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Abstract: The authors have proved an identity for a generalized integral operator via differentiable
function. By applying the established identity, the generalized trapezium type integral inequalities
have been discovered. It is pointed out that the results of this research provide integral inequalities
for almost all fractional integrals discovered in recent past decades. Various special cases have been
identified. Some applications of presented results have been analyzed.
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1. Introduction

Theorem 1.1. Let f : I CR — R be convex, ay,a, € I and a, < a,. Then

f(al +az) < 1 faz Fodx < f(al)‘;f(az). (1.1)

2 a) —a; |

This inequality (1.1) is called Hermite-Hadamard inequality.

Authors of recent decades have studied (1.1) in the premises of newly invented definitions due to
motivation of convex function. Interested readers see the references [1-20]. It is important to
summarize the study of fractional integrals as follow:

Definition 1.2. The k-gamma function, where k € R™ and x € C, is defined by

(JAL Z-1
L) = lim RO (1.2)
n—e  (X)ni
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Its integral representation is given by

(@) = f e dt. (1.3)
0
One can note that
Ii(a+k) =ali(a). (1.4)

Definition 1.3. [11] Let f € L[a;, a>]. Then k-fractional integrals of order a, k > 0, where a; > 0 is
given as

I‘ka( ) = kl“k( ) f (x=0i ' fdt, x> a
and
1;2" f(x) = e f (t—x) fdt, ar > x. (1.5)
Let ¢ : [0, 00) — [0, 00) and
wdr < o (1.6)
0 t
o(s) 1 s
K<%<Af < ;32 (L.7)
@ < @ fors<r (1.8)
é(r) ¢(S) é(r) 1 s
B sap-st 2 for 5 <2 <2 (1.9)
where A,B,C > 0 are independent of r,s > 0. If ¢(r)r® is increasing for some @ > 0 and % is

decreasing for some 8 > 0, then ¢ satisfies (1.6)—(1.9), see [15]. Therefore, the left-sided and right-
sided generalized integral operators are defined as follows:

il = [ D ar, x> a, (1.10)

“ ¢(f —X)

X

oI f () = —f(di, x <a. (L.11)

For other feature of generalized integrals, see [14].

The main objective of this paper is to discover in Section 2, an interesting identity in order to study
some new bounds regarding trapezium type integral inequalities. By using the established identity
as an auxiliary result, some new estimates for trapezoidal type integral inequalities via generalized
integrals are obtained. In Section 3, some applications are given. At the end, a briefly conclusion is
provided as well.
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2. Main results

Leta; < a, and m € (0, 1] be a fixed number. Throughout this study, for brevity, we define

A, (1) = f G _um“l)”)du <oo, Vie[0,1], VxeP=/[may,al.
0

The following lemma is crucial:

2.1

Lemma 2.1. Let f : P — R be a differentiable mapping on (may, a,). If ' € L(P) and A € (0, 1], then

1

2 3)

X[ (ma1+§(a2—ma1))+1¢f (mal(l - /l) + az/l) + (maﬁ%(az—mal))_l‘l’f (mal)]

f(ma1 + g(az - mal)) -

_ Alay — may)

~— X {fz N, (At f (may + (At)(ay — may)) dt
27, (%)

0

1
—f A (1 = DA f (may + (At)(ay — may)) dt}.

We denote

1

X {fz A (A f" (ma; + (At)(a; — may)) dt

0

Alar, — may)

Tin, (A ar,az) =
27, (2)

1
—j: Ap((1 = DA f (may + (At)(ay — may)) dt}.

2

Proof. Integrating by parts Eq (2.3), we get

1
2

Tf,Am(/l; ay.ay) = ANay — may) % {Am(/lt)f (may + (At)(ay — may))

2N, (%) Aay —may)
IS S f 2 ¢ ((az — ma;)(AD))
(ay —mar)  Jo At

A1 = D (may + (A1) (az = mao)"

Alar, — may)

0

f (ma, + (At)(a, — may)) dt

L Yo ((ay — may)(1 — H)A)

f(ma, + (A)(az — may)) dt}

"~ (ay — may) 1 (1-0A4
_ Alar, — may)
2A,(4)

(2.2)

(2.3)
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P 4 —
X{Am(Z)f(mal M 2((12 mal)) ! X (ma1+%(a2—ma1))_l¢f (mal)

Alay — may) (a2 — may)
A (%)f(mal + %(az — mal)) 1
T Alay —may) - (a, —may) X (ma1+%(arma1))*1¢f (may(1 = 4) + 02/1)}
= f(mal + é(a2 - mal)) - 1
2 20, (%)

X| (v dtarmany Lo (1= D) + D+ (0 300y mayy o (mar) |

The proof of Lemma 2.1 is completed. O

Remark 2.2. Taking A = 1 and ¢(¢) = t in Lemma 2.1, we have

_ p(maita) 1 a2
Ty(ar,ar) = f( > ) (s — may) fmdl f(ndt

1 1
= (ar — mal){f tf’ (ma; + t(a; — may)) dt — f (1 =) f (ma, + (a; — ma,)) a’t}. 2.4)
0 %

Theorem 2.3. Let f : P — R be a differentiable mapping on (may,a,). If |f’|? is convex on P and
1€(0,1]) forqg>landp™' +q ' =1, then

A
T, (A ar, a)| < 2(32_/\ m(al)) /B, (4; p) (2.5)

(@ = DIf mapls + Alf (@)l + (4 = 30| (map)ls + 3Alf (a)l),

where 1
By (1:p) = f [An0)] dr. 2.6)
0

Proof. Using Lemma 2.1, convexity of |f’|? and Holder inequality, we get

1

Alay — may) fz
Tepn (A;ay, < — A
Fiacanan) s 25 |

1
+ A
Alar, — may) 2 p ’ : q g
< —x{[ f |An(an)] dz] [ f |f" (ma, + () az — may)) | a’t]
2A,, (%) 0 0

1 3 1 J
+( f [Am((l—t)/l)]pdt) ( f |f’ (may + (An)(az — may)) |th] }

2

ma,)) |a’t

ma,)) |a’t}
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< J(Zj\ é"‘)”),p[BA”(a p)x{(fz =

+[f;[(1—

f/(may)|" + (/lt)|f'(az)|q]dt)q }

_ May —may) ,
2\/_A ()\/ By, (4; p)

(@ = DIf (maple + Alf (@)l + J(4 =3I (may)ls + 34| (a)l4).
The proof of Theorem 2.3 is completed.

Corollary 2.4. For p = q = 2 in Theorem 2.3, we get

p
| Ta, (L ar, )] < (f/Z_Am(al)) VBr(2)

x{ V@ = DIf man)P + Af (@)P + N4 =3)1f (ma)P + 32 f (@)P}.
Corollary 2.5. For ¢(t) =t in Theorem 2.3, we have

Alay — may)
V8L 1(p + 1)

(@& = DI mapls + Alf (@)l + J(4 =301 (map)ls + 3Alf (a)l4).
Remark 2.6. For A =1 in Corollary 2.5, we obtain

|Tf,Am(/l;a1,a2)| <

(ar — may)

V82r+1(p + 1)
x{{BIf (man)ls + | (@)l + if (man)s + 3f (ar)le).
Corollary 2.7. For ¢(t) = r( 5 in Theorem 2.3, we get

|Tf(a1,a2)| <

2 (ay — may)

V82re+ (pa + 1)
(/@ = DIf (mapls + Alf (@)l + [(4 = 30| (may)ls + 34| f (a)l4).

ITa, (a1, a0)| <

ll/

Corollary 2.8. For ¢(t) = in Theorem 2.3, we have

kF (a)

25 (ay — may)

YBL2F (2 + 1)

{4 = DIf man)ls + Alf (@)l + Y& =30\ f (man)le + 34Uf (a)l}.

|Tf,Am(/1; aip, a2)| <

it

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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Corollary 2.9. For ¢(t) = t(a, — )*! for a € (0, 1) in Theorem 2.3, we obtain

Aalay — may) \/*7
i . — /By (4;
[Tran(s a1, a2)] 28|as - ((may - a)d + ay)' | m

x{ /@ = DU Gmanlt + AF @)l + [ = 3If (manls + 341 (@),

where
1 @2

« a\P
S S— (a2 — 1) dt.
Aap(aZ - mal) (ma1—az)%+a2

By (4;p) =

Corollary 2.10. For ¢(t) = éexp [ (—le“) t] for a € (0,1) in Theorem 2.3, we get

Ala — 1)(ax —may) o—
T' /l; b S pB() /l;
Tt e T

x| @ = DIf (man)la + Af (@)l + & = 3DIf (man)le + 3Af (@)l
where

dt.

. f (-5 amand]1 g
0

B (A, p) :=
A P) A — D)P*Y(ay — may) t+1

(2.12)

(2.13)

(2.14)

(2.15)

Theorem 2.11. Let f : P — R be a differentiable mapping on (may,a,). If |f'|? is convex on P and

A€ (0,1] forqg > 1, then

Ala, — may)

27 (2)

x{\/ [Ba, (45 1) = AC, (DILf"(manlt + AC, (DIf (@)l

_1
T ya, (A a1, @)| < (B, (4 1))

43101 = DB, (A 1) = ACa, (D] f(ma)le + By, (4: 1) - CA,,I<A>]|f'(a2)|q},

where 1

2
Ca, () = f tA,(Ar)dt
0
and By, (4; 1) is defined as in Theorem 2.3.

Proof. Using Lemma 2.1, convexity of |f’|? and power mean inequality, we get

1

Alay — may) fz
T A ay, < — A4
| (A an az)|< 2Am(§) x{ ) (A1)

£/ (may + ()@, — may)) |dt

1
+f A (1 = DD\ f (ma, + (At)(ar — may)) |a’t}

2

(2.16)

(2.17)
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1-1 1 1

Ma = ma) {U E Am(/lt)dt) | [f AW O|F (may + Ai)(az ~ may)) |th)q
20, (2) 0 °

1 -7 1
+( f Am((l—t)/l)dt] [ f An((1 =)

2

f (may + (Af)(ar — may)) |th)q }

1
1 1

(Ba, (1 1)) 77 x {( fo 2 An()[(1 = 20| (may)|" + ()| '(“2)|q]dt)

Alay — may)
2A,, (g)

1

f'(a2)|q]dz)q }

1
+ [ f An((1 = D) (1 = )| (ma)|" + (A1)

2
_ Alay —may)

1Y)
e (%) (B, (4; 1))

x{\/ [Ba, (A1) = ACx, (DI (may)|e + ACp, (DIf (@)l

+\q/[(1 — DB, (A5 1) = AC,, (D]If (ma)lt + A[ By, (45 1) — CAm(/l)]lf’(az)I"}-
The proof of Theorem 2.11 is completed. m|

Corollary 2.12. For g = 1 in Theorem 2.11, we get

Alar, — may)

T, (s a1,00)| < (2.18)
2A,(2)
x{[2 = DB, (4; 1) = 24C, (D] (map)] + ABw, (4; DIf (@)]}.
Corollary 2.13. For ¢(t) =t in Theorem 2.11, we have
Alar, — may)
Tin, (A ar,a)| < ————> (2.19)
| A 1,642 | 8%
{3 = DI (mapls + Alf (@)l + (A4 =3)|f (may)ls + 24| (a)l4).
Remark 2.14. For A = 1 in Corollary 2.13, we obtain
(ay — may)
T (a1, a2)| < (2.20)

83

x{N21f (map)l + | f (@)l + f (man)le + 2/ (@)le).
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Corollary 2.15. For ¢(t) = in Theorem 2.11, we get

F((x)

Alay —ma) I'la + 1)

|Tf,Am(/l; al,az)l <

4 I'a+2)
. Ala+1) % /l(oz+ 1) %
X{\/(l Tt 2))|f apl? + |f a)l?
/l(cy+ 1) " /l(a+3) y
\/((1 -A)- 2@ )If 2(sz)lf (az)lq}
Corollary 2.16. For ¢(t) = ik in Theorem 2.11, we have

kF()

Alay —may) Ti(a+k)
4 INa+k+1)

A%+ 1 A%+
x{i/(l . 2?; I zi)lf’(mal)l‘f " (g Flanl
, /l(% +1) ; /l(% )
+\/(<1 - 2))|f madk + 5 If 2>|q}.

Corollary 2.17. For ¢(t) = t(a, — )*~! for a € (0, 1) in Theorem 2.11, we obtain

|Tf,Am(/1;al,a2)| <

Aa(ar, — may) 1-1

a7 By, (D) 7
2[a‘2’ - ((ma1 - a2)§ + 612) ] ( A )

|Tf,Am(/l;a1,a2)| <

x{\/ (B, (4;1) = AC;,_ (D]If*(map)le + AT, (DI (@)l

#3100 = DBy (4 1) = AC, (DIf/Oma)e + A[By (451) - Cf\m(/l)]lf'(az)lq},

where 1

1 (:
Cy () := —f tla5 — ((ma, — ax)At + a,)" |dt
and B, (A;1) is defined by Eq (2.13) for p = 1.

Corollary 2.18. For ¢(1) = Lexp [( ) ]for a € (0,1) in Theorem 2.11, we get

Ala — D)(a; —may) PN
T A ay, < PIBS (A; 1
| f,A,,,( ai a2)| 2{ exp[(—l_“ ﬂ] — 1} Am( )

7) (a2 — may)5

X{(/[Bf\m(/l; D) —aCy (D]If7(mapld + ACY (DIf"(a2)l

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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#3100 = DBy (4 1) = AC; (IIf/Oma)e + A[B; (451) - Cf\m(/l)]lf'(az)lq},

Ci (1) = (ai 5 fo z{exp[(—lea)(az—mal)/lt]— l}dt. (2.26)

and By (4;1) is defined by eq (2.15) for p = 1.

where

3. Applications

1.

+
A= A(p1,92) = il > 802’
2.
2
H:: H(QI’SOZ): 1 1°
—_ + —_
1 2
3. 0r—
L:= L), 9y) = ——"—
Y192 = oo - Injg)]
4.
8Or+1 _ pr+1
2 1

L, :=L.(pi, =
@192 = | e — o0

]r; rezZ\{-1,0}.

From Section 2, we obtain:

Proposition 3.1. Let m € (0, 1] and a;,a, € R\ {0}, where a; < a,. Then for r € N and r > 2, where
g>landp' +q ' =1,

'A’(mal, ) — L'(ma,, az)' < Mz —ma) 3.1)

VA p+ D)

x{z/A (3imar o, laslaD) + 3JA (a1, 3|a2|q<r-l>)}.

Proof. Taking A =1, f(t) = ¢" and ¢(¢) = t, in Theorem 2.3. O

Proposition 3.2. Let m € (0, 1] and a;,a, € R\ {0}, where a, < a>. Then forg > 1 and p™' + g7' =1,

| 1 1

A(ma,, ay) - L(ma,, ay)

< </§ (ar — may) 32)
D

1 1
x{ . }
VH QBlmar P4, |azP9)  {JH (Imai [, 3az )
1
Proof. Taking A =1, f(t) = " and ¢(¢) = t, in Theorem 2.3. m|

AIMS Mathematics Volume 4, Issue 3, 984-996.
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Proposition 3.3. Let m € (0,1] and a;,a, € R\ {0}, where a; < a,. Then for r € N and r > 2, where
q21,

. . ¢[2 r(a; — may)
1A (may, az) - L,(mal,a2)| < \g% (3.3)

x{z/A (2hma [0, lagler=D) + {4 (|ma1|q<r-1>,2|a2|q<f-“)}.

Proof. Taking A =1, f(t) = ¢ and ¢(¢) = t, in Theorem 2.11. O
Proposition 3.4. Let m € (0,1] and ay,a, € R\ {0}, where a; < a,. Then for q > 1, the following
inequality hold:
! _ < (/EM (3.4)
A(may,ay)  L(may, ay) 3 8
e )
X + .
VH (2lmaiP1,la;P7) - {[H (jmai P4, 2laz )
1
Proof. Taking A =1, f(t) = — and ¢(t) = t, in Theorem 2.11. m|

Next, we provide some new error estimates for the midpoint formula. Let Q be the partition of a; =
by <ty <...<{ =ayof [a],a]. Let consider the following quadrature formula:

f Jdx = M(f, Q) + E(f, Q)

where
G+ iy

k—1
M(f,0)= ) f( )(fm - )
i=0

is the midpoint version and E(f, Q) is denote their associated approximation error.

Proposition 3.5. Let f : [a;,a] — R be a differentiable function on (a,, a,), where a; < a,. If | f'|? is
convex on [ay,a,] forg> 1 and p™' +q' = 1, then

|E(f,0)| <

(3.5)

m Z(@ %

{BIF N + 1 )l + IF 1+ BIF (Cirnle).
Proof. Applying Theorem 2.3 ford =m =1and ¢(¢t) =ton [{;, ;1] (1 =0,...,k—1) of O, we have
(bis1 =€)

li+ €y 1 ff
_ d <
|f ( ) ta-0J, 1O B

(BN +1F Ean)l? + IF @+ 31 Enle).

(3.6)
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Hence from (3.6), we get

E(f,0)| =

f f(dx — M(f, Q)'

it . .
< { fodx — f(& +2€l+1 ) (Cis1 — fi)}‘
i=0 ti
- fiv i+ iy
< Z { f(x)dx — f( +2 ])({)m - [i)}‘
i=0 G

i1 — €
WZ“)
{{BIF @I+ 1 )l + @I+ 31 Enle).

O

Proposition 3.6. Let f : [a;,a,] — R be a differentiable function on (a,, a,), where a; < ay. If |f'|? is
convex on ay,a,| for g > 1, then

|E(f. Q)] < 1 — 6 3.7

{2 @1+ 17 Gl + @+ 207 ),
Proof. The proof is analogous as to that of Proposition 3.5 but use Theorem 2.11. O
Remark 3.7. Applying our Theorems 2.3 and 2.11, where m = 1, for appropriate choices of function

¢(t), we can deduce some new bounds for midpoint formula using above ideas and techniques. The
details are left to the interested reader.

4. Conclusion

The authors have proved an identity for a generalized integral operator via differentiable function.
By applying the established identity, the generalized trapezium type integral inequalities have been
discovered. Some applications of presented results have been analyzed. Interested reader can
establish new inequalities by using different integral operators and they can be applied in convex
analysis, optimization and different area of pure and applied mathematics.
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