, we are implying that an individu-
al’s true response could vary over time. However, we consid-
er short-term day-to-day variability in response to be part of 
the random error rather than B.2.

C.	 All sources of random error denoted eij (includes measure-
ment error and day-to-day variability, which are accumulated 
from the pre and post assessments. The variance of eij is the 
sum of the variance of the random error at the preassessment 
and postassessments).

We make the usual statistical assumption that the three 
main aforementioned components are independent and that 
for each intervention j, components B and C have a popula-
tion mean of 0 and a variance of V(αij) and V(eij), respectively 
(component A has a population mean of μj and a variance 
of 0). Since ΔCRFij=μj+αij+eij, the total observed within 
group variance of ΔCRFij is V(αij)+V(eij), where the variance 
is measured across individuals within group j. As sample size 
increases, the sample average of ΔCRFij for treatment j will 
converge to μj with variance [V(αij)+V(eij)]/nj, where nj is 
the number of subjects measured before and after treatment 
j. However, the variance of the individual observed change 
(ΔCRFij) remains V(αij)+V(eij) regardless of the group sample 
size. It is important to point out that while the variance of 
the observed individual responses (ΔCRFij) is V(αij)+V(eij), 
the true interindividual response variability is only V(αij). 
Thus, figures depicting the range of the observed individual 
responses will tend to inflate the true interindividual response 
variability.

If all sources of V(eij) are adequately sampled (eg, adequate 
time interval  and random sampling of assessors), then the 
observed between individual variance of ΔCRFij could be reduced 
to V(αij)+V(eij)/m by taking m premeasurement and m post-
measurement on each individual. For individual i undergoing 

intervention j, ΔCRFij provides an unbiased estimate of the indi-
vidual’s true change (μj+αij) with a variance of V(eij), which again 
could be reduced to V(eij)/m taking m preassessment and postas-
sessment within the individual.

It is important to note that using the group average, ΔCRFj, 
to estimate the effect of exercise intervention j makes the strong 
and unrealistic assumption that on average ΔCRFj would equal 
zero in the absence of exercise. For this reason, the average causal 
effect of treatment j is usually estimated by ΔCRFj−ΔCRF0, 
where ΔCRF0 is the average change after a control condition of 
the same duration as the intervention. As mentioned in the prior 
paragraph, with increasing group sample sizes, ΔCRFj−ΔCRF0 
will converge to μj−μ0, which is the true average treatment effect 
of intervention j compared with control. However, the true 
individual treatment effect for individual i under treatment j is 
(μj+αij)−(μ0+αi0), which may not be feasible to obtain.

If we are willing to assume that V(eij)=V(ei0), then the observed 
variance of ΔCRFij minus the observed variance of ΔCRFi0 is equal 
to V(αij)−V(αi0). This additional variance due to exercise is often 
used as an estimate of interindividual response variance, or more 
commonly its square root is taken to obtain the SD of inter-indi-
vidual response (SDIR). However, a highly standardised exercise 
programme may be expected to reduce both V(αij) and V(eij) so 
that even in the presence of true interindividual variability in 
exercise response, the variance of ΔCRFij may not exceed the 
variance of ΔCRFi0. In fact, there are many examples in the liter-
ature where the variance of ΔCRFi0 is less than variance ΔCRFij, 
and as pointed out by Hecksteden et al,23 ‘difference in varia-
tion between the training and control groups is neither necessary 
nor sufficient for subject-by-training interaction to be present’.23 
Thus, specialised study designs supported by appropriate anal-
yses may be required to estimate the true individual response to 
exercise and interindividual variability.

Overview of designs and analytic strategies
Every approach relies on assumptions that are less robust and 
plausible than typical assumptions required for comparing group 
means. Even the logistically challenging crossover study with 
multiple intervention and control periods relies on the assump-
tion that exercise training from an earlier period would not affect 
the treatment response in a subsequent period (some advanced 
analytic strategies attempt to account for potential carry-over 
effects, but they too rely on further assumptions).

Table 2 describes the assumptions, limitations and measures 
of interindividual response provided by several study designs 
that have been used to estimate interindividual response vari-
ability.27 Designs without a control group (or control condition) 
(ie, designs 1, 2 and 3) cannot isolate changes due to treatment 
(eg, exercise training) from changes that would have occurred in 
the absence of treatment. Designs without multiple assessments 
before and after (or during) treatment (ie, designs 1 and 4) 
cannot isolate random error from interindividual response vari-
ability without assuming that all components of random error, 
including day-to-day variability, have the same variance under 
the control condition as the intervention condition. An added 
advantage of having multiple assessments before and after (or 
during) treatment is that the error can be reduced by using the 
average of multiple assessments to estimate the observed change.

The relative strength of each study design and corresponding 
analytic strategy depends on the plausibility of its statistical 
assumptions as well as the practicality of its implementation. The 
‘optimal’ design and timing of assessments is a topic for future 
research. However, in brief, we recommend that studies aimed 
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Table 2  Overview of research designs to assess individual differences in the response to exercise training for a given trait*

Design Assumptions
Measure of interindividual response 
variance† Limitations

Uncontrolled designs (one group pre–post design)

1. Single premeasurement and 
postmeasurement

►► No change would occur in any subject 
without the intervention.

►► No measurement error or day-to-day 
variability.

Variance of observed change scores. Cannot establish if observed change or its 
variance is attributable to treatment.

2. Multiple premeasurements and 
postmeasurements

►► No change would occur in any subjects 
without the intervention.

►► Multiple preassessments and 
postassessments adequately sample 
the measurement error and day-to-day 
variability.

Variance of the of the observed change 
score minus the sum of the average within 
subject prevariance and postvariance. Can 
be estimated using classic ANOVA or mixed 
model.

May be able to remove variance due 
to measurement error and day-to-day 
variability but still cannot establish if 
the estimated interindividual response 
variability would occur without the 
intervention. Multiple assessments 
required.

3. Longitudinal with repeated 
measurements spread over time

►► No change would occur in any subject 
without the intervention.

►► All subject’s true change occurs 
according to a linear (or other specific) 
parametric model.

►► Measurement error and day-to-day 
variability can be captured by the 
deviation of observed measures from 
linear (or other) model.

Estimated variance of random slopes as 
estimated from a linear mixed model. 

If linear (or other) model is correct then 
measurement error and day-to-day 
variance can be removed but still cannot 
establish if average change or variance of 
change is caused by treatment. Multiple 
assessments required.

Control group designs (parallel RCT comparing intervention(s) to control)

4. Single premeasurement and 
postmeasurement

►► Total of all sources of variance other 
than interindividual response are 
identical in the intervention and 
control arm.

►► Assumes individuals would have 
consistent training effect.

Variance of the observed change in the 
intervention arm minus variance of the 
observed change in the control arm.

Relies on strong untestable assumptions. 
Difference in variation between training 
and control groups is neither necessary nor 
sufficient for subject-by-training interaction 
to be present.

5. Multiple premeasurements and 
postmeasurements

►► Multiple preassessments and 
postassessments adequately sample 
the measurement error and day-to-day 
variability.

►► Within-individual variation in training 
effects the same in intervention and 
control arm.

Variance of the of the observed change 
score minus the sum of the average within 
subject pre and post variances. Can be 
estimated using classic ANOVA or mixed 
model.

Relies on model assumptions. Multiple 
assessments required.

6. Longitudinal with repeated 
measurements spread over time

►► All subject’s true change occurs 
according to a linear (or other specific) 
parametric model.

►► Measurement error and day to 
day variability can be captured by 
deviation of observed measures from 
linear (or other) model.

Estimated variance of random slopes as 
estimated from a linear mixed model. 

Relies on model assumptions. Multiple 
assessments required.

Other designs

7. Crossover study with multiple 
intervention and control periods

►► Prior treatment does not alter change 
during future periods.

►► Measurement error and day-to-day 
variability remains constant over time.

Mixed linear model. In theory, the 
mixed effects model can isolate the true 
interindividual response variability for this 
design.

Costly, may require extensive washout 
periods, difficult to retain participants over 
entire study, potential carry-over effects 
may invalidate results.

8. External reliability studies ►► Variance of error estimated from 
external sources are equal to the 
variance of error in the current trial.

Subtract error variance estimated externally 
from total variance of change observed in 
current study.

Error estimates from external study may 
not accurately reflect current study.

9. Internal reliability substudy ►► Individuals have consistent training 
effect.

►► A components of variance model.

Subtract internal estimate of error variance 
from total variance of change.

Fairly complicated analysis required. 
Assumes a particular components of 
variance model.

*Expanded from table 3 in Hecksteden et al.23

†Take the square root of the individual response variance to obtain SD of individual response (SDIR).
ANOVA, analysis of variance; RCT, randomised controlled trials.

at measuring interindividual response variability should have a 
control group (or control condition for crossover studies) as well 
as extra assessments in addition to the single preassessment and 
postassessment. Furthermore, we recommend that assignment 
to the control group (or ordering of conditions in a crossover 
study) should be by random assignment to ensure no system-
atic differences exist in participants undergoing a control versus 
intervention condition. For the aforementioned reasons, designs 

5, 6 and 7 (table 2) are preferable designs for studies aimed at 
assessing interindividual response variability.

For samples obtained through designs 5, 6 and 7, the linear 
mixed effects model can be used to provide group level and indi-
vidual level estimates of treatment response and its variance.64 
The exact model specifications will depend on the specifics of 
the study design, the objectives of the analysis and the software 
used. However, in general, the model would include terms for 
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treatment group, period and treatment by period interaction 
with the intercept, and possibly additional terms, being modelled 
as random effects varying across individuals. It is important to 
note that correctly modelling the correlation between repeated 
measures within an individual will usually require more than 
simply adding a random effect for the individual.

Estimating interindividual treatment response variability
Uncontrolled group designs
The single pre–post measurement uncontrolled design 
(table 2, design 1) can only provide a valid estimate of interindi-
vidual treatment response if there is no random error [V(eij)=0], 
and there would be no difference between any individual’s pre–
post change in the absence of treatment. Both of these assump-
tions are highly implausible.

With multiple premeasures and postmeasures (design 2), or 
multiple measurements spread over time (design 3), the random 
error, V(eij), can be estimated so that the true error free vari-
ability of the pre–post change, V(αij), can be isolated. However, 
in order to use V(αij) to estimate interindividual variability in 
response to treatment, we must make the strong assumption that 
there would be no interindividual variance in pre–post change 
without intervention.

Control group designs
By far the most commonly reported measure of inter-individual 
response variability is SDIR. The SDIR can be estimated using a 
sample collected from a control group design with single premea-
sures and postmeasures (design 4) by taking the square root of 
the difference of the variance of the observed pre–post change in 
the control arm, V(ΔCRFi0), from the variance of the observed 
change in the intervention arm, V(ΔCRFij). The simplicity of this 
approach is appealing, but as mentioned above, this estimate 
requires the assumption that the variance of the observed change 
not attributable to treatment is similar in the control and inter-
vention arm. This estimate can be represented by the following 
equation:

	﻿‍
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Control group: multiple measures
With multiple premeasures and postmeasures (design 5), we can 
directly estimate V(eij) and V(ei0). These error terms can also 
be estimated indirectly from a sample obtained from a longitu-
dinal control group design with measures spread over time (see 
table  2, design 6). So,  by rearranging the above equation, we 
obtain the following equation:
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Repeated measures designs
As an alternative to control group designs to determine individual 
variability in response to exercise, Hecksteden et al27 describe an 
approach using a repeated measurements design (table 2, design 
3) with multiple treatment phases. These designs bear the advan-
tage that, because there is no control group, there is no inter-
individual variability between the control and the experimental 
group, which is inevitably confounded with the intraindividual 
variance attributable to the treatment.

To control for secondary variance, the repeated measures 
design has an advantage compared with classic control group 
designs. A control group is used to account for known as well as 
unknown factors influencing the main effect in a study as well 
as its variance, such as sex, age, genetic predispositions, social, 
educational, athletic antecedents and so on. By using control 
techniques like matched pairs or randomisation, the investigator 
aims to achieve a similar distribution of these effects over the 
control and the experimental groups. Nevertheless, one can 
never be sure that all these potential sources of variance are in 
fact equally distributed. With repeated measurements designs, 
where every subject is tested under every level of the indepen-
dent variable, the distributions of confounding factors that arise 
from the individual biology or antecedents are extremely close 
to equal (if not in fact equal) under the various levels of the inde-
pendent variable. This holds particularly well if the time span 
of the experiment is not extremely long (eg, years). With such 
a design, the total variance is reduced by the fact that there is 
no intergroup variance between a control group and an exper-
imental group. As this reduces substantially the statistical error, 
these designs are typically more economical than control group 
designs.

Estimating individual exercise response
Since the observed individual response is the sum of true  
individual response to exercise and random error, the 
observed response will be positively correlated to the 
random error. In fact, this correlation is simply the square 
root of V(eij)/[V(αij)+V(eij)]. This correlation implies that 
the larger (smaller) the observed value, the more it will tend 
to be overestimated (underestimated). We noted above that 
the observed individual response (ΔCRFij=μj+αij+eij) is an 
unbiased estimator of the true individual response (μj+αij) 
since the mean of eij is 0. However, an improved estimator 
of an individual’s response can be obtained by shrinking the 
observed estimate towards the group mean with the degree of 
shrinkage directly proportional to V(eij)/[V(αij)+V(eij)]. Intu-
itively, this makes sense since V(eij)/[V(αij)+V(eij)]=1 implies 
that all of the observed variance is due to random error rather 
than any true differences between individuals, while V(eij)/
[V(αij)+V(eij)]=0 implies that all of the observed variance is 
true interindividual response variability. These shrinkage esti-
mates are often estimated by best linear unbiased predictors, 
which can be directly obtained from the linear mixed effect 
model.

Categorising individual exercise response
It is widely recognised that individual CRF responsiveness to 
exercise training at a given dose translates into a change score 
distribution from which classes of responders could be poten-
tially identified. One could, for instance, envisage a classification 
scheme that would distinguish among super responders, average 
responders, low responders, non-responders or even adverse 
responders to the same exercise dose. Alternately, one could 
recognise positive, negative and trivial responders. Defining 
classes of responders to exercise programmes and developing 
guidelines aimed at some uniformity in approach requires a 
proper understanding of the underlying biology of the trait of 
interest as well as valid statistical models.

There are two fundamental and unavoidable challenges to 
categorising individual response. The first is that the true indi-
vidual response must be estimated from an observed response, 
which contains random error such that the lowest observed 
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Figure 2  Change in CRF (VO2, L/min) at 24 weeks for each participant per exercise group. The technical error (TE) for CRF measurement is illustrated 
by the lighter shaded area. Values within the darker shaded area represent the individual CRF response within the TE range. Panel A: TE was derived 
from duplicate measures of CRF that were obtained within the same week. Panel B: TE was derived from the control group using their baseline and 
follow-up CRF measures. See table 1 for detailed descriptions of exercise amounts and intensity. Adapted from Ross et al.5 CRF, cardiorespiratory 
fitness.

responses tend to be underestimated and the highest observed 
responses tend to be overestimated. This problem can be 
reduced by using the best linear unbiased predictors to estimate 
an individual’s true response, but classification error will still 
be a problem when within-subject error is considerable. The 
second challenge in categorising response is the arbitrariness of 
choosing the response category thresholds. The arbitrary selec-
tion of response category thresholds results in inconsistent clas-
sification of individuals rendering between-study comparisons 
meaningless.27

Early approaches to the classification of individual response 
categorised positive responders directly from the individual 
change scores, by assuming that any positive change score or any 
change score greater than or less than some threshold represents 
a positive or negative response. The thresholds chosen in the 
past have usually been derived from either the coefficient of 
variation obtained from CRF test–retest data (eg, CV of 5%), 
or the within-subject SD obtained from two or more CRF tests 
(eg, the TE) representing the error of measurement plus the 
day-to-day CRF variability or some multiple of it, such as 1.5 
or 2.0 (eg, refs 5 22 65). The rationale for this approach is that 
sufficiently large positive or negative changes are unlikely to be 
due simply to error of measurement and day-to-day variability 
and can therefore be considered ‘real’ changes. Figure 2, panel 
A, provides an illustration of the approach used to segment 
‘responders’ from ‘non-responders’ using the TE derived from 
duplicate measures of CRF for each participant derived within 
the same week.5 This approach has limitations because the 
day-to-day variability in CRF measurement determined over 
several days (eg, duplicate measures in same week) fails to 
consider the biological variability that may exist over the duration 

of the treatment period (eg, 24 weeks in this case).26 Figure 2, 
panel B, provides an illustration of the approach used to segment 
‘responders’ from ‘non-responders’ using the TE derived using a 
time-matched control group.

Individual responses as proportions of responders
An alternative approach to a binary classification of individ-
uals as responders or non-responders has been developed by 
Hopkins66 as a way to estimate the probability of an individual 
change score to be a surrogate for a true response. Based on 
these calculations, individual change scores can be classified, for 
example, as unlikely, probably, likely or very likely to represent 
a true change in the dependent variable (see figure 3). With this 
approach, the focus shifts from classifying individuals based on 
their measured change scores to classifying the change scores 
themselves. Additionally, the resulting statement is a probabilistic 
one, namely, the probability that it represents a true change. Both 
issues provide valuable enhancements to the responder classifi-
cation issue. However, this approach also requires several arbi-
trary decisions such as assigning certain probability range labels 
such as ‘very likely’ as well as assigning a value for the smallest 
important change or minimal clinically important difference. 
Also, the method makes an implicit use of Bayesian statistics 
to estimate the probability of an observed change value being 
a true response.67 68 It is possible that this approach could be 
improved by using an empirical Bayes approach where the prior 
distribution is based on patients in the same treatment group as 
the individual patient rather than assuming a flat prior distribu-
tion as implicitly assumed by the current approach. However, 
experts in statistics have raised concerns regarding the validity 
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Figure 3  Distribution of the likelihood (colour coded) that the individual response was greater than the minimally clinically important difference for 
CRF. The 90% CIs are calculated as the observed response ±1.6 (technical error). Dashed line represents the minimal clinically important difference (1 
multiple of the resting metabolic rate (MET). See table 1 for detailed descriptions of exercise amounts and intensity. Adapted from Ross et al.5 CRF, 
cardiorespiratory fitness.

Figure 4  Participants at the Symposium on Exercise Variability 
Pennington Biomedical Research Center, Baton Rouge, LA October 
2017. Left to right: Andrew G Day, Julie Van Scotter (PBRC Assistant 
Director of Educational Programs), Guillaume Spielmann, Bret H 
Goodpaster, Brian A Irving, Wendy M Kohrt, William G Hopkins, Werner 
Pitsch, Mark A Sarzynski, Claude Bouchard, Robert C Noland, James S 
Skinner, Neil M Johannsen, Lauren G Koch, Alex Castro, Phillip Brantley 
(PBRC Associate Executive Director for Education), Lauren M Sparks, 
Robert Ross.

of this approach and made a number of suggestions relevant to 
the topic of quantifying individual differences in response to an 
intervention.69 70 The colour coding in figure 3 depicts the clas-
sification of response probability for individuals from an RCT5 
based on Hopkins’ approach. The figure also provides unad-
justed 90% CIs of the change score for each individual, where 
the within individual SD is assumed to be equal to the TE used 
for the individual response probability categorisation.

Identifying determinants of interindividual 
response variability
Innate and acquired characteristics can be determinants of 
interindividual response variability as revealed when groups 
of patients having a different presentation (or value) of the 

given characteristics have a different average response to treat-
ment. For example, if men and women have a different average 
response to an exercise programme, then sex is a determinant of 
interindividual response variability. The interaction term from a 
linear regression model with an indicator for treatment group, 
the characteristic and their product (ie, the interaction term), can 
be used to estimate the magnitude and statistical significance of 
the interindividual response variability due to the characteristic.

In theory, the establishment that interindividual response 
variability exists before setting out to identify its determinants 
(also known as effect modifiers) is sensible. However, due to 
the limitations in reliably estimating the interindividual response 
variability, testing determinants of interindividual response vari-
ability (selected based on a priori considerations) even when the 
latter continues to be investigated is acceptable. Furthermore, 
if a clear determinant of interindividual response is identified, 
then that would provide supportive evidence for the presence of 
response variability in spite of current limitations on the global 
estimate of interindividual response variability.

The issue of multiplicity of testing (ie, inflated type I error) 
must be considered if multiple potential determinants of 
response are considered. Conversely, the issue of power (ie, type 
II error) must also be considered when using formal hypoth-
esis testing to identify determinants of interindividual response 
variability. Unfortunately, studies designed to compare group 
means are usually underpowered to identify effect modifiers. 
For example, with a binary effect modifier, under the best case 
scenario where the effect modifier is balanced within arms (eg, 
equal number of men and women in both the intervention and 
control arms), the total sample size required to detect a differ-
ence in treatment response of δ (the intervention minus control 
arm difference is δ larger for women than men) would require 
four times the total sample size compared with a study designed 
to detect an overall difference between the control and inter-
vention arm.71 However, if it can be assumed that the effect 
modifier acts only on the intervention group, the required 
sample size would be reduced, since we would now be testing 
for a difference within the intervention group rather than a 
difference of the differences. 
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Finally, it is important to be aware that statistics such as 
multiple R2 or the absolute value of the difference between 
groups are biased upward, although this bias decreases with 
overall sample size. Accumulating measures such as R2 over 
multiple variables can result in substantial overestimation of the 
amount of interindividual response variability attributed to these 
variables; use of bias corrected measures such as R2

adj can reduce 
but may not eliminate this problem.

Summary and research recommendations
Animal and human studies confirm large interindividual differ-
ences in response to standardised exercise and the existence of 
a genetic component contributing to exercise training response 
variability. Thus far, the evidence for human variability in respon-
siveness to exercise training comes from participants exposed 
to a single dose of exercise. Thus, whether the individual CRF 
response to a given exercise dose is a permanent feature or may 
be improved by altering the exercise dose is unknown. Because 
the standardisation of exercise programmes varies substantially, 
there is a need to improve the reporting of the trial methods 
used to standardise the exercise prescribed across participants 
and of the monitoring methods. This includes reporting the 
adherence and compliance rates for all participants to the exer-
cise programme during the intervention.

A cornerstone of exercise studies designed to investigate the 
magnitude of interindividual differences in CRF trainability is 
the reduction of the random error component (error in CRF 
assessment and day-to-day CRF variability) of the response 
variance. We have summarised the assumptions, limitations 
and analytic approaches of several designs reported in the 
literature for the assessment of individual variability in CRF 
response after exposure to exercise.

We recommend study designs that include a randomly 
assigned control group (or condition) and have multiple 
assessments of CRF before and after (or during) intervention. 
Specialised statistical methods such as linear mixed effects 
models may be required to analyse data captured from these 
studies. Subtracting the observed variance of a control group 
from an exercise intervention group provides a simple esti-
mate of the variance of the interindividual response to treat-
ment but makes the strong assumption that all other sources of 
variance are identical in the intervention and control groups. 
As there are divergent views on analytical approaches, one 
needs to rely on strong statistical support before embarking on 
these kinds of studies.

It is important to be aware that, due to random error, the 
variance caused by the heterogeneity in observed responses 
will always overestimate  the true interindividual response 
variance. Therefore, the observed responses will tend to be 
higher (or lower) than the true response in individuals with the 
highest (or lowest) observed responses, thus likely inflating the 
spread in response. Moreover, standardisation or transforma-
tion of CRF data can have an impact on the assessment of indi-
vidual variability, and the issue must be dealt with cautiously.

In the presence of even a moderate error variance compo-
nent, the observed raw change may not provide the best esti-
mate of the true change of an individual. Methods that ‘shrink’ 
the observed change towards the mean group change, such as 
best linear unbiased predictors, may be considered in such 
cases. A challenging problem is that of classification schemes 
of individual response; in the current state of our science, it 
is based on subjective choices (and cut-offs) and potentially 
dubious assumptions.

Determinants and mediators of interindividual response vari-
ability can be identified by assessing the interaction (ie, product 
term) between treatment and the potential determinant or medi-
ator. However, if many potential determinants or mediators are 
considered, then falsely identifying some determinants (type I 
error) is likely. Such studies can only be undertaken successfully 
with much larger sample sizes than what is required for studies 
comparing mean response between groups.

The symposium and subsequent discussions and exchanges 
among participants have revealed that there are multiple gaps in 
our knowledge base. Some of these deficiencies are clearly attrib-
utable to the limited level of funding devoted to exercise biology 
research, which prevents investigators to think in terms of larger 
and more comprehensive studies. Nevertheless, gaps exist in 
study designs and analytical tools that should be addressed if 
we are to be able to conduct powerful and highly reproduc-
ible studies. Unknown is whether the CRF response pattern to 
a given exercise dose is reproducible when the programme is 
repeated following an appropriate detraining period. Likewise, 
it is essential that we design research to investigate whether 
the response to a given exercise dose is a valid predictor to the 
response pattern to other exercise doses. It would also be helpful 
if innovative experimental approaches could be developed to 
investigate CRF trainability at doses that are as close to maximal 
as possible.

It is also apparent that ongoing dialogue between those who 
base their science on animal models and those working exclu-
sively with human participants is lacking. To understand the true 
magnitude of human variability following exposure to regular 
exercise and the profile of the molecular transducers triggering 
improvement in CRF, as well as changes in cardiometabolic traits, 
it will be important to close this divide. Finally, as is the case in 
most of biomedical research, collaborative research should be 
high on our agenda so that more comprehensive projects with 
larger sample sizes and wider range of expertise become the 
norm in this area of exercise biology research.

Even though the focus of the symposium and of this consensus 
document is entirely on variability in CRF  responsiveness to 
exercise programmes, the questions raised, the study designs and 
analytical approaches discussed and the research areas identified 
apply equally well to other exercise phenotypes, including health 
benefits and risks associated with regular exercise.
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