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Abstract 
DSGE models incorporate attractive theoretical specifications of the behaviour of forward-
looking households facing an uncertain future.  Central to these specifications is the idea that 
households decide their consumption level in year t by applying a function (policy rule) 
whose arguments represent information available in year t.  Using the insight that, under 
certain conditions, the policy rule (but not the resulting policy) is invariant through time, 
DSGE modellers have developed the perturbation and other methods for quantitatively 
specifying policy rules.  They have applied these methods in small macro models.  In this 
paper we adapt the perturbation method so that it can be used to specify a policy rule for 
household consumption in a full-scale CGE model.  A novel feature of our method is the use 
of specially constructed CGE simulations to reveal key parameters used in deriving the policy 
rule.  We apply our method in an illustrative simulation of the effects of a technology shock 
in a 70-sector version of the USAGE model of the U.S. economy.   
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1.  Introduction  
In the DSGE1 theory of consumer behaviour, the household determines consumption in year t 
by applying a rule (the policy function) that takes account of all available information.  While 
the household does not know the values of future variables with certainty, the household does 
know that it will be applying the same policy function in future years as in the current year.  
With a steady-growth baseline, this invariance of the policy function allows us to deduce its 
derivatives with respect to wealth and variables exogenous to the household such as 
technology and the terms of trade.  From here, we can obtain a first-order approximation to 
the policy function which shows how aggregate consumption deviates from its baseline path 
in response to changes in wealth, and changes in variables exogenous to the household.   

DSGE specifications of household behaviour are common in small macro models.  We show 
how a DSGE specification can be formulated and applied in a full-scale CGE model.  Our 
method is a variation of the DSGE perturbation approach (see Schmitt-Grohé and Uribe, 
2004).  However, we rely on CGE simulations to derive the elasticities of household wealth 
at the start of year t+1 with respect to household wealth at the start of year t, consumption in 
year t and exogenous variables in year t.  These elasticities then become the core ingredients 
in formulas for the derivatives of the household’s policy function.  GEMPACK software (see 
Harrison et al. 2014, and Horridge et al. 2013) is ideal for our method which requires 
working with derivatives, elasticities and first-order approximations. 

The rest of this paper is organized as follows.   
In section 2, we study a 1-sector, 1-household neoclassical growth model.  We refer to this as 
the standard model and use it to explain what we see as the central ideas in DSGE theory and 
the perturbation solution strategy.  We hope this section will be useful to CGE modellers who 
may not be familiar with DSGE techniques.   
We show that optimizing behaviour by households leads to equations that relate derivatives 
in year t of expected household welfare with respect to variations in endogenous 
predetermined variables to expected values of these derivatives in year t+1.  By endogenous 
predetermined variables we mean those whose predetermined values in year t+1 are 
influenced by household decisions in year t or earlier.  In the standard model, wealth is the 
only endogenous predetermined variable.  We find that households plan consumption (their 
only decision variable) so that the welfare effect of having an extra unit of wealth at the start 
of  year t, VK(t), is related in a particular way to the expected value of having an extra unit at 
the start of year t+1, VK(t+1).  However, in deriving the consumption function for the 
standard model, we don’t use directly the relationship between the current and expected 
future welfare effects of variations in wealth.  Instead, we follow standard practice and 
eliminate VK(t) and VK(t+1), obtaining an equation that relates the current value of an extra 
unit of consumption to the expected future value.  Correspondingly, we express the policy 
function directly as an equation describing aggregate household consumption.  
We find that complete elimination of the rather abstract current and expected future marginal 
welfare variables (V derivatives) is possible only in the special case in which the number of 
predetermined endogenous variables matches the number of decision variables, e.g. one 
predetermined endogenous variable, wealth, and one decision variable, consumption.  When 
this match does not occur, it is convenient to retain the V derivatives and derive policy 
functions for setting these derivatives.  We explain these points by setting out a variation of 
the standard model in which there are two endogenous predetermined variables, wealth and 
the lagged wage rate, and one decision variable, consumption.   

 
1  Dynamic Stochastic General Equilibrium. 
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In section 3, we reformulate the theory from section 2 in a way that leads to a DSGE 
specification of consumer behaviour suitable for incorporation in a CGE model.  As 
foreshadowed in section 2, we specify the household’s policy as a function for determining V 
derivatives. 
In section 4 we allow for multiple exogenous variables, and for correlations between different 
exogenous variables and between the realization of any given exogenous variable at different 
times.   
Section 5 explains how we use a CGE model to derive first-order and second-order 
elasticities of consumer wealth at the start of year t+1 with respect to household wealth at the 
start of year t, consumption in year t and exogenous variables in year t.  We then derive 
formulas that use these elasticities in specifying the derivatives of the household’s policy 
function.   
Section 6 shows how to generalize from a steady-state baseline to a steady-growth baseline.   
Section 7 applies the theory from the previous sections to derive a DSGE consumption 
function for a 70-sector version of the USAGE CGE model of the U.S. economy (see for 
example Dixon et al. 2013).  Illustrative simulations are provided.  

Implementation of DSGE theory in a full-scale CGE model requires the adoption of 
restrictive assumptions, the most obvious being that the baseline exhibits steady growth.  The 
paper concludes in section 8 with a discussion of these assumptions and how they might be 
relaxed in future research.   
 

2.  A standard DSGE model solved by using the perturbation method to find a policy 
rule for consumption  
In this section, we study a 1-sector, 1-household neoclassical growth model.  We refer to this 
as the standard model and use it to explain what we see as the central ideas in DSGE theory 
and the perturbation solution strategy.   
2.1.  The standard model 
The standard model starts with an accumulation relationship: 

( )t 1 t t t tK K * 1 A *K Cα
+ = −δ + −   (2.1) 

where  
Kt is capital stock at the start of year t; 
Ct is consumption during year t; 
At is total factor productivity or technology in year t; and 
δ and α are non-negative parameters with values less than or equal to 1.  δ is the rate of 
depreciation and α can be thought of as the capital share in a Cobb-Douglas world in 
which the labour input is implicitly fixed on 1.   

We treat technology as a stochastic variable determined by  

t 1 t 1A A*exp( )+ += σε   (2.2) 
where  

εt+1 is a draw made at the start of year t+1 from a normal distribution with mean zero and 
variance 1; 
σ translates the ε draws for t+1 into a distribution with variance σ; and  
A is a long-run or normal level of technology.  In this section we will treat A as a fixed 
coefficient.  In later sections we will allow A to be shocked.   
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In year t, the household knows the values of Kt, At, A, σ and the parameters δ and α.  The 
household also knows the form of the accumulation relationship (2.1) and the nature of the 
stochastic determination of technology, (2.2).  Given this information, the household chooses 
a strategy for determining consumption in each year to maximize the expected value of its 
lifetime welfare.  Our aim in this section is to characterize that strategy.    
In year t, expected lifetime welfare, V, is specified by:  

1
t

t
0

CV(t) E *
1

−γ∞ τ +τ

τ=

 
= β − γ 

  (2.3) 

where  

γ and β are parameters whose values we will assume are strictly between 0 and 1;2 and 
Et indicates expectation held in year t.   

γ introduces diminishing marginal utility to consumption in any given year and β introduces 
preference for current consumption relative to future consumption.    
Under (2.3) we can write expected lifetime welfare in year t as:  

[ ]
1
t

t t t t 1 t 1
CV(K ,A , ) *E V(K ,A , )
1

−γ

+ +σ = + β σ
− γ

  (2.4) 

In (2.4), expected lifetime welfare in year t is a function of the information available in year t.  
This information consists of the capital stock, Kt, current technology, At, and the variance, σ, 
governing the stochastic process that determines technology in future years.  The right hand 
side of (2.4) expresses lifetime welfare expected in year t as the sum of welfare generated in 
year t and the expectation held in year t for lifetime welfare onward from year t+1.   

Why is σ an argument of V, but not A or the parameters α, β, γ and δ?  This is simply a 
reflection of where we are going to take the analysis in the rest of this section.  In year t, the 
household knows the values of σ, A, α, β, γ and δ, and assumes with certainty that they will 
never change. We will examine the effects of a change in σ that is unexpected by the 
household.  Potentially the change in σ affects expected lifetime welfare.  Thus, we make V 
an explicit function of σ.  At least in this section, we won’t be examining the effects of 
changes in A, α, β, γ and δ.  Therefore there is no need for them to be included as explicit 
arguments of V.    
We represent the household strategy for choosing consumption as: 

( )t t tC H K , A ,= σ   (2.5) 

( )t 1 t 1 t 1C H K , A ,+ + += σ   (2.6) 

(2.5) and (2.6) are often referred to as the policy rule.  They say that the household uses the 
information available in year t to determine consumption in year t.  Similarly, for year t+1.  If 
the information available in year t+1 is the same as that for year t, then Ct+1 will be the same 
as Ct.  This is valid because the form of the V function describing expected lifetime welfare 
from year t+1 onwards is the same as that describing lifetime welfare from year t onwards.3   

 
2  It is possible to use values of γ>1 , but conceptually simpler to assume that γ is <1.   
3  Specification (2.3) avoids the intertemporal inconsistency problem described by Strotz (1955).  Intertemporal 
inconsistency arises when consumption planned in year t for year t+1 is not undertaken in t+1 even when there is no change 
in information in the transition for t to t+1.  Specification (2.3) underlies (2.4) which legitimizes (2.5) and (2.6). 
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The first step in deriving properties of the policy rule, the H function, is to recognize that the 
household knows the trade-off between consumption in year t and capital in year t+1.  
Consequently, Ct must optimize the right hand side of (2.4).  This requires  

t 1
t t K

t

KC *E V (t 1) 0
C

−γ + ∂
+ β + = ∂ 

  (2.7) 

where  
VK(t+1) is the derivative of V with respect to its first argument evaluated at the t+1 values 
of its 3 arguments; and 

t 1 tK C+∂ ∂  is the partial derivative of Kt+1 with respect to Ct evaluated from the right hand 
side of the accumulation relationship holding Kt constant.  In the particular case of (2.1), 
this is -1.  However, we will persist with the symbolic representation to point the way to 
more general cases.    

Differentiating in (2.4) with respect to Kt gives 

t t 1 t 1 t
K t t K

t t t t

C K K CV (t) C * *E V (t 1)* *
K K C K

−γ + +
  ∂ ∂ ∂ ∂= + β + +  ∂ ∂ ∂ ∂  

  (2.8) 

where  

t 1 tK K+∂ ∂  is the partial derivative of Kt+1 with respect to Kt evaluated from the right hand 
side of the accumulation relationship holding Ct constant; and  

t tC K∂ ∂  is the derivative of Ct with respect to Kt evaluated from the right hand side of 
(2.5) holding constant the other determinants of consumption, At and σ.   

Simplify (2.8) using (2.7): 

t 1
K t K

t

KV (t) *E V (t 1)*
K

+ ∂
= β + ∂ 

  (2.9) 

From (2.9) we have  

( )
1

t 1
t K K

t

K*E V (t 1) V (t)*
K

−

+ ∂
β + =  ∂ 

  (2.10) 

In deriving (2.10) from (2.9) we recognize that t 1 tK K+∂ ∂  is non-stochastic.  It is determined 
from values of variables known by the household in year t.  
Substitute (2.10) into (2.7): 

1

t 1 t 1
t K

t t

K KC V (t)* 0
K C

−
−γ + + ∂ ∂

+ = ∂ ∂ 
  (2.11) 

Rearrange as: 
1

t 1 t 1
K t

t t

K KV (t) C * *
C K

−
−γ + +   ∂ ∂

= −    ∂ ∂   
  (2.12) 

Hence 
1

t 2 t 2
K t 1

t 1 t 1

K KV (t 1) C * *
C K

−
−γ + +
+

+ +

   ∂ ∂
+ = −    ∂ ∂   

  (2.13) 
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Substituting into (2.7) gives 
1

t 2 t 2 t 1
t t t 1

t 1 t 1 t

K K KC *E C * * * 0
C K C

−
−γ −γ + + +

+
+ +

    ∂ ∂ ∂
 + β − =   ∂ ∂ ∂     

  (2.14) 

Using (2.1) we can evaluate the derivatives in (2.14): 

 t 2

t 1

K 1
C

+

+

∂
= −

∂
  , t 1

t

K 1
C

+∂
= −

∂
 and 1t 2

t 1 t 1
t 1

K (1 ) A * *K
K

α−+
+ +

+

∂
= − δ + α

∂
 (2.15) 

Substituting into (2.14) gives the relationship 

( )1
t t t 1 t 1 t 1C *E C * (1 ) A * *K−γ −γ α−

+ + +
 = β − δ + α    (2.16) 

If we knew the form of H, then for any given values of σ, A, α, β, γ and δ, together with a 
starting values for capital, Kt, and technology, At, we could solve (2.1), (2.2), (2.5) and (2.6) 
to determine the paths of consumption and capital for any given path of the stochastic 
variable εt+τ, τ= 1, 2, …, .  To do this, we would start with (2.5).  This would tell us Ct.  Then 
we would go to (2.1) to find Kt+1.  Next we would make a draw from the normal distribution 
to obtain εt+1, which via (2.2) would give us At+1.  From there we would use (2.6) to compute 
Ct+1.  At that stage we could move forward to year t+2.  But what about (2.16)?  The policy 
rule, H, must generate a path for consumption which is compatible with (2.16).  This provides 
the key to determining the form of H.   
There are various ways of finding the H function.  We focus on the perturbation approach.4  
This method starts with linearized versions of equations (2.1), (2.2), (2.5), (2.6) and (2.16).  
The linearization is done around a known solution which we refer to as the baseline.  Then 
the linear system is solved to give the effects on Ct and Kt+1 of small perturbations in Kt, At 
and σ away from their baseline values.  As we will see, analysing perturbation effects in the 
linearized system generates sufficient information to deduce derivatives of the H function, 
giving us a first-order approximation to the form of H in the vicinity of the baseline.   
The perturbation approach is a natural choice for CGE modellers who use GEMPACK 
software.5  GEMPACK solves CGE models using linear equations describing perturbations in 
variables away from a known solution.    
2.2.  Using the perturbation approach to find a first-order approximation to the policy rule, 
H, for the standard model  
We use bars to denote values in the baseline solution.  Then linearizing (2.1), (2.2), (2.5), 
(2.6) and (2.16) around this solution we obtain: 

( ) 1
t 1 t t t t t t tdK dK * 1 dA *K A *K *dK dCα α−
+ = − δ + + α −   (2.17) 

[ ]t 1 t 1 t 1 t 1 t 1dA A * *exp( )*d *exp( )*d+ + + + += ε σε σ + σ σε ε   (2.18) 

t K t A tdC H (t)*dK H (t)*dA H (t)*dσ= + + σ   (2.19) 

t 1 K t 1 A t 1dC H (t 1)*dK H (t 1)*dA H (t 1)*d+ + + σ= + + + + + σ   (2.20) 

 
4  For learning about the perturbation approach we relied mainly on Schmitt-Grohé and Uribe (2004).  For an overview of 
the perturbation approach and other methods for solving DSGE models, see Villaverde et al. (2016).  
5  See Harrison et al. (2014) and Horridge et al. (2013). 
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( )
( )

1 1
t 1 t t 1 t 1 t 11

t t 1 2
t 1 t t 1 t 1 t 1 t 1 t 1

*C *E dC * (1 ) A * *K
*C *dC *

C * E dA * *K A * *( 1)*K *dK

−γ− α−
+ + + +−γ−

−γ α− α−
+ + + + + +

 − γ − δ + α
 −γ = β
 + α + α α − 

 (2.21) 

 
In these equations, d denotes deviation from the baseline solution.  Three aspects of the 
linearized system need clarification.  First is the treatment of σ.  In the baseline we have 
assumed that σ is fixed on σ .  In our linearized system we allow a change in σ, dσ, to occur 
in year t and to be viewed as permanent by the household.  Second, we use the notation 

( )KH t , ( )AH t , ( )H tσ  to denote derivatives of H with respect to K, A and σ evaluated at 
year-t baseline values of the variables.  Third, the determination of dKt+1 follows in a non-
stochastic way from the year t deviations in variables from their baseline values, see (2.17).  
Consequently, the expectation operator is not applied to dKt+1 in (2.21).  On the other hand, it 
must be applied to dCt+1 and dAt+1.  By EtdCt+1 and EtdAt+1 in (2.21) we mean the expectation 
held by the household in year t for the deviations in Ct+1  and of At+1 for their baseline values.  
These are not the actual deviations which are given by (2.18) and (2.20).   
Before we can use (2.17) to (2.21) we need to specify EtdCt+1 and EtdAt+1. Equation (2.2) 
implies that the household expects At+1 to be A independently of changes in Kt, At and σ.  
Consequently, we assume that   

t t 1 t 1E dA A A+ += −  (2.22) 

Then, in light of (2.20) we assume that  

( )t t 1 K t 1 A t 1E dC H (t 1)*dK H (t 1)* A A H (t 1)*d+ + + σ= + + + − + + σ   (2.23) 

Now we work with the expanded system (2.17) to (2.23), treating to dKt, dAt, dεt+1 and dσ as 
exogenous variables.  We can move these variables independently of each other and calculate 
the effects on other variables.  Our aim is to use shocks to these variables to evaluate 
derivatives of the H function.   We start by setting  

 dKt =1, dAt = 0, dεt+1 = 0 and dσ= 0 (2.24) 
Under (2.24), (2.17) to (2.23) reduces to: 

( ) 1
t 1 t t tdK 1 A * K dCα−
+ = − δ + α −   (2.25) 

t 1dA 0+ =   (2.26) 

t KdC H (t)=   (2.27) 

t 1 K t 1 A t 1dC H (t 1)*dK H (t 1)*dA+ + += + + +   (2.28) 

( )
( )

1 1
t 1 t t 1 t 1 t 11

t t 1 2
t 1 t t 1 t 1 t 1 t 1 t 1

*C *E dC * (1 ) A * *K
*C *dC *

C * E dA * *K A * *( 1)*K *dK

−γ− α−
+ + + +−γ−

−γ α− α−
+ + + + + +

 − γ − δ + α
 −γ = β
 + α + α α − 

 (2.29) 

t t 1 t 1E dA A A+ += −  (2.30) 

( )t t 1 K t 1 A t 1E dC H (t 1)*dK H (t 1)* A A+ + += + + + −   (2.31) 
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The unknowns in (2.24) to (2.31) are dKt+1, dCt, dCt+1, dAt+1, KH (t) , KH (t 1)+ , AH (t 1)+ , 

t t 1E dA +  and t t 1E dC + .  Thus we have 9 unknowns in 7 equation.  To proceed from here we 
need to add two pieces of information.  We assume that in the baseline  

 t 1A A+ =  (2.32) 

and that  

 K K KH (t) H (t 1) H= + ≡  (2.33) 

Can we be sure that a solution satisfying (2.32) and (2.33) exists?  Before we answer that 
question we note that if the baseline satisfies (2.32) and (2.33), then (2.25) to (2.31) becomes 

( ) 1
t 1 t t tdK 1 A * K dCα−
+ = − δ + α −   (2.34) 

t 1dA 0+ =   (2.35) 

t KdC H=   (2.36) 

t 1 K t 1dC H *dK+ +=   (2.37) 

( )
( )

1 1
t 1 t t 1 t 1 t 11

t t 1 2
t 1 t t 1 t 1 t 1 t 1 t 1

*C *E dC * (1 ) A * *K
*C *dC *

C * E dA * *K A * *( 1)*K *dK

−γ− α−
+ + + +−γ−

−γ α− α−
+ + + + + +

 − γ − δ + α
 −γ = β
 + α + α α − 

 (2.38) 

t t 1E dA 0+ =  (2.39) 

t t 1 K t 1E dC H *dK+ +=   (2.40) 

Now we have 7 equations which we anticipate  can be solved for KH  together with the other 
6 unknowns: dKt+1, dCt, dCt+1, dAt+1, t t 1E dA +  and t t 1E dC + .  

Justifying restrictions (2.32) and (2.33) and deriving the steady-state solution for years t 
and t+1 
The usual justification for restrictions such as (2.32) and (2.33) is that the baseline is a non-
stochastic steady state.  Non-stochastic means that 0σ =  which implies via (2.2) that 

t 1A A.+ =   Steady state means that t t 1K K +=  and t t 1A A +=  which implies that HK(t+1) = HK(t), 
and incidentally that t t 1C C += .  With 0σ =  we can remove the expectation operator from 
(2.16) and demonstrate that a steady state exists for years t and t+1 by solving the equations  

( )1C * C * (1 ) A * *K−γ −γ α− = β − δ + α    (2.41) 

( )K K 1 A*K Cα= −δ + −   (2.42) 

giving 
1

( 1)1 *(1 ) K
*A*

α− − β − δ = β α 
  (2.43) 

and 
1

( 1) ( 1)1 * (1 ) 1 *(1 )C * A *
* A * * A *

α
α− α−   − β − δ − β − δ= − δ +   β α β α   

 (2.44) 
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Evaluating KH  using (2.34) to (2.40) with the baseline solution for years t and t+1 being 
the non-stochastic steady state 
Given our steady-state assumption, we can drop the t and t+1 subscripts from the barred 
coefficients in (2.34) to (2.40).  Then we reduce this 7 equation system to 2 equations in 2 
unknowns (dKt+1 and KH ) by deleting (2.35) and (2.37) and substituting from (2.36) (2.39) 
and (2.40) into (2.38) and from (2.36) into (2.34): 
 

( ) 1
t 1 KdK 1 * A *K Hα−
+ = − δ + α −   (2.45) 

( )1 1
K1

K t 12

*C *H * (1 ) A* *K
*C *H * *dK

A* *( 1)*K

− α−
−

+α−

 − γ − δ + α
 −γ = β
 + α α − 

 (2.46) 

Next, substitute from (2.45) into (2.46) to obtain: 

( ) ( )
1

K 1
K K2

*H * (1 ) A* *K
*H * * 1 *A*K H

A*C* *( 1)*K

α−
α−

α−

 − γ − δ + α
  −γ = β − δ + α −  + α α − 

 (2.47) 

To relieve the algebraic load, it is useful to note from (2.41) that 

( )11 (1 ) A* *Kα−= β − δ + α   (2.48) 

Thus HK satisfies the quadratic equation: 

 2
K Ka2*H a1*H a0 0+ + =   (2.49) 

where  
 a2 = γ  (2.50) 

 2a1 *C*( 1)*A* *Kα−γ= γ − −β α − α
β

 (2.51) 

and 

 2a0 C*( 1)*A* *Kα−= α − α  (2.52) 

A quadratic equation normally has two solutions.  We must use information from outside the 
equation system to choose between these solutions.  In experiments with the standard model, 
we have found that (2.49) to (2.52) gives two real solutions, one positive and one negative.  
When this happens, we accept the positive solution because we expect an increase in Kt to 
have a positive influence on Ct.   
Evaluating AH  using (2.17) to (2.23) with the baseline solution for years t and t+1 being 
the non-stochastic steady state and with a known value for KH  

Now we return to (2.17) to (2.23) and set: 

 dKt =0, dAt = 1, dεt+1 and dσ= 0 (2.53) 
We continue to assume that the baseline is a non-stochastic ( 0σ = ) steady state.  In this case, 
we can assume that KH (t)  and KH (t 1)+  have the value KH  computed in (2.49) to (2.52).  
We can also assume that  

 A A AH (t) H (t 1) H= + ≡  (2.54) 
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Then, (2.17) to (2.23) becomes 

t 1 tdK K dCα
+ = −   (2.55) 

t 1dA 0+ =   (2.56) 

t AdC H=   (2.57) 

t 1 K t 1 A t 1dC H *dK H *dA+ + += +   (2.58) 

( )
( )

1 1
t t 11

t 1 2
t t 1 t 1

*C *E dC * (1 ) A * *K
*C *dC *

C * E dA * *K A * *( 1)*K *dK

−γ− α−
+−γ−

−γ α− α−
+ +

 − γ − δ + α
 −γ = β
 + α + α α − 

 (2.59) 

 

t t 1E dA 0+ =  (2.60) 

t t 1 K t 1E dC H *dK+ +=   (2.61) 

We reduce this 7-equation system to one equation in 1 unknown ( AH ) by deleting (2.56) and 
(2.58) and substituting from (2.57) (2.55), (2.60) and (2.61) into (2.59): 

( )
( ) ( )

1
K

A A2

*H * (1 ) A * *K
*H * * K H

C* A * *( 1)*K

α−

α

α−

 − γ − δ + α
 −γ = β −
 + α α − 

 (2.62) 

Simplifying using (2.48), we can solve (2.62) for AH : 

( )2
K

A 2
K

*H *C*A* *( 1)*K * K
H

*H *C*A* *( 1)*K

α− α

α−

 − γ + β α α − =
 −γ − γ + β α α − 

 (2.63) 

Reassuringly we see that AH  is positive. 

Evaluating Hσ  using (2.17) to (2.23) with the baseline solution for years t and t+1 being the 
non-stochastic steady state and with known values for KH  and AH  

We set: 

 dKt =0, dAt = 0, dεt+1 and dσ= 1 (2.64) 
Again we assume that the baseline solution is a non-stochastic ( 0σ = ) steady state.  In this 
case we can assume that KH (t)  and KH (t 1)+  have the value KH  computed in (2.49) to 
(2.52) and AH (t)  and AH (t 1)+  have the value AH  computed in (2.63).  We can also assume 
that  

 H (t) H (t 1) Hσ σ σ= + ≡  (2.65) 

Then, (2.17) to (2.23) becomes 

t 1 tdK dC+ = −   (2.66) 

t 1 t 1dA A+ += ε   (2.67) 

tdC Hσ=   (2.68) 

t 1 K t 1 A t 1dC H *dK H *dA H+ + + σ= + +   (2.69) 
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( )
( )

1 1
t t 11

t 1 2
t t 1 t 1

*C *E dC * (1 ) A * *K
*C *dC *

C * E dA * *K A * *( 1)*K *dK

−γ− α−
+−γ−

−γ α− α−
+ +

 − γ − δ + α
 −γ = β
 + α + α α − 

 (2.70) 

t t 1E dA 0+ =  (2.71) 

 t t 1 K t 1E dC H dK H+ + σ= +   (2.72) 

We reduce this 7-equation system to one equation in 1 unknown ( Hσ ) by deleting (2.67) and 
(2.69) and substituting from (2.66) (2.68), (2.71) and (2.72) into (2.70): 

( )
( )

1
K

2

*(1 H )*H * (1 ) A * *K
*H *

C* A * *( 1)*K *H

α−
σ

σ α−
σ

 − γ − − δ + α
 −γ = β
 + − α α − 

 (2.73) 

Using (2.48) and making other simplifications we can rearrange (2.73) as  
2

K0 H *C*A* *(1 )*K *Hα−
σ = γ + β α − α   (2.74) 

The bracketed term on the RHS of (2.74) is positive.  We can conclude that 
H 0σ =  (2.75) 

This is a striking result.  It means that a small increase in uncertainty from the zero level  
( 0σ = ) has no effect on consumption.  This is disappointing.  The “S” in DSGE holds out 
hope that models in this tradition will help us understand the role of uncertainty in 
determining macro-economic aggregates.  However, this doesn’t seem to be true when we 
start from a position of no uncertainty, and at this stage we don’t know how to develop a 
known solution or baseline that incorporates a realistic level of uncertainty.   
Numerical example: finding the first-order approximation to the consumption function in 
the standard model 
The analysis so far has been heavily algebraic.  A numerical example will provide a check on 
whether the numerous formulas produce reasonable results while at the same time assisting 
our general understanding.   

We assume that β=0.9, δ=0.05, A =1, α=0.5 and γ=0.5. 

Then from (2.43) and (2.44) we find that K  = 9.63139 and C = 2.62188.  KH  can now be 
evaluated from (2.49) which in this numerical example is  
 2

K K0.5*H 0.035819*H 0.021929 0− − =  (2.76) 

This gives two solutions: 0.248284 and -0.176645 
We accept the positive solution: the quantity of consumption should increase if households 
are given an extra unit of capital.  Hence  

 KH  = 0.248284 (2.77) 

Using (2.63) we find that  

 AH  = 0.683924 (2.78) 

Thus, the first-order approximation to the consumption function in the neighbourhood the 
non-stochastic steady-state solution is: 

  t t tC 2.62188 0.248284*(K 9.63139) 0.693482*(A 1)= + − + −  (2.79) 
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As expected, the coefficients on Kt and At are both positive.  But why should a unit increase 
in A t boost consumption by 2.79 times as much as a unit increase in Kt (2.79 = 
0.693482/0.248284)?  
One way to understand this result is to consider two experiments.  In the first, we assume that 
the household receives a small increase in capital, say 0.01 units, and decides after allowing 
for depreciation, to devote all of this windfall to extra consumption in year t with no change 
in capital or consumption in future years.  The year-t increase in consumption is 
 ( )t capitaldC A *(K 0.01) A *(K) (1 )*0.01 0.011102α α= + − + − δ =   (2.80) 

In the second experiment, we assume that there is a temporary 0.01 increase in technology in 
year t, generating extra income.  If the household decides to consume all this extra income in 
year t, then the increase in consumption is:   

 ( )t techdC 0.01*K 0.031034α= =   (2.81) 

Equations (2.80) and (2.81) indicate that a 0.01unit transitory increase in technology 
potentially generates a consumption increase that is 2.79 (=0.031034/0.011102) times that 
generated by a 0.01 unit increase in capital.  On this basis we would expect the ratio of the 
coefficient on At to be about 2.79 times the coefficient Kt.       
2.3.  A DSGE model with 2 predetermined variables solved with policy rules for welfare 
derivatives   
Optimizing behaviour by households leads to equations that relate the effect on household 
welfare of variations in year-t levels of endogenous predetermined variables to the expected 
effects on welfare of variations in their year-t+1 levels.  By endogenous predetermined 
variables we mean those whose predetermined values in year t+1 are influenced by household 
decisions in year t or earlier.  In the standard model that we have been studying in the 
previous subsections, capital is the only endogenous predetermined variable.  We found that 
households plan consumption (their only decision variable) so that the welfare effect of 
having an extra unit of capital in year t, VK(t), is related in a particular way to the expected 
value of having an extra unit in year t+1, VK(t+1), see (2.9).  However, in deriving the 
consumption function for the standard model, we didn’t use directly the relationship between 
the current and expected future welfare effects of variations in capital.  Instead, we eliminated 
VK(t) and VK(t+1) and derived (2.16).  This equation relates the current value of an extra unit 
of consumption to the expected future value.  Correspondingly, we expressed the policy rule 
as a function for determining consumption, see (2.5) and (2.6).  
In general, the number of policy rules must be the same as the number of endogenous 
predetermined variables.  Complete elimination of the rather abstract current and expected 
future marginal welfare variables (V derivatives) is possible only in the special case in which 
the number of predetermined endogenous variables matches the number of decision variables, 
e.g. one predetermined endogenous variable, wealth, and one decision variable, consumption.  
When this match does not occur, it is convenient to retain the V derivatives and derive policy 
rules for setting these derivatives.  In this section we explain these points by setting out a 
variation of the standard model in which there are two endogenous predetermined variables, 
capital and the lagged wage rate, and one decision variable, consumption.   
In this model, labour input in year t (Nt) is explicit and output is a Cobb-Douglas constant-
returns-to-scale function of capital and labour.  The accumulation relationship is: 

( ) 1
t 1 t t t t tK K * 1 A * K * N Cα −α
+ = − δ + −   (2.82) 
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The wage rate (Wt) equals the marginal product of labour6:   

( )t t t tW 1 * A * K * Nα −α= − α   (2.83) 

We assume that the wage rate adjusts sluggishly through time: 

t t tW WL * Nη=   (2.84) 

where  
η is a positive parameter; and  
WLt is the lagged wage rate in year t, so that  

t 1 tWL W+ =   (2.85) 

As in the standard model, see (2.2), stochastics is introduced via: 

t 1 t 1A A*exp( )+ += σε   (2.86) 

Equations (2.83) and (2.84) imply that labour input (employment) and the wage rate in year t 
are given by  

1

t t
t

t

(1 )*A *KN
WL

α η+α − α=  
 

  (2.87) 

( )t t t tW WL (1 )*A *K
α η

αη+α η+α= − α   (2.88) 

 
Substituting (2.85) into (2.88) and (2.87) into (2.82) gives equations for the year t+1 values of 
the two predetermined variables (the lagged wage and capital) in terms of year t variables:  

( )t 1 t t tWL WL * (1 )*A *K
α η

αη+α η+α
+ = − α   (2.89) 

( )
1

t t
t 1 t t t t

t

(1 )*A *KK K * 1 A *K * C
WL

−α
α η+α

α
+

 − α= − δ + − 
 

  (2.90) 

The household in this model understands (2.89) and (2.90). In deciding its consumption for 
year t, it takes account not only of Kt, as in the standard model, but also of WLt.  Both these 
variables have implications for the conditions that the household will face in year t+1.  We 
continue to assume that (2.3) applies but this now leads to a version of (2.4) in which there is 
an extra argument in the V function: 

( ) [ ]
1
t

t t t t t 1 t 1 t 1
CV K , WL ,A , *E V(K , WL ,A , )
1

−γ

+ + +σ = + β σ
− γ

  (2.91) 

Optimizing with respect to Ct gives 

t 1 t 1
t t K WL

t t

K WLC *E V (t 1) V (t 1) 0
C C

−γ + + ∂ ∂+ β + + + = ∂ ∂ 
  (2.92) 

where 

 
6  The product price is the numeraire, fixed on 1.   
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VK(t+1) and VWL(t+1) are the derivatives of V with respect to its first two argument 
evaluated at the t+1 values of its 4 arguments; and 

t 1 tK C+∂ ∂  and t 1 tWL C+∂ ∂ are the partial derivatives of Kt+1 and WLt+1with respect to Ct 
evaluated from the right hand sides of (2.90) and (2.89) holding Kt, At, and WLt constant.   

Differentiating in (2.91) with respect to Kt gives  

t
K t

t

t 1 t 1 t t 1 t 1 t
t K WL

t t t t t t

CV (t) C *
K

K K C WL WL C*E V (t 1)* * V (t 1)* *
K C K K C K

−γ

+ + + +

∂=
∂

    ∂ ∂ ∂ ∂ ∂ ∂+ β + + + + +    ∂ ∂ ∂ ∂ ∂ ∂    

 (2.93) 

where  

t 1 tK K+∂ ∂  is the partial derivative of Kt+1 with respect to Kt evaluated from the right hand 
side of (2.90) holding Ct, At and WLt  constant;  

t 1 tWL K+∂ ∂  is the partial derivative of WLt+1 with respect to Kt evaluated from the right 
hand side of (2.89) holding At and WLt constant; 

t tC K∂ ∂  is the partial derivative of year-t consumption with respect to Kt holding constant 
other determinants of current consumption which are At, WLt and σ; and 

t 1 tK C+∂ ∂  and t 1 tWL C+∂ ∂ are as defined earlier.    

Differentiating in (2.91) with respect to WLt gives  

t
WL t

t

t 1 t 1 t t 1 t 1 t
t K WL

t t t t t t

CV (t) C *
WL

K K C WL WL C*E V (t 1)* * V (t 1)* *
WL C WL WL C WL

−γ

+ + + +

∂= +
∂

    ∂ ∂ ∂ ∂ ∂ ∂β + + + + +    ∂ ∂ ∂ ∂ ∂ ∂    

 (2.94) 

 
where  

t 1 tK WL+∂ ∂  is the partial derivative of Kt+1 with respect to WLt evaluated from the right 
hand side of (2.90) holding Ct, At and Kt  constant;  

t 1 tWL WL+∂ ∂  is the partial derivative of WLt+1 with respect to WLt evaluated from the right 
hand side of (2.89) holding At and Kt constant; and 

t tC WL∂ ∂  is the partial derivative of year-t consumption with respect to WLt holding 
constant other determinants of current consumption which are At, Kt and σ.   

Use (2.92) to simplify (2.93) and (2.94): 

t 1 t 1
K t K WL

t t

K WLV (t) *E V (t 1)* V (t 1)*
K K

+ +
    ∂ ∂= β + + +    ∂ ∂    

  (2.95) 

t 1 t 1
WL t K WL

t t

K WLV (t) *E V (t 1)* V (t 1)*
WL WL

+ +
    ∂ ∂= β + + +    ∂ ∂    

   (2.96) 

That is: 
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t 1 t 1
t KK

t t

t 1 t 1
WL t WL

t t

K WL E (V (t 1))V (t)
K K

* *
K WL

V (t) E (V (t 1))
WL WL

+ +

+ +

∂ ∂  +    ∂ ∂     = β     ∂ ∂ 
   +    ∂ ∂ 

  (2.97) 

In compact notation we have: 

 [ ]tVD(t) *Q(t)*E VD(t 1)= β +   (2.98) 

where  
Q(t) is the matrix of derivatives on the right hand side of (2.97); and 
VD(t) is the vector of partial derivatives of V evaluated at year-t values of variables. 

Equation (2.98) corresponds to (2.9) in the standard model.  In the standard model we 
manipulated (2.9) to eventually arrive at (2.16) which expresses year-t consumption in terms 
of the expected value of year t+1 consumption without the presence of V derivatives.  We 
attempted to derive an equation similar to (2.16) for the present model.  Starting from (2.98), 
and noting that Q(t) will generally be of full rank, we wrote  

 [ ]1
tQ(t) * VD(t) * E VD(t 1)− = β +   (2.99) 

This corresponds to (2.10) in the standard model.  Next we substituted from (2.99) into 
(2.92): 

1t 1 t 1
t

t t

K WLC , Q(t) *VD(t) 0
C C

−γ −+ + ∂ ∂+ = ∂ ∂ 
  (2.100) 

This corresponds to (2.11) in the standard model.  The next step with the standard model was 
to derive (2.12), which expresses VK(t) in terms of Ct.  But the equivalent step is not possible 
here. VD(t) is a 2 by 1 vector of unknowns which cannot be solved using the single equation 
(2.100).   
Rather than eliminating VD(t), the solution method we suggest for the current model depends 
on specifying a policy rule for VD, that is a vector that gives a policy rule for each of the 
partial derivatives of V.  This rule can be written as:   

 t t tVD(t) M(K , WL ,A , )= σ   (2.101) 

 t 1 t 1 t 1VD(t 1) M(K , WL ,A , )+ + ++ = σ   (2.102) 

Given this rule, we can simulate forward for any scenario for At+τ for τ= 1, 2, …, as follows.   

Starting from Kt, WLt, At and σ, evaluate VD(t) in (2.101). Then compute  

1t 1 t 1
t

t t

K WLC *Q(t) *VD(t)
C C

−γ −+ + ∂ ∂= − ∂ ∂ 
  (2.103) 

Substitute into (2.90) and (2.89) to obtain Kt+1 and WLt+1.  Then proceed to year t+1.   
But how do we determine the form of M?   
A first-order approximation for M can be found by applying the perturbation method around 
a non-stochastic steady state.  The required non-stochastic steady-state solution can be 
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obtained by assuming At = A and working with steady-state versions of (2.89), (2.90), (2.92) 
and (2.98): 

( )WL WL * (1 )*A*K
ηα α η+αη+α= − α   (2.104) 

( )
1

(1 )*A*KK K * 1 A*K * C
WL

−α
α η+α

α  − α = − δ + −
 
 

  (2.105) 

KC *V
−γ

= β   (2.106) 

and 

 VD *Q*VD= β   (2.107) 

 
In (2.106) we have simplified (2.92) by recognizing that t 1 tK C 1+∂ ∂ = −  and t 1 tWL C 0+∂ ∂ = .  In 
(2.107) we assume that VD 0≠ .  This means that  

 det I *Q 0 −β =   (2.108) 

In (2.107) and (2.108), Q  is a function of K  and  WL given by: 

( )
( )

( )
( )

( ) ( )

1
1

( ) ( )( )

1
1 ( )

(1 )A (1 )(1 ) A * * * K WL * (1 ) * A * K
( ) ( )WL

Q

1 1* A * K * (1 ) * A * K * * WL * (1 ) * A * K
WL

−α αη−α−ηη α− α ηα+η α+ηα+η η+α η+α

+η
η−α ηα+ηα α αη+αη+α η+α

 
− α + η α αη  − δ + − α  α + η α + η  

=  
 
 − α α − − α − α  η + α η + α   

(2.109) 

With Q  replaced by the right hand side of (2.109), the system (1.104) to (1.108) contains 6 
equations and 5 unknowns: K , WL , C , KV  and WLV .  Under our assumption that VD 0≠ , 
the 2 equations in (2.107) are linearly dependent.  Consequently, one of them can be deleted, 
leaving us with 5 equations to determine the 5 unknowns.   
Once the non-stochastic steady-state solution is in place, we can use it as the baseline and 
create a linearized version of the model in which the variables are deviations from this 
baseline.  Rather than presenting this linearized version in its full algebraic complexity, we 
set it out in stylized form:  

t 1 2.89 t t tdWL f (dWL ,dA ,dK )+ =   (2.110) 

t 1 2.90 t t t tdK f (dK ,dA ,dWL ,dC )+ =   (2.111) 

t 2.92 t t t tdC f (E dVD(t 1),dK ,dA ,dWL )= +   (2.112) 

( )t 2.98 t t tE dVD(t 1) f dVD(t),dK ,dWL ,dA+ =  (2.113) 

K t WL t A tdVD(t) M *dK M *dWL M *dA M *dσ= + + + σ   (2.114) 

t K t 1 WL t 1E dVD(t 1) M *dK M *dWL+ ++ = +  (2.115) 
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Equations (2.110) and (2.111) are linearized versions of (2.89) and (2.90).  Equation (2.112) 
is a linearized version of (2.92) with dCt isolated on the left hand side.  Equation (2.113) is a 
linearized version of (2.98) with tE dVD(t 1)+  isolated on the left hand side.  In (2.113) we 
assume that the components of Q(t) do not depend on Ct.  This assumption is valid in the 
current model, but its use here is convenient rather than essential.  Equation (2.114) is a 
linearized version of the policy rule (2.101).  Equation (2.115) shows in linearized form the 
household’s expectation for dVD(t+1) on the assumption that the household expects to be 
following policy rule (2.101).  We assume that the household’s expectations for dσ and dAt+1 
are always zero and that dKt+1 and dWLt+1 are non-stochastic.   

To determine the values of KM , WLM , AM  and Mσ  to be used in a first order approximation 
to the policy rule, we conduct four experiments with the linearized equations (2.110) to 
(2.115).  In these experiments, the four exogenous or predetermined variables, dKt, dWLt, 
dAt and dσ, are shocked individually. 
In the first experiment, dKt= 1 and changes in the other exogenous variables are zero. This 
leads to: 

t 1 2.89dWL f (0,0,1)+ =   (2.116) 

t 1 2.90 tdK f (1,0,0,dC )+ =   (2.117) 

t 2.92 tdC f (E dVD(t 1),1,0,0)= +   (2.118) 

EtdVD(t+1) = f2.98(dVD(t), 1, 0,0) (2.119) 

KdVD(t) M=   (2.120) 

t K t 1 WL t 1E dVD(t 1) M *dK M *dWL+ ++ = +  (2.121) 

After a series of substitutions, (2.116) to (2.121) reduces to:  

( ) ( )2.98 K K 2.90 2.92 2.98 K WL 2.89f M ,1,0,0 M * f (1,0,0,f (f M ,1,0,0 ,1,0,0)) M * f (0,0,1)= +  (2.122) 

In the second experiment, dWLt= 1 and changes in the other exogenous variables are zero. 
This leads to: 

( ) ( )2.98 WL K 2.90 2.92 2.98 WL WL 2.89f M ,0,1,0 M * f (0,0,1, f (f M ,0,1,0 ,0,0,1)) M * f (1,0,0)= +  (2.123) 

Together, (2.122) and (2.123) give 4 equations that can be used to determine the 2 
components of KM  and the 2 components of WLM . 

In the third experiment dAt  = 1 and changes in the other exogenous variables are zero. This 
experiment reveals the value of AM  given that we already know the values of KM  and WLM . 

In the fourth experiment dσ  = 1 and changes in the other exogenous variables are zero. This 
experiment shows that M 0σ = . 

3.  Towards a DSGE consumption function for a full-scale CGE model 
In this section, we reformulate the theory from section 2 in a way that we hope will lead to a 
DSGE specification of consumer behaviour suitable for incorporation in a CGE model.  
Towards this objective, we refer to wealth accumulation rather than capital accumulation and 
we work as much as possible with elasticities rather than derivatives.  Following subsection 
2.3, we specify the household’s policy as a function for determining the derivatives of 
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lifetime welfare with respect to pre-determined variables, and we use the perturbation method 
to derive the elasticities of this policy function with respect to variations in exogenous 
variables.  Our derivation of these elasticities is long and potentially error prone.  As a partial 
check, we apply our formulas to the standard neoclassical model and show that they lead to 
the same results as in subsection 2.2.   

Model 

CGE wealth accumulation equation: 

 ( )t 1 t t tX J X , Z ,C+ =   (3.1) 

In (3.1) we have in mind a CGE wealth accumulation relationship in which household 
wealth at the start of year t+1 (Xt+1) is a function of household wealth at the start of year 
t (Xt), consumption during year t (Ct) and other variables exogenous to households (Zt).  
These other variables could include technologies, consumer preferences, the terms of 
trade, public expenditure, and the state of business confidence. We assume that the Z 
vector for year t is known to households in year t, but the Z vector for future years is 
known in year t only in a probabilistic form.  As in previous sections, we indicate 
uncertainty by a variance/covariance variable denoted by σ.  The exogenous Z variables 
through the CGE model can be thought of as determining components of household 
income such as wage rates, employment, profits and transfer payments. 

Consumer lifetime welfare: 

( ) ( ) ( )t t t t t t 1 t 1V X , Z , U C , X *E V X , Z ,+ +σ = + β σ     (3.2) 

In (3.2) we generalize the earlier specification, e.g. (2.4), by making the utility 
contribution in year t a function not only of consumption (Ct) but also of wealth (Xt).  
We assume that wealth contributes to lifetime welfare not only by facilitating future 
consumption but also by providing a sense of security in each year.  For concreteness, we 
give U the specific form 

( )
( )

11
t tX *C

U(t)
1

−γ−θ θ

=
− γ

  (3.3) 

where γ and θ are positive parameters, with γ < l and θ ≤ 1.  We use the notation U(t) to denote 
the value of utility in year t.  In view of the inability of the method being pursued in this 
paper to produce a consumption function that gives non-zero responses to variations in σ [see 
(2.75)], the inclusion of Xt in the utility function seems a potentially attractive path for 
capturing effects of uncertainty.  For example, we might simulate growing uncertainty by 
decreasing θ.   
Optimizing consumption between the current year and the future leads to  

[ ]{ } t 1
C t X

t

XU (t) * E V (t 1) * 0
C

+∂
+β + =

∂
  (3.4) 

where UC(t) and VX(t+1) denote partial derivatives of U and V with respect to 
C and X evaluated with the arguments in the U and V functions set at their 
year t and t+1 values. 
Differentiating the V function in (3.2) with respect to X gives 
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t t 1 t 1 t
X X C t X X

t t t t

C X X CV (t) U (t) U (t)* *E V (t 1)* V (t 1)* *
X X C X

+ + ∂ ∂ ∂ ∂
= + + β + + + ∂ ∂ ∂ ∂ 

  (3.5) 

By using (3.4) we can simplify (3.5) to: 

[ ]{ } t 1
X X t X

t

XV (t) U (t) * E V (t 1) *
X

+∂
= + β +

∂
  (3.6) 

As in subsection 2.3, we specify the policy rule for consumers as a function of 
the derivative of V, this time with respect to wealth rather than capital: 

[ ]X t tV (t) M X ,Z ,= σ   (3.7) 

Finally, we assume that the household expects in year t to be implementing its policy 
rule in year t+1.    

[ ]t X t t 1 t 1E V (t 1) E M X ,Z ,+ ++ = σ   (3.8) 

Linearizing (3.1), (3.4), (3.6), (3.7) and (3.8): an elasticity format 
As in section 2, we assume that the DSGE model in this section has a non-stochastic 
steady state.  Then we linearize the model’s equations [(3.1), (3.4), (3.6), (3.7) and (3.8)] 
around this steady state.  In CGE modelling, we are accustomed to specifying 
equations in terms of elasticities and percentage changes in variables rather than 
derivatives and changes in variables.  Consequently, to ease the transfer of DSGE  
specifications into CGE modelling it is useful to express DSGE linearized equations 
mainly in elasticity percentage-change form.   
We derive the linearized system in a general form and use the general form in two tasks:  

(i) to determine the elasticity (MX) of the policy rule with respect to wealth (Xt); and 
then 

(ii) to specify the household’s consumption function, that is the function relating Ct to 
Xt and Zt. 

As in section 2 we assume that σ is fixed on zero.     
To derive the linearized system we start by writing the linearized version of (3.1) as: 

t 1 X t C t Z tx J * x J *c J *z+ = − +   (3.9) 

where  
xt+1, xt, ct and zt are percentage deviations in Xt+1, Xt, Ct and Zt from their steady-
state values; and 
JX, JC and JZ (without t arguments) are elasticities of the J function in (3.1) 
evaluated at steady-state values of the variables.  In general, the elasticities are 
defined by:    

 t 1 t
X

t t 1

X XJ (t) *
X X

+

+

∂
=

∂
 (3.10) 

 t 1 t
C

t t 1

X CJ (t) *
C X

+

+

∂
= −

∂
   (3.11) 

and 

 t 1 t
Z

t t 1

X ZJ (t) *
Z X

+

+

∂
=

∂
   (3.12) 
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In (3.10) to (3.12) we use the notation JX(t), JC(t) and JZ(t) to denote elasticities 
evaluated with variables set at their year t values.  The absence of these t arguments 
in (3.9) means that the elasticities are evaluated at steady-state values.  We assume 
that both JX(t) and JC(t) are non-negative.  As becomes apparent shortly, we will need to 
compute percentage changes in JX(t) and JC(t).  Percentage changes in negative quantities are 
not well defined.  JX(t) presents no problem,.  We expect the elasticity of future wealth with 
respect to current wealth to be positive.  However, we expect an increase in current 
consumption to reduce future wealth.  Consequently, to ensure that JC is positive, we define it 
in (3.11) with a negative sign on the right hand side.  The same problem does not arise with 
JZ(t).  It can be either positive or negative.  We don’t need to compute percentage changes in 
it.   
Next we use (3.3), (3.8) and (3.11) to obtain a non-stochastic version of (3.4): 

 1 1 1 t 1
t t t t C

t

X*C *X (X *C ) *M(t)*J (t)*
C

θ− −θ −θ θ −γ +θ = β    (3.13) 

where 

 [ ]tM(t) E M(t 1)= +   (3.14) 

Linearizing (3.13) gives: 

 t t C t 1 t( 1 * )*c (1 )(1 )*x m(t) j (t) x c+θ − − θ γ + − θ − γ = + + −   (3.15) 

where  

m(t)  and jC(t) are percentage deviations in M(t)  and JC(t) from their steady-state 
values.  Notice that by using the negative sign on the right hand side of (3.11) so 
that JC is positive, we ensure the existence of the percentage change jC(t).   

We calculate jC(t) via a linearized version of (3.11): 

 C CX t CC t CZ tj (t) J * x J *c J *z= + +   (3.16) 

JCX, JCC and JCZ (without t arguments) are elasticities of the JC function in (3.11) 
evaluated at steady-state values of the variables.  In general, these elasticities are 
defined by:    

 C t
CX

t C

J (t) XJ (t) *
X J (t)

∂=
∂

  (3.17) 

 C t
CC

t C

J (t) CJ (t) *
C J (t)

∂=
∂

  (3.18) 

and 

 C t
CZ

t C

J (t) ZJ (t) *
Z J (t)

∂=
∂

  (3.19) 

We use (3.3), (3.7), (3.8), (3.14) and (3.10) to obtain a non-stochastic version of 
(3.6): 

 ( ) { }1 t 1
t t t t X

t

XM(t) 1 *X *C *(X *C ) * M(t) *J (t)*
X

−θ θ −θ θ −γ += − θ + β    (3.20) 
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Linearizing (3.20) gives 

( ) [ ]X t t X X t 1 t

M *m(t)
U * * * x (1 )* *c *M *J * m(t) j (t) x x+

=

θ γ − θ − γ + − γ θ + β + + −   
  (3.21) 

where  
m(t) and jX(t) are percentage deviations in M(t) and JX(t) from their steady-state 
values.  In deriving (3.21) we use the facts that the steady-state values of M(t) and 
Et[M(t+1)]  are the same and can be written as M, and that the steady state values 
of Xt and Xt+1 are the same.   

We calculate jX(t) via a linearized version of (3.10): 

 X XX t XC t XZ tj (t) J * x J *c J *z= + +   (3.22) 

JXX, JXC and JXZ (without t arguments) are elasticities of the JX function in (3.10) 
evaluated at steady-state values of the variables.  In general, these elasticities are 
defined by:    

 tX
XX

t X

XJ (t)J (t) *
X J (t)

∂=
∂

  (3.23) 

 tX
XC

t X

CJ (t)J (t) *
C J (t)

∂=
∂

  (3.24) 

and 

 tX
XZ

t X

ZJ (t)J (t) *
Z J (t)

∂=
∂

  (3.25) 

With σ fixed, we write the linearized form of (3.7) as 

 X t Z tm(t) M *x M *z= +  (3.26) 

where 

MX and MZ are the steady state values of the elasticity of the M function with 
respect to X and Z defined by: 

 t
X

t

XM(t)M (t) *
X M(t)

∂=
∂

   and   t
Z

t

ZM(t)M (t) *
Z M(t)

∂=
∂

 (3.27) 

We assume in this section (but not in section 4) that year t contains no information 
about exogenous variables in year t+1. Thus, in this section we have  
 Et[zt+1]=0    (3.28) 
leading to a simple linearized form for (3.8): 

 X t 1m(t) M *x +=  (3.29) 

In deriving (3.29), we not only adopt (3.28) but we also note that xt+1 is non-stochastic: it is 
completely determined in (3.1) by year-t variables.   
Evaluating MX  
We work with the seven equations (3.9), (3.15), (3.16), (3.21), (3.22), (3.26) and (3.29).  We 
take the values of the parameters, γ, β and θ, as given and we assume that the coefficients JX, 
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JC, JZ, JCC, JCX, JCZ, JXC, JXX, JXZ, M and UX can be evaluated from the non-stochastic steady-
state solution of our model.  For the purposes of evaluating MX, we treat xt and zt, as 
exogenous variables.  
To obtain MX, we set  
 xt = 1 and zt = 0   (3.30) 
With the z variable set in this way, MZ disappears from our 7 equations.  This leaves 7 
unknowns, xt+1, ct, jC(t), jX(t), m(t), m(t)  and MX, in 7 equations.  With xt set on one and zt 
set on zero, the valid solution for MX (as we will see shortly there is more than one solution) 
reveals the steady-state elasticity of M(t) with respect to Xt: it is the percentage effect on M 
of a 1 per cent increase in Xt holding constant all other exogenous variables.   
Under condition (3.30), we obtain a quadratic expression for MX by eliminating the other 6 
unknowns from the 7 equations.  To do this, we start by using (3.26), (3.29), (3.16) and (3.22) 
to eliminate m(t), m(t) , jC(t) and jX(t) from (3.15) and (3.21): 

 t X t 1 CX CC t t 1 t( 1 * )*c (1 )(1 ) M * x J J *c x c+ +θ − − θ γ + − θ − γ = + + + −   (3.31) 

( ) [ ]
X

X t X X t 1 XX XC t t 1

M*M
U * * (1 )* *c *M*J * M *x J J *c x 1+ +

=

θ γ − θ − γ + − γ θ + β + + + −  
  (3.32) 

Rearranging (3.9) we obtain 

t 1 X
t

C

x Jc
J

+ −=  − 
  (3.33) 

Substituting from (3.33) into (3.31) and (3.32) gives 

 
[ ]{ }

[ ]{ }
X CC C CX

t 1
C X CC

J ( * J ) J (1 )(1 ) J
x

J M 1 ( * J ) +

− θ − θ γ − − − θ − γ −
=

− + − θ − θ γ −
   (3.34) 

and 

( ) ( ){ }

[ ]

( )

X X XX X

t 1 X
X X XC

C

X X t 1

M *M *M *J * J 1 U * *

x JU *(1 )* *M *J *J *
J

*M *J * M 1 * x

+

+

− β − − θ γ − θ − γ =

 −+ − γ θ + β  − 
+ β +  

 (3.35) 

Rearrange (3.35) to obtain 

( ) ( )
[ ]

( ) [ ]{ }

C X C X XX C X

X X X X XC
t 1

C X X X X XC

J *M *M J * *M *J * J 1 J *U * *

J * U *(1 )* J * *M *J *J
x

J * *M *J * M 1 U *(1 )* *M *J *J +

 − β − − θ γ − θ − γ 
 

− − γ θ + β   =
β + − − γ θ + β  

 (3.36) 

Combine (3.34) and (3.36) to eliminate xt+1: 
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( ) ( )
[ ]

( ) [ ]{ }

[ ]{ }
[ ]{ }

C X C X XX C X

X X X X XC

C X X X X XC

X CC C CX

C X CC

J *M*M J * *M*J * J 1 J *U * *

J *U *(1 )* J * *M*J *J

J * *M*J * M 1 U *(1 )* *M*J *J

J ( * J ) J (1 )(1 ) J
J M 1 ( * J )

 − β − − θ γ − θ − γ 
 

− − γ θ + β  
β + − − γ θ + β  

− θ − θ γ − − − θ − γ −
=

− + − θ − θ γ −

   (3.37) 

Cross multiply in (3.37): 

( ) ( )
[ ]

{ }

[ ]{ }
[ ]{ }

    
  

C X C X XX C X

C X C CC

X X X X XC

X CC C CX

C X X C X X X XC

J *M*M - J *β*M* J * J -1 - J * U * θ* γ-θ- γ
* -J M - J -(θ-θ* γ- J )

- J *U * (1- γ)*θ+J *β *M* J * J

= -J (θ-θ* γ- J )- J (1-θ)(1- γ)- J

* J *β *M* J *M +J *β*M* J - U * (1- γ)*θ+β*M* J * J

 (3.38) 

Working with (3.38) we find that MX satisfies the quadratic equation: 

 X X
2e2* e1* 0M M e0+ + =   (3.39) 

where  

 { }2
Ce2 J *M=  (3.40) 

 

[ ]{ } { }
[ ]

( ) { }

{ } { }

  
 

    

X CC C CX C X

C X XX X X XC X

C

C X

C C CC

e1= -J (θ-θ * γ - J )- J (1-θ)(1- γ)- J * J *β *M* J

-J β *M* J * (J -1)- U * (1- γ)* θ+β *M* J * J * J
+ * J
-J U * θ* γ-θ- γ

+ J M * J +(θ-θ * γ- J )

 (3.41) 

and 

[ ]{ } [ ]{ }
[ ]

( ) { }
  
 

    

X CC C CX C X X X XC

C X XX X X XC X

C CC

C X

e0= -J (θ-θ* γ- J )- J (1-θ)(1- γ)- J * J β*M* J - U *(1- γ)*θ+β*M* J * J

-J β*M* J * (J -1)- U * (1- γ)*θ+β*M* J * J * J
+ * J +(θ-θ* γ- J )
-J U * θ* γ-θ- γ

 (3.42) 

Equations (3.39) to (3.42) will normally give two real solutions for MX.  Which should we 
choose?  In our admittedly limited experience, we have found that one of the solutions is 
negative and one positive.  We choose the negative solution: an increase in Xt reduces the 
value of an extra unit of wealth.   
The household consumption function 
With the value of MX now known, we can use our 7 equations to deduce how consumption 
(Ct) depends on wealth (Xt) and current values of exogenous variables (Zt).   
System (3.9), (3.15), (3.16), (3.21), (3.22), (3.26) and (3.29) gives 7 equations in 6 variables, 
xt+1, ct, jC(t), jX(t), m(t) and m(t)  together with the unknown coefficient MZ which appears 
only in (3.26).  We delete (3.26): it could be used to back solve for MZ if required.  However, 
as we will see, MZ is not required in the derivation of the consumption function.  After 
deleting (3.26) and MZ we are left with a system of 6 linear equations in 6 variables.  We 
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work towards the consumption function, starting by substituting from (3.16) and (3.29) into 
(3.15):  

t t X t 1 CX t CC t CZ t t 1 t( 1 * )*c (1 )(1 )* x M * x J * x J *c J *z x c+ +θ − − θ γ + − θ − γ = + + + + −  (3.43) 

Use (3.9) to eliminate xt+1 from (3.43) 

[ ]
t t

X X t C t Z t CX t CC t CZ t

( * )*c (1 )(1 )* x
(M 1)* J * x J *c J *z J * x J *c J *z

θ − θ γ + − θ − γ
= + − + + + +

  (3.44) 

Rearrange (3.44): 

 
[ ]

[ ] [ ]
[ ]

X C CC t

X X t CX t t

X Z t CZ t

( * ) (M 1)*J J *c

(M 1) * J *x J *x (1 )(1 )*x

(M 1)* J *z J *z

θ − θ γ + + −

= + + − − θ − γ

+ +

  (3.45) 

From (3.45) we obtain the consumption function as: 

[ ]
[ ]

[ ]
[ ]

X X CX X Z CZ
t t t

X C CC X C CC

(M 1)J J (1 )(1 ) (M 1)J J
c *x *z

( * ) (M 1)*J J ( * ) (M 1)*J J
+ + − − θ − γ + +

= +
θ − θ γ + + − θ − θ γ + + −

  (3.46) 

Equation (3.46) confirms that MZ does not play a role in the determination of consumption.  
How should we interpret this?  We consider the standard neoclassical model in which Zt is 
technology.  An increase in Zt causes the economy to produce more income in year t with the 
given capital stock Xt.  How much of this transitory increase in income should be consumed 
and how much should be invested (the trade off between more Ct and more Xt+1) depends on: 
the productivity of capital in the future (reflected in the parameter α and the steady-state 
value of Z); the rate of diminishing marginal utility to consumption in the current year 
(reflected in the parameters γ and θ); and the rate at which future consumption is discounted 
relative to current consumption (reflected in the parameter β).  None of these factors is 
affected by a transitory improvement in technology.  These factors, together with the 
transitory increase in income generated by the increase in Zt, determine the increase in Ct 
independently of the effect of the change in Zt on the valuation of an extra unit of wealth in 
year t.   
Checking formulas (3.39) – (3.42) for MX and (3.46) for ct by applying them in the 
standard neo-classical model 
The model we are studying in this section, that is the model whose linearized form is given 
by (3.9), (3.15), (3.16), (3.21), (3.22), (3.26) and (3.29), is a generalization of the standard 
neoclassical model that we studied in sections 1 and 2.  It becomes the standard model if we 
set  

 θ = 1  (3.47) 
and adopt the specific form  

( )t 1 t t t tX X * 1 Z *X Cα
+ = − δ + −   (3.48) 

for the wealth accumulation equation (3.1).  We check that our more general model under 
conditions (3.47) and (3.48) produces results that are consistent with those in subsection 2.2.   
We start by deriving formulas in the standard model for the elasticities of the accumulation 
relationship: JC, JX, JZ, JXX, JXC, JXZ, JCC, JCX, JCZ.  Under (3.48) 



26 
 

 ( ) 1t 1 t t
X t t

t t 1 t 1

X X XJ (t) * 1 *Z *X *
X X X

α−+

+ +

∂
 = = − δ + α ∂

 (3.49) 

 t 1 t t
C

t t 1 t 1

X C CJ (t) *
C X X

+

+ +

∂
= − =

∂
   (3.50) 

and 

 t 1 t t
Z t

t t 1 t 1

X Z ZJ (t) * X *
Z X X

α+

+ +

∂
= =

∂
   (3.51) 

Now we derive the required elasticities of the elasticities  

 
t 1 t

t t 1 t t
XC C

t X t 1

X X*
X X C CJ (t) * J (t)

C J (t) X

+

+

+

 ∂∂  ∂ = = =
∂

 (3.52) 

 

( )
( )

( )( )t 1 t
12 1

t t tt tt t 1 t
XX 1

t X t 1t t

X X* 1 *Z *X *X1 *Z *XX X XJ (t) *
X J (t) X1 *Z *X

+
α−α−

+
α−

+

 ∂∂     − δ + α − δ + α∂      = = − ∂  − δ + α   
  (3.53) 

 
t 1 t

t t 1 t t
CC C

t C t 1

X C*
C X C CJ (t) * 1 1 J (t)

C J (t) X

+

+

+

 ∂∂ − ∂ = = + = +
∂

 (3.54) 

 ( )
t 1 t

t t 1 1t t
CX t t

t C t 1

X C*
C X X XJ (t) * 1 * Z *X *

X J (t) X

+

+ α−

+

 ∂∂ − ∂   = == − − δ + α ∂
 (3.55) 

 
( )

t 1 t
1

t t 1 t t t t t
XZ 1

t X t 1t t

X X*
X X Z *X * Z X * ZJ (t) *

Z J (t) X1 * Z *X

+
α− α

+
α−

+

 ∂∂  ∂ α = = −
∂  − δ + α 

 (3.56) 

 
t 1 t t

t t 1 t 1t t t 1
CZ Z

t C t t

X C C*
C X XZ Z *XJ (t) * * J (t)

Z J (t) Z C

+

+ + +

   ∂∂ − ∂   ∂   = = = −
∂ ∂

   (3.57) 

We adopt the same parameter values as in subsection 2.2: β=0.9, δ=0.05, Z =1, α=0.5 and 
γ=0.5.  This gives the steady-state values X = 9.631385, C  = 2.621878 and  

XV  = M  = 0.686201 [see (2.12)].  Also note that with θ = 1, UX = 0.  Now we have enough 
information to calculate the steady-state values of the elasticities in (3.49) to (3.57).  From 
there we can evaluate e2, e1 and e0 in the (3.40) to (3.42).  Substituting into (3.39) we 
obtained  

 X X
20.050851* 0.014164* 0.0067M 0M 71+ − =   (3.58) 

The two solutions of (3.58) are -0.528531 and 0.251950.  We accept the negative solution: 
we expect extra wealth to reduce the marginal value of wealth.  Hence,  

 X 0.5 31M 285= −   (3.59) 
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Using this value in (3.46) we obtain the consumption function 

 t t tc 0.912063*x 0.264498*z= +   (3.60) 

In subsection 2.2 we found that a unit increase in capital (now wealth) causes an increase in 
consumption of 0.248284 units, see (2.77) and (2.79).  With the steady-state values of wealth 
and consumption given by X = 9.631385, C  = 2.621878, we can translate this result into an 
elasticity of consumption with respect to wealth: 

 t t

t t

C X 9.631385* 0.248284* 0.912063
X C 2.621878

∂
= =

∂
 (3.61) 

This is consistent with (3.60). 
We cannot check our result in (3.60) for elasticity of consumption with respect Zt against 
results in subsection 2.2.  There, we held Zt constant.  However, as a partial check we 
consider two experiments.  In the first we assume that the household receives a small increase 
in wealth, say 0.01 per cent, and decides after allowing for depreciation, to devote all of this 
windfall to extra consumption in year t.  Then the increase in consumption is  

 ( )t wealthdC 9.631385*1.0001 9.631385 0.05**0.0001*9.631385 0.0001*9.631385
0.001070

= − − +

=
  (3.62) 

In the second experiment we assume that there is a temporary 0.01 per cent increase in 
technology in year t, generating extra income.  If the household decides to consume this extra 
income, then the increase to current consumption is.   

 ( )t techdC 0.0001* 9.631385 0.000310= =   (3.63) 

Equations (3.62) and (3.63) indicate that a 1 per cent increase in wealth generates a welfare 
increase to the household of about 3.45 (=0.001070/0.000310) times that generated by a 
transitory 1 per cent improvement in technology.  On this basis we would expect the ratio of 
the xt coefficient to the zt coefficient in (3.70) to be about 3.45.  It is in fact, 3.45 (= 
0.9121/0.2645).      
4.  Introducing contemporaneous and time-series correlations in exogenous variables  
In this section we study a model that is the same as in section 3, but with two differences.  
We allow for more than one exogenous variable (a vector of Zs rather than a scalar) and we 
allow for correlations between different exogenous variables and between the realization of 
any given exogenous variable at different times.  The model is as follows.  
Accumulation equation  

 ( )t 1 t 1t nt tX J X , Z ,..., Z ,C+ =   (4.1) 

Exogenous variables with contemporaneous and time series correlation 

 ( ) ( )i,t 1 i 1t nt i i,t 1Z B Z ,..., Z *exp+ += σ ε    i = 1, …, n (4.2) 

In (4.2) we introduce a 1-year lag.  Technology, terms of trade, etc, in year t+1 reflect values 
in year t and a multiplicative stochastic component.   
Lifetime welfare 

 ( ) ( ) ( )t 1t nt t t t t 1 1,t 1 n,t 1V X , Z ,..., Z , U X ,C *E V X , Z ,..., Z ,+ + + σ = +β σ    (4.3) 

where 
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( )
( )

11
t tX *C

U(t)
1

−γ−θ θ

=
− γ

  (4.4) 

Optimal allocation of consumption between years t and t+1 and the value, VX, of an extra 
unit of wealth  
We assume that variations in Ct do not affect Zt.  Then, under (4.2), variations in Ct do not 
affect expectations concerning Zt+1.  Hence, optimizing with respect to Ct: 

[ ]{ } t 1
C t X

t

XU (t) * E V (t 1) * 0
C

+∂+ β + =
∂

  (4.5) 

Differentiating the V function in (4.3) with respect to Xt, and assuming that the Zs are 
independent of Xt, we obtain 

t t 1 t 1 t
X X C t X X

t t t t

C X X CV (t) U (t) U (t)* *E V (t 1)* V (t 1)* *
X X C X

+ + ∂ ∂ ∂ ∂
= + + β + + + ∂ ∂ ∂ ∂ 

  (4.6) 

Simplify (4.6) using (4.5): 

[ ]{ } t 1
X X t X

t

XV (t) U (t) * E V (t 1) *
X

+∂
= + β +

∂
  (4.7) 

Policy rule 
We specify the policy rule for the household as: 

 ( )X t 1t ntV (t) M X , Z ,..., Z ,= σ   (4.8) 

Finally, we assume that the household expects in year t to be implementing its policy 
rule in year t+1.    

[ ]t X t t 1 t 1E V (t 1) E M X ,Z ,+ ++ = σ   (4.9) 

Linearizing around a non-stochastic steady state 
We linearize (4.1), (4.2),(4.5), (4.7), (4.8) and (4.9) around a non-stochastic steady state, 
obtaining  

n

t 1 X t C t Zj j,t
j 1

x J *x J *c J *z+
=

= − +   (4.10) 

n

i,t i, j j,t
j 1

z B *z
=

=       for i = 1, …, n (4.11) 

 t t C t 1 t( 1 * )*c (1 )(1 )*x m(t) j (t) x c+θ − − θ γ + − θ − γ = + + −   (4.12) 

 
n

C CX t CC t CZj j,t
j 1

j (t) J *x J *c J *z
=

= + +   (4.13) 

( ) [ ]X t t X X t 1 t

M *m(t)
U * * * x (1 )* *c *M *J * m(t) j (t) x x+

=

θ γ − θ − γ + − γ θ + β + + −   
  (4.14) 

 
n

X XX t XC t XZj j,t
j 1

j (t) J *x J *c J *z
=

= + +   (4.15) 
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n

X t Zk k,t
k 1

m(t) M *x M *z M *dσ
=

= + + σ  (4.16) 

 
n n

X t 1 Zk k, j j,t
k 1 j 1

m(t) M *x M * B *z M *d+ σ
= =

= + + σ   (4.17) 

Most of the notation in these equations is familiar from corresponding equations in section 3, 
see (3.15), (3.16), (3.21), (3.22) , (3.26) and (3.29).  New notation is as follows:  

ZjJ  is the elasticity of J with respect to Zj; 

CZjJ  and XZjJ are elasticities of JC and JX with respect to Zj;  

i, jB  is the elasticity of Bi with respect to Zj;  
MZk is the elasticity of M with respect to Zk;  
Mσ  is the semi-elasticity of M with respect to σ, defined by (100 M)*( M )∂ ∂σ ; and 

i,tz  is the expectation held at time t for the percentage deviation in Zi,t+1 from its steady-
state value.   

As previously, M(t)  is the expectation held in year t concerning the valuation, M(t+1), that 
will be given to an extra unit of wealth at the start of year t+1: 

 t t 1 1,t 1 n,t 1M(t) E M(X , Z ,..., Z , )+ + + = σ 
  (4.18) 

This leads to (4.17).  Notice that (4.17) contains percentage deviations in Zs.  These are 
absent from the corresponding equation, (3.29), in section 3 where we assumed that 
realizations of year t exogenous variables contain no information about exogenous variables 
in year t+1.     
Evaluating MX 

The only equation in our linearized system that contains i,tz  is (4.11).  We now delete this 
equation along with the variable and work with the 7-equation system, (4.10) & (4.12) to 
(4.17).  We take the values of the parameters, γ, β and θ, as given and we assume that the 
coefficients JX, JC, JZk, JCC, JCX, JCZk, JXC, JXX, JXZk, Bi,k, M and UX can be evaluated from the 
non-stochastic steady-state solution of our model.  For the purposes of evaluating MX, we 
treat xt and zi,t for all i as exogenous variables.  
To obtain MX, we set  
 xt = 1 and zi,t = 0    for i = 1, …, n (4.19) 
With the z variable set in this way, MZk disappears from our 7 equations.  This leaves 7 
unknowns, xt+1, ct, jC(t), jX(t), m(t), m(t)  and MX, in 7 equations.  These 7 equations and 7 
unknowns form exactly the same system that we used in  section 3 to evaluate MX.  Therefore 
(3.39) to (3.42) remains a valid system here for obtaining MX..  
Evaluating MZk, k = 1, …, n 
Now we assume that MX is known.  We put  

 q,tz 1= , k,tz 0=  for all k ≠ q, and  xt = 0 (4.20) 

Under (4.20), equations (4.10) & (4.12) to (4.17) reduce to  

t 1 C t Zqx J *c J+ = − +   (4.21) 
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 t C t 1 t( 1 * )*c m(t) j (t) x c+θ − − θ γ = + + −   (4.22) 

 C CC t CZqj (t) J *c J= +   (4.23) 

 [ ]X t X X t 1M * m(t) U *(1 )* *c * M * J * m(t) j (t) x += − γ θ + β + +   (4.24) 

 X XC t XZqj (t) J *c J= +   (4.25) 

 Zqm(t) M=  (4.26) 

 
n

X t 1 Zk k,q
k 1

m(t) M *x M *B+
=

= +   (4.27) 

Substitute out m(t), m(t) , jC(t) and jX(t): 

t 1 C t Zqx J *c J+ = − +   (4.28) 

 
n

t X t 1 Zk k,q CC t CZq t 1 t
k 1

( 1 * )*c M *x M *B J *c J x c+ +
=

θ − − θ γ = + + + + −   (4.29) 

Zq

n

X t X X t 1 Zk k,q XC t XZq t 1
k 1

M *M

U *(1 )* *c *M *J * M * x M *B J *c J x+ +
=

=

 − γ θ + β + + + +  

  (4.30) 

Rearrange (4.28): 

t 1 Zq
t

C

x J
c

J
+ − 

=  − 
  (4.31) 

Use (4.31) to eliminate ct from (4.29) and (4.30) and rearrange to obtain: 

[ ]CC Zq C Zk k,q C CZq

t 1

( * ) J *J J * M *B J *J
x

blue+

θ − θ γ − − −
=

n

k=1   (4.32) 

and 

[ ]C Zq X X XC Zq

n

C X Zk k,q C X XZq
k=1

t 1

J *M *M U *(1 )* *M *J *J *J

J * *M *J * M *B J * *M *J *J
x

red +

 − + − γ θ + β
 
 

+ β + β   =  (4.33) 

where 

 ( )  X X XC C X Xred= U *(1- γ)*θ+β *M* J * J - J β *M* J * M +1  (4.34) 

 [ ]CC C X Cblue= θ-θ * γ- J +J M +J  (4.35) 

Eliminating xt+1 gives: 

[ ]{ }
[ ]{ }

X X XC Zq C X XZq
Zq

C CC Zq C CZq

n

X Zk k,q
k=1

U *(1 ) * * M * J * J * J J * * M * J * J *1M
J * M * ( * ) J * J J * J

* J * M *B
M *

*

blue

blue

bl

r

ue

ed

red

 − − γ θ + β − β
 =

−  + θ − θ γ − − 
 + β +  
 

(4.36) 
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That is 
n

Zq Zk k,q
k=1

M T1(q) T2* M *B= +     for q = 1, …, n (4.37) 

where 

[ ]{ }
[ ]{ }

X X XC Zq C X XZq

C CC Zq C CZq

U *(1 ) * * M * J * J * J J * * M * J * J *1T1(q)
J * M * ( * ) J * J J * J*

 − − γ θ + β − β
 =

−  + θ − θ γ − − red

blue

blue  

  (4.38) 
and  

 XT2 *J
M *

= β + red
blue

 (4.39) 

Values for the n elasticities, MZq, q = 1, …, n, can now be determined by solving the n 
equations in (4.37) with T1(q), T2, red and blue  evaluated via (4.38), (4.39), (4.34) and 
(4.35).  
The household consumption function 
With the values of MX and MZq for q = 1, …, n, now known, we can deduce how 
consumption (Ct) depends on wealth (Xt) and current values of exogenous variables (Zt).   
We substitute from (4.10), (4.13) and (4.17) into (4.12):  

[ ]
n n n

t t X X t C t Zj j,t Zk k, j j,t
j 1 k 1 j 1

n

CX t CC t CZj j,t
j 1

( * )*c (1 )(1 ) * x M 1 * J * x J *c J * z M * B * z

J * x J *c J * z

= = =

=

  θ − θ γ + − θ − γ = + − + +      

+ + + 
 

 (4.40) 
Rearrange to obtain the consumption function: 

[ ]{ }
[ ]

( )
[ ]

n

X Zj CZj Zk k, jnX X CX k 1
t t j,t

j 1X C CC X C CC

M 1 * J J M * BM 1 * J (1 )(1 ) J
c * x * z

( * ) M 1 * J J ( * ) M 1 * J J
=

=

 + + + + − − θ − γ +   = + 
   θ − θ γ + + − θ − θ γ + + −   

 (4.41) 

Numerical example: standard neoclassical model with multiple exogenous variables and 
lags 
We test the formulas for MX and MZk for k = 1,…,n, derived in this section by applying them 
to a version of the standard neoclassical model in which there are lags and two exogenous 
variables. 
As in the earlier sections, we assume that   
 θ = 1  (4.42) 
For (4.1) and (4.2) we adopt the specific forms 

( )t 1 t 2,t t tX X * 1 Z *X Cα
+ = − δ + −   (4.43) 

and 

 1 1,t 2,t 1,tB (Z , Z ) Z=   (4.44) 
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 2,t
2 1,t 2,t 1,t

1,t

Z
B (Z , Z ) Z *

Z

ρ
 

=   
 

  (4.45) 

where 0 ≤ ρ <1.  
In (4.44) and (4.45), Z1,t is the permanent level of technology and Z2,t is the actual level in 
year t.  If the actual level in year t deviates from the permanent level, then in year t+1 there is 
a tendency for the actual level to move back towards the permanent level.  While we think of 
Z1,t as the permanent level, we allow for changes in this level.  With both Z1,t and Z2,t in the 
model, we can distinguish between the effects of permanent changes in technology and 
transitory changes.  By setting ρ equal to zero and assuming that Z1,t never moves from its 
steady-state level (z1,t = 0), we revert to case considered in earlier sections in which the 
technology deviation in year t+1 is determined independently of technology in year t.   
The formulas for MX, MZk and ultimately for the consumption function in (4.41) depend on 
elasticities of the accumulation relationship (J elasticities) and on elasticities of the B 
functions.  Under (4.43) to (4.45), the required elasticities are as follows:  

 ( ) 1t 1 t t
X 2,t t

t t 1 t 1

X X XJ (t) * 1 *Z *X *
X X X

α−+

+ +

∂
 = = − δ + α ∂

 (4.46) 

 t 1 t t
C

t t 1 t 1

X C CJ (t) *
C X X

+

+ +

∂
= − =

∂
   (4.47) 

 1,tt 1
Z1

1,t t 1

ZXJ (t) *
Z X

+

+

∂
= =

∂
 0  (4.48) 

 2,t 2,tt 1
Z2 t

2,t t 1 t 1

Z ZXJ (t) * X *
Z X X

α+

+ +

∂
= =

∂
 (4.49) 

 
t 1 t

t t 1 t t
XC C

t X t 1

X X*
X X C CJ (t) * J (t)

C J (t) X

+

+

+

 ∂∂  ∂ = = =
∂

 (4.50) 

 

( )
( )

( )( )t 1 t
12 1

2,t t t2,t tt t 1 t
XX 1

t X t 12,t t

X X* 1 *Z *X *X1 *Z *XX X XJ (t) *
X J (t) X1 *Z *X

+
α−α−

+
α−

+

 ∂∂     − δ + α − δ + α∂      = = − ∂  − δ + α   
  (4.51) 

 
t 1 t

t t 1 t t
CC C

t C t 1

X C*
C X C CJ (t) * 1 1 J (t)

C J (t) X

+

+

+

 ∂∂ − ∂ = = + = +
∂

 (4.52) 

 ( )
t 1 t

t t 1 1t t
CX 2,t t

t C t 1

X C*
C X X XJ (t) * 1 * Z *X *

X J (t) X

+

+ α−

+

 ∂∂ − ∂   = == − − δ + α ∂
 (4.53) 

 ( )
t 1 t

1,t 1,tt t 1 1 t
XZ1 2,t t 2

1,t X Xt 1

X X*
Z ZX X XJ (t) * 1 * Z *X * *0 * 0

Z J (t) J (t)X

+

+ α−

+

 ∂∂  ∂     = = − − δ + α =  ∂  
 (4.54) 
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t 1 t

2,tt t 1 1 t t
XZ2 2,t t

2,t X X t 1 t 1

X X*
ZX X *X XJ (t) * Z *X *

Z J (t) J *X X

+

+ α−

+ +

 ∂∂  ∂  α = = − ∂  
 (4.55) 

 
t 1 t t

1,tt t 1 t 1 1t t 1
CZ1

1,t C 1,t t

X C C*
ZC X X Z *XJ (t) * * 0

Z J (t) Z C

+

+ + +

   ∂∂ − ∂   ∂   = = =
∂ ∂

   (4.56) 

 
t 1 t t

2,t 2,t t 1 2,tt t 1 t 1
CZ2 t Z2

2,t C 2,t t t 1

X C C*
Z Z *X ZC X X

J (t) * * *X J (t)
Z J (t) Z C X

+

++ + α

+

   ∂∂ − ∂    −∂     = = = = − ∂ ∂  
   (4.57) 

 1,t1
1,1

1,t 1

ZB (t)B (t) * 1
Z B (t)

∂= =
∂

  (4.58) 

 2,t1
1,2

2,t 1

ZB (t)B (t) * 0
Z B (t)

∂= =
∂

  (4.59) 

 1,t2
2,1

1,t 2

ZB (t)B (t) * 1
Z B (t)

∂= = − ρ
∂

  (4.60) 

 2,t2
2,2

2,t 2

ZB (t)B (t) *
Z B (t)

∂= = ρ
∂

  (4.61) 

As in the numerical parts of sections 2 and 3 we assume that β=0.9, δ=0.05, α=0.5 and γ=0.5.  
Consistent with those earlier calculations in which Z =1, here we assume that the steady-state 
values of Z1 and Z2 are one.  With regard to ρ, we check that the earlier results are 
reproduced when ρ = 0.  Then, we generate results with ρ = 0.5.   

With these two values for ρ, our calculations produce the following consumption functions: 

    for ρ = 0, ct= 0.912063*xt  - 0.088623*z1t + 0.264498*z2t   (4.62) 

    for ρ = 0.5 ct= 0.912063*xt  - 0.072437*z1t + 0.248312*z2t (4.63) 

The numerical model in section 3 corresponds to the case in which ρ = 0: no effect on future 
technology of shocks to current technology (z2t).  Reassuringly, in (4.62), the coefficient on 
z2t is the same as that in (3.60).    

Four features of (4.62) and (4.63) stand out.  First, the value of ρ makes no difference to how 
consumption responds to an increase in wealth (the coefficient on xt is the same in both 
equations.  This could be anticipated on the basis of (4.41): ρ plays no role in the 
determination of MX or any of the J elasticities.  More intuitively, ρ affects the persistence of 
technology shocks whereas the coefficient on xt determines the effects of an extra unit of 
wealth holding technology constant (no technology shocks).   
Second, the coefficient on z2t in (4.63) is less than the corresponding coefficient in (4.62).  
This means that increased persistence of a technology shock (higher ρ) reduces the 
immediate consumption effect of a transitory technology improvement.  Initially, we found 
this result surprising.  With ρ = 0.5, a transitory 1 per cent improvement in technology (z2t = 
1) has favourable effects on technology into the future whereas when ρ = 0 the transitory 
improvement in technology has no effect on technology in the future.  From the point of view 
of lifetime welfare, a transitory 1 per cent improvement in technology when ρ = 0.5 is more 
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beneficial than when ρ = 0.  On this basis we expected the immediate effect on consumption 
to be greater when ρ = 0.5 than when ρ = 0.  However, with the technology improvement 
persisting into the future, capital stock in future years is more productive.  Consequently, 
investment in year t becomes more attractive with technology persistence.  This effect is 
strong enough to leave consumption slightly less stimulated in year t in the persistence case.  
As illustrated in Figure 4.1, beyond year t consumption and capital are higher when ρ = 0.5 
than when ρ = 0.   
Third, the coefficients on z1t in (4.62) and (4.63) are negative, implying that a permanent 
improvement in technology (z1t positive) reduces immediate consumption. The explanation is 
that the permanent technology improvement increases the attractiveness of building up 
capital (wealth) to take advantage of the technology improvement in future years.  This 
requires extra investment in year t, with correspondingly lower consumption.  As illustrated 
in Figures 4.2 and 4.3, beyond year t consumption is stimulated.  The immediate reduction in 
consumption associated with a permanent improvement in technology is slightly more 
pronounced when ρ = 0 than when ρ = 0.5.  The coefficient on z1t in (4.62) is -0.088623 
whereas in (4.63) it is -0.072437.  As can be seen from the green lines in Figure 4.4, when  
ρ = 0, the permanent technology improvement is introduced in full immediately.  By contrast, 
when ρ = 0.5, the technology improvement is phased in.  The immediate technology 
improvement under ρ = 0 encourages investment in year t more strongly than is the case 
under the phase-in scenario, ρ = 0.5.   
Fourth, the sum of the coefficient on z1t and z2t is the same in (4.62) and (4.63): 0.175875 in 
both cases.  This indicates that the effect on immediate consumption of an increase of 1 per 
cent in both permanent and transitory technology (z1t = z2t= 1) does not depend on ρ.  The 
response in year t of consumption to technology shocks depends on how these shocks affect 
the trade-off between immediate consumption and future consumption.  When z1t = z2t= 1, 
both current and future technology is improved by 1 per cent, independently of ρ.    
5.  Estimation of the elasticities of the accumulation relationship 
Implementation of consumption functions such as (3.46) and (4.41) requires steady-state 
values for the elasticities, JX, JC, JZ, JCC, JCX, JCZ, JXC, JXX, JXZ associated with the 
accumulation relationship.  This presents no difficulty when we are dealing with small-scale 
models such as those in sections 2 to 4 in which the accumulation relationship is simple and 
explicit, see (3.48) and the resulting elasticities in (3.49) to (3.57).  But how do we evaluate 
the elasticities in a large-scale CGE model in which wealth accumulation is not represented 
by a simple explicit function, but instead is the outcome of a system of equations involving a 
large number of variables including wage rates, profits, taxes, interest rates, capital stocks 
and employment?  
Before we can explain our plan, we need to fill in some background.  Simulations with CGE 
models of the type we use consist of two runs, the baseline and policy runs.7  Usually the 
baseline is intended as a business-as-usual, year-on-year picture of the paths for the myriad of 
variables in CGE models, such as employment and output by industry.  CGE modellers often 
build into the baseline trends in technology, consumer preferences and commodity prices 
together with demographic projections.  The policy run is usually undertaken with a different 
closure (choice of exogenous variables) from that in the baseline.  For example, macro  
  

 
7  This includes models such as MONASH, USAGE and VU-NATIONAL.  See for example, Dixon and Rimmer (2002) and 
Dixon et al. (2013).  
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Figure 4.1.  A transitory improvement in technology (z2t = 1, z1t =0 for all t) 

 
 
 

Figure 4.2.  A permanent improvement in technology (z1t = 1for all t) with ρ= 0.5 
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Figure 4.3.  A permanent improvement in technology (z1t = 1for all t) with ρ= 0 

 
 

Figure 4.4.  A permanent improvement in technology (z1t = 1for all t): 
comparison of results for ρ= 0.5 and ρ= 0 

 
  

-0.5

0

0.5

1

1.5

2

2.5

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

WealthWealth

Consumption

Wealth

Technology

-0.5

0

0.5

1

1.5

2

2.5

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

Technology, ρ = 0.5
Technology, ρ = 0



37 
 

variables in policy runs are normally endogenous, whereas they are often exogenous in the 
baseline so that the modeller can build into the baseline macro forecasts provided by 
specialist forecasting groups such as the IMF.   
With key exceptions, all of the exogenous variables in the policy run follow the same paths 
that they had either endogenously or exogenously in the baseline.  The key exceptions are 
usually policy variables.  For example, if the purpose of the simulation is to determine the 
effects of proposed tariff changes, the relevant tariff variables are put on paths in the policy 
run different from their baseline paths.  If none of the exogenous variables in the policy run is 
moved off its baseline path, then, despite a different closure, the policy run will give the same 
solution as the baseline run.  Consequently, differences between policy and baseline results 
show the effects of deviations in policy variables (e.g. tariffs) from their baseline paths.  
Because we are normally interested in macro effects, macro variables must be endogenous in 
policy runs, although as mentioned earlier, they may be exogenous in the baseline.  This is 
the reason that the policy closure is usually different from the baseline closure.   
We return now to the problem of estimating JX, JC, JZ, JCC, JCX, JCZ, JXC, JXX, JXZ.    
The first step in our plan is to set up the CGE model with a steady growth baseline.  For our 
U.S. model, we might set up a baseline in which each industry increases its output at 3 per 
cent a year.  We can do this by assuming: 2 per cent annual labour-saving technical progress 
in each industry with no other changes in technology; 1 per cent annual growth in aggregate 
employment; 3 per cent annual outward movement in foreign demand curves for all U.S. 
exports; no changes in prices of imported products; 3 per cent annual growth in public 
expenditures; unitary consumer expenditure elasticities for all products; no changes in 
consumer preferences; and initial investment/capital ratios and depreciation rates implying 3 
per cent capital growth.  These assumptions reduce the realism of our baseline.  
Unfortunately, this seems to be an unavoidable cost of adopting DSGE theory which depends 
on steady-state assumptions.  Also, as will be discussed in section 6, our formulas for 
estimating elasticities of consumer policy functions, e.g. (3.39) – (3.42), will need minor re-
interpretation to accommodate a steady-growth baseline rather than a no-growth baseline.   

The second step in our plan is to perform a series of policy runs to generate deviations away 
from the steady-growth baseline.  In these policy runs, household consumption in year t (Ct) 
and household wealth at the start of year t (Xt) will be exogenous, together with the naturally 
exogenous variables (Zt).  By imposing a one per cent shock in Xt (i.e. moving Xt one per 
cent above its baseline value) while holding Ct and Zt at their baseline values, we will be able 
to observe JX.  This will be done by looking at the percentage deviation result (xt+1) for 
wealth at the start of year t+1.  By imposing a one per cent shock in Ct (i.e. moving Ct one per 
cent above its baseline value) while holding Xt and Zt  at their baseline values, we will be able 
to observe JC.  Again, this will be done by looking at the percentage deviation result (xt+1) for 
household wealth at the start of year t+1 but reversing its sign.  Recall that JC is the negative 
of ( ) ( )t 1 t t t 1X / C * C / X+ +∂ ∂ .  Finally, by imposing a one per cent shock in Zt while holding Ct 
and Xt at their baseline values, we will be able to observe JZ.  

For evaluating the second-order elasticities, JXC and JCC, we will conduct two additional 
policy simulations with one per cent shocks to Xt and Ct imposed not on the baseline but on 
the situation reached in the simulation that revealed JC. These two additional simulations will 
allow us to calculate JXC and JCC according to: 

 ( ) ( )
( )

X X
XC

X

J C*1.01,X, Z J C,X, Z
J 100*

J C, X, Z

−
=   (5.1) 
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 ( ) ( )
( )

C C
CC

C

J C*1.01,X, Z J C, X, Z
J 100*

J C,X, Z

−
=   (5.2) 

Similarly, we will conduct two additional simulations to reveal JXX and JCX, and two further 
simulations to reveal JXZ and JCZ according to: 

 ( ) ( )
( )

X X
XX

X

J C, X *1.01, Z J C,X, Z
J 100*

J C, X, Z

−
=   (5.3) 

 ( ) ( )
( )

C C
CX

C

J C, X *1.01, Z J C, X, Z
J 100*

J C, X, Z

−
=   (5.4) 

 ( ) ( )
( )

X X
XZ

X

J C, X, Z*1.01 J C, X, Z
J 100*

J C, X, Z

−
=   (5.5) 

 ( ) ( )
( )

C C
CZ

C

J C, X, Z*1.01 J C,X, Z
J 100*

J C, X, Z

−
=   (5.6) 

The computations underlying (5.1) to (5.6) each require 2 comparisons.  For example, to 
evaluate JXC, we first compare the year-(t+1) wealth result from combined shocks to year-t 
wealth and consumption of one per cent imposed in the baseline situation with the result from 
a one per cent shock to consumption. This comparison reveals the elasticity [ ( )XJ C *1.01, X, Z ] 
of wealth in t+1 to year-t wealth when consumption is one per cent above its baseline value.  
Second, we compare this elasticity with JX computed in the baseline situation [that is 

( )XJ C, X, Z ].  This second comparison reveals the sensitivity of JX with respect to movements 
in consumption, giving us JXC.   
6.  Steady-growth baseline versus no-growth baseline 
The theory and computations that we have described so far are predicated on no-growth 
baselines.  In these baselines, the value of every variable in year t+1 is the same as in year t.  
However, realism demands that we allow for economic growth.  Assume, for example, that 
we are dealing with an economy such as Australia or the U.S. in which the investment share 
in GDP is about 20 per cent.  This cannot be reproduced in a no-growth steady state.  It is 
consistent with a situation typical of these countries in which the capital-to-output ratio is 2.5, 
the depreciation rate is 5 per cent and the growth rate is 3 per cent [20 = 2.5*(3 + 5)].  In a 
no-growth baseline the investment share of GDP is unrealistically low. 
Although in the DSGE framework we can’t go all the way to a realistic baseline, we can take 
a step in that direction by introducing steady growth.  We do this by adopting a baseline in 
which the baseline value (denoted by b) of every variable Q can be described by  
 b bQ (t 1) Q (t)* (Q)+ = ξ   (6.1) 

where  
ξ(Q) is the steady-state growth factor for variable Q. 

As foreshadowed in section 5, we have set up the U.S. model with a steady growth baseline 
in which the growth factors are: 1.02 for labour-augmenting technology variables in each 
industry; 1.00 for all other technology variables; 1.01 for aggregate employment; 1.03 for the 
horizontal shifter on foreign demand curves for all U.S. exports; 1.00 for prices of imported 
products; 1.03 for public expenditures; and 1.00 for consumer preference variables.  
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Accommodating steady growth requires no change to the theory of the previous sections, just 
a reinterpretation.  We assume now that this theory refers to relationships between growth 
discounted or gd variables.  These are defined by 

 gd
t

Q(t)Q (t)
(Q)

=
ξ

  (6.2) 

With this definition, a steady-growth baseline becomes a no-growth baseline in gd variables: 

 gd gdb b
b bt 1 t

Q (t 1) Q (t)Q (t 1) Q (t)
(Q) (Q)+

+
+ = = =

ξ ξ
  (6.3) 

In implementing DSGE theory in a full-scale CGE model, we plan to add definitions of gd 
variables at the end of the CGE code.  The linearized DSGE equations that we will then add 
are relationship between these gd variables.  Rather than (3.9), (3.15), (3.16), (3.21), (3.22), 
(3.26) and (3.29) we will include in the CGE model:  

 gd gd gd gd
t X t C t Z txend J *x J *c J *z= − +   (6.4) 

 gd gd gd gd
t t C t t( 1 * )*c (1 )(1 )*x m(t) j (t) xend cθ − − θ γ + − θ − γ = + + −   (6.5) 

 gd gd gd
C CX t CC t CZ tj (t) J *x J *c J *z= + +   (6.6) 

( ) gd gd gd gd
X t t X X t t

M*m(t)

U * * *x (1 )* *c *M*J * m(t) j (t) xend x

=

   θ γ − θ − γ + − γ θ + β + + −   
  (6.7) 

 gd gd gd
X XX t XC t XZ tj (t) J *x J *c J *z= + +   (6.8) 

 gd gd
X t Z tm(t) M *x M *z= +  (6.9) 

 gd
X tm(t) M *xend=  (6.10) 

In these equations, we have added a gd superscript to all the variables that have 
counterparts in the CGE model.  The gd superscript is not required for m(t), m(t) , 
jC(t) and jX(t).  These variables do not have CGE counterparts, so they do not need to 
be distinguished from CGE variables by the gd superscript.   
Apart from the use of gd superscripts, another change that we have made to our 
earlier representation of the DSGE linearized equations is the replacement of the 
variable (xt+1) for start-of-year wealth in year t+1 with the variable (xendt) for end-
of-year wealth in year t.  This brings the DSGE system (6.4) to (6.10) into line with 
the pervasive convention in our CGE models that all equations connect variables for 
the same year.  Thus, wealth at the end of year t (a year t variable) is specified as 
wealth at the start of year t (another year t variable) plus the effects of other year t 
variables such as consumption in year t.  This convention facilitates recursive 
dynamics in which the solution is generated by a sequence of single-year 
computations.   
Under the convention, year t+1 is connected to year t by ensuring that in the year t+1 
computation, start-of-year stock variables reflect end-of-year values for year t.  Thus, 
in a recursive dynamic CGE computation we set start-of-year wealth in the year t+1 
computation equal to end-of-year wealth from the year t computation: 

 t 1 tX Xend+ =   (6.11) 
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But what does this mean in terms of gd variables?  From (6.11), we have  

 t 1 t
t 1 t

X Xend 1*
(X)(X) (X)

+
+ =

ξξ ξ
  (6.12) 

For it to be possible to have a steady-growth baseline, we must assume that  
 (X) (Xend)ξ = ξ  (6.13) 

In view of (6.11) to (6.13), in our DSGE-CGE integration we will connect start-of-
year t+1 gd stock variables with their end-of-year t versions via 

 
gd

gd t
t 1

XendX
(X)+ =

ξ
  (6.14) 

Returning to (6.4) to (6.10), we interpret all of the gd variables as percentage 
deviations from their steady-state (no growth) baseline values.  What about m(t) and 
m(t) ?  What are the growth rates on the baseline paths from which they are 
percentage deviations?  
In place of (3.2), we assume that  

( ) ( ) ( )gd gd gd gd gd gd
t t t t t t 1 t 1V X , Z , U C ,X *E V X , Z ,+ +

 σ = + β σ    (6.15) 

In (6.15), growth in consumption and wealth at the rates (C)ξ  and (X)ξ  maintains 
utility (U) at its year-t level.  If (C)ξ  and (X)ξ  are greater than 1, then for maintenance 
of a given level of annual utility, consumption and wealth must grow.  We can 
interpret this as meaning that maintenance of utility requires consumption and wealth 
to grow in line with population and community aspirations reflected in normal 
growth rates in per capita consumption and wealth.  If Xgd and Zgd are fixed on their 
no-growth steady-state values, then under (6.15) V is fixed on its steady-state value.  
With M in (6.7) now being interpreted as the derivative of V in (6.15) with respect to 
Xgd, we see that the baseline growth rate in M must be zero ( (M) 1ξ = ).  If M is on a 
no-growth baseline, then Et[M(t+1)] must also be on a no-growth baseline.   We 
conclude that m(t)  and m(t)  are percentage deviations from no-growth steady-state 
values.   

Finally, we consider the variables Cj (t)  and Xj (t) .  In (6.4) to (6.10), the J 
coefficients are first and second-order elasticities of growth-discounted end-of-year 
wealth with respect to growth-discounted consumption, growth-discounted start-of-
year wealth and growth-discounted exogenous variables.  These coefficients are 
evaluated at the no-growth baseline values for the gd variables.  Hence, in the 
baseline there is no growth in the J coefficients.  Consequently, Cj (t)  and Xj (t)  are 
percentage deviations from no-growth steady-state values.  What are these values?  
As is readily apparent, elasticities calculated for gd variables are the same as 
elasticities calculated for steady-growth variables, for example: 

( )
( )

( )
( )

t t
t tgd t t

X Xt t
t tt t

Xend (Xend) X (X) Xend XJ (t) * * J (t)
X XendX (X) Xend (Xend)

∂ ξ ξ ∂= = =
∂∂ ξ ξ

 (6.16) 

Growth in the standard neo-classical model  
In the standard model that we studied in the previous sections, the accumulation 
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relationship is: 

( )t 1 t t t tX X * 1 Z *X Cα
+ = − δ + −   (6.17) 

In terms of gd variables (6.17) can be written as: 

( )gd t gd t gd t gd t gd t
t t t t tXend * (Xend) X * (X) * 1 Z * (Z) * X * (X) C * (C)

α
 ξ = ξ − δ + ξ ξ − ξ    (6.18) 

For steady-growth we require that 

 1(Z) (X) −αξ = ξ    and (C) (X) (Xend)ξ = ξ = ξ  (6.19) 

Provided (6.19) is satisfied, (6.18) reduces to a relationship of the same form as (6.17), but 
between gd variables: 

 ( )gd gd gd gd gd
t t t t tXend X * 1 Z * X C

α
 = − δ + −    (6.20) 

As explained earlier, in a growth situation we interpret V as a function of gd variables, see 
(6.15).  Then, adopting the same parameter values as those that led to (3.60), we find that  

 gd gd gd
t t tc 0.912063*x 0.264498*z= +   (6.21) 

Percentage deviations in gd variables from their no-growth baseline are the same as 
percentage deviations in growth variables from their steady-growth baseline.  Thus, (6.21) 
gives us the consumption function in the growth situation as in (3.60).    
7.  Deriving a DSGE consumption function for the USAGE model of the U.S.  
In this section we apply the theory from sections 3 to 6 to derive a DSGE consumption 
function for a 70-industry version of the USAGE model of the U.S. economy.  Then we use 
this consumption function in an illustrative USAGE simulation.   
USAGE is a dynamic CGE model that was initially created at the Centre of Policy Studies in 
2002.  Since then, it has been applied and further developed by, and on behalf of: the U.S. 
International Trade Commission; the U.S. Departments of Commerce, Agriculture, 
Transportation, Homeland Security and Energy; the Canadian government; the Mitre 
Corporation; and the Cato Institute.  Application topics include trade policies, illegal 
immigration, road/rail/air infrastructure, energy policies, and terrorism.8   
In standard applications of USAGE, household consumption in year t is proportional to 
household disposable income in year t (fixed average propensity to consume).  Public 
consumption is usually linked in a linear way to private consumption.  Investment in each 
industry in year t is specified as a function of the industry’s expected rate of return on capital.  
So that the model can be solved recursively, expected rates of return are assumed to reflect 
current rates of return.9  Imports of each commodity are modelled as imperfect substitutes for 
domestically produced products in the same industrial classification [the Armington 
assumption, Armington (1969)].  Exports of each commodity are modelled via constant-
elasticity export demand functions.   
As mentioned in section 5, we equipped USAGE with a 3 per cent steady-growth baseline.  
While leaving other features of USAGE unchanged, we replace the standard USAGE 
treatment of private and public consumption with a DSGE consumption function.  The DSGE 

 
8  There are many published USAGE application papers.  Recent examples are: Dixon et al. (2017a&b). 
9  Dixon et al. (2005) shows how models such as USAGE can be solved with forward-looking expectations for rates of 
return.  The method involves a series of recursive dynamic simulations with adjustments in expectations between 
simulations.    
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consumption function determines shock-induced deviations in private and public 
consumption from the 3 per cent steady-growth baseline.  In the initial application described 
here of DSGE theory to USAGE, shocks are allowed only to primary-factor-saving 
technology.  This is the only Z variable.  Thus, our DSGE consumption function takes the 
form:  
 t t tc ELAST(c,x)*x ELAST(c,z)*z= +  (7.1) 

In this equation,  
ct is the percentage deviation in real consumption in year t from its baseline value.  This is 

private plus public consumption deflated a composite price index formed as value 
weighted average of the prices indexes for private consumption and public 
consumption.   

xt is the percentage deviation in real wealth at the start of year t from its baseline value.  
This is the deflated value of physical capital in the U.S. less net foreign liabilities.  The 
deflator is the lagged value of the price index for private consumption, that is the 
deviation in wealth at the start of year t+1 is deflated by the deviation in the price of 
consumption in year t.   

zt is the percentage deviation in primary-factor-saving technology in year t from its 
baseline value.  This variable applies uniformly across all industries.  If, for example, zt 
equals 2, then all industries can produce their baseline level of output for year t with 2 
per cent less primary factor input than in the baseline and the baseline levels for all 
other inputs.   

ELAST(c,x) and ELAST(c,z), treated as parameters, are the elasticities of consumption 
(private plus public) with respect to start-of-year wealth and primary-factor-saving 
technology.  

7.1.  Evaluation of the coefficients in the DSGE consumption function for USAGE 
We evaluate the two elasticities in (7.1) by applying (4.41) and (3.39) - (3.42).  This requires 
us to assign values to: 

γ, the parameter introducing diminishing marginal utility to consumption in any year;  

β, the parameter introducing preference for current consumption relative to future 
consumption; 

BZZ, the elasticity of expected primary-factor-saving technology in year t+1 with respect to 
primary-factor-saving technology in year t;   

JX, JC, JZ, JXX, JXC, JXZ, JCX, JCC, JCZ, the first and second-order elasticities of wealth at the 
start of year t+1 with respect to wealth at the start of year t, consumption in year t and 
primary-factor-saving technology in year t;   

θ, the parameter introduced to allow utility in each year to be a function of wealth as well 
as consumption;  

M and UX, the baseline values (constant through time) of the growth-discounted expected 
marginal values (derivatives) of lifetime welfare and current utility with respect to 
growth-discounted start-of-year wealth; and    

MX and MZ, the elasticities of the household’s policy function (the M function) with 
respect to growth-discounted start-of-year wealth and growth-discounted primary-
factor-saving technology.   
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We set γ and β at 0.5 and 0.9.  These values are representative of the values used in macro 
DSGE models.   
We set BZZ at zero.  Thus we assume in this preliminary application of DSGE theory to CGE 
modelling that the determination of primary-factor-saving technology is serially uncorrelated.   
We determine the J elasticities by USAGE simulations.  As described in section 5, in these 
simulations we treat real wealth at the start of 2018 as predetermined, and real consumption 
and primary-factor-saving technical change as exogenous.  We apply shocks to these three 
variables to determine their effects on real wealth at the start of 2019.  In any CGE 
simulation, closure (choice of exogenous variables) is important.  This will be discussed more 
fully in section 8.  For understanding the J values to be presented in this section, the most 
important aspects of the closure are that aggregate employment and aggregate capital are both 
exogenous.  With this closure, the only avenues for movements in real GDP are changes in 
technology and changes in dead-weight losses associated with taxes and other distortions 
such as differences in rates of return on capital across industries.  The J elasticities that we 
obtained for USAGE are in Tables 7.1 and 7.2.  These tables are discussed in subsection 7.2.  

To evaluate θ, we use (3.13) and (3.20) with X’s, C’s and M  replaced by their growth-
discounted baseline values which are constant through time.  Omitting time subscripts to 
indicate baseline growth-discounted values, and recognizing that on a non-stochastic steady-
growth baseline M M= , we have:  

 1 1 1
C

X*C *X (X *C ) *M*J *
C

θ− −θ −θ θ −γθ = β   (7.2) 

and 

 ( ) { }1
X

XM 1 *X *C *(X *C ) * M *J *
X

−θ θ −θ θ −γ= − θ + β   (7.3) 

leading to  

 ( )
C

X C

*J
1 * J J

βθ =
−β −

 (7.4) 

With β assumed to be 0.9 and the values of JC and JX taken from Table 7.1, the value for θ 
obtained from (7.4) is 0.8335.  
In the CGE database for the initial year (2018), the values for the X and C are $US34.69 
trillion and $US16.58 trillion.  M and UX can now be evaluated via  

 ( ) 1

X

1 *X *C *(X *C )
M

1 *J

−θ θ −θ θ −γ− θ
=

−β
  (7.5) 

and  

 ( ) 1
XU 1 *X *C *(X *C )−θ θ −θ θ −γ= − θ    , (7.6) 

giving M = 0.189 and UX = 0.021.   
We now have all of the coefficient and parameter values necessary for evaluating e2, e1 and 
e0 in (3.40) to (3.42), allowing us to solve the quadratic equation (3.39) for MX.  This gives 
two possible values:  
 MX = -0.2128 and MX = -0.6775 (7.7) 
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In our theory of consumer behaviour, MX must be negative: diminishing marginal utility to 
wealth means that the increase in expected lifetime welfare from an additional unit of wealth 
must decline as wealth increases.  In section 3, when we solved the quadratic equation for MX 
in the standard neo-classical model [see (3.58) and (3.59)], the two solutions had different 
signs.  Thus we were immediately able to choose the appropriate solution, the one with the 
negative sign.  But here, with both solutions being negative that criterion doesn’t help.  
Consequently we proceed to (4.41) and evaluate ELAST(c,x) under each possible MX value.  
With MX = -0.2128 we obtain -0.5995 and with MX = -0.6775 we obtain 0.2669.  We require 
ELAST(c,x) to be positive: an increase in wealth in year t should generate an increase in 
consumption in year t.  On this basis we choose the second solution (MX = -0.6775) in (7.7).   
With MX tied down we can now refer to (4.41) to evaluate ELAST(c,z).  This leads to our 
DSGE consumption function for USAGE:  

 t t tc 0.2669*x 0.6724*z= +  (7.8) 

The value of MZ could be determined via (4.34), (4.35) and (4.37) to (4.39).  However, with 
BZZ set at zero, evaluating MZ is unnecessary: it does not affect the values of ELAST(c,x) and 
ELAST(c,z).   
7.2.  Values for J elasticities 
For understanding the values in Tables 7.1and 7.2 for first and second-order J elasticities 
calculated from USAGE simulations, it is useful to note that in USAGE: 

Baseline consumption (private plus public) in 2018 is $US16.58 trillion;  
Baseline real wealth at the start of 2018 is $US34.69 trillion; and 
Baseline real wealth at the start of 2019 is $US35.73 trillion; and 
Baseline GDP in 2018 is $US19.44 trillion.  

In view of these baseline values, our first question is: why is JC equal to 0.61, rather than 
about 0.46 (= 16.58/35.73)?  What explains the discrepancy of 0.15 between the actual value 
of JC and what we would expect simply on the basis of consuming an amount of wealth worth 
1 per cent of 2018 consumption? 
The answer involves two factors.  The first is that a 1 per cent increase in consumption 
reallocates capital towards low-rate-of-return uses, especially housing.  USAGE implies that 
this reduces GDP by 0.082 per cent, imparting a loss in next year’s wealth of 0.04 per cent (= 
0.082*19.44/35.73).  The second factor is a reduction in the price of investment relative to 
the price of consumption.   USAGE shows that a 1 per cent increase in consumption 
generates increases the price indexes for both investment and consumption.  This is the 
mechanism by which USAGE introduces the real appreciation necessary to facilitate the 
transfer of resources towards consumption away from the trade balance.  However, the 
increase in the price index for private consumption is greater than that for investment (0.373 
per cent compared with 0.256 per cent), reflecting the greater import-intensity of private 
consumption relative to investment.  With the investment price index being the major price in 
determining the value of the capital stock, and the consumer price index for year t being the 
chosen deflator for determining the real value of wealth at the start of year t+1, the movement 
in relative prices introduces a reduction in real wealth of about 0.12 per cent 
[= -100*(1.00256/1.00373-1)].  Together these two factors suggest that the loss of real wealth 
at the start of year t+1 should be about 0.16 per cent (= 0.04+0.12) greater than would be 
expected (0.46) on the basis of the relative sizes of consumption and wealth.  This is close to 
the discrepancy of 0.15 per cent that we set out to explain.     
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Table 7.1.  First-order real wealth elasticities 
i Ji 

C 0.61228
X 0.98877
Z 0.71538

 
Table 7.2.  Second-order real wealth elasticities  

               Ji,s 

          s 
i 

C X Z 

C 1.34142 -0.42973 -0.71970 
X 0.27038 0.01713 -0.26245 

Why is JX equal to 0.989?  If the interest rate were zero then steady growth at 3 per cent 
suggests that JX should be 0.97.  In fact, the interest rate for the U.S. on foreign borrowing is 
about 2 per cent.  This gives the result for JX at 0.989 per cent.   
We anticipated that one per cent primary-factor-saving technical change should increase GDP 
by about one per cent.  So why is JZ greater than 0.54 ( = 19.44/35.73).  In the USAGE 
simulation of the effect of a one per cent increase in primary-factor-saving technology, the 
price deflator for investment increases by 0.14 per cent relative to the price deflator for 
consumption.   This reflects strong growth in wage rates induced by primary-factor-saving 
technical change combined with high labour intensity of investment and high import-intensity 
of consumption.  The relative price movement explains an increase in real wealth of about 
0.14 per cent, most of the discrepancy between 0.54 and 0.71.   
Why is JCC in Table 7.2 strongly positive (1.34)?  JC is the per cent damage to wealth in 2019 
of a one per cent increase in consumption in 2018.  JCC is the per cent difference between JC 
evaluated with consumption in year t above its baseline value by one per cent and JC 
evaluated on the baseline.  If consumption is elevated one per cent above baseline, then a one 
per cent increase in consumption uses up about one per cent more of next year’s wealth than 
if the consumption increase were just one per cent of baseline.  On this basis we would expect 
JCC to be about one.  However, there is an additional effect which takes JCC above one.  If 
2018 consumption is elevated above baseline, then 2019 wealth will be below baseline.  With 
2019 wealth below baseline, any given destruction of wealth generated by consumption in 
2018 produces a larger percentage effect on wealth than if wealth were on baseline.    
JCX is the per cent difference between JC evaluated with real wealth at the start of year t above 
its baseline value by one per cent and JC evaluated on the baseline, that is, as set out in (5.4),   

 ( ) ( )
( )

C C
CX

C

J C, X *1.01, Z J C, X, Z
J 100*

J C, X, Z

−
=   (7.9) 

We anticipated that the value of wealth used up at the start of year t+1 through a one per cent 
increase in consumption in year t over its baseline value would not depend on wealth.  On 
this basis, we anticipated that JCX would be about -1.  So why is JCX equal to -0.43?   
We traced the answer to changes in the composition of wealth at the start of 2018.  When we 
elevate real wealth at the start of 2018 so that we can calculate ( )CJ C,X*1.01, Z , we do it by 
reducing U.S. net foreign liabilities.  Thus, our elevation of wealth slightly reduces the ratio 
of the value of physical assets to wealth.  The effect on prices in 2018 of a one per cent 
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increase in consumption is non-uniform.  Although these price movements are independent of 
the level of wealth, nevertheless because of the change in the composition of wealth, the 
percentage effect on real wealth of consumption-induced price movements depends on 
whether real wealth is set at X *1.01  or X .  In a spreadsheet not presented here we 
demonstrated that this price effect explains the discrepancy between our anticipated result of 
about -1 for JCX and the actual result of -0.43.10 
Continuing in this way we could explain all of the items in Table 7.2.  However, we have 
done enough to be convinced that the computations underlying Table 7.2 are correct.  The 
most important point about the explanations is that simple intuition is confounded by changes 
in relative prices and by seemingly innocuous but arbitrary assumptions concerning the 
composition of changes in wealth used in the calculations of elasticities of year t+1 real 
wealth with respect to year t real wealth (JX, JXC, JXX, JXZ).      
7.3.  Illustrative  application: the effects of a one per cent shock to primary-factor-saving 
technology 
Figure 7.1 shows USAGE results for the effects of a 1 per cent deviation occurring in 2018 in 
primary-factor saving technology from its baseline path.  The shock is temporary: primary-
factor saving technology returns to its baseline path from 2019 onwards.   
With aggregate employment set exogenously (unaffected by the shock) and capital 
predetermined (and therefore also unaffected by the shock in the first year), a one per cent 
improvement in primary-factor-saving technology must cause a deviation in GDP in 2018 
from its baseline path of approximately one per cent.  In fact, the USAGE result was an 
increase of 1.03 per cent.11  
An increase in GDP in 2018 of 1.03 per cent is worth $0.20 trillion (= 19.44*0.0103).  The 
increase in consumption, dictated by (7.8) is 0.6781 per cent.12  This uses up $0.11 trillion of 
the GDP increase (= 16.58*0.006781), leaving $0.09 trillion as a contribution to an increase 
in wealth at the start of 2019.  This contribution is a percentage increase in real wealth of 0.25 
per cent (=100*0.09/35.73).  The actual increase projected by USAGE and shown in Figure 
7.1 is 0.30 per cent.  The extra 0.05 per cent (= 0.30 – 0.25) comes from price changes.   
As explained in subsection 7.2 in our discussion of JZ, a primary-factor saving improvement 
in technology generates an increase in the price of capital goods relative to consumption 
goods.  With our chosen price deflator for real wealth at the start of 2019 being the price 
deflator for consumption in 2018 and the price of wealth being predominately the price of 
capital goods, the relative price movement in 2018 imparts an increase in real wealth at the 
start of 2019.  In the USAGE simulation, the increase in the price of capital goods relative to 
the price of consumption goods in 2018 is 0.06 per cent13, closely explaining the bonus real 
wealth increase (0.05 per cent) beyond that generated by extra saving in 2018.   

 
10  The relevant spreadsheet is C:\dixon\consult\DSGE\Present101219\DSGEwork150120.xlsx 
11  The discrepancy of 0.03 percentage points is not important from the point of view of illustrating the workings of our 
DSGE consumption function.  Nevertheless, we traced the source to a reallocation of the capital stock in 2018 towards 
industries that happen to have relatively high rates of return on capital.    
12  At first glance, (7.8) appears to dictate an increase of 0.6724 per cent.  However, in GEMPACK, (7.8) is interpreted as the 

non-linear equation :
0.2669 0.6724C RWEALTH TECH*

Cbase RWEALTHbase TECHbase

−
   =    
   

.  In 2018 the first term in brackets on the RHS is 

one and the second term in brackets is 0.99.  This produces a percentage consumption deviation of 0.6781  
[=100*(0.99-0.6724 -1)]. 
13  The increase in the price of capital goods relative to consumption goods in the simulation that revealed JZ was 0.14 per 
cent.  In the simulation being discussed here it is only 0.06 per cent.  In generating JZ we held consumption constant.  In the 
current simulation, consumption moves.  This damps the increase in the ratio of the price of capital goods to the price of 
consumption goods.   
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Figure 7.1.  Effects of a 1% temporary improvement in primary-factor technology with a 
DSGE consumption function  (percentage deviations from baseline) 

 
Figure 7.2.  Effects of a 1% temporary improvement in primary-factor technology with 

DSGE and a standard USAGE consumption functions  
(percentage deviations from baseline) 
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As mentioned earlier, in standard applications of USAGE private and public consumption 
move proportionately with income.  Under this treatment, the benefits of a good-news 
temporary shock are absorbed almost entirely as an immediate increase in consumption.  In 
our DSGE specification, the year-t contribution to lifetime welfare is a diminishing-marginal-
utility function (1-γ = 0.5) of wealth at the start of year t and consumption in year t, see (3.3).  
With diminishing marginal utility, we anticipated that the replacement in USAGE of the 
standard consumption function by a DSGE consumption function would spread the 
consumption response to temporary good-news across years.  With time-preference 
discounting [β in (3.2) is 0.9] we anticipated that the DSGE deviation path for consumption 
would be declining after the first year, but in a relatively smooth manner.    
Figure 7.2 compares the DSGE results from Figure 7.1 with results under a standard USAGE 
consumption function.  With the standard USAGE treatment, the consumption deviation is 
0.9589 per cent in 2018 falling to 0.0210 per cent in 2019.  With the DSGE treatment, the 
consumption deviation is 0.6781 per cent in 2018 falling to 0.0799 per cent in 2019.  Thus, as 
anticipated, the introduction of the DSGE consumption function has a smoothing effect on 
the consumption deviations and, as was also anticipated, the consumption deviations decline 
over time.    
Although the introduction of the DSGE consumption function smooths out the consumption 
response to the temporary shock to primary-factor technology, we were surprised that the 
smoothing was not more pronounced.  Even with the DSGE consumption specification, the 
2018 consumption deviation is 8.48 times the 2019 deviation (0.6781/0.0799).   
Why, even with the DSGE specification, does consumption increase so sharply in 2018 
relative to 2019?  There are three reasons.   
The first is that all of the benefit to be enjoyed in 2018 from the temporary shock must be 
generated by a consumption increase.  Wealth in 2018 is predetermined.  From 2019 
onwards, some of the benefit can be taken in the form of extra wealth.  Thus, to smooth out 
utility contributions through time, the DSGE household must make a relatively large 
consumption increase in 2018 when this is the only avenue for generating utility.  However, 
this is not the whole story.  As shown in Figure 7.3, the deviation path for the annual utility 
contribution is far from smooth.  The utility deviation in 2018 is 4.840 times that in 2019 
(=0.2820/0.0583).   
The second reason for the large consumption deviation in 2018 relative to that in 2019 relates 
to relative prices in 2018 compared with 2019 and later years.  As explained already, the 
primary-factor technology shock in 2018 generates a wage increase with a resulting increase 
in the price of capital goods relative to consumption goods.  This effect on relative prices is 
temporary, creating an incentive for increased consumption in 2018 when consumption goods 
are relatively cheap.     
The third reason relates to the increase in real wealth at the start of 2019 generated by the 
relative price change in 2018.  This is similar to a gift at the start of 2019 that is withdrawn in 
subsequent years.  There is strongly diminishing marginal utility to extra wealth in any given 
year [(1-θ) in (3.3) is 0.1665].  The gift of wealth at the start of 2019 makes it difficult to 
transfer utility from 2018 to 2019 through extra saving in 2018.  Thus the household takes a 
disproportionate share of the good news from the temporary technology improvement in 2018 
as a utility increase in 2018, rather than in subsequent years.    
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Figure 7.3.  Effects on annual utility of a 1% temporary improvement in primary-factor 
technology with a DSGE consumption function  

(percentage deviations from baseline) 

 

8.  Concluding remarks 
In DSGE modelling, agents make decisions in year t applying rules (policy functions) that 
take account of: year t values of predetermined stock variables; year t values of exogenous 
variables; accumulation relationships determining future values of stock variables; and 
probability distributions for future values of exogenous variables.  The key idea in DSGE 
modelling is that under rational expectations agents know that the rules that they apply in 
year t will also be applicable in future years.   
DSGE models are generally small with little or no sectoral, trade, technology and tax detail.  
We find DSGE ideas attractive.  This has lead to the research reported in this paper in which 
we incorporate a DSGE consumption function in a CGE model that contains a high level of 
sectoral disaggregation and considerable detail on trade, technology and taxes.   
Making DSGE ideas operational requires numerical determination of the policy functions that 
describe agent behaviour in year t.  For CGE modelling, especially with GEMPACK 
software, the perturbation method seems the most natural way to determine these policy 
functions.  As an introduction to DSGE modelling and the perturbation method, we reviewed 
the DSGE version of the standard neoclassical growth model.  We showed how the policy 
rule for the household in that model can be found by the perturbation method.  Then we 
generalized the standard model in two directions and again using the perturbation method we 
derived the policy rules.  The first generalization was the addition of a sticky wage equation 
under which the real wage rate (and consequently employment) in year t depends on the real 
wage rate in year t-1.  The second generalization concerned the role of wealth.  In the 
standard model, wealth is simply a vehicle through which consumption can be transferred 
between years.  This is done by foregoing consumption in one year, thereby generating 
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capital which can be used to produce income to support consumption in future years.  In our 
generalized treatment, wealth retains its original role but also joins consumption in directly 
creating utility in each year.  We have in mind that for households, wealth gives a sense of 
security.  
The perturbation method for finding the policy rule requires evaluation of either derivatives 
or elasticities of the wealth accumulation relationship.  In the standard neoclassical growth 
model and our generalizations we can evaluate the required elasticities simply via formulas 
expressed in terms of known parameters.  However, this option isn’t available for a full-scale 
CGE model.  For these models, it is not possible to express wealth at the start of year t+1 as 
an explicit algebraic function of variables in year t.  Consequently, it is not possible to obtain 
explicit formulas for the required elasticities.  To overcome this problem we showed how the 
elasticities can be evaluated by suitable CGE simulations.  For example, to obtain the 
elasticity of start-of-year wealth for year t+1 with respect to primary-factor-saving 
technology, we conducted a simulation in which primary-factor-saving technology in year t 
was shocked by one per cent and other exogenous variables and consumption were held 
fixed.  The deviation result for start-of-year wealth in year t+1 revealed the required 
elasticity.   
With elasticities of year t+1wealth evaluated by CGE simulations, we were able to compute 
coefficients for a DSGE consumption function.  We used this function in an illustrative CGE 
simulation of the effects of a temporary improvement in primary-factor-saving technology.  
The technology shock produced a once-off windfall increase in income in year t.  Under the 
usual CGE specification in which consumption moves in line with income, a windfall income 
gain in year t is almost entirely consumed in year t.  By contrast, with the DSGE consumption 
function, some of the windfall is devoted to wealth accumulation, allowing consumption 
benefits to be spread across time.   
While the spread effect was clearly visible in our USAGE simulation, it was weak.  The 
introduction of the DSGE consumption function did not prevent a high proportion of the 
windfall income gain in year t from being consumed in year t.  The main explaining factor 
was a temporary increase in the price of capital goods relative to consumption goods.  This is 
a CGE effect that would not be captured by a small-scale DSGE model.    
Our illustrative USAGE simulation with a DSGE consumption function demonstrates the 
feasibility of transferring key DSGE ideas into a full-scale CGE model.  We think that the 
integration of these two types of models has the potential to produce insights of value to 
researchers in both modelling streams.  Our illustrative simulation raises the possibility for 
CGE modellers of adopting consumption functions that imply intertemporal spreading of 
consumption effects tailored to specific shocks.  For DSGE modellers, it shows the potential 
importance of relative price effects.   
However, the transfer of DSGE specifications into a CGE model comes at a cost.   
To make the transfer feasible, we introduced realism-reducing simplifications to the CGE 
model.  Most obviously, we used a steady-growth baseline.  This sacrifices important 
achievements in CGE modelling concerning the identification of different trends in 
technology and consumer preferences across sectors.  Although we retained considerable 
sectoral detail (70 industries) in our illustrative simulation with the DSGE-enhanced USAGE 
model, we simplified the model by effectively eliminating lagged responses.  We assumed 
that the technology shock in 2018 caused an immediate adjustment in wage rates to maintain 
employment exogenously on its baseline path and that the shock had no effect on aggregate 
investment.  These assumptions can be compared with our standard and more realistic CGE 
specifications in which wage rates respond with a lag, aggregate employment moves 
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endogenously from its baseline path and investment reacts to changes in rates of return 
causing a lagged response in industry capital stocks.  While it seems that a steady-growth 
baseline is fundamental to DSGE theory and the perturbation solution method14, it may be 
possible eventually to handle lags in a CGE model containing DSGE-features.  But it is clear 
to us that this will require a further major research effort.  
Another area in which major research effort could be made is in the measurement of real 
wealth.  In this paper we specified real wealth as nominal wealth deflated by the price of 
consumer goods.  Nominal wealth was defined as the value of the nation’s physical capital 
less net foreign liabilities.  We didn’t offer a theoretical justification for this measure of real 
wealth, and we didn’t distinguish between private and public wealth.   
DSGE ideas seem just as applicable to the specification of investment as consumption.  But 
again, progress towards a DSGE specification of investment in a CGE model will require a 
major research effort.    
In the meantime, what can be done with the research reported in this paper?  So far, we have 
included only one Z term (a temporary primary-factor-saving technology shock) in our 
USAGE-based DSGE consumption function.  We are planning to build an inventory of Z 
terms in the DSGE consumption function by applying the method set out in this paper.  These 
new Z terms could include a permanent rather than temporary technology shock, a 
technology shock that is sector-specific rather than economy-wide, a terms-of-trade shock, 
and a shock to aggregate employment.  Then we propose to broaden the comparison started in 
section 7.2 between CGE results with and without the DSGE consumption function.  This 
might help us characterize the sort of shocks for which the DSGE-approach is important.  For 
example, it might tell us that the DSGE-approach produces results that are significantly 
different from the standard CGE approach only if we are dealing with temporary shocks.   
Another direction that could be pursued immediately is an investigation of the effect of using 
realistic lags and a non-steady-growth baseline in a CGE model incorporating a DSGE 
consumption function derived without lags and with a steady-growth baseline.  For example, 
if we simply imposed (7.8) in a USAGE simulation with lags and a realistic baseline, would 
we obtain significantly different deviation results for the effects of a primary-factor-saving 
technical change from those in Figure 7.1?  If the answer is no, then we might be encouraged 
to use realistic lag and baseline specifications in combination with a DSGE consumption 
function even though the function is strictly legitimate only in a model without lags and with 
a steady-growth baseline.  However, we would still be left with unanswered questions about 
how the consumption function itself should be adjusted in the light of lags and unbalanced 
growth.      
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