
1

APPLICATIONS OF MULTI-THREADING PARADIGMS

TO SIMULATE TURBULENT FLOWS

Igor Grossman

College of Engineering and Science

Footscray Park Campus, Victoria University

Melbourne, Australia

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

2

ABSTRACT

Flow structures in turbulent flows span many orders of magnitude of length and time scales.

They range from the length scale at which very small eddies lose their coherence as their

translational kinetic energy is dissipated into heat, up to eddies the size of which is related

to that of the macroscopic system. The behaviour of the range of flow structures can be

captured by assuming that the fluid is a continuum, and they can be described by solving the

Navier-Stokes equations. However, analytical solutions of the Navier-Stokes equations exist

only for simple cases.

A complete description of turbulent flow in which the flow variables velocity and pressure

are resolved as a function of space and time can be obtained only numerically. The

instantaneous range of scales in turbulent flows increases rapidly with the Reynolds

number. As a result, most engineering problems have a wide range of scales that can be

computed using direct numerical simulation (DNS). As the complexity of the calculated

flows increases, an improvement in turbulence models is often needed. One way to

overcome this problem is to search for models that better capture the features of turbulence.

Furthermore, the models should be parameterised in a way that allows flows to be simulated

under a wide range of conditions. DNS is a useful tool in this endeavour, and it can be used

to complement the long-established methodologies of experimental research. A large

number of computational grids must be used to simulate a high Reynolds number inflows

that occur in the complicated geometries often encountered in practical applications. This

approach requires a considerable amount of computational power. For example, reducing

the grid spacing in half increases the computational cost by a factor of about sixteen.

 Challenges presented by limitations imposed by computer hardware significantly limit the

number of practical numerical solutions required to satisfy engineering needs.

In this work, we propose an alternative approach. Rather than running an application that

solves the Navier-Stokes equations on one computer, we have developed a platform that

3

allows a group of computers to communicate with one another working together to obtain a

solution of a specific flow problem.

This approach helps to overcome the problem of hardware limitations. However, to grasp

these challenges, we must devise new strategies to computational paradigms associated with

parallel computing. In the case of solving the Navier-Stokes equations, we have to deal

with significant computational and memory requirements. To overcome these

requirements, software should be able to be run on many high-performance computers

simultaneously, and network communication may become a new limiting issue that is

specific only to parallel environments. Translating to parallel environments triggers several

scenarios that do not exist when developing software that executes sequential operations.

For example, "racing conditions" may appear that result in many threads that attempt to use

different values of a shared variable, or they simultaneously attempt to overwrite it. The

order of executions may be random as the operating system can swap between the threads at

any time. Attempts to synchronise the threads may result in "deadlock" when all resources

become simultaneously locked. Debugging and problem-solving in parallel environments is

quite often difficult due to the potentially random nature of the orders in which threads run.

All of these features require the development of new paradigms, and we must transform our

way of envisioning the development of software for parallel execution. The solution to this

problem is the motivation for the work presented in this thesis.

A significant contribution of this work is to strategically use the ideas of thread injection to

speed up the execution of sequential code. Bottlenecks are identified, and thread injection

is used to parallelise the code that may be distributed to many different systems. This

approach is implemented by creating a class that takes control over the sequential

instructions that create the bottlenecks. The challenge to engineers and scientists is to

determine how a given task can be split into components that can be run in parallel. The

method is illustrated by applying it to Channelflow (Gibson, 2014), which is open-source

Direct Numerical Simulation software used to simulate flows between two parallel plates.

Another challenge that arises when approaching representations of real geometries is the

scale and magnitude of the data samples. For example, Johns Hopkins Turbulent Database

4

(JHTB) contains results of the solution of direct numerical simulation (DNS) of isotropic

turbulent flow in the incompressible fluid in 3D space and only requires 100 TB data. Much

more data needed to perform a simulation, and this is just a straightforward model.

A natural answer to this challenge is to exploit the opportunities offered by contemporary

applications of ‘database technology’ in computational fluid dynamics (CFD) and

turbulence research. Direct numerical solution of the Navier-Stokes equations resolves all

of the flow structures that influence turbulent flows. Still, in the case of Large Eddy

Simulation, the Navier-Stokes equations are spatially filtered so that they are expressed in

terms of the velocities of larger-scale structures. The rate of viscous dissipation is

quantified by modelling the shear stress, and this process can lead to inaccuracies. A means

of rapid testing and evaluation of models is therefore required, and this involves working

with large data sets.

The contribution of this work is the development of a computational platform that allows

LES models to be dynamically loaded and to be rapidly evaluated against DNS data. An

idea permeating the methodology is that a core is defined that contains the ‘know-how’

associated with accessing and manipulating data, and which operates independently of a

plug-in. The thesis presents an example that demonstrates how users can examine the

accuracy of LES models and obtain results almost instantaneously. Such methods allow

engineers or scientists to propose their own LES models and implement them as a plug-

in with only a few lines of code. We have demonstrated how it can be done by converting

the Smagorinsky model to a plug-in to be used on our platform.

5

ACKNOWLEDGMENTS

After four years spent at Victoria University doing my PhD, I have quite a few people to thank

for the help and the support I received. However, it is quite hard to recall everybody when

looking back over this period. Therefore, my apologies to those I may have forgotten in the

following; these acknowledgments are for you too.

I want to express my deepest gratitude to my supervisor, Professor Graham Thorpe, not just for

the opportunity he gave me but also for patiently guiding me throughout my whole research path.

As well, I would like to thank Professor Jun De Li. We had many discussions at the beginning of

the project. He has helped and supported me, sharing all the difficulties I had to face while

fighting with the code.

Also, I want to thank Professor Vasilij Novozhilov. I have met him in person just twice but the

discussions I had with him and his willingness to help have been beneficial and much

appreciated.

I wish to thank Victoria University for the opportunity to access the fastest Melbournian

supercomputer at the time.

In the last four years, I have collaborated with many people within the Edward and Spartan

supercomputer group at Melbourne University. I want to acknowledge and thank all of them, but

special thanks to Lev Lafayette, who has been the first point of contact when something went

wrong at the supercomputer.

Finally, I want to thank my family and in particular my wife Rita for her patience over this entire

path.

6

DECLARATION

I, Igor Grossman, declare that the PhD thesis entitled APPLICATIONS OF MULTI-

THREADING PARADIGMS TO SIMULATE TURBULENT FLOWS is no more than

100,000 words in length including quotes and exclusive of tables, figures, appendices,

bibliography, references, and footnotes. This thesis contains no material that has been submitted

previously, in whole or in part, for the award of any other academic degree or diploma. Except

where otherwise indicated, this thesis is my own work.

Signature: Date: 21/12/2017

7

Table of Contents
1 THE POWER OF PARALLEL COMPUTING APPLIED TO COMPUTATIONAL FLUID

DYNAMICS ... 15

1.1 INTRODUCTION .. 15

1.2 AN ENGINEERING APPROACH .. 16

1.3 MATHEMATICAL MODELING OF TURBULENT FLOWS 17

1.4 NUMERICAL SIMULATION ... 17

1.4.1 DIRECT NUMERICAL SIMULATION (DNS) .. 19

1.4.2 REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS 20

1.4.3 LARGE-EDDY SIMULATION (LES) .. 21

1.4.4 COMPUTATIONAL CHALLENGES ... 23

1.4.5 PARALLELISATION .. 25

2 THE STUDY OF CHANNEL FLOW .. 26

2.1 INTRODUCTION .. 26

2.2 THE IMPLEMENTATION OF CHANNEL FLOW ... 30

2.3 PARALLEL DECOMPOSITION .. 30

2.3.1 SIMULATION METHOD.. 30

2.3.2 SPECTRAL METHODS .. 30

2.3.3 GOVERNING EQUATIONS ... 31

2.3.4 BOUNDARY CONDITIONS AND PRESSURE .. 31

2.3.5 SPECTRAL DECOMPOSITION ... 32

2.3.6 ENERGY DISSIPATION ... 33

2.3.7 FOURIER TRANSFORMATION OF THE NON-LINEAR TERM 34

2.3.8 SIMPLIFY SPECTRAL METHODS AND ALIASING PROBLEMS 35

2.3.9 OUR APPROACH .. 36

3 GOING PARALLEL .. 37

3.1 INTRODUCTION .. 37

3.1.1 PROCESSES... 41

3.1.2 FOREGROUND AND BACKGROUND PROCESSES ... 42

3.2 INTERRUPTS AND SIGNALS ... 42

3.3 SOCKETS ... 43

3.4 EVENT DRIVEN COMMUNICATIONS ... 43

8

3.5 MULTI-THREADING ... 43

3.6 MULTIPROCESSORS AND MULTI-CORE ... 44

3.7 MPI ... 46

3.8 OPENMP .. 46

3.9 GPU AND CPU DEVELOPMENT.. 47

3.10 OBJECT ORIENTED LANGUAGES AND DESIGN .. 47

3.10.1 OBJECTS IN PROGRAMMING ... 49

3.10.2 CLASSES AND OBJECTS .. 50

3.10.3 METHODS AND FUNCTIONS .. 50

3.11 OBJECT-ORIENTED ANALYSIS .. 51

3.12 OBJECT-ORIENTED DESIGN ... 52

3.13 OBJECT-ORIENTED PROGRAMMING ... 52

3.14 OBJECT-ORIENTED PRINCIPLES ... 53

3.14.1 ENCAPSULATION ... 53

3.14.2 INHERITANCE .. 54

3.14.3 POLYMORPHISM ... 54

3.15 OBJECTS IN CFD .. 54

4 OBJECT ORIENTED DEVELOPMENT AND PARALLELIZATION OF THE

NONLINEAR CONVECTION TERM .. 56

4.1 INTRODUCTION .. 56

4.2 THREADPOOL CLASS REFERENCE... 63

4.2.1 PUBLIC MEMBER FUNCTIONS... 63

4.2.2 STATIC PUBLIC MEMBER FUNCTIONS ... 63

4.2.3 PRIVATE MEMBER FUNCTIONS .. 64

4.2.4 PRIVATE ATTRIBUTES .. 64

4.2.5 STATIC PRIVATE ATTRIBUTES ... 65

4.2.6 CONSTRUCTOR AND DESTRUCTOR .. 65

4.2.7 MEMBER FUNCTIONS .. 66

4.2.8 MEMBER FUNCTION DOCUMENTATION .. 76

4.2.9 ACCESSING THREADS ... 77

4.3 SKEWSYMMETRICNL_TASK CLASS REFERENCE .. 80

4.3.1 PUBLIC MEMBER FUNCTIONS... 81

4.3.2 PUBLIC ATTRIBUTES ... 81

9

4.3.3 PRIVATE ATTRIBUTES .. 82

4.4 PARALLEL FFTW .. 83

4.5 TIME MEASURE IN PARALLEL ENVIRONMENT .. 85

4.5.1 RESULTS ... 86

4.6 SUMMARY .. 86

5 A PLATFORM THAT ACCEPTS SUB-GRID MODELS AS PLUG-INS TO ENABLE

THE TESTING OF LES MODELS AGAINST DNS DATA .. 88

5.1 INTRODUCTION .. 88

5.2 PROBLEM DESCRIPTION ... 89

5.3 GOVERNING EQUATIONS ... 91

5.4 DESIGN AND IMPLEMENTATION OF IDEAS... 93

5.5 KEY COMPONENTS .. 94

5.5.1 MEMORY MANAGEMENT. .. 94

5.6 DATABASE ENGINE ... 96

5.7 DATABASE CLASS REFERENCE .. 96

5.7.1 PUBLIC MEMBER FUNCTIONS... 97

5.7.2 PRIVATE ATTRIBUTES .. 97

5.7.3 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION 97

5.7.4 MEMBER FUNCTION .. 98

5.8 FAST FOURIER TRANSFORMATION ... 101

6 EDWARD HIGH-PERFORMANCE COMPUTER .. 102

6.1 INTRODUCTION .. 102

6.2 THE CORE CLASS AND ITS MEMBERS .. 102

6.2.1 PUBLIC MEMBER FUNCTIONS... 104

6.2.2 PRIVATE MEMBER FUNCTIONS .. 104

6.2.3 PRIVATE ATTRIBUTES .. 105

6.2.4 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION 105

6.2.5 MEMBER FUNCTION .. 105

6.2.6 MEMBER DATA ... 123

6.3 FILTERING OPERATIONS .. 125

6.3.1 FILTER_BASE CLASS REFERENCE ... 125

6.3.2 CONSTRUCTOR & DESTRUCTOR .. 126

6.3.3 MEMBER FUNCTION DOCUMENTATION .. 126

10

6.3.4 MEMBER DATA ... 127

6.4 FILTEREDDATA CLASS REFERENCE ... 127

6.4.1 PUBLIC MEMBER FUNCTIONS... 127

6.4.2 PUBLIC ATTRIBUTES ... 128

6.4.3 CONSTRUCTOR & DESTRUCTOR .. 128

6.4.4 MEMBER FUNCTION .. 128

6.4.5 MEMBER DATA ... 129

6.5 GAUSSIAN CLASS REFERENCE ... 129

6.5.1 PUBLIC MEMBER FUNCTIONS... 130

6.5.2 PRIVATE ATTRIBUTES .. 130

6.5.3 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION 130

6.5.4 MEMBER FUNCTION .. 132

6.5.5 MEMBER DATA ... 132

7 SMAGORINSKY PLUGIN ... 133

7.1 INTRODUCTION .. 133

7.2 DETAILED PLUGIN DOCUMENTATION ... 136

7.2.1 PUBLIC MEMBER FUNCTIONS... 138

7.2.2 PUBLIC ATTRIBUTES ... 138

7.2.3 MEMBER FUNCTION DOCUMENTATION .. 138

7.2.4 MEMBER DATA DOCUMENTATION ... 140

7.3 POINT OBJECTS ... 141

7.3.1 PUBLIC MEMBER FUNCTIONS... 141

7.3.2 PUBLIC ATTRIBUTES ... 141

7.3.3 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION 141

7.3.4 MEMBER FUNCTION .. 142

7.3.5 MEMBER DATA ... 142

7.4 OBJECTS OF TYPE SIZE ... 143

7.4.1 SIZE CLASS REFERENCE ... 143

7.4.2 PUBLIC MEMBER FUNCTIONS... 143

7.4.3 PUBLIC ATTRIBUTES ... 143

7.4.4 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION 143

7.4.5 MEMBER FUNCTION .. 144

11

7.4.6 MEMBER DATA ... 144

7.4.7 FULL PLATFORM DETAILED PROJECT ORGANIZATION 145

7.5 TASK STRUCT REFERENCE .. 145

7.5.1 PUBLIC ATTRIBUTES ... 145

7.5.2 MEMBER DATA DOCUMENTATION ... 146

7.5.3 FILE DOCUMENTATION .. 146

7.6 CORE.H FILE REFERENCE ... 146

7.6.1 CLASSES ... 146

7.6.2 TYPEDEFS ... 146

7.6.3 TYPEDEF DOCUMENTATION ... 147

7.7 DATABASE.H FILE REFERENCE .. 147

7.7.1 CLASSES ... 147

7.7.2 TYPEDEFS ... 147

7.7.3 TYPEDEF DOCUMENTATION ... 147

7.8 FILTER.H FILE REFERENCE .. 148

7.8.1 CLASSES ... 148

7.8.2 CLASSES ... 148

7.8.3 TYPEDEFS ... 148

7.8.4 TYPEDEF DOCUMENTATION ... 149

7.9 MAINPAGE.DOX FILE REFERENCE .. 149

7.10 PLUGIN.HPP FILE REFERENCE .. 149

7.10.1 CLASSES ... 149

7.10.2 NAMESPACES .. 149

7.10.3 TYPEDEFS ... 149

7.10.4 ENUMERATIONS ... 150

7.10.5 TYPEDEF DOCUMENTATION ... 150

7.10.6 ENUMERATION TYPE DOCUMENTATION .. 150

7.11 POINT.H FILE REFERENCE.. 150

7.11.1 CLASSES ... 150

7.11.2 TYPEDEFS ... 150

7.11.3 TYPEDEF DOCUMENTATION ... 150

7.12 TASK.H FILE REFERENCE ... 151

12

7.12.1 CLASSES ... 151

7.13 CORE.CPP FILE REFERENCE .. 151

7.13.1 TYPEDEFS ... 151

7.13.2 FUNCTIONS .. 151

7.13.3 TYPEDEF DOCUMENTATION ... 152

7.13.4 FUNCTION DOCUMENTATION .. 152

7.14 DATABASE.CPP FILE REFERENCE .. 152

7.15 DNS_PLUGIN.CPP FILE REFERENCE .. 154

7.15.1 FUNCTIONS .. 154

7.15.2 FUNCTION DOCUMENTATION .. 154

7.16 GAUSSIAN.CPP FILE REFERENCE ... 158

7.17 PLUGIN.CPP FILE REFERENCE .. 159

7.17.1 CLASSES ... 159

7.17.2 NAMESPACES .. 159

7.17.3 FUNCTIONS .. 159

7.17.4 FUNCTION DOCUMENTATION .. 160

7.17.5 COMPARATOR OPERATOR ... 160

7.18 RESULTS AND PRACTICAL USAGE EXAMPLES .. 161

7.19 CONCLUSIONS... 164

8 CONCLUSIONS... 165

9 INDEX .. 167

10 TABLE OF FIGURES .. 170

11 NOMENCLATURE ... 171

12 REFERENCES ... 174

13

PAPERS

The context of this thesis is based on the following papers which have been published or been

accepted for publication during this PhD project:

1. First Thermal and Fluids Engineering Summer Conference, 9-12 August 2015, New

York, NY, USA

https://www.astfe.org/conferences/tfesc/TFESC_Conference_Technical_Program.pdf

2. Begell House, A PLATFORM THAT ACCEPTS SUB-GRID MODELS AS PLUGINS

TO ENABLE THE TESTING OF LES MODELS AGAINST DNS DATA,

http://search.begellhouse.com/index.php

3. Thread injection to make DNS Channelflow run in parallel:

Part1, http://vuir.vu.edu.au/31080/

4. Thread injection to make DNS Channelflow run in parallel:

Part2, http://vuir.vu.edu.au/31079/

5. A platform that accepts sub-grid models as plugins to enable the testing of LES models

against DNS data archived in the John Hopkins database. http://vuir.vu.edu.au/30976/

https://www.astfe.org/conferences/tfesc/TFESC_Conference_Technical_Program.pdf
http://search.begellhouse.com/index.php

14

15

1 THE POWER OF PARALLEL COMPUTING

APPLIED TO COMPUTATIONAL FLUID

DYNAMICS

1.1 INTRODUCTION

The flow of fluids pervades our very existence (Tennekes and Lumley, 1972). Blood moves

through our body; air flows in our lungs - even cosmic dust clouds manifest turbulent-like

behaviour (Yang et al. 2015) as they approach black holes. Turbulent flow is virtually

everywhere. Indeed, many of the environmental and energy-related issues we face today cannot

be resolved without detailed knowledge of the mechanics of turbulent flows. But what exactly is

turbulence?

Turbulence is a flow composed of eddies or vortices: patches of often swirling fluid, moving

randomly about the overall direction of motion. Technically, the chaotic state of fluid motion

arises when the speed of the fluid exceeds a specific threshold, below which viscous forces damp

out the chaotic behaviour (Tritton, 1988).

Perhaps the simplest way to define turbulence is to invoke the Reynolds number, a parameter

that compactly characterises a flow. The magnitude of the Reynolds number indicates the ratio

of inertial to viscous forces that arise as a result of fluid flow (Smagorinsky, 1963). If we list the

flows that capture the attention of most scientists and engineers, we will find that practically all

of them are turbulent. Turbulence is the rule, not the exception, in the behaviour of fluids. The

flow of fluids is governed by the Navier-Stokes equations, which are derived from the principle

of the conservation of momentum. One of the terms in the equation is non-linear in velocity, and

this accounts for the formation of instabilities that can occur within fluid flows.

Nobel Laureate Richard Feynman was moved to declare turbulence to be "the most important

unsolved problem of classical physics" (Feynman et al., 1963). The question can be invited –

how do engineers deal with problems involving turbulent flows if the nature of turbulence is still

considered an unsolved problem? Fundamentally, they use the best science available to them at

the time.

16

1.2 AN ENGINEERING APPROACH

Engineering projects generally pass through several stages. They begin with preliminary research

during which the project requirements need to be specified. Next, the requirements of the project

are addressed, and engineers produce some possible solutions and select the one they believe will

best suit their needs. When performing calculations, engineers generally draw on contemporary

science. Still, often this comprises little more than simplified equations, a sort of “recipe” or

“cookbook”, empirical formulae and an endless number of parameters reflecting generations of

accumulated data and experience. After this stage, development can begin with the introduction

of a working prototype.

To arrive at this point, a great deal of money has generally been invested – and this is only the

first iteration. The question arises – is there any other way? This question can be answered in two

words - computer simulation (Pope, 2004). If we condensed all the time that the study of

turbulent flows has been carried out to the duration of one week, the most significant advances in

our practical results would have taken place in the last hour. A result of this is the introduction of

computer simulation and the emergence of supercomputing (Sanders et al., 2011).

An example is a critical role that supercomputers have played in the success of biomedical

science. In 1999 IBM announced a $100 million dollar initiative to build the petaflop-scale

supercomputer to tackle the protein folding problem. The IBM Blue Gene project was targeting

massive parallel simulations of biomolecular systems to advance our knowledge in the

understanding of biological processes.

17

1.3 MATHEMATICAL MODELING OF TURBULENT

FLOWS

The governing equations for laminar, transition and incompressible turbulent flows are the

Navier-Stokes equations

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= 𝑓𝑖 −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥
(𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗
) , (1.1)

complemented with the mass conservation and incompressibility constraint

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (1.2)

where ui is the velocity component in the xi direction, fi represents external forces, p pressure and

𝜈 is the kinematic viscosity of the fluid. These equations were derived independently almost two

centuries ago by the French engineer Claude Navier and the Irish mathematician George Stokes.

They are equations which govern the velocity and pressure of fluid throughout a flow field. The

computational difficulty arises principally from the non-linear term, 𝑢𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
, which is ultimately

responsible for the growth in the number of lengths and time scales as a flow undergoes a

transition from laminar to turbulent flow. The evaluation of this term is computationally

resource-intensive. In this work, we shall enter the realm of parallel computing with its unique

paradigms and logic to expedite the computation of this non-linear term.

1.4 NUMERICAL SIMULATION

The Navier-Stokes equations are strongly non-linear, and mathematically they cannot be readily

solved when the Reynolds number is high, or the domain in which the fluid occupies is complex.

It is only recently that fluid dynamicists have been able to solve them approximately by making

18

use of computers. As a result, a new sub-branch of classical physics, namely computational fluid

dynamics, was born.

Geometrical representation, along with computer visualisation, has transformed how the results

of CFD are portrayed and interpreted. This is a complex task, bringing together mathematicians,

computational scientists and engineers. Generally speaking, it is required to find the numerical

“recipe” to split the geometry into several smaller entities of simple shapes which constitute a

computational spatial mesh. The success of commercial CFD packages depends in part on the

speed, accuracy, and reliability in which this can be done. Having developed a suitable mesh

generator, the differential equations that govern the flow are discretised on the mesh and solved

by advancing the solution in finite time steps.

Currently, there are three different levels of approximation used to simulate turbulent flows using

computers. They range from the most detailed, refined and accurate solutions through to those

that embody sweeping approximations. They are:

 Direct numerical simulation (DNS) (Krist and Zang, 1987)

 In DNS, the Navier-Stokes equations (1.1-1.2) are solved numerically by

resolving the shortest time and spatial scales of the flow field. The principal

application of DNS is to help establish the fundamentals of turbulence. As a

result, much of the literature about DNS is carried out in simple geometries as

exemplified by the work of Reveillon et al. (2011). Furthermore, DNS can only

simulate flows at relatively low Reynolds numbers because of the limitations of

current computer power in terms of computation speed and memory.

 Large-eddy simulation (LES) (Smagorinsky, 1963).

Large Eddy Simulation has features that are akin to both Reynolds averaged and

direct numerical simulation methods. It solves the unsteady partial differential

equations that account for the conservation of mass, momentum, and energy at the

large scales of motion and the small eddies are modelled.

 Reynolds averaged Navier-Stokes (RANS) (Reynolds, 1895) computational fluid

dynamics (CFD). The Reynolds-averaged or RANS equations usually are time-

19

averaged equations of motion that govern fluid flow. The idea behind these

equations is the partitioning of the instantaneous flow field into the sum of time-

averaged and time-fluctuating components that are deemed to influence the flow.

1.4.1 DIRECT NUMERICAL SIMULATION (DNS)

The Navier-Stokes equations have been established for almost 200 years. Except in the cases of a

few simple flows Muriel, (2010), Muriel and Dresden, (1997), no analytical solutions have been

obtained. Flow structures in turbulent flows span many orders of magnitude of length and time

scales. They range from the length scale at which very small eddies lose their coherence as their

translational kinetic energy is dissipated into heat, up to eddies the size of which are related to

that of the macroscopic system. The behaviour of the range of flow structures can be captured

by assuming that the fluid is a continuum, and they can be described by solving the Navier-

Stokes equations. Richardson (1961), who introduced point iterative schemes for numerically

solving Laplace's equation, is regarded as the progenitor of computational fluid dynamics and his

concept of turbulence endures to the present time. He is well known for the ditty he composed

that captures the nature of energy cascade in turbulent flows, namely

 Big whorls have little whorls that feed on their velocity,

 and little whorls have lesser whorls and so on to viscosity.

The underlying idea is that those turbulent flows are composed of ‘eddies’ of different sizes.

Increasing the Reynolds number leads to the activation of smaller turbulent flow scales down to

a lower limit. The smallest scale is known as the Kolmogorov scale, and it needs to be resolved

in the most detailed of numerical simulations. The accuracy of the solutions is strongly

dependent on the spatial and temporal resolutions employed.

Direct numerical simulation (DNS) is simulation when results of numerically solving Navier-

Stokes equations are achieved without any turbulence model. This will be thought of as all

properties of turbulent flow can be retrieved based on smallest time and smallest space intervals.

The requirement of the mesh size can be determined by the Kolmogorov scale and given by

20

ŋ = (𝜈3

𝜀⁄)1/4 (1.3)

where 𝜈 is the kinematic viscosity, and 𝜀 is the rate of kinetic energy dissipation. The integral

scale depends on a spatial scale for given boundary conditions. To satisfy this requirement,

several node points for the mesh must maintain the integral scale in the range of the

computational domain

𝑁ℎ > 𝐿 (1.4)

where N is a number of points in mesh direction and h is a space step size.

All the above make step h is to follow equation (1.5)

ℎ ≤ ŋ (1.5)

And because

𝜀 ≅ 𝑢′3
/𝐿 (1.6)

where 𝑢′ is the root mean square of the velocity and for three-dimensional space, the

number of mesh points should satisfy

𝑁3 ≥ 𝑅𝑒9/4 (1.7)

 and Re is turbulent Reynolds number:

𝑅𝑒 =
𝑢′𝐿

𝜈
 (1.8)

all the above equations conclude that the storage requirement is growing very fast when

we try to simulate flows with high Reynolds numbers. Also, the time step to produce

accurate results should be correspondingly small. All that makes DNS very expensive,

even for most powerful computers. DNS is mainly suitable for numerical experiments but

21

can hardly be used for practical engineering tasks.REYNOLDS-AVERAGED

NAVIER-STOKES EQUATIONS

 One of the approaches to simplify Navier-Stokes equations of motion of the fluid flow is to

formulate Reynolds averaged or (RANS) equations. They are time-averaged equations of motion

for turbulent flow and can be expressed as:

𝜌�̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗
= 𝜌𝑓�̅� +

𝜕

𝜕𝑥𝑗
 [– �̅� 𝛿𝑖𝑗 + 𝜇 (

𝜕�̅�𝑖

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
) − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅]

 (1.9)

The idea behind the Reynolds-averaged approach is separating velocity into two components,

namely a mean (time-averaging) component, and a fluctuating component as follows

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑢′(𝑥, 𝑦, 𝑧, 𝑡)

This approach was initiated by Reynolds (1895).

 (1.10)

1.4.3 LARGE-EDDY SIMULATION (LES)

Large-eddy simulation (LES) is a three-dimensional unsteady simulation procedure that attempts

to capture the physics of turbulence. In LES, turbulence contained in large length scales is

resolved, and small-scale turbulence is modelled (You & Moin 2007). The resolved scales are

obtained by solving the Navier-Stokes equations directly, and this allows the temporal and

spatial evolution of those eddies to be captured. However, modelling is required for the effects of

dissipation of kinetic energy in the unresolved small-scale eddies (Yuan & Piomelli 2015, You &

Moin 2007). These models are known as the sub-grid scale (SGS) models. LES partitions the

large and small-scale eddy motions in physical space by using a filtering technique. Eddies

smaller than the filter width are modelled by the filtering process, which reduces the

computational cost compared to direct numerical simulation (DNS) (You & Moin 2007).

Traditional LES employs implicit filtering schemes in which the filter width usually is the same

as the grid size. This effectively means that if the grid changes, the model changes with the grid

size, which is likely to give different solutions.

22

Moreover, there is less control over the rise of numerical errors due to direct dependency on the

grid size (Gnanaskandan & Mahesh 2016). Thus, grid independence becomes elusive using

implicit LES (Sarwar et al., 2017). Unless a grid-independent result is obtained, questions will

remain about the numerical accuracy of a CFD simulation.

In LES explicit filters apply to the discretised Navier-Stokes equation with well-defined filter

shapes. The approach is based on means of controlling numerical errors that result when finite-

different methods are used and operation that reduce truncating errors. However, using explicit

filtering requires a much higher density grid and computational costs increase with (∆𝑥)4

One of the central tenets of LES is Kolmogorov’s theory of “self-similarity” which allows one to

separate small and large eddies. The large eddies of the flow are dependent on the geometry of

the domain while the minor scales are more or less universal. Large-eddy motions are retained

and obtained directly using a transient calculation. Large-eddy simulations are inherently

approximate because the effects on the flow field of the small eddies are based on heuristically

formulated models. We shall show in Chapter 5 a computationally efficient way of establishing

the accuracy of LES models by comparing them with data generated by DNS. However, the

flow fields associated with DNS require the manipulation of perhaps petabytes of data, and it is

one of the aims of this thesis to develop powerful computational methods of efficiently analysing

such large data sets.

In LES, a spatial filtering operation using a kernel G is applied to the flow field as follows:

�̅� = ∫ 𝐺(�⃗� − �⃗�) 𝜑(�⃗�)𝚍�⃗�
 (1.11)

resulting in one being able to express a flow variable, 𝜑, as the sum of two components thus

𝜑 = �̅� + �̃� (1,12)

where is the resolvable scale component and ~ is a sub-grid-scale component.

23

Using the decompositions 𝑢𝑖 = �̅�𝑖 + �̃�𝑖 and 𝑝 = �̅� + 𝑝 and applying the filtering operation to

the Navier-Stokes and continuity equations, we obtain

𝜌 (
𝜕�̅�𝑖

𝜕𝑡
 + �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗
) = 𝜌𝑓�̅� −

𝜕�̅�

𝜕𝑥𝑖
 +

𝜕

𝜕𝑥𝑗
(𝜇

𝜕�̅�𝑖

𝜕𝑥𝑗
) +

𝜕𝜏𝑖𝑗

𝜕𝑥𝑖

 (1.13)

𝜕�̅�𝑖

𝜕𝑥𝑖
= 0

 (1.14)

wherein (1.13),

𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ − �̅�𝑖�̅�𝑗 (1.15)

The term 𝜏𝑖𝑗 in (1.15) captures the residual stresses which need to be modelled using suitable

sub-grid-scale methods. Equation 1.15 gives rise to one of the central challenges of LES,

namely, how do we accurately model the residual stresses? The statistical properties of turbulent

flows can be accurately determined by making use of DNS, and the latter can provide benchmark

solutions against which LES can be evaluated. However, because DNS solutions are data-

intensive, engineers and scientists require computationally efficient methods of handling large

amounts of data. As part of this research, we have developed an easy-to-use platform that

enables a range of LES models to be evaluated against DNS data.

1.4.4 COMPUTATIONAL CHALLENGES

It is somewhat trite to claim that experiments are expensive and time-consuming to carry out and

that these difficulties can be obviated by performing numerical experiments. However, there is a

serious impediment to simulating many of the systems that arise in practice, namely the inability

of computers to solve the vast number of simultaneous equations that govern the flow of fluids.

Because of the economic value and safety requirements imposed on the design of aircraft, it

appears that aircraft manufacturers have supported a considerable amount of experimental and

computational fluid dynamics research. The research presented in this thesis contributes know-

how to the requirements to adapt computer code to HPC architectures, and the need for improved

24

physical modelling. This is closely aligned with the directions of future CFD research outlined

by Kroll et al. (2015). For example, aircraft must decrease their speed as they are landing, and

this has the potential to reduce the lift that is essential in keeping them airborne. Aircraft

designers, therefore, resort to modifying the shape of the airfoils that constitute the wings

employing a complex array of flaps and slats that control the flow to prevent the streamlines

from separating from the surfaces of the wings which result in a loss of lift. Many details of the

flow can be resolved using LES, but if the behaviour of the complete airframe is to be

determined, about one trillion grid cells must be used (Chapman, 1979). This is but one example

where numerical experiments are challenging to carry out. For example, Jameson points out that

on a petaflop computer, a DNS solution of flow around an A380 would take about 30 years. To

correctly simulate turbulent flow the grid must be significantly refined in the direction of the

wall. This makes for Re>O (105), over 90% of the grid points are needed to resolve less than

10% of the computational domain. Without a doubt, the requirement for simulation is quite high

– the number of the grid point is proportional to 𝑅𝑒9/4 and the overall cost is proportional to

𝑅𝑒3. According to Moore’s law (Moore et al. 1965), the density of transistors will double every

two years. However, when we are getting closer to the atomic scale increase, the computer power

will cease, and we are approaching this limit.

The fact is this: we do not expect the one-trillion cell memory to be available soon (Kroll et al.

2015). With a petaflop computer (IBM Roadrunner, 2008), the DNS of the A380 would take

about 109seconds –-about 30 Years!

25

Figure 1.1 Sketch of the computer power available and that needed for LES as a function of

time. The cross-over time is the transition from the era of insufficient computer power to the era

of sufficient computer power. (Pope, 2004)

Figure 1.1 shows the relation of power available and needed for LES. It is quite evident that

until we have enough computational capabilities, simulation can be done only for the simple

flows and simplifications are unavoidable. However, when we come to the second era of

significant power, we expect that it will grow not only in quantity but also in quality. This will

occur when computer power starts to grow via computers joining in one global network. So, one

complicated flow simulation should be viable if solved by many computers.

This research approach is to remove the impediment that prevents significant, practical problems

being solved by developing new approaches to the design of the software.

1.4.5 PARALLELISATION

Two principal factors are driving the parallelisation of computer hardware and software. The

rate of acceleration of the speed of processors is slowing (Lavington, 1998; Norberg and O’Neil,

1996). This thesis is concerned with solving the Navier-Stoke equation, the fundamental

equation that governs how flowing fluids behave. Parallelisation is the key to making further

progress in this area of research, and it will also help us to develop accurate, but computationally

efficient methods of modelling flow in fluids. This latter consideration is also addressed in this

work.

26

The conventional development of software was based on serial programming Scott (2009). In

this traditional approach, algorithms were assembled into discrete instructions, each of which is

executed one by one by a central processor. Only when one such instruction is finished will the

execution of the next instruction be initiated. In the meantime, all of the computer resources are

waiting. This represents a considerable waste of resources

Although serial processing has severe limitations, there is no doubt that over the three or so

decades-spanning 1970 – 2004 developments in CPUs resulted in significant increases in

processing speed. For example, Sutter (2005) has quantified the trend in Intel CPU development

and Figure 1 illustrates the increase in performance of Pentium® personal computer chips.

Examining this graph and comparing CPU performance for Pentium Personal Computers, we can

acknowledge that regardless of software quality, any new generation of hardware will

significantly speed up any application. Progress occurred at a high pace as new generations

of hardware appeared on personal computers. However, it can be seen from Figure1.2 that the

rate of increase in speed began to decrease around 2005.

27

Figure 1.2 The trend in Intel CPU development illustrates that the increase in the speed of

computer chips decreases after about 2005. The time in years is plotted on the abscissa and

the number of transistors, clock speed, power consumption and the number of computer

instructions per second are plotted on the ordinate. The graph was updated in August

2009, but the original source is Sutter (2005).

Similar results were garnered by McCalpin et al. (2011), for other chips, suggesting that the

increase in performance of single-threaded CPU performance has begun to decline.

28

Figure 1.3 These data presented by McCalpin et al. (2011) suggest that the rate of increase

in chip performance is slowing.

The overarching message portrayed in the figures is that in around the ’80s and 90’s virtually any

software ran faster in terms of doubling its speed in around 18-20 months. However, eventually,

the growth in performance of single-threaded CPUs began to slow, and it appeared to hit a limit

(Sutter, 2005). By 2005 the increase in the speed of single-threaded software plateaued. That

was a time when the focus turned to the development of parallel software.

According to Culler et al. (1999), there are three types of parallelism, namely

 Bit-level parallelism: This is the form of parallel computing which is based on

increasing the word size of the processor. Increasing the word size usually results in

reducing the number of instructions that the system must execute to perform a given task.

 Instruction-level parallelism: At run time the processor is dynamically ordered to

process instructions in parallel

 Task Parallelism: Task parallelism employs the decomposition of a task into subtasks

and then allocates each of the subtasks for execution. The processors perform execution

of sub-tasks concurrently.

When bit-level parallelism and instruction-level parallelism are performed automatically by the

hardware and operating system, we have already noted that this way of the increasing power of

computer calculations reached its apogee in 2004.

29

Task parallelism requires direct intervention by software developers if the performance of

computers is to be advanced, and this is at the core of the research presented in this thesis.

Developments in this direction, initiated by Gropp et al. (2001), gave birth to new constraints on

how computer software is conceived and written, especially where the underlying computer

architecture been directly accessed through the application programming interface (API).

A significant step in parallel software development was made by Hollman (2016), who created

the pThread library for C++. This add-on enabled software developers to use sequential C++

language to develop parallel code using API located in the pThread library and that incorporated

100 functions. Subsequently, parallel concepts were directly encapsulated at the software

language level. For example, from the time of its inception Java (Frumkin, 2003) incorporates a

runnable thread interface.

Eventually, new languages like CUDA (Nvidia, 2007) were created to target massive parallel

software development especially. CUDA has been bound to many software languages such as

FORTRAN, IDL, Java, MATLAB, Mathematica, Pyton, .Net, and so on. A significant

difference in parallel software development compared to sequential programming is a necessity

to split the underlying task into several independent subtasks, each of which can be executed

concurrently. This makes parallel development very targeted to the type of application.

There are some tasks which are naturally parallel, like rendering in computer visualisation

Eilemann (2019), brute force searches Loesch (1990) and so on. Moler (1986) coined the phrase

“embarrassingly parallel” to describe problems that are definitively parallel and easy to solve. In

contrast, performing parallelisation in CFD applications is quite challenging; Simon (1991).

However, the growing trend of publications on CFD Singh et al. (2018) shows the significant

interest of researchers in this area.

At the International parallel CFD conference held in 2018, a number of the new directions was

presented to attack problems of parallelisation. They included:

 Parallel Algorithms and Solvers

 Extreme-Scale Computing

 Mechanical and Aerospace Engineering Applications

30

 Atmospheric and Ocean Modelling

 Medical and Biological Applications

 Fluid-Structure Interactions

 Turbulence and Combustion

 Acoustics

 Software Frameworks and GPU Computing

The fact that the implementation of parallel CFD has given rise to so many strands of research

and applications is a clear demonstration of the intensity of the research effort in this area. The

discovery of reusable independent parts with the ability to perform parallel CFD provokes many

new questions such as:

Large scale CFD is based on several unstructured domains, and the question arises regarding

how to distribute this large number of unstructured domains over several processors with

distributed memory, and how to achieve a balance of load and what the optimum number of

processors required. This question was addressed by Simon (1991) and an algorithm using a

graph of the theoretical framework with three decompositions was introduced. The authors show

that the computation of an eigenvector of Laplacian matrix associated with a graph gets superior

results for this spectral bisection algorithm, and it leads to the solution of distribution of

unstructured domains through the number of processors and achieving a balance of load.

Another question on how to dynamically partition unstructured meshes in a parallel way was

addressed by Walshaw et al. (1997) who introduced an iterative gain optimisation technique to

archive load balancing and minimised inter-process communication overhead. Their experiments

show that adaptively refined meshes produced similar or higher quality partitioning and much

more rapidly than a sequential approach.

Solver for parallel CFD for steady-state flows ends up in requirement for reusable algorithm for

solutions partial differential equations and how it can be run on many processors. Trebotich et

31

al. (2008) presented the algorithm to obtained higher performance for the complex geometries

for solution elliptical problems and demonstrated how it can be run on 1000 processors.

Another direction in parallel CFD computations is creating mesh-less algorithms. Successful

implementation will directly lead to almost embarrassingly parallel CFD. Katz & Jameson

(2010), developed a new mesh-less technique scheme based on the well known Taylor series

expansions with least squares. The authors discussed difficulties associated with the application

of a reusable algorithm for an arbitrary cloud of points. The proposed scheme significantly

reduces the storage requirement compared to other mesh-less schemes. They applied this method

to the Euler equations and show that this approach agrees with other established methods.

Another question that arises is how to reduce the number of dependencies in iteration solver.

The approach was made an example of optimising time steps Arbenz & Obrist (2018) when

simulating time-periodic steady states of the Navier-Stokes equations. Two methods were

compared, one with a standard time-stepping and another where the time step was recalculating

based on periodic boundary conditions in time. The methods are compared concerning accuracy

and scalability by solving for a time-periodic Taylor-Green vortex. It has been shown that the

second approach converges much faster to simulate equilibrium, reducing the number of

dependencies from previous steps lead to the parallel execution of the algorithm.

Our contribution.

In the first part of the thesis, we develop paradigm and methodology for speeding up massive

calculations by parallelisation of Navier Stokes equations. We discuss and demonstrate new

phenomena which only appear in the parallel world and demonstrate how they can be used in

turbulent flow simulation.

We have developed the thread pool class. The object of this class can dynamically add or remove

threads to optimise the speed of simulations. This class uses interfaces to allow different

numerical schemes to be supplied as parameters. This makes the object of this class reusable.

 As an example of application, we use this thread pool class into a sequential channel flow solver

to execute those regions of the code that are computationally intensive. We demonstrate that

32

when the number of threads is increased by a factor of two, the speed of the calculation is more

than doubled. A significant contribution of this work is that we exploit the benefits of

encapsulation which makes develop thread pool class applicable to other CFD applications.

The direct numerical solution of the Navier-Stokes equations is obtained using short time and

length scales. As a result, these solutions inevitably contain a large amount of data. In this

work, we have developed an approach to rapidly and conveniently analyse the solutions. We

demonstrate an approach to deal with the huge amount of data. We have created a

highly efficient platform that is intended to be easy to be used by the scientific community to

devise and test their sub-grid LES models against the results of DNS. The Johns Hopkins

University database of DNS solutions was used for comparison. To help scientists and engineers

to evaluate their LES models, we present a comprehensive comparator operator to quantify the

accuracy of the models. Furthermore, the method releases researchers from the need to write a

comprehensive code because the LES models can be implemented as plugins.

 This work has presented an intellectual framework whereby CFD practitioners can readily and

quickly examine the accuracy of new models they might wish to propose. The method is based

on database technology and includes the following concepts:

 Use and manipulation of heap memory to handle huge volumes of data;

 The implementation of a client-based database engine; and

 The incorporation of efficient fast-Fourier transforms algorithms.

The package is implemented on a high performance computing cluster. An idea permeating the

methodology is that a core is defined that contains the ‘know-how’ associated with accessing and

manipulating data, and which operates independently of a plugin, this enables users to propose

LES models and obtain results almost instantaneously. This research was presented on First

Thermal and Fluids Engineering Summer Conference, USA, and subsequentially published in

Begell house magazine Grossman (2015).

33

2 THE STUDY OF CHANNEL FLOW

2.1 INTRODUCTION

The Navier-Stokes equations are derived from the axioms of continuum mechanics and well

established constitutive relations. Countless observations and experiments have established their

veracity. However, difficulties persist in experimentally quantifying to a high degree of

accuracy, even the large-scale features of turbulent flows. The problem is compounded when

attempting to measure the smallest length and time scales that may be less than 0.1mm or 1 ms

respectively. Although it may seem to contravene the paradigms of the scientific method,

scientists and engineers are prepared to accept accurate DNS solutions of the Navier-Stokes

equations to establish features of turbulent flows that are not yet amenable to sufficiently

accurate experimentation.

The flow between two parallel plates, channel flow, is one of the most straightforward

configurations to simulate. The flow may be driven by the relative motion of the two plates, or a

pressure gradient may drive it. These features make this flow configuration relatively easy to

model, but the results can nonetheless provide us with deep insights into the nature of the

turbulent flow.

Lee et al. (2015) reported several of the issues that the DNS of channel flow can address. For

example, they point out that Smits and Marusic (2013) note that turbulent flows with Reτ of

about 103 and higher are technologically significant. This can be appreciated if we consider air

at atmospheric temperature and pressure flowing with a velocity of 15 m/s through a straight,

circular pipe that has an internal diameter of 10 cm; we find that Re is on the order of 105 and

Reτ ≈ 4×103.

From an industrial point of view, the preceding example may be considered entirely

inconsequential – engineers would almost certainly resort to empirical correlations to calculate

the pressure gradient, say, along with the pipe. However, DNS can be a powerful tool to

elucidate the nature of turbulent flows. The universal logarithmic law that governs the mean

velocity of turbulent flows in the vicinity of walls is described in most fluid dynamics textbooks.

In such works, it is generally assumed that von Kármán’s constant, κ, is indeed universal

34

although a range of values is reported in textbooks. Lee et al. (2015) report several studies that

indicate κ is not a universal constant but is affected by the geometry of the flow domain.

Furthermore, flows with Reynolds numbers, Reτ, of less than 2,000 appear not to exhibit a Reτ-

independent logarithmic mean velocity profile. This is but one of the many contemporary issues

that fluid mechanics are addressing employing computational fluid dynamics.

One of the principal aims of this work is to harness the philosophy and practice of contemporary

parallelisation methods, particularly multiprocessing and multithreading. The underlying idea

that motivates this work is to identify bottlenecks in serial codes and to devise simple

interventions that parallelise the code through thread injection. Gibson (2014) has developed

Channelflow, which is written as a set of C++ classes and is used to model flow between two

parallel plates. Channelflow uses spectral discretisation in the three spatial dimensions, and

Fourier series are used to discretise the governing equations in the streamwise and spanwise

directions, and a Chebychev series is used in the wall-normal direction. As Gibson (2014) points

out, the mathematical treatment has been presented by Canuto et al. (1988).

 The system researched in this study displayed in Figure 2.1 The stream, spanwise and wall-

normal directions are co-linear with the 𝑥1, 𝑥2and 𝑥3 axes respectively.

Figure 2.1 The geometry of the system used to study the flow between two parallel plates. The

system is semi-infinite in the 𝑥1 and 𝑥2 directions and the fluid velocity at the lower and upper

walls is set to zero to conform to the no-slip boundary condition. (Gibson, 2014)

35

The stream direction denoted as 𝑥1 ,𝑥2 is the spanwise direction and the 𝑥3 direction is normal

to the walls. The extent of the domain is prescribed by L1, L2 and L3 and periodic boundary

conditions are imposed on both the streamwise and spanwise directions. The no-slip boundary

condition is imposed at the walls.

A fully spectral method used to the discretised Navier-Stokes equations are repeated here for

completeness:

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= 𝑓𝑖 −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥
(𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗
) , (2.1)

along with the mass conservation and incompressibility constraint

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (2.2)

A Fourier representation is used in the wall-parallel direction and Chebyshev expansions in the

wall normal directions.

The approximation for the velocities is given by:

𝑢𝑖(𝑥1, 𝑥2, 𝑥3, 𝑡) = ∑ ∑ ∑ �̂�𝑖

𝑘3𝑘2𝑘1

(𝑘1, 𝑘2, 𝑘3, 𝑡)𝑒2𝜋𝑖(
𝑘1𝑥1

𝐿1
+

𝑘2𝑥2

𝐿2
)𝑇𝑘3

(𝑥3)�̂�𝑖 (2.3)

where 𝑖 = √−1 and 𝑘𝑗 are wave numbers. The spectral velocity is denoted by �̂�𝑖.

The Chebyshev polynomial 𝑇𝑘3
(𝑥3) is given by

𝑇𝑘3
(𝑥3) = 𝑐𝑜𝑠 (𝑘3 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥3)) (2.4)

In the wall-parallel direction, the computational nodes are uniformly spaced

36

∗∆𝑥 =
𝐿1

𝑁1
⁄ and ∆𝑦 =

𝐿2
𝑁2

⁄ (2.5)

where 𝑁1 and 𝑁2 are the numbers of computational nodes in 𝑥1and 𝑥2directions respectively.

The discretization mesh in the direction x3 is non-uniform and is defined by Chebyshev (Lyle et

al., 1966)

𝑥3,𝑗 = 𝑐𝑜𝑠 (𝑗𝜋 𝑁3⁄) , 0 ≤ j ≤ 𝑁3 – 1 (2.6)

Periodic boundary conditions are imposed in the x1 and x2 directions. This makes it possible to

use the Galerkin method for minimising the residuals. Chebyshev polynomials did not satisfy

no-slip conditions, so the tau method is being used. The tau method was discovered by Lanczos

(Lanczos et al. 1938) when he worked under Albert Einstein on the theory of relativity. He

introduced the use of Chebyshev polynomials for the procedure of finding the solution of linear

differential equations with polynomial coefficients.

𝐷𝑦(𝑥) = 0 (2.7)

Instead of trying to develop an nth order approximation of equations of the general type given by

2.5 by truncating infinite power series expansions, the method attempts to find an exact

polynomial solution to a modified version of this equation. This equation is a perturbed version

of equation 2.5 and is obtained by adding to the right-hand side of a polynomial perturbation

term. The term is chosen in such a way that it becomes possible to find power series solutions

with only a small number of terms.

37

2.2 THE IMPLEMENTATION OF CHANNEL FLOW

Channelflow is written using an object-oriented development paradigm (Gibson, 2014). It is

written as a C++ class library. Instances of how these classes act can be integrated to develop

detailed simulations of channel flows. It includes time integration for plane Couette laminar and

turbulent flows in the space between two parallel plates, one of which moves relative to the

other; pressure-driven channel flow, along with algorithms for computing travelling waves and

periodic orbits; and algorithms for computing linear stability of exact solutions. Channelflow

uses dynamic memory allocation, and each class controls its dynamic memory. The underlying

mathematical approach is based on spectral discretisation in the spatial directions, and finite

differencing in time. For time stepping it invokes semi-implicit backward differentiation of

orders 1-4, two 2nd-order Runge-Kutta schemes, and the classic 2nd-order Crank-Nicolson

Adams-Bashforth algorithm. Channelflow uses a powerful FFTW library for its Fourier

transforms.

As it stands, Channelflow is used as an object-oriented paradigm, but it is not ready for the

parallelisation. This renders Channelflow as a good candidate for implementing parallelisation

paradigm. In the following chapters, we will investigate ways to apply parallelisation

to Channelflow software. Then we will implement a new “thread injection method” which can be

applied to a wider range of Computational Flow Dynamics problems.

38

2.3 PARALLEL DECOMPOSITION

2.3.1 SIMULATION METHOD

Although this approach is quite general, this research will use a Chanelflow direct numerical

simulator where classes and objects will use to demonstrate this research model.

2.3.2 SPECTRAL METHODS

Spectral methods are a technique where we apply mathematics and physics to solve certain

differential equations. The idea behind this is to write the solution as a sum of “basic functions”,

the coefficients in this sum then choose to satisfy differential equations as well as initial and

boundary conditions (Kerr & Kimura, 1998)

 Quite often, this is done using Fourier series and requires involving Fast Fourier Transform

Technik (Loan, 1992).

The implementation of spectral methods is generally based on using Galerkin (Gottlieb et al.,

1977) or Tau’s methods (Fox et al., 1968).

2.3.3 GOVERNING EQUATIONS

The incompressible hydrodynamic turbulence was described by Navier-Stokes equations (1.1,

1.2) in a tensor form, however for parallel decomposition and derivation of spectral methods

better suits equations in vector form

𝜕𝑡𝒖 + (𝐮 · ∇)𝐮 = − 𝛁𝑝 + 𝜈𝛁𝟐𝐮 (2.8)

∇ · 𝒖 = 𝟎 (2.9)

39

where

u - is the velocity vector

p - is the pressure

𝜈 - is the kinematic viscosity

These equations contain:

(𝐮 · ∇)𝐮 - the term responsible for the advection of momentum and

𝜈𝛁𝟐𝐮 - the term responsible for energy dissipation.

Equation (2.9) represents the incompressibility constraint.

2.3.4 BOUNDARY CONDITIONS AND PRESSURE

To derive an equation for pressure, let’s apply a divergence operator to the left and right side of

Navier-Stokes equations:

𝛻(𝜕𝑡𝐮 + (𝐮 · ∇)𝐮) = 𝛁(𝜈𝛁𝟐𝐮 – 𝛁𝑝), (2.10)

and substitute incompressibility constraint ∇ · 𝑢 = 0 in (2.3); we will get

−𝛁𝟐𝑝 = 𝛛𝐢𝐮𝐣 𝛛𝐣𝐮𝐢 (2.11)

This equation is called the Poisson equation for pressure.

To define a complete system of equations we need to specify initial and boundary conditions.

Generally, a pressure condition cannot be used at the boundary where velocities are also

specified, because the velocity is derived by a pressure gradient. Usually, the velocity at the

boundary is assigned based on zero normal derivatives to the wall
𝛛𝒖

𝛛𝒏
 = 0 as well as zero

velocity at the wall 𝒖𝑤 = 0

2.3.5 SPECTRAL DECOMPOSITION

To derive a spectral decomposition approach, let’s assume that:

 u(x) is the periodic function in x-direction with period 2π

𝑢(𝑥) = ∫ 𝑢(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘

 (2.12)

40

and where

𝑢(𝑘) =
1

2π
∫ 𝑢(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

 (2.13)

By substituting this definition into Navier-Stokes equations, we will obtain the following:

𝜕𝑢(𝑥)

𝜕𝑥
= ∫ 𝑢(𝑘)

𝜕

𝜕𝑥
𝑒𝑖𝑘𝑥𝑑𝑘 = 𝑖𝑘𝑢(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘

in 3D space, the above equation will become:

 (2.14)

�⃗⃗�(𝑟) = ∫ �⃗⃗�(�⃗⃗�)𝑒𝑖�⃗⃗�𝑟𝑑3𝑘

 (2.15)

with the corresponding equation

�⃗⃗�(�⃗⃗�) =
1

(2π)3
∫ �⃗⃗�(𝑟)𝑒−𝑖�⃗⃗�𝑟𝑑3𝑟

 (2.16)

2.3.6 ENERGY DISSIPATION

We substitute the above definition of u to energy dissipation equation

𝜈𝛁𝟐𝐮 (2.17)

Also, because we transfer 𝜕𝑥
2 + 𝜕𝑦

2 + 𝜕𝑧
2 in Fourier space

𝜕𝑥
2 + 𝜕𝑦

2 + 𝜕𝑧
2 → (𝑖𝑘𝑥)2 + (𝑖𝑘𝑦)2 + (𝑖𝑘𝑧)2 = −|𝐤|2

we obtain the following formula for energy dissipation:

𝜈𝛁𝟐𝑢(𝒓) = 𝜈 ∫ −|𝒌|2𝒖(𝒌)𝒅
3

𝒌
 (2.18)

This assumes that we know the nonlinear term:

41

𝐹(𝑟) = (𝑢(𝑟) · 𝛁)u(r)

and the corresponding term in Fourier space F(k).

 (2.19)

Then the diffusion equation can be solved in time exactly and efficiently in Fourier space, and

the forced Navier-Stokes equations in physical space are:

�̇�(𝒓) + 𝑭(𝑟) =
𝜕

𝜕𝑡
𝒖 + 𝑭(𝒓) = −𝜵𝑝 + 𝜈𝜵2𝒖

 (2.20)

and the corresponding equation in Fourier space is

�̇�(𝒌) + 𝑭(𝑘) = −𝑖𝒌𝑃(𝑘) − 𝜈|𝒌|2𝒖(𝒌)

 (2.21)

Including incompressibility 𝒌 · 𝒖 = 0 we will get the following,

where the pressure equation is reduced to:

|𝒌|2𝑃(𝑘) = 𝑖𝒌 · 𝐅(k)

 (2.22)

Instead of having to invert the pressure equation in physical space, all terms are linear in the

Navier Stokes equations in Fourier space

�̇�𝑖 (𝑘) + (𝛿𝑖𝑗 −
𝑘𝑖𝑘𝑗

𝑘2
) 𝐹𝑗(𝑘) = −𝜈|𝑘|2𝑢𝒊(𝑘)

 (2.23)

2.3.7 FOURIER TRANSFORMATION OF THE NON-LINEAR

TERM

Returning to equation (2.12) in Fourier space,

42

𝐹𝑖(𝑘) = ∫ 𝚍3 𝑟𝑒−𝑖𝑘⋅𝑟(∫ 𝚍3 𝑞𝑒−𝑖𝑞⋅𝑟𝑢𝑗 (𝑞))(∫ 𝚍3 𝑝𝑒−𝑖𝑝⋅𝑟𝑢𝑗 (𝑝))
 (2.24)

and

∫ 𝚍3 𝑟𝑒−𝑖𝑘−𝑝−𝑞)⋅𝑟 = 𝛿(−𝑘 + 𝑝 + 𝑞)

 (2.25)

𝜕𝑗𝑒−𝑖𝑝⋅𝑟 = 𝑖𝑝𝑒𝑖𝑝⋅𝑟

 (2.26)

 the non-linear function F(k) in Fourier space is:

𝐹(𝑘) = ∑ 𝑖(𝒑 ⋅ 𝒖(𝒒))𝒖(𝒑)

𝑘=𝑝+𝑞

 (2.27)

or

𝐹𝑖(𝑘) = ∑ 𝑖 (𝑝𝑗 ⋅ 𝑢𝑖(𝑝)) 𝑢𝑗(𝑞)

𝑘=𝑝+𝑞

 (2.28)

Let us calculate how computationally expensive is this term.

For the grid with n nodes, mesh size is about

𝑛3 and roughly it requires 𝑛3 wavenumber operations. To calculate non-linear terms for each

k we have to do another 𝑛3 wavenumber sum.

The total number of operations is 𝑛3 × 𝑛3 = 𝑛6

This makes the nonlinear convection term in the Navier-Stokes equations the most

computationally expensive, and we will show how we can apply a parallelisation object-oriented

approach to eliminate this obstacle.

Let us continue to analyse of computational expense for full Fourier transformed Navier-Stokes

equations:

.�̇�𝑖 (𝑘) + (𝛿𝑖𝑗 −
𝑘𝑖𝑘𝑗

𝑘2) ∑ 𝑖 (𝑝𝑗 ⋅ 𝑢𝑖(𝑝)) 𝑢𝑗(𝑞)𝑘=𝑝+𝑞 = −𝜈|𝑘|2𝑢𝒊(𝑘)

 (2.29)

43

In the above equation, the linear terms are evaluated efficiently in Fourier space. However, the

non-linear term is expensive. Furthermore, linear terms involving the evaluation of Laplacians

are also expensive to compute. In this research, we have adopted the strategy of expressing the

non-linear terms as a finite difference approximation, i.e. Equation 2.30 is simply a numerical

representation of a finite element derivative, and it forms a component of the derivation.

𝑢𝜕𝑥𝑢 → 𝑢(𝑥𝑖)
𝑢(𝑥𝑖+1) − 𝑢(𝑥𝑖−1)

𝑥𝑖+1 − 𝑥𝑖−1

 (2.30)

2.3.8 SIMPLIFY SPECTRAL METHODS AND ALIASING

PROBLEMS

To summarise, all the above spectral methods are based on the following steps:

 Calculate derivatives exactly in Fourier space;

 Revert velocities and derivatives to physical space;

 Calculate non-linear terms;

 Transform non-linear terms to Fourier space; and

 Solve Navier-Stokes equations.

However, this approach creates aliasing errors. Backward and forward Fourier transformation

gives in additional terms responsible for aliasing problems. For example, n-grid points

produce n real numbers u(𝑥𝑖), 𝑖 = 1,2, … 𝑛. Then n-Fourier coefficients have n complex

numbers, which are 2n real numbers. So, when multiplying the non-linear terms, we will

have the following:

𝑢 (𝑘 =
𝑛

3
+ 1) 𝑢 (𝑘 =

𝑛

3
+ 1) = 𝑁𝐿 (𝑘 =

2𝑛

3
+ 1) = 𝑁𝐿 (𝑘 = −

𝑛

3
+ 1)

= 𝑁𝐿(
𝑛

3
− 1)

 (2.31)

44

Two high wavenumbers which should create a still higher wavenumber create a lower

wavenumber. There are several attempts to leverage accuracy and computational costs. To

overcome this problem, one of the approaches is using truncation all |k| > n/3. This is called the

2/3rds number because we are keeping 2/3 of the wave numbers

1/3 for -n/3 <k < 0

and

1/3 for 0<k<n/3

2.3.9 This work approach

This work proposes that instead of simplifying and using a truncated Fourier transform described

above, it uses an Object-Oriented Approach to apply parallelisation to massive but accurate

calculations on multiple computers. This will reduce simulation times due to its ability to do

many calculations in parallel, and this is a key motivation of this research. This approach is

based on the fact that most time-consuming calculation of the non-linear term of the Navier–

Stokes equations

45

3 GOING PARALLEL

3.1 INTRODUCTION

The parallel world of computing is quite different from the serial world. Some aspects of this

will be discussed below in more detail.

Parallelisation is one of the modern and powerful ways in computational fluid dynamics to solve

Navier-Stokes equations. However, this presents the challenge of solving the equations

simultaneously by making use of many building blocks or threads. When a computer code runs

on some blocks, a new paradigm is considered because running in parallel generates scenarios

which do not exist in the sequential world of computing and this requires the use of new

terminology and language which we shall now briefly discuss.

Figure 3.1 A thread can be considered to be a stream which carries a list of computer

instructions that are to be executed independently (Silberschatz et al., 2012)

In the sequential world, only one thread exists which is known as the main thread. In parallel

systems, there are many threads within the same process, and each of these threads contains its

data, a list of executable instructions, a stack and the set of registers.

46

Thread function

To create a new thread, we call pthread_create() or a similar function depending on the

operating environment and computer language. After a thread is created the first thing it starts

doing is to execute start routine () – called thread function – passed as the sole argument of the

thread creation function. Because threads can coexist, we have computer logic written in each

thread function run in parallel. This architecture is a door from sequentially executed computer

instructions to the world of parallel computing.

In Computational Fluid Dynamics, we consider that the flow consists of several independent

streams, and the multithreading computer paradigm is much closer to the physics of what we are

trying to simulate. As to thread function, in CFD, for example, this feature may hold a list of

instructions on how to navigate along with the computational domain or sub-domain and

compute some of the properties like, for instance, velocities or pressure distribution.

If computed variables are dependent on global space or dependent on results of calculations of

another thread, then thread synchronisations may be required.

Parallel Overheads

 Parallel computing environments offer the possibility of speeding up execution, but they

introduce certain execution time-consuming overheads. These expenses are associated with the

amount of time required to coordinate parallel tasks, as opposed to doing useful work. Parallel

overheads can include factors such as (Shen et al., 2004):

 Time to start-up;

 Synchronisations;

 Data communications; and

 Time to terminate the thread.

47

Thread-safe

In computational fluid dynamics, often the value of the flow field velocity in the grid depends on

the value of its neighbours. To get the right result, an order of calculations becomes imperative.

This leads us to thread-safe calculations.

To be thread-safe, the program should protect shared data; for example, one thread trying to read

the value of the shared data when at the same time, another thread wants to modify it. The

multiple threads running in an application may create potential issues regarding safe access to

resources. This may create a scenario where a program runs in unintended ways. For example,

one thread might override other changes or put the application into an unknown and potentially

invalid state. In a real case scenario, the corrupted resource might cause obvious problems like

performance issues or crashes. In a worst-case scenario, however, corruption may cause serious

errors that do not manifest themselves until much later. This kind of problem might require a

significant overhaul in the software development process.

The scenario described above can be a serious issue in the numerical simulation of turbulent

flow. As already mentioned, the scale of the physical tasks can be considered as large data with

up to petabyte related variables. Access and calculation related variables by number

simultaneously running threads can be potentially very harmful, as the value of the variable can

be corrupted based on the random order of accessing it. If this happens, it is a very challenging

task to debug a problem of such scale. The best protection when it comes to thread safety is

good design. Avoiding shared resources and minimising the interactions between threads makes

it less likely that those threads will interfere with each other. However, an entirely interference-

free design is not always possible. In cases where threads must interact, synchronisation tools are

required to ensure that when they interact, they do so safely. Developing trade-safe code requires

the needs of the software primitive, which will be able to take control over random access to the

shared variables and be able to synchronise it. One of the ways to do that is to use Mutexes,

which are the abstraction that can also be used for synchronisation.

48

Mutex - Suppose we have the shared variable which can be accessed and changed by two

threads. For example, in our work on parallelising the solution of the Navier-Stokes equations,

there may be a possibility that two threads simultaneously access a velocity flow field variable.

We must ensure that our algorithm does not inadvertently overwrite this variable. This is

achieved by invoking a mutex – a mutually exclusive lock that acts as a protective wall around a

resource. We can view the mutex as a traffic light which works like a semaphore that grants

access to only one thread at a time. A mutex is an object of the class responsible for

synchronisations in between threads. If we did not have a mutex, then the value of this variable

would be random depending on which thread accesses this variable first.

In computational fluid dynamics, we may need mutex primitive, for example, in the following

scenario. Say we have one thread which is solving differential equations and produces the array

of velocity vectors. Another thread will need to read this array and then draw on the screen an

image of this velocity field. Using mutexes allows this to synchronise in such a way that as soon

as the first thread finishes its calculation, the second thread starts to draw.

To fulfil its duty, a Mutex class usually has the following methods:

Lock() – If any thread does not currently lock the mutex, the calling thread locks it until the

same thread unlock is called.

Unlock() - Unlocks the mutex and releases ownership of it.

If the mutex is currently locked by the same thread calling this function, it produces a deadlock

(with undefined behaviour).

Dead-lock – does not exist in the sequential world but is a common problem in multithreaded or

multiprocessing systems, parallel computing or distributed systems where process

synchronisation uses locks.

This mechanism by which the dead-lock operates is illustrated in Figure 3.2. It can be observed

that Thread1 requests resource A and get it. Then Thread2 requests resource B and gets it. Then

Thread1 requests resource B and starts waiting for resource B, which is locked by Thread2. Then

Thread2 requests resource A which is blocked by Thread1. In the above scenario, Thread1 and

Thread2 end up in an infinitive waiting stage called deadlock. Another example of deadlock can

be a scenario where the mutex is currently locked by the same thread called lock function and

produces a deadlock with undefined behaviour.

49

 Figure 3.2 Dead-lock schematic example

Before describing our development, we will be narrating what building blocks for parallel

simulation are available.

3.1.1 PROCESSES

Here we recount the steps required to generate a computer program. First, the computer code

needs to be created. Computer or source code is a text used to write instructions which a

computer can interpret, and is done by using computer languages. As with any language,

computer languages are split into two components – syntax and semantics. The next step is to

compile the source code, which will validate the syntax and produce a positive result that will

generate objects. Those objects are important binary files which a computer understands. The

last step is when the object code is passed to the linker. When this is done, an executable

program is created. However, it still needs to be loaded into memory.

This process is an instance of an executable program. If, for example, four people are running the

same program, there will be four processes running simultaneously, not one. We may have more

Thread 1

Thread 2

Resource A Resource B

Owned by Waiting for

Waiting for Owned by

50

than one process running with only one person starting the program. This is due to the ability of

the process to clone some concurrently running processes.

Each running process is identified by a unique Process Identification Number (PID). This

number is assigned when the process is created.

If we run the command on UNIX terminal shell

> ps –ef

operational system (OS) will respond with a list of all running processes.

OS is the time-sharing system, and each process allocates a time slice in its turn to run on CPU.

So even when we have a little job and it stays in a queue behind the large job it is executed

without delay.

In applications in computational fluid dynamics we target that, some processes will solve one

task and particularly Navier-Stokes equations.

To be able to build such systems, processes should not run independently but rather together and

be able to communicate with each other. We need to be able to bypass the OS time slice

mechanism and make processes synchronise so that they execute and even stop and wait until

other processes finish their steps.

We will now discuss what options we have and how this done.

3.1.2 FOREGROUND AND BACKGROUND PROCESSES

If we do not want to wait for a process to finish, we can start the process in the background.

Multi-tasking operational systems allow multiple processes to be run in the background and

foreground. Adding ampersand at the and of command lets OS know that the process is executed

in the background – $ command &. After starting a process in the background, OS returns the

shell to the user so that it can continue.

Within these memory limits, multiple processes can be started, running concurrently in this way.

A foreground process is different from a background process in two ways. Firstly, foreground

processes may show the user an interface through which he/she can interact with the program

and secondly, the user must wait for one foreground process to be completed before running

another one.

51

We can use this feature to separate simulation processes of solutions of Navier-Stokes equations

on several processes. For example, one process can be responsible for visualisation, another for

solving the system of the equations and another one can manage these two processes and

synchronise those using interprocess messages.

3.2 INTERRUPTS AND SIGNALS

The paradigm we are trying to build will solve Navier-Stokes equations and do the numerical

simulation based on a number independent CPUs which require being able to communicate with

different processes and involve a different part of calculations based on physics. The signal is a

trigger that is used to notify the processes about the occurrence of a particular event. Signals are

often used as a mechanism for inter-process communications. (IPC) interrupts are conceptually

similar to signals and can be viewed as triggers to communicate between the CPU and OS

kernel, rather than as signals responsible for communication between the OS kernel and OS

processes.

To implement multitasking, we can use a hardware interrupt. In the next chapter, we demonstrate

how interrupts are used in the implementation of the thread pool class, which we develop for

thread injection as a method of speeding up Navier-Stokes simulations.

3.3 SOCKETS

When we are targeting the task of solving Navier-Stokes equations on many simultaneously

running computers, we need to have a mechanism to exchange data between them.

And this mechanism is based on using sockets. A socket is an object which allows us to send and

receive data in between processes. Sockets are a fundamental component of inter-process and

intersystem communication. They provide point-to-point, two-way communication between

processes. The socket is an abstraction that provides a set of protocols and allows them to

exchange data.

52

3.4 EVENT DRIVEN COMMUNICATIONS

Moving in the direction of parallel development reflects the need to change a computing

paradigm. Instead of acts like in Procedural Programming, parallel development needs the

software’s ability to react. In general, event-driven communication is programming where the

primary activity is a reaction to semantically significant signals (events).

In sequential programming, the flow of calculations is followed by the subsequent run of the

instruction. As the thesis aims to study parallel development and turbulence flow, the very logic

is to have a software paradigm which more closely reflects the physic of our phenomena. So, we

can define an event as to where the flow of calculations determines a reaction to messages

received from other processes or threads.

3.5 MULTI-THREADING

Multithreading is a particular form of multitasking. We may divide multitasking into two main

types: process-based and thread-based.

Process-based multitasking is about the concurrent execution of programs, while thread-based

multitasking deals with simultaneous execution of pieces of the same program.

Thread-based multitasking consists of some parts that can run concurrently, and each of these

pieces is called a thread. Each thread is defined by its logic in the path of execution.

We can see multithreading as multiple execution agents working on solving common problems

operating simultaneously.

 Using multi-threading may create many benefits for computational flow dynamics (Drysdale,

2007), such as:

 Responsiveness – for example, one thread can provide a quicker response than another

when doing massive calculations;

 Resource sharing – threads share common code, data, and other resources that create an

environment for multiple tasks to be performed simultaneously in a single address space;

 Performance – switches between threads and context are much faster than performing

the same tasks for processes; and

53

 Scalability – a single-threaded process can only run on one CPU, regardless of how

many CPU are available. However, multithreaded processes can benefit from multicore

and multiprocessor architecture.

In the next chapter, we will discuss a ThreadPool class which we develop to use multithreading

to speed up solutions with Navier –Stokes equations.

3.6 MULTIPROCESSORS AND MULTI-CORE

A Central Processor Unit (CPU) contains many discrete parts such as instructions decoders,

memory caches, and executions units. Multiprocessor systems have more than one CPU allowing

them to work in parallel. Multi-Core CPUs has multiple execution cores inside of one CPU.

Multiple cores can also work in parallel in separate operations. This architecture is very flexible

and allows a very complex system for parallel operations to be established. For example, we can

create a multiprocessor multicore multithreaded system (Darlington et al., 1996).

In a modern computer, architecture is quite common to produce chips with multiple cores on a

single chip. A multi-threaded application running on a single-core chip would have to intersperse

the threads, as shown in Figure 3.1. However, on a multi-core chip, the threads could be spread

across the available cores allowing real parallel processing, as shown in Figure 3.3.

54

Figure 3.3 Concurrent execution on a single-core system

Figure 3.4 - Parallel execution on a multi-core system

In Figure 3.3 and Figure 3.4 T_1…….T_n represent simultaneously running threads, where

each one carries instructions for OS to follow. This example demonstrates how threads run on

single or multiple core systems.

On the one hand, hardware development boosted demand for new software algorithms for multi-

core chips. On the other hand, multithreading software became more and more pervasive.

Applications started using thousands instead of tens threads, and this boosts new demand for new

hardware where CPU's can support more threads per core. This cycle of rapid growth creates

enormous opportunities for computational flow dynamic modelling, where bigger and more

realistic simulations are performed (Lavington et al., 1998).

55

3.7 MPI

As already discussed, processes communicate using messages and events which are a trigger on

such messages. It is very logical to build a stand-alone platform which will be responsible for

this messaging mechanism. Message Passing Interface (MPI) is a stand-alone abstraction that

allows multiple programs to communicate using queues and non-OS managed channels. We can

see MPI as clear inter-process communication (IPC).

In a parallel environment, multiple execution agents work concurrently to solve a common task.

This agent is not necessarily even located on the same physical server. All the above creates the

need for another level of communications and this where MPI becomes useful.

Figure 3.5 MPI allows the creation of a message interface in between two processes to send a

message, size, type, source, destination, tag, communicator, status etc…

3.8 OpenMP

Another way for processes to communicate is to use shared memory. OpenMP is a system

specification for a set of directives, library routines, and environment variables that can be used

to specify shared-memory parallelism.

It uses a portable and scalable interface for developing parallel applications running from a

desktop computer to a supercomputer.

56

Figure 3.6 OpenMP shared memory management. Processes can communicate by accessing the

memory which can be shared in between different processes.

3.9 GPU AND CPU DEVELOPMENT

A graphics processor unit (GPU) was originally designed to speed up computer graphics.

The recent discovery that GPU can be used not only for accelerating graphics applications but

also for massive computer calculations has taken the scientific world by storm. This all happened

due to the dramatic increase in the speed of calculations on GPUs. Even the fact that a single

core in a GPU unit is relatively slow compared with CPU provides a significantly bigger number

of simple, data-parallel and deeply multithreaded cores and very high memory bandwidths.

GPU architecture involves more software developers as it has a potential for dramatically

increasing the speed of applications, and especially computational flow dynamics as it is a very

time-consuming process (Kruger et al., 2005).

3.10 OBJECT-ORIENTED LANGUAGES AND

DESIGN

So far, we have seen that the history of operation system evolution has been moving towards

reusable components. These components more or less encapsulated and were intended to serve

various requests or tasks. Software languages started to follow this pattern. Originally computer

57

languages were designed to perform functional and sequential operations, but recently they

became object-oriented. Here, it is probably necessary to define the object.

An object is an abstraction which reflects typical properties of the real-world system which we

are going to simulate and about which we want to store information. An object could be a

differential equation, flow field, temperature sensor, etc.

One example of an object would be a shape used in CFD for mesh generation development.

Figure 3.7 Example of the object – Shape

There are many different objects in the real world, such as dog, desk, television. They always

exist, but only recently, the concept of objects started to be encapsulated in computer languages.

When we consider real-world objects, we may see that they share two general characteristics:

state and behaviour. Identifying the state and behaviour of real-world objects is a first step in

creating an architecture for object-oriented development. Real-world objects vary in complexity,

as some objects may contain other objects.

These real-world observations all translate into the world of object-oriented programming.

In software development objects are similar to real-world objects: software objects also consist

of state and behaviour. A computer object stores its state in variables and exposes its behaviour

58

through methods. Methods deal with an object's internal data state and work as the mechanism

for object-to-object communication.

Bundling computer code into individual software objects provides some benefits and makes

applications more modular. The source code for an object is written and maintained

independently of the system of equipment for other parts. When the process of object

instantiating finishes, it may pass around and start to reuse.

This approach is a very convenient model to apply to CFD and parallelisation paradigm. As we

can see, we can use the idea of objects to create independent data types such as vertex, points,

and streams. Then building a CFD model becomes more closely aligned to physics.

Information-hiding: by interacting only with an object's methods, the details of its internal

implementation remain hidden from the outside world. Information hiding is another very useful

paradigm which has a direct connection to turbulent flow study; for example, such abstractions

like eddies in LES can be viewed as information hiding entities to produce macro properties for

the turbulent flow, like pressure or temperature distribution. Object-oriented programming has

become the most widely used approach to software development.

3.10.1 OBJECTS IN PROGRAMMING

Object-oriented programming (OOP) is a methodology for problem-solving where all

computations are performed by using objects. The code in object-oriented programming is

organised around objects. Once objects are defined, they can interact with each other to make

something happen; for example, we need an application where a person gets into a car and drives

it. To do so, we will define the required objects, such as a person and car. That includes

methods: a person knows how to drive a car and a car knows what it is like to be driven. Once

objects instantiate, they can be brought together so the person can get into the car and drive.

In this research, we create and use some stand-alone objects. In particular, each algorithm now is

an object. We have objects responsible for memory allocation when we are going in significant

data areas etc. The detailed list of developed classes that describe this job objects is shown in

chapters 4 and 5.

59

3.10.2 CLASSES AND OBJECTS

A class is a design for the ultimate object. The class is considered as a concept and object is the

implementation of this idea. Classes are very useful in programming; for example, if we need to

model 1000 people rather than one person. Instead of describing each one in detail, we may

create 1000 objects of type ‘person’ and then allocate properties to them like name, address, etc.

And all this can be done by using only one class – person.

Similar to computational flow dynamics, the objects oriented approach is very useful to apply.

For instance, consider that we need to describe and model computational grid or mesh, and the

mesh can consist of 2D objects like triangles or quadrilateral, or 3D objects like tetrahedral

shapes. An object-oriented approach to doing that will be to define the class shape. Then set a

class triangle, class Quadrilateral, and class Tetrahedral. All these classes derive from one based

class – Shape. So, to describe hundreds of thousands of mesh cells we only need four Classes,

and then we create our hundred thousand objects which are ready to communicate as one object

called mesh. The benefit of this approach is that it directly links to parallel and distributed

computer systems. Here we can see two different types of Classes.

The first type is the shape class. There is no object of this Class that we anticipate need to be

created. Classes like that are called Abstract Classes.

The second type is a Class that represents geometrical shapes – Triangle, Quadrilateral, and

Tetrahedral. These types signify more complex objects as they all have another object inside –

shape – as they are derived from it. The class shape then becomes an interface to manipulate

objects of the different types that derived from it.

3.10.3 METHODS AND FUNCTIONS

The method can be seen as an action that an object can perform, and that defines the behaviour

of the objects which are created from the class.

A function is a combination of instructions that are merged to achieve something, and typically

requires some input (called arguments) and returns some results.

How is the function different from the method? A function is independent, whereas the method

always belongs to the class which represents the object. The function can be used anywhere in

60

the code and don't need to have an object to use it. However, methods always stay with their

object.

All the above objects make reusable building blocks. To summarise, the object is an abstraction

of something that exists in the real world or in our minds which belongs to the system we want to

model and about which we want to store information (Shelly et al., 2008).

The development of the object-oriented paradigm is now briefly outlined. It stemmed from the

initial ideas of a new programming approach, while the design and analysis methods came much

later (Dahl et al., 2004). The first object-oriented language was Simula (Simulation of real

systems) that was developed in 1960 by researchers at the Norwegian Computing Center. Then

in 1972, Alan Kay and his colleagues at Xerox PARK created the first pure object-oriented

programming language (OOPL), Smalltalk, for programming in the first personal computer

Dynabook (Kay,1972).

Grady Booch G.,(1982) published a paper titled Object-Oriented Design that initially presented

a model for the programming language - Ada. And in the following editions, he extended his

ideas to a complete object-oriented paradigm. Schlienger, F.et al.,(1994) presented ideas to

object-oriented methods. The other substantial innovations were Object Modelling Techniques

(OMT) by Rumbaugh, J. et al.,(1990) and Object-Oriented Software Engineering (OOSE) by

Jacobson, I., (1992).

3.11 OBJECT-ORIENTED ANALYSIS

Object-Oriented Analysis (OOA) is the methodology of identifying independent software

engineering requirements and developing specifications regarding object models.

The object-oriented analysis differs from other forms of analysis as it requires and is organised

around objects; they are modelled after real-world objects and system built based on the

interaction between objects. In traditional analysis, methodologies, functions, and data are

considered separately.

The object-oriented analysis (OOA) started from identifying objects; then objects needed to be

organised by creating a model diagram following the definition of the internals of the objects, or

object attributes. Part of OOA is defining the behaviour of the objects; i.e., object actions and

describing how the objects interact.

61

The aforementioned described steps are utilised in this research paper. When building a

paradigm for numerical simulation Navier-Stokes equations in this research, I am trying to

identify stand-alone parts of the algorithm, then convert them to objects, identifying properties of

those objects and seeing which of them can be used in parallel. Then identify bottlenecks at

runtime and use created objects to take control of existing sequential calculations to split them

into some independently running threads

3.12 OBJECT-ORIENTED DESIGN

Object-Oriented Design (OOD) involves the implementation of the conceptual model produced

during object-oriented analysis. The implementation steps usually include:

 If necessary, data restructuring of the Class;

 Developing source for methods; i.e., internal data structures and algorithms; and

 Developing source code for controls and associations.

3.13 OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OOP) is a paradigm based on using objects. The main aim here is

to incorporate the advantages of modularity and reusability. Objects, which are instances of

classes, are used to interact with one another to fulfil application design and computer programs.

The important features of object-oriented programming are:

 Approaching program design from the bottom to the top;

 Organising an application around objects, and grouping them in classes;

 Developing data and methods to operate on an object’s data;

 Designing interaction between objects through its methods; and

 Designing reusability of the object by creating new classes and adding new features to

existing classes.

62

3.14 OBJECT-ORIENTED PRINCIPLES

3.14.1 ENCAPSULATION

From an object-oriented point of view, the object is a fundamental building block. We start using

object concepts by dividing development and design into two parts.

The first part is logic and functionality inside the object. The second part is public interfaces –

what object is used to communicate with other regions of the application.

Development and know-how inside the object logic do not always need to be visible to the user.

In other words, encapsulation is about hiding complexity. In the real world, objects quite often

hide their information and how they work; we don’t need to know the internal details of the

object.

When we create an object in an object-oriented language, the complexity of the inner workings

of the object can be hidden.

For example, a computational flow analyst can get a solution to his task by using objects in a

simulation package without knowing the mathematical methods encapsulated inside the objects

that this simulation package uses.

Information hiding is a key in object-oriented design as it allows anyone to use the object and

reuse it if needed. Another reason for hiding complexity is to manage changes.

Any big system at present is almost always going to be in a new development cycle where new

features and new functionality are added, and this may require making some changes inside one

particular object. However, overall it does not affect the whole system. When changes inside the

object are completed, they will automatically be reused by rest of the system.

 A detailed example in CFD is, for instance, that almost always any numerical simulation

requires a system for solving equations. Creating a solver object will separate use of this purpose

and the object implementation. When or if the solver object will need to have an upgrade for

whatever reason, it will not affect users, and the system will continue running.

63

The encapsulation of the object is controlled by a public and private keyword to grant access or

remove it from the different parts of the object, where private and public methods of the object

became handy.

3.14.2 INHERITANCE

Inheritance – the ability to derive something specific from something generic – can be

encountered in everyday life. In Object-Oriented inheritance, it enables new objects to take on

properties of existing objects. There is always an excellent way to reuse existing functionality

rather than create the same thing again and again, and an essential feature of the Object-Oriented

approach is reusability. Reusing the properties of the objects lets us not only save time and

money but also makes the application more reliable.

Inheritance allows a software developer to write clearer code as the complexity is reduced by

reusing similar properties and sharing code between derived objects.

3.14.3 POLYMORPHISM

The word Polymorphism comes from Greek and means “having multiple forms”.

In object-oriented programming, this is the characteristic of being able to assign a different

meaning or usage to various entities such as variables, functions or objects that have multiple

forms; in other words, polymorphism describes a pattern in object-oriented programming in

which classes have different functionality while sharing a common interface. Polymorphism can

be of two types – static and dynamic.

In dynamic polymorphism, the response to the message is decided at runtime while in static

polymorphism it is decided on compilation time.

3.15 OBJECTS IN CFD

Development in parallel and distributed systems has resulted in dramatically increased

computational power and efficiency. From the implementation point of view, modern

64

programming languages offer potent tools for flexibility, such as the inheritance of object-

oriented programming.

In our research, we develop computer code which is based on highly parallel principals for

solving Navier-Stokes equations for incompressible turbulent flows. Also, we design and

implement modular mathematical abstractions objects which are reusable in many simulation

applications.

65

4 OBJECT-ORIENTED DEVELOPMENT AND

PARALLELIZATION OF THE NONLINEAR

CONVECTION TERM

4.1 INTRODUCTION

Here we are back to developing an Object-Oriented Approach to compute a 𝒖𝛁𝒖 - non-linear

term in Navier-Stokes equations which is responsible for the transfer of kinetic energy in the

turbulent flow. There are some numerical algorithms to calculate this term:

The convection form 𝒖 · 𝛁𝒖 (4.1)

The divergence form 𝛁 · (𝒖𝒖) (4.2)

The skew-symmetric form 𝟏

𝟐
𝒖 · 𝛁𝒖 +

𝟏

𝟐
𝛁(𝒖 · 𝒖)

(4.3)

The rotational form
(𝛁 × 𝒖) × 𝒖 +

𝟏

𝟐
𝛁(𝒖 · 𝒖)

(4.4)

These expressions are numerically equivalent but have different calculation costs. When

discretised the rotational form is less expensive to compute, but it introduces some errors in the

high spatial frequencies, which can be reduced by applying a de-aliased transformation (Mitchell

et al., 1988).

The calculation cost of the skew-symmetrical method lies between the convection and

divergence forms and is free from such errors. However, it is twice as expensive to calculate.

This averaging is simulated by alternating between the convection and divergence forms on

successive time steps. Such an approach produces excellent results as in practice, the skew-

symmetric method is almost as fast as the rotational method.

66

Krist and Zang (1987) recommend using the skew-symmetric or alternating forms with aliased

transforms or the rotational form with idealised transforms. The Channelflow application

implements the rotational, convection, divergence, skew-symmetric, and alternating forms. The

computational algorithms of each of the methods assume a common form; i.e.

 for (int i=0; i<3; ++i)

 for (int j=0; j<3; ++j) {

 int ij = i3j(i,j);

 for (int ny=0; ny<Ny; ++ny)

 for (int nx=0; nx<Nx; ++nx)

 for (int nz=0; nz<Nz; ++nz)

 f(nx,ny,nz,i) += ……..

It is these five nested loops that open the door to speed up calculations using threads. To achieve

this, we wish to introduce thread injection at a localised point in the existing Channelflow serial

code.

67

Figure 4.1 Discretization of the domain using a scheme that is amenable to parallelisation

The primary area is divided into slices as shown in Figure 4.1 Instead of traversing the entire

domain, and each subdomain is traversed concurrently by individual threads. Thread function

will receive one of the above computational methods through a parameter. When a thread

completes its task, it should wait until all other threads have also completed their tasks. When all

threads have finished their tasks, they have to return to the main thread.

As the thread creation process takes some time, the threads should be created only once at the

beginning of simulations. When a thread has completed its task, it should just stay waiting for

another job to pass into the thread function as a parameter. To be able to do such a thing, our

design should consider a way of talking to threads without stopping and starting them. Firstly,

we develop a stand-alone Thread Pool class. The object of this class will be to hold all our

threads in preparation for them to execute their assigned computations. Creation of the threads

has overhead, so we want the pool to be created only once and destroyed only when the

simulation finishes.

The pool will use a hardware interrupt as a signal to the process to communicate with the main

thread and notify it with instructions.

68

Figure 4.2 The parallelisation paradigm showing thread injection and the simulation process. At

the foot of the diagram is a list of sequential instructions. The thread injection overwrites one of

them. The thread pool takes control over one of the subsequent steps and executes it in parallel.

Then control is returned to the next sequential instruction

The existing Channelflow program is executed serially, and an objective of our work is to

identify those sections of the code that would benefit from parallelisation. Hence, we have

69

modified it so that it continues to run serially until it is signalled that those regions which would

benefit from parallelisation have been reached. At this point, threads that control the

computations are injected. The number of threads created by the thread pool depends on the size

of the grid. In general, the more extensive the network, the more threads are created. Here we

observe that when the computational fluid dynamics system consists of a small number of nodes,

the number of threads is limited to reduce computational overheads. As a result, our approach

automatically responds to the size of the problem and memory is dynamic; i.e. it is allocated on a

needs basis.

To fulfil the described functionality, we create the following data functions:

 CreateThreads - will set up and start as many threads as specified by the parameter

 m_nmbThreads;

 Run – will unleash threads and let them run;

 DestroyThreadPool - will stop all threads running and remove the object of the Thread

Pool from the system;

 SetLimits – specifying the location of the boundary and boundary conditions;

 GetInstance - return pointer for the object of the ThreadPool; only one object of this class

is created;

 WaitToComplete - synchronize all threads completion. It makes sure there will not be a

return from the ThreadPool until all threads have finished their computations. After all,

tasks are finished all threads remain in the waiting mode; and WakeUp - let all threads

know that a new execution task has arrived and they need to proceed with calculations.

When a new task arrives, the thread pool wakes up its threads, and they begin to execute

this task in parallel.

4.1.1.1 THREAD POOL ORGANIZATION

Below is a diagram that shows how the pool is organised. The highlighted box represents the

ThreadPool class and on a chart is shown its collaboration with other objects.

70

Figure 4.3 Thread Pool Organization diagram. Each box on the diagram represent a class and is

divided into two parts; the top one lists the class variables and bottom one lists class public

member functions.

71

The following class data members are implemented:

 m_nmbThreads. Variable to hold the number of threads that are going to be used by

the Thread Pool;

 m_total_running_threads. A mutually exclusive variable to hold some running

threads. When a particular thread has finished executing its task, this variable is

reduced by one. Ultimately, m_total_running_thread is used to notify the thread pool

that all threads have finished execution and the thread pool can return control to the

sequentially running part of the application;

 m_stop_threads. Boolean variable used to control flow of running’s threads;

 m_task. Base task pointer used as an interface to one of the CFD tasks;

 m_work. Dynamic array of Boolean flags. The size of the array is m_nmbThreads;

Each flag represents a thread available for new work or still doing its current work;

 m_map. Map of threads handles;

 m_lim. The object of limits class, to hold the limits of the geometry domain;

 m_mutex. The instance of the class mutex to synchronise the data on threads access

and signalling data engine;

 m_cond. Thread pool condition variable responsible for synchronisation of threads

execution;

 m_mutex_done _t m_cond_done . Mutex and conditional variable responsible for

control over signalling that execution of the job by thread is done; and

 pInstance- Pointer to an instance of the ThreadPool object. ThreadPool is a singleton

class and pInstance use to control that only one object of this class created.

Threads are always running, so there is no overhead to create and start them. A thread pool

communicates with the sequential part of the program by the signals, making this approach very

flexible and dynamic. When the thread pool receives a request for the new task to be carried out,

each thread independently starts traversing its sub-domain and collects the corresponding

flowfield variable f(nx, ny, nz, i). When a thread has finished its calculation, it signals the pool

that it has completed its task. When all threads have finished their work, the pool collects data

from the threads and put threads in the waiting mode until a new task arrives. This technique

72

appears to be very elegant because it does not require the original source code to be changed.

The thread pool class is instantiated only once during the startup. Then we inject our threads to

parallelise the most time-consuming part of the simulation.

4.2 THREADPOOL CLASS REFERENCE

4.2.1 PUBLIC MEMBER FUNCTIONS

One of the aims of this research is to devise an object-oriented approach that facilitates users to

easily and rapidly solve the Navier-Stokes equations. In meeting this goal, we specify the

number of public member functions. These allow the user to specify the characteristics of the

system that is under investigation, but there is no necessity to have a deep knowledge of the

architecture and details that lie behind the program. CreateThreads enables the user to nominate

the number of threads that may act as working agents and that are ready to execute the task.

Furthermore, by making use of public member functions, users can specify the physical

characteristics of the system they are investigating; these include the physical size of the system

and the properties of the fluid. Through the object setLimits (Limits &) users are also able to

specify numerical parameters that govern the calculation, such as the number of nodes in each of

the three spatial directions. In Channelflow the time step is automatically re-calculated at each

time to maintain the desired accuracy.

 void CreateThreads (int numOfThreads)

 void * Run ()

 void setLimits (Limits &)

 void DestroyThreadPool ()

 void executeTask (BaseTask *)

4.2.2 STATIC PUBLIC MEMBER FUNCTIONS

The integrity of the thread pool must be protected from incursions by the user. This is achieved

by creating the ThreadPool as a singleton - only one object of this class can exist. This is

accomplished by declaring the ThreadPool constructor as private. However, to let users access

the ThreadPool object, we create the GetInstance public method, which will point the user to the

73

location of our ThreadPool class. This provides users with access to all public interfaces but

prevents them from making unintentional errors: it offers one stand-alone thread pool that is

dedicated to our common task of solving Navier-Stokes equations.

The ThreadPool function has only one address; however, each thread can make calls to

GetInstance, and they may carry out their tasks on a distributed system.

 static ThreadPool * GetInstance ()

4.2.3 PRIVATE MEMBER FUNCTIONS

A key motivation that underpins this work is a desire to make our approach very general and in

one sense, not problem-specific. For this reason, we have adopted what might be termed a

macro-management approach to handling threads. The thread pool dispatches threads to carry

out their tasks utilising setTask (BaseTask) but it does not direct their actions in detail. The task

of the ThreadPool is to ‘wake up’ the threads when they are required and synchronise their

actions by waiting for them to complete the tasks. These are designated private member

functions.

 ThreadPool ()

 void WaitToComplete ()

 void WakeUp ()

 void setTask (BaseTask *)

4.2.4 PRIVATE ATTRIBUTES

We have described the ThreadPool as macromanaging the threads. However, within the

ThreadPool the threads themselves must be managed. For example, in Chapter 3, we briefly

mentioned the idea of mutex, which is used to prevent two threads from corrupting common

data. In this particular case, we use mutexes to protect data and conflict between conditional

flags.

 int m_nmbThreads

 int m_total_running_threads

 bool m_stop_threads

74

 BaseTask * m_task

 bool * m_work

 map< pthread_t, int > m_map

 Limits m_lim

 pthread_mutex_t m_mutex

 pthread_cond_t m_cond

 pthread_mutex_t m_mutex_done

 pthread_cond_t m_cond_done

4.2.5 STATIC PRIVATE ATTRIBUTES

We have noted that users must obtain access to the ThreadPool object using the

ThreadPool::GetInstance method. However, it is important that users from outside the class

cannot accidentally corrupt this memory location. We can ensure that this is the case by

exploiting the fact that we declare pInstance is static private which guarantee that static

ThreadPool * pInstance = NULL.

4.2.6 CONSTRUCTOR AND DESTRUCTOR

Parallelisation provides us with the capacity to solve computationally significant and substantial

problems, possibly using several computers simultaneously. This entails making use of dynamic

resources (see Chapter 3) but imposes responsibilities on programmers to free up these resources

after the program has been terminated, which can involve invoking considerable programming

logic. In our case, we need to consider how we de-allocate all of the threads because otherwise,

they would continue to run, and this is achieved through a destructor. We also need to think

about how the ThreadPool variables are initialised, which is achieved using a constructor

ThreadPool::ThreadPool (). When the Threadpool object has finished, we ensure that

ThreadPool::~ThreadPool ().

Here we initialize the variables used by the object ThreadPool when it is instantiated.

413 {

414 m_task = NULL;

415 m_mutex=PTHREAD_MUTEX_INITIALIZER;

75

416 m_cond=PTHREAD_COND_INITIALIZER;

417

418 m_mutex_done = PTHREAD_MUTEX_INITIALIZER;

419 m_cond_done = PTHREAD_COND_INITIALIZER;

420

421 }

The ideas discussed above require that the ThreadPool constructor is declared as private. We use

the data hiding attribute of the Object-Oriented Design here to create a singleton version of the

class. These requirements are captured by the call graph below. It highlights the fact that the

original Channelflow remains extant, but we implement thread injection to speed up the

execution of the non-linear term in the Navier-Stokes equations.

4.2.7 MEMBER FUNCTIONS

4.2.7.1 void ThreadPool::CreateThreads (int numOfThreads)

The speed of execution is a raison d’ȇtre of parallelisation. With this in mind, we have

developed the CreateThread function to take advantage of the properties of Map, which is a

container which is a very efficient search algorithm used to find and manipulate a

particular thread. Threads are created by ThreadPool and m_map keeps track of pairs of

thread handles and thread numbers which allow for quick communication with threads.

76

References m_map, m_nmbThreads, m_stop_threads, m_work, and start_thread().

433 {

434 pthread_t handel;

435 m_work = new bool[numOfThreads];

436 m_nmbThreads = numOfThreads;

437 m_stop_threads = false;

438

439 for(int i = 0; i < numOfThreads; ++i) //loop over anticipated number of threads

440 {

441 m_work[i] = false;

442 pthread_create(&handel, NULL, &start_thread ,(void *) this); //here threads are

created

443 m_map[handel] = i;

444 //m_handel.push_back(handel);

445

446 }

447 }

The following caller graph demonstrates inheritance and encapsulation of Object-Oriented

principles that we have briefly discussed in the previous chapter. ThreadPool:: Run and

BaseTask:: Run have the same signature so that the real call will be evaluated at the run time.

However, ThreadPool class can be compiled and linked regardless, allowing us to separate it

into different modules.

4.2.7.2 void ThreadPool::DestroyThreadPool ()

When the simulation is finished, and the program needs to stop running, we need to clear

all dynamically allocated resources. Here we implement a method for the threadPool to

properly destroy itself. This involves notification to all threads to stop running.

We use a broadcast method to deliver such messages to all running threads. As we work in

a multithreading environment, we must protect our condition variable by mutexes (see

Chapter 3) to ensure the delivery of this message to all the running threads.

References m_cond, m_mutex, and m_stop_threads.

77

466 {

467 m_stop_threads = true;

468 cout << "DestroyThreadPool called" << endl;

469 // protecting conditional variable by mutex

470 pthread_mutex_lock(&m_mutex);

471 pthread_cond_broadcast(&m_cond);

472 pthread_mutex_unlock(&m_mutex);

473

474 /*

475 for(int k = 0; k < m_handel.size(); k++)

476 {

477 pthread_join(m_handel[k], NULL);

478 }

479 */

480 //sleep(5);

481

482 }

4.2.7.3 void ThreadPool::executeTask (BaseTask * tsk)

We have noted that we have designed the ThreadPool to be a macromanager. This is somewhat

starkly exemplified by the following function. The job of the ThreadPool is to set the task, wake

up the threads and wait for them to complete their tasks.

References setTask(), WaitToComplete(), and WakeUp().

Referenced by skewsymmetricNL_THREAD().

491 { //steps to make task executed

492 setTask(tsk);

493 WakeUp();

494 WaitToComplete();

495

496 delete tsk;

497 }

Below is the caller graph for this function:

78

As we can see in this diagram, the ThreadPool::executeTask has only managed the

sequence of operations and does not have detailed knowledge of the duties of the task. This

design is targeted to separate the core functionality from the plugin functionality. This

makes the ThreadPool a stand-alone service. In the next graph, we see how detailed

physics of fluid dynamics processes propagates in the core. This occurs during run time.

Below is the caller graph for this function:

4.2.7.4 ThreadPool * ThreadPool::GetInstance () [static]

ThreadPool:: GetInstance is a public interface to access the location of the ThreadPool object

79

which was created by the private constructor. We briefly touched on encapsulation in the

previous chapter, and here we present a detailed implementation. This element of our design

guarantees that only one object of ThreadPool can exist.

The graph below shows how extensively GetInstance is called by all other classes:

References pInstance, and ThreadPool().

Referenced by skewsymmetricNL_THREAD().

423 {

424 if (pInstance== NULL)

425 {

426 pInstance = new ThreadPool();

427 }

428 return pInstance;

429 }

Here is the call graph for this function:

80

4.2.7.5 void * ThreadPool::Run ()

This method again demonstrates our philosophy of segregating the management of the program

logic from the physics. It illustrates how ThreadPool delivers the Run message to the threads

and how the threads report back when they have finished their tasks. Also, it maintains

information on the number of currently running threads. Hence, we can observe that Run by the

ThreadPool has the role of macro managing; however, all of the physics is encapsulated in the

Run method of the particular thread.

References m_cond, m_cond_done, m_map, m_mutex, m_mutex_done, m_nmbThreads,

m_stop_threads, m_task, m_total_running_threads, m_work, and BaseTask::Run().

Referenced by start_thread().

529 {

530 for (;;) //stays in infinitive loop till get signal

531 {

532 pthread_mutex_lock(&m_mutex);

533 int tn= m_map[pthread_self()];

534 while (!m_work[tn] && m_stop_threads == false)

535 {

536 pthread_cond_wait(&m_cond, &m_mutex);

537

538 }

539 pthread_mutex_unlock(&m_mutex);

540

541 //cout <<"IG: worker thread id=" << tn << " running " <<endl;

542

543 if(m_stop_threads) break;

544

545 if(m_task) m_task->Run(tn,m_nmbThreads);

546 m_work[tn]= false;

547

548 pthread_mutex_lock(&m_mutex_done);

549 m_total_running_threads--;

550 pthread_cond_signal(&m_cond_done);

81

551 //cout << "IG: tn=" << tn << "finished m_total_running_threads="

<<m_total_running_threads <<endl;

552 pthread_mutex_unlock(&m_mutex_done);

553 }

554

555

556 return NULL;
557 }

Below is the caller graph for this function:

On this graph, we can see that ThreadPool:: Run and BaseTask:: Run have the same signature.

This architectural design demonstrates the inheritance principle, and we use it here to create

dynamic calls which will lead us to execute a vast number of instructions.

Here is the caller graph for this function:

4.2.7.6 void ThreadPool::setTask (BaseTask * tk) [private]

References m_task.

Referenced by executeTask().

486 {

487 m_task = tk;

488 }

Below is the caller graph for this function:

82

4.2.7.7 void ThreadPool::WaitToComplete () [private]

This is the private method of the ThreadPool class. According to the previous chapter, it should

not be accessible from outside the object. The main idea of this approach is to use software

interrupts to obtain signals from the thread and let it run. It is achieved by using condition wait,

and this resource is protected by mutexes, as can be observed in the following snippet of code:

References m_cond_done, m_mutex_done, and m_total_running_threads.

Referenced by executeTask().

503 {

504 for(;;) //stay in infinitive loop till get the signal

505 {

506 pthread_mutex_lock(&m_mutex_done);

507 while(m_total_running_threads > 0)

508 {

509 pthread_cond_wait(&m_cond_done, &m_mutex_done);

510 //cout << "IG wake up as thread finised " <<endl;

511 }

512 pthread_mutex_unlock(&m_mutex_done);

513 if(m_total_running_threads <= 0) break;

514 }

83

515 }

Below is the caller graph for this function:

4.2.7.8 void ThreadPool::WakeUp () [private]

References m_cond, m_mutex, m_nmbThreads, m_stop_threads, m_total_running_threads,

and m_work.

Referenced by executeTask().

450 {

451

452 m_total_running_threads = m_nmbThreads;

453 m_stop_threads = false;

454

455 for(int k = 0; k < m_nmbThreads; k++)

456 {

457 m_work[k] = true; //set the flag
458 }

459

460 pthread_mutex_lock(&m_mutex); //protect conditional variable

461 pthread_cond_broadcast(&m_cond); // broadcasting

462 pthread_mutex_unlock(&m_mutex); // relise mutex

463 }

84

Below is the caller graph for this function:

Here we can see again our ThreadPool object is stand alone but it retains a connection with all

ChanelFlow objects.

As illustrated, the thread pool class does not have a detailed knowledge of the instructions to be

executed; it is just a carrier for them and makes the object of this class a very flexible tool to

create an injection and take over subsequent calculations by processing them in parallel.

Thread pool has only two interface methods – setTask and ExecuteTask – which will supply

information to the pool about what exactly they need to execute.

Now we have to design an interface which we are going to use to perform the calculation of the

convection part of Navier-Stokes equations using different algorithms. For this purpose, we

create a Base Task class. This is an abstract class, and there are no objects that can be created.

Instead, we are going to derive our skew-symmetrical form, divergence form, convection form,

and rotational form algorithms. Instead, real job classes will be derived from this Base Task

class, making it an interface to supply accurate information to the Thread Pool.

85

Figure 4.4 Diagram to show inheritance used by Base Task class to establish communication

with concrete algorithms to calculate the non-linear part of Navier-Stokes equations.

In Figure 4.4, the rectangles below the Base Task box represent specific classes. Objects of these

classes are instantiated during the run time. The upper part of each box represents the private part

of the class where the specific logic for physical calculations is implemented. The bottom part of

those boxes represents the public member function parts of the classes.

4.2.8 MEMBER FUNCTION DOCUMENTATION

4.2.8.1 VOID BASETASK:: RUN (INT TN, INT THREADS) [VIRTUAL]

Note that each of these classes has a public method called Run(), and it has to be the same

signature as a Run method of the Base Task. Below is the caller graph for this function:

Here we can see how CreateThreads trigger start_thread which follows ThreadPool: Run

method, and subsequentially Run method of the BaseTask class.

86

4.2.8.2 LIMITS

The location and dimensions of the boundaries, the number of computation nodes and their

spatial distribution form key information that must be provided by the user. This information is

held in the Limits class. Objects of this class are designed to hold information regarding domain

dimension, grid properties, and dimension limits. Also, the object of this class is to hold

information regarding internal nodes and nodes that belong to the boundary.

4.2.9 ACCESSING THREADS

When the thread is created, it returns its handle. The Thread Pool contains the information on

each running thread by storing its handles in the map container. In this way, the Thread Pool can

manage running threads and, depending on the load, add or stop some of the threads. However,

access to the running threads is hidden from the user of the thread pool class.

In the table below, we compare existing ChannelFlow (Before) code and our Thread Injection

approach (After). Our approach does not only make calculation much faster but also makes

code more concise and more comfortable to follow.

Before After

//Code snippet of Channelflow implementation

// Accumulate 1/2 u_j du_i/dx_j in f_i

 for (int i=0; i<3; ++i)

 for (int j=0; j<3; ++j) {

 int ij = i3j(i,j);

 for (int ny=0; ny<Ny; ++ny)

 for (int nx=0; nx<Nx; ++nx)

 for (int nz=0; nz<Nz; ++nz)

 f(nx,ny,nz,i) += 0.5*u(nx,ny,nz,j)*grad_u(nx,ny,nz,ij);

 }

//

//Code snippet after thread

injection

class

skewsymmetricNL_task:publ

ic BaseTask

pool->executeTask(new

skewsymmetricNL_task(u, f,

grad_u));

87

==

 // II. Add grad dot (u u) to f. Spell out loops because div(uu, f)

 // would overwrite results already in f (and changing order of

div

 // and convex calculations would require an extra transform)

 FlowField& uu = tmp;

 //outer(u,u,uu);

 t = clock();

 for (int ny=0; ny<Ny; ++ny) {

 for (int nx=0; nx<Nx; ++nx)

 for (int nz=0; nz<Nz; ++nz) {

 Real u0 = u(nx,ny,nz,0);

 Real u1 = u(nx,ny,nz,1);

 Real u2 = u(nx,ny,nz,2);

 uu(nx,ny,nz,0) = u0*u0;

 uu(nx,ny,nz,1) = tmp(nx,ny,nz,3) = u0*u1;

 uu(nx,ny,nz,2) = tmp(nx,ny,nz,6) = u0*u2;

 uu(nx,ny,nz,4) = u1*u1;

 uu(nx,ny,nz,5) = tmp(nx,ny,nz,7) = u1*u2;

 uu(nx,ny,nz,8) = u2*u2;

 }

 }

for (int i=0; i<3; ++i) {

 int i0 = i3j(i,0);

 int i1 = i3j(i,1);

 int i2 = i3j(i,2);

88

 // Add in du_i/dx and du_i/dz, that is, d/dx_j (u_i u_j) for

j=0,2

 for (int my=0; my<My; ++my)

 for (int mx=0; mx<Mx; ++mx) {

 int kx = u.kx(mx);

 Complex d_dx(0.0,

2*pi*kx/Lx*zero_last_mode(kx,kxmax,1));

 for (int mz=0; mz<Mz; ++mz) {

 int kz = u.kz(mz);

 Complex d_dz(0.0,

2*pi*kz/Lz*zero_last_mode(kz,kzmax,1));

 f.cmplx(mx,my,mz,i)

 +=

0.5*(d_dx*uu.cmplx(mx,my,mz,i0)+d_dz*uu.cmplx(mx,my,mz,i

2));

 }

 }

 // Add in du_i/dy, that is d/dx_j (u_i u_j) for j=1

 for (int mx=0; mx<Mx; ++mx)

 for (int mz=0; mz<Mz; ++mz) {

 for (int my=0; my<My; ++my)

 tmpProfile.set(my, uu.cmplx(mx,my,mz,i1));

 diff(tmpProfile, tmpProfile_y);

 for (int my=0; my<My; ++my)

 f.cmplx(mx,my,mz,i) += 0.5*tmpProfile_y[my]; // j=1

 }

 }

Here we demonstrate how the paradigm discussed is applied to our CFD problem.

89

 Line class skewsymmetricNL_task: public BaseTask is defined as a new type that is derived

from the BaseTask type. Here we use inheritance to make the pool->executeTask accept this

object as an object of the expected type.

Line new skewsymmetricNL_task(u, f, grad_u) creates an instance of the

skewsymmetricNL_task object. All complexity shown on the left-hand side of the diagram is

now hidden inside the Pool->executeTask method.

Also, we see them here the separation of duties. The skewsymmetricNL_task object responsible

for physics, is the pool->execute_task responsible for the execution of this physics which is

defined in the skewsymmetricNL_task object.

pool->execute_task does not have detailed knowledge of the object it passes for execution;

instead, it merely responds by letting some threads execute it.

This paradigm ensures that all CFD calculations are separated by independent tasks and create a

responsive and fast means of simulation.

4.3 skewsymmetricNL_task Class Reference

Here we arrive at the point of supplying an actual physics algorithm to our calculation of the

non-linear part of Navier-Stokes equations. And this particular task is to implement the skew

symmetrical scheme.

This algorithm is captured in the object and derives from the BaseTask class object through

inheritance.

What we have briefly discussed in Chapter 3 is here demonstrated in detail.

This philosophy demonstrates how we separate Navier-Stokes calculations on independent parts

from what is required for running things in parallel.

Below is the inheritance diagram for the skewsymmetricNL_task:

Here we can see how it inherits from the abstract BaseTask class, and we have specific Run()

methods, which call through the Run() method of the BaseTask:

90

4.3.1 PUBLIC MEMBER FUNCTIONS

Here we design our interfaces where we can pass all necessary data and perform required physics

calculations:

 skewsymmetricNL_task (const FlowField &_u, FlowField &_f, FlowField &_grad_u)

 void Run (int tn, int threads)

 void setStep (int step)

 void setAttributes (Attributes &attr)

4.3.2 PUBLIC ATTRIBUTES

 In our design of this class we allocate the mutex variable to fulfill safe calculations which in

case of multiple threads will need to access the same shared variable:

 pthread_mutex_t mut

4.3.3 PRIVATE ATTRIBUTES

In private attributes of this class we keep variables to fulfill our housekeeping calculations

needed to maintain integrity with ChannelFlow:

91

 const FlowField & u

 FlowField & f

 FlowField & grad_u

 int m_step

 Attributes m_attr

4.3.3.1 void skewsymmetricNL_task::Run (int tn, int nThreads)

[virtual]

In this method we calculate flow field variable based on traversing the slice domain:

References f, grad_u, i3j(), FlowField::Nx(), FlowField::Ny(), FlowField::Nz(), and u.

207 {

208 //cout << "Igor test skewsymmetricNL_step1 Run running " << endl;

209

210 int Ny = u.Ny()/nThreads;

211 int Nx = u.Nx();

212 int Nz = u.Nz();

213

214 int sty = Ny*tn;

215 int edy = Ny*(tn+1);

216

217 for (int i=0; i<3; ++i) //loop over slice domain

218 for (int ny=sty; ny < edy; ++ny)

219 for (int nx=0; nx < Nx; ++nx)

220 for (int nz=0; nz < Nz; ++nz)

221 for(int j=0; j <3; j++)

222 {

223 int ij = i3j(i,j);

224 f(nx,ny,nz,i) += 0.5*u(nx,ny,nz,j)*grad_u(nx,ny,nz,ij);

225 }

226

227

228 }

Here is the call graph for this function:

92

4.3.3.2 void skewsymmetricNL_task::setAttributes (Attributes & attr)

 In our design, all physical attributes pass in as a reference to an instance of the Attributes class

object.

This allows us to achieve several targets. Firstly, we can pass to the skewsymmetricNL_task all

physical data in one go. Secondly, we again encapsulate this process and can easily add new data

by altering the Attribute class. Note that this change will not require any alteration in

theskewsymmetricNL_task::setAttributes method.

References m_attr.

202 {

203 m_attr = attr;

204 }

4.3.3.3 void skewsymmetricNL_task::setStep (int step)

References m_step.

197 {

198 m_step = step;

199 }

93

4.4 PARALLEL FFTW

Running FFT in parallel is another trigger that we use to speed up simulation processes.

Using spectral methods in CFD require that we apply Fourier transformation to do calculations in

spectral space. Later on, it requires doing a back Fourier Transform to a physical space.

Equations 4.5 and 4.6 shows what exactly needs to be calculated.

The forward FFTW transform a complex array X of size n to an array Y.

𝑌𝑖 = ∑ 𝑋𝑗

𝑛−1

𝑗=0

𝑒−2𝜋𝑖𝑗√−1/𝑛

(4.5)

The backward transform compute

𝑌𝑖 = ∑ 𝑋𝑗

𝑛−1

𝑗=0

𝑒2𝜋𝑖𝑗√−1/𝑛

(4.6)

This process is very computationally expensive and requires about n^2 operations. The Fast

Fourier Transform is an effective algorithm for computing the Discrete Fourier Transform and is

significantly faster as it requires only n*log(n) operations.

FFTW (Frigo et al., 1998) is an open-source implementation of FFT. At the moment, it is still

considered the fastest implemented FFT algorithm.

FFTW has inbuilt multithreaded capabilities which make encapsulating it in DNS code relatively

easy.

94

4.5 TIME MEASURE IN PARALLEL ENVIRONMENT

The raison d’être of this element of our work is to speed up the execution of Channelflow,

although it should be realised that this is merely an exemplar of our approach. However, this

gives rise to an important question: how do we measure time in a parallel environment.

Generally, one of the main reasons to use parallel processing is to make a program run faster. To

parallelise a program or algorithm, we need to know which of its parts takes the most

computational time. The CPU time is used as a parameter to measure performance, but it can be

only used in sequential processes. In a parallel world, it does not work. We need to measure wall

clock time, including communications and synchronisation overheads.

There are some different performance testing tools available. Profiling allows us to gather

statistics about the time spent by applications in various program modules. Typically, it switches

on by rebuilding applications using parameters for profiler options. Then, when the program is

run it generates a table where time spent in different functions is listed as well as times these

features were called.

There is different time measurement which reproduces different clocks used in reflecting the

performance of calculations:

 Wall clock time is the amount of time taken to execute code in user space. It is

calculated as the sum of CPU time, I/O time and communication channel delay;

 User time is the time the CPU is busy executing code in user space;

 System time is the time the CPU is busy executing code in kernel space;

 Idle time is the time the CPU is not busy. Idle time measures unused CPU capacity; and

 Steal time is the time consumed by the operating system to execute, but was not allowed

to by the hypervisor. Running the top command can produce two metrics to indicate steal

time. Percent idle (%id) and %wa percent I/O wait (%wa). When (%id) is low, the CPU

is working hard; however, when (%wa) is high the CPU is ready to run, but is waiting for

I/O to complete it operation.

95

When a program runs in parallel, total CPU time for that program would be more than its elapsed

real-time. However, the wall clock time may be significantly less.

4.5.1 RESULTS

We ran channel flow for default domain size Nx=64, Ny=65, Nz=32 and Re=4000 and did

experiments with thread pool running 1, 2, 3 and 4 threads.

Our results presented in Figure 4.5 show significant improvement in the time of simulation using

the proposed thread injection technique. We can observe that increasing the number of working

threads allows the same simulation to perform in significantly less time.

Figure 4.5 The speeding up of CFD Channelflow by adopting thread injection method

4.6 SUMMARY

One of the prime motivations of this research is to help scientists and engineers who are well

versed in the serial world of computing to realise the advantages to be gained by parallelising

their code. However, they will require a different mindset.

96

The method we have developed for DNS calculations has proved to be quite efficient and easy to

implement. Thread injection replaces sequential code execution with some threads running in

parallel. The thread pool class is a stand-alone object that can serve many CFD tasks.

The graph presented in Figure 4.5 shows the results of speeding up of simulation channel flow

DNS using developed in this work thread pool and thread injection technique. We can observe

here the significant speeding up of this simulation compared with sequential code implemented

in ChannelFlow.

97

5 A PLATFORM THAT ACCEPTS SUB-GRID

MODELS AS PLUG-INS TO ENABLE THE

TESTING OF LES MODELS AGAINST DNS

DATA

5.1 INTRODUCTION

The Johns Hopkins Turbulent Databases (JHTDB) is a catalogue of solutions of the Navier-

Stokes equations. These solutions produced by direct numerical simulation (DNS) are accurate

up to six decimal places. However, the solution is generated at 1024×1024×1024 grid points in

space and 1024 time-samples containing 160 petabytes of information. The size of this database

represents a severe obstacle to using it on a routine basis for practical analysis. An answer to this

problem is to seek the application of ‘database technology’ in turbulence research and

computational fluid dynamics (CFD). Direct numerical simulation **(DNS) of the Navier-

Stokes equations resolves all of the flow structures that affect turbulent flows. However, in the

case of LES, the Navier-Stokes equations are spatially filtered so that they are expressed in terms

of the velocities of larger-scale structures. The rate of viscous dissipation is quantified by

modelling the shear stress, and this process can lead to error.

Therefore, rapid testing and evaluation of models are necessary, and this is wholly associated

with working with large sets of data. In this work, we present a computing platform that allows

one to dynamically load LES models and quickly compare them to DNS results. The main idea

permeating our methodology is that the core is defined as that which contains the ‘know-how’

associated with accessing and manipulating data, and which operates independently of a plugin.

In our work, we presented an example demonstrating how users can examine the accuracy of

LES models and get results almost instantly.

98

5.2 PROBLEM DESCRIPTION

Flow structures in turbulent flows span many orders of magnitude of length and time scales.

They range from the length scale at which tiny eddies lose their coherence as their translational

kinetic energy is dissipated into heat, up to eddies the size of which is related to that of the

macroscopic system. The behaviour of the range of flow structures is captured by assuming that

the fluid is a continuum, and they described by solving the Navier-Stokes equations. However,

the limitations of computers restrict solutions of the Navier-Stokes equations to low Reynolds

number flows in simple geometries. As alluded to above, in most practical situations these

restrictions make it unfeasible to resolve features of turbulent flows on the smallest length and

time scales. Engineers and scientists must, therefore, resort to empirical models of these small-

scale phenomena that are expressed in simple mathematical terms. The models typically involve

some form of averaging and approximations. Hence we must have some simple way of

comparing their accuracy with the exact solutions of the Navier-Stokes equations.

These solutions are accurate to about six decimal places for mesh size is about 1024×1024×1024

grid points in space and 1024 time samples — that span the most massive flow structure. The

entire space-time history of turbulence contains more than 10E12 data points, and users can

access this data remotely using Web-servii interfaces. The JHTDB is a valuable source of

information for comparison and evaluation models of turbulence.

However, the JHTDB database contains 160 petabytes (1.6×1017 B) of information, and this is a

severe obstacle to using it routinely for practical analyses. A natural answer to this challenge is

to seek the application of ‘database technology’ in computational fluid dynamics (CFD) and

turbulence research. Turbulent flows are inherently unsteady and can have significant

implications in many practical situations. For example, waves may give rise to substantial

fluctuating forces on bluff bodies immersed in turbulent flows, and methods must be found to

attenuate these effects. Flows through tree canopies, for example, are significant in determining

the rate of exchange of gases such as water vapour and carbon dioxide with the atmosphere, and

a good understanding of these phenomena is essential when studying climate change.

This research was inspired by a paper by Lee et al. (2015) in which challenges of working with

massive data sets are described, and a call is made for the development of “database technology”

in the area of computational flow dynamics. The aim is to seek automated ways of identifying

99

patterns and reduced-order descriptions, developing machine learning, and performing data

mining and so on, to reduce a significant amount of data to be transmitted and processed.

In our work, we anticipate creating a platform using modular programming which allows LES

models to be rapidly evaluated and dynamically loaded to compare against DNS results such as

those available in the JHTDB. LES and DNS solutions are compared for turbulent flow with a

Reynolds number based on the Taylor microscale, λ, of 433, and they demonstrate that refining

the filter width results in more accurate solutions of the Navier-Stokes equations.

5.3 GOVERNING EQUATIONS

The flow behaviour of incompressible viscous fluids is governed by the Navier-Stokes equations

expressed as

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= 𝑓𝑖 −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥
(𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗
) , (5.1)

and the fluid must obey the conservation of mass that is represented by

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 (5.2)

The idea that underpins large eddy simulation (LES) is that the behaviour of large-scale

structures which occur in turbulent flows can be captured by spatially filtering the Navier-Stokes

equations (Smagorinsky, 1963) and the dissipative structures modelled. .Mathematically, a

spatial filtering operation using a kernel G is defined as:

 ydyyxG

)()((5.3)

100

The result of this operation is a similar system of equations, but now unknown variables are

filtered which have characteristics of averaging over the filter width size.

𝜕�̅�𝑖

𝜕𝑥𝑖
= 0 (5.5)

The advantage of this approach is that the system of equations is considerably reduced compared

with the system required for DNS. However, the LES system of equations is not closed as it

contains an extra term. A second issue arises with averaging techniques in general; namely, there

is a loss of information. As a result, large eddies do not contain all the information that is

required to compute the future of a given flow. To resolve these issues several subgrid-scale

models were introduced. One of the earliest models was proposed by Smagorinsky (1963) that

assumes the dissipation of energy is described by using a grid cell as a filter. Alternative models

have been proposed, each one trying to address some issues of existing models (You, 2007).

This gives rise to the question of how they might be compared. If the ‘true’ flow field is known,

then it can be used to develop an a priori test. In our work, we are going to use the results of

Direct Numerical Simulation (DNS) collected in the Johns Hopkins Turbulence Database

(JHTDB).

In this work, we present a simple-to-use platform that can be employed to compare the

effectiveness of a wide range of LES models and compare them with DNS data. To date,

researchers have tended to deal with relatively simple data. They compare results of calculations

with experimental results or compare them with obvious analytical solutions or some simplified

𝜕�̅�𝑖

𝜕𝑡
+ �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗
= 𝑓�̅� −

1

𝜌

𝜕�̅�

𝜕𝑥𝑖
+

𝜕

𝜕𝑥
(𝜈

𝜕�̅�𝑖

𝜕𝑥𝑗
) +

1

𝜌

𝜕𝜏�̅�,𝑗

𝜕𝑥𝑗
 (5.4)

101

2-D graphs. The situation dramatically changed when we needed to deal with the 4-D space of

petabytes of data.

This work is motivated by the view that LES is formulated as a system of n equations with n + 1

unknowns. There are endless opportunities to supply the final equation. Considering the space

that this equation describes is quite significant, and LES is a promising tool for the future, our

approach creates a considerable number of opportunities for researchers as well as for

developers. The software presented here will be in the public domain.

5.4 DESIGN AND IMPLEMENTATION OF IDEAS

The purpose of this research is to produce a highly efficient platform that is an easy and

convenient tool for the scientific community to devise and test their sub-grid models against the

results of DNS. Schematically it is presented in Figure 5.1 below.

Figure 5.1 The platform comprises two components. A is known as the core, and B represents

plug-ins that enable researchers to test the accuracy of their proposed LES models almost

instantaneously

The system we have developed comprises two components, namely:

 The core A that can communicate with the Johns Hopkins Turbulent Database by web

services and collect and store all relevant information on a local machine. It also includes

102

a range of numerical simulations, filtering operations and comparators that are not bound

to any particular sub-grid model.

 A plugin component B where all specific model relations are set by the user.

A and B are two completely independent stand-alone modules.

The idea is that A can be extended by object B without having to rebuild A. One can think of A

as a repository of knowledge that can be accessed by the user. The implementation of this idea

provides a flexible platform that allows the scientific community to test and compare different

sub-grid models without the necessity of writing extensive computer code.

C++ has proven to be a u useful language language for scientific calculations, and even if C++

does not provide the language support for plugin implementation, it nonetheless provides a sound

basis for it. Firstly, we discuss the language capability that can be used to implement the

platform we have designed. C++ pure virtual functions, abstract base classes, and interface

classes form the foundation of our design implementation. The interface class is abstract;

therefore, the compiler does not require a particular implementation of the class. Hence our

module A does not have any linkage issues. The instantiation of the object class occurs during

run time through the derived plugin classes.

5.5 KEY COMPONENTS

5.5.1 MEMORY MANAGEMENT.

The platform we have developed must handle large amounts of data. For this reason, memory

management is crucial and requires special attention. Let us consider what and how the memory

is used, and what options are available to the developer. The memory that an application uses is

divided into four different areas:

 The code area, where the compiled program resides;

 The global variables area;

103

 The stack from which parameters and local variables are allocated; and

 The heap in which dynamically allocated variables reside.

The first two options are not very relevant because the code area is usually quite small and global

variables are rarely used in the development of modern software. The stack and the heap are

where most memory is located.

5.5.1.1 THE STACK

The temporary variables created by each function stored in the memory segment are called the

stack. The stack memory is managed and optimised by the CPU. When we declare a new

variable in the function or method, it is "pushed" onto the stack. When the function exits, all of

the stack variables are freed, and that region of the memory becomes available for other stack

variables.

The stack memory is managed by the operating system, which makes it more attractive to use.

This memory does not need to be allocated by hand or released once it is no longer required. The

operating system deletes this memory when variables have gone out of scope. Stack memory is

quite fast and usually organised very efficiently. However, the size of the stack memory is

restricted by the operating system (Elke, 2004).

5.5.1.2 THE HEAP

The heap – also known as the “free store” – is a large pool of memory used for dynamic

allocation. This memory is not managed automatically by the operating system. It does not have

a scope and requires manual creation. This memory needs to be free when it is no longer needed.

If this process is not synchronised, the system may exhibit memory leak. Because the precise

location of the memory allocated is not known in advance, it has to be accessed indirectly using

pointers. Compared with the stack, the heap does not have size restrictions on variable size, from

those arising from the obvious physical limitations imposed by the hardware (Wilson et al.,

1995).

104

5.5.1.3 STACK VS HEAP

DNS and LES require manipulation of large amounts of data; hence although we have to manage

the heap memory, it is a promising option for our project. We will describe later how exactly the

heap is used in our platform.

5.6 DATABASE ENGINE

Our design aims to separate the core (know-how system) and the ability to use plugins with

different LES models to test.

Our philosophy is based on the fact that the John Hopkins database is difficult to use for practical

applications. Instead, we are going to implement our database, see Figure 5.1.

This database will have a built-in the two-way communication process. The first one is

communication with the John Hopkins database and collecting DNS solutions, Then our

computational engine will build filtering solutions and them in local DB. The second one is a

feather communication with plugins to test different LES models. This is how knowledge will be

built inside our database.

This dictates the unusual requirement for the database engine. Rather than be a stay alone server

like MySql or SqlServer, which facilitate a lot of requests from clients, our database should be

inbuilt into the process, and it has to be very light and fast. All of the above considerations led us

to choose the SQLite engine (Haldar, 2015).

 Compared to other database engines, SQLite is a server, not a client. It is a fast, light and

reliable open-source library. SQLite has an interface with C and C++ and is thread-safe, which

opens the door for massively parallel transactions. SQLite did not need a stand-alone server

process and was embedded in a current working application. SQLite reads and writes directly to

ordinary disk files. It is extremely fast, and this is why it employed in applications of many well-

known users including Apple, Airbus, Sun Microsystems and Skype. There are many other

users, but they have not all been identified because of the open-source nature of the SQLite.

However, its popularity, and therefore its implied reliability, have prompted us to use this

database engine (Haldar, 2015).

105

5.7 DATABASE CLASS REFERENCE

According to the philosophy of Object Oriented Principles, we designed our class as a separate

entity with member functions which should make it atomic.

 Here we present our design for our LES database class.

5.7.1 PUBLIC MEMBER FUNCTIONS

 Database (const char *filename)

 ~Database ()

 bool open (const char *filename)

 table query (char *query)

 void close ()

 void begin ()

 void commit ()

 void end ()

5.7.2 PRIVATE ATTRIBUTES

 sqlite3 * database

5.7.3 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION

Database::Database (const char * filename) // this is the constructor code

References database, and open().

5 {

6 database = NULL;

7 open(filename);

8 }

Below is the call graph for this function:

In this graph, we see that open database requires constructor of a Database call, an object of the

Database class instantiate.

Database::~Database ()

// This is the destructor code. We are not allowed to let the database object be automatically

destroyed,

106

// so we leave the lines below empty.

11 {

12 }

5.7.4 MEMBER FUNCTION

The database state is changed by the logical instructions of operation called transactions.

Here in our design begin() and end() methods to specify start and end of the transaction.

void Database::begin ()

References database.

Referenced by core::createLES_DB().

23 {

24 sqlite3_exec(database, "BEGIN TRANSACTION;", NULL, NULL, NULL);

25 }

void Database::close ()

References database.

Referenced by core::createLES_DB(), and main().

76 {

77 sqlite3_close(database);

78 }

void Database::commit ()

References database.

Referenced by core::createLES_DB().

32 {

33 sqlite3_exec(database, "COMMIT", NULL, NULL, NULL);

34 }

107

void Database::end ()

References database.

Referenced by core::createLES_DB().

28 {

29 sqlite3_exec(database, "END TRANSACTION;", NULL, NULL, NULL);

30 }

bool Database::open (const char * filename)

References database.

Referenced by Database().

15 {

16 if(sqlite3_open(filename, &database) == SQLITE_OK)

17 return true;

18

19 return false;

20 }

table Database:: query (char * query)

References database.

Referenced by core::createLES_DB(), core::getFilteredVelosity(), core::getFilterWidth(), and

core::getModelSize().

39 { //the code below is a c++ wrapper to sql language for communicating with database

40 sqlite3_stmt *statement; //prepare statement object

41 vector<vector<string> > results; //declare matrix using stl containers

42

43 if(sqlite3_prepare_v2(database, query, -1, &statement, 0) == SQLITE_OK)

44 {

45 int cols = sqlite3_column_count(statement);

46 int result = 0;

47 while(true)

48 {

108

49 result = sqlite3_step(statement); //start building results

50

51 if(result == SQLITE_ROW)

52 {

53 vector<string> values;

54 for(int col = 0; col < cols; col++)

55 {

56 values.push_back((char*)sqlite3_column_text(statement, col));

57 }

58 results.push_back(values); //populate stl container with results

59 }

60 else

61 {

62 break;

63 }

64 }

65

66 sqlite3_finalize(statement); //release memory use by prepared statement

67 }

68

69 string error = sqlite3_errmsg(database); // prepare error message if found

70 if(error != "not an error") cout << query << " " << error << endl;

71

72 return results;

73 }

Below is the caller graph for this function:

In this graph, we see how the Database class correlated with the core class.

Any calls from the core like createLES_DB, getFilterWidth or getModel Size end up in a call to

Database::query.

Member Data Documentation

sqlite3* Database::database [private]

109

Referenced by begin(), close(), commit(), Database(), end(), open(), and query().

5.8 FAST FOURIER TRANSFORMATION

Results of DNS and LES calculations form a 3-D field of N3 double-precision values in physical

space where N is the domain size. To compare such broad groupings, we have to develop a

comparator operator. This operator is based on comparing spectra populated in Fourier with

frequency domain space. Spectra calculation is computationally intensive and requires efficient

algorithms to perform Fast Fourier Transformation. To achieve this, we have chosen the FFTW

open-source library developed at MIT by Frigo and Johnson (Frigo et al., 1998).

Our choice of FFTW was motivated by its performance which is superior to other available FFT

software and is widely used in many scientific applications.

In the next chapter, we will have discussed in detail how this was done using the Edward

supercomputer.

110

6 EDWARD HIGH-PERFORMANCE

COMPUTER

6.1 INTRODUCTION

The project has been built, developed, tested and run on the Edward High-Performance Cluster

based at the University of Melbourne. It executes commands that are about three orders of

magnitude higher than personal computers. It has about six orders more RAM than a personal

computer. But its main advantage is that it is based on the GNU/Linux operation system which

renders it compatible with any other types of Linux operation system (Strazdins,2012; Galassi,

2009).

6.2 THE CORE CLASS AND ITS MEMBERS

CORE CLASS REFERENCE

111

112

Figure 6.1 Collaboration diagram for core class

6.2.1 PUBLIC MEMBER FUNCTIONS

Methods listed below will serve the role of interfaces to communicate with plugins and perform

different LES simulations tasks:

 core ()

 void load_plugin ()

 void use_plugin ()

 void unload_plugin ()

 std::string name ()

 int get_model_size ()

 double * get_filtered_u ()

 double * get_filtered_v ()

 double * get_filtered_w ()

 double dfdx (int ind, order_t o, double *u)

 double dfdy (int ind, order_t o, double *u)

 double dfdz (int ind, order_t o, double *u)

 int get_filter_width ()

 void model_stress ()

 int get_index (size &pos)

 size getPos ()

 void set_size (size &s)

 double * allocate_3Darr (size &)

 int getFilterWidth (Database *db)

 int getModelSize (Database *db)

 void createLES_DB (std::string source_dir, filter_base &f, std::string out_dir)

 FilteredData getFilteredVelosity (point &p, Database *db)

 void getFilteredVelosity (LIST_POINTS &pl, LIST_DATA &ld, Database *db)

113

6.2.2 PRIVATE MEMBER FUNCTIONS

The private method of the class is not accessable from outside of the object and is intended to

maintain internal object functionality:

 int getdir (std::string dir, std::string ext, std::vector< std::string > &vfiles, const std::string

&optional="")

 int read_file (string &path, string &fname, size &sz, int iz, double *u, double *v, double *w)

 int indx (size &sz, int x, int y, int z)

 int periodic_indx (int size, int ind)

 double filter (point &, size sz, filter_base &f, double *v)

6.2.3 PRIVATE ATTRIBUTES

 plugins::Plugin * m_plugin

 void * m_handle

 int m_model_size

 size m_size

 int m_fw

 Database * m_db

6.2.4 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION

core::core () //default constructor , no data members set at this stage yet

41 : m_size(0,0,0),m_handle (NULL),m_fw(0),m_db(0)

42 {

43 }

114

6.2.5 MEMBER FUNCTION

6.2.5.1 double * core::alocate_3Darr (size & sz)

References size::lenX, size::lenY, and size::lenZ.

Referenced by createLES_DB().

395 {//dynamicly allocate space and build 3D array

396 double *arr=0;

397 arr = new double[sz.lenX * sz.lenY * sz.lenZ](); // dynamic memory allocation

398 if(arr == NULL) cout << "Can't allocate memory" << endl;

399 return arr;

400 }

Here is the caller graph for this function:

void core::createLES_DB (std::string source_dir, filter_base & f, std::string out_dir)

References alocate_3Darr(), Database::begin(), Database::close(), Database::commit(),

Database::end(), filter(), filter_base::get_fw(), getdir(), indx(), Database::query(), read_file(),

point::x, point::y, and point::z.

176 { // this is where is actual LES database been populated

177

178 struct stat buffer;

179 if(stat(out_dir.c_str(), &buffer) == 0)

180 {

181 cout << "out_dir " << out_dir << " exist. Override? (Y/N) " <<endl;

182 string choice;

183 getline(cin, choice);

184 while (choice != "n" && choice != "N" && choice != "y" && choice != "Y")

185 {

186 printf ("\nPlease enter Y (Yes) or N (No)\n");

187 getline(cin, choice);

188 }

189 if (choice == "Y" || choice == "y"){ remove(out_dir.c_str());}

190 else return ;

191 }

192

193

115

194

195 std::vector<std::string> files;

196 std::string ext="dat";

197 int nf = getdir(source_dir,ext,files);

198 size DNS_sz(nf,nf,nf);

199

200 double* u = alocate_3Darr(DNS_sz);

201 double* v = alocate_3Darr(DNS_sz);

202 double* w = alocate_3Darr(DNS_sz);

203

204

205 for(int z = 0; z < files.size();z++)

206 {

207 cout << "reading " << files[z] << endl;

208 read_file(source_dir,files[z],DNS_sz,z,u,v,w);

209 }

210

211

212 int fw=f.get_fw();

213 int LES_len = nf/fw;

214 int LES_cellNo = 0;

215

216 size LES_model_sz(LES_len,LES_len,LES_len);

217 size LES_cell_sz(fw,fw,fw);

218

219 char* path = (char*)source_dir.c_str() ;

220

221 Database *db = new Database(out_dir.c_str());

222

223 db->query((char*)"CREATE TABLE source (filter_width INTEGER, LES_model_sz

INTEGER, path TEXT);");

224 db->query((char*)"CREATE TABLE data (ind INTEGER PRIMARY KEY,

filtered_u REAL, filtered_v REAL , filtered_w REAL);");

225

226 stringstream sfw;

227 sfw<<fw;

228 stringstream slen;

229 slen<<LES_len;

230 string ch=",";

231 string en=");";

232 string qvo="\"";

233

234

235 string insert_source="INSERT INTO source VALUES(";

236 insert_source += sfw.str();

237 insert_source += ch;

116

238 insert_source += slen.str();

239 insert_source += ch;

240 insert_source += qvo;

241 insert_source += source_dir;

242 insert_source += qvo;

243 insert_source += en;

244

245 //printf("insert_source=[%s\n",insert_source.c_str());

246 db->query((char*)insert_source.c_str());

247 //db->query((char*)"INSERT INTO source VALUES(5,LES_len,path);");

248

249

250 point orig(0,0,0);

251 db->begin();

252 for(int zz=0; zz < LES_len; zz++)

253 {

254 orig.x = 0;

255 for(int xx = 0; xx < LES_len;xx++)

256 {

257 orig.y=0;

258 for(int yy=0; yy <LES_len;yy++)

259 {

260 int ind = indx(LES_model_sz,xx,yy,zz);

261 double filtred_u = filter(orig,DNS_sz,f,u);

262 double filtred_v = filter(orig,DNS_sz,f,v);

263 double filtred_w = filter(orig,DNS_sz,f,w);

264 LES_cellNo++;

265

266 orig.y += fw;

267 stringstream sind;

268 sind<<ind;

269 stringstream sfiltred_u;

270 sfiltred_u<<filtred_u;

271 stringstream sfiltred_v;

272 sfiltred_v<<filtred_v;

273 stringstream sfiltred_w;

274 sfiltred_w<<filtred_w;

275

276 insert_source="INSERT INTO data VALUES(";

277 insert_source += sind.str();

278 insert_source += ch;

279 insert_source += sfiltred_u.str();

280 insert_source += ch;

281 insert_source += sfiltred_v.str();

282 insert_source += ch;

283 insert_source += sfiltred_w.str();

117

284 insert_source += en;

285 db->query((char*)insert_source.c_str());

286 }

287 db->commit();

288 orig.x+= fw;

289 }

290 orig.z += fw;

291 printf(" done level %d \n",zz);

292 }

293

294 db->end();

295

296

297

298 delete[] u;

299 delete[] v;

300 delete[] w;

301

302

303 db->close();

304 delete db;

305

306 cout << out_dir << " Has been successfully created" << endl;

307

308

309 }

Here is the call graph for this function:

118

double core::dfdx (int ind, order_t o, double * u)

Referenced by plugins::Smagorinsky::stress().

Here is the caller graph for this function:

double core::dfdy (int ind, order_t o, double * u)

double core::dfdz (int ind, order_t o, double * u)

double core::filter (point & pmin, size sz, filter_base & f, double * v) [private]

References filter_base::get_fw(), indx(), filter_base::weight(), point::x, point::y, and point::z.

119

Referenced by createLES_DB().

312 {

313

314 int fw=f.get_fw();

315 double sum=0;

316

317 point pmax=pmin;

318 pmax.x+=fw;

319 pmax.y+=fw;

320 pmax.z+=fw;

321

322 for(int z =pmin.z; z < pmax.z; z++)

323 for(int x = pmin.x; x < pmax.x; x++)

324 for(int y = pmin.y; y < pmax.y; y++)

325 {

326 int ind = indx(sz,x,y,z); //sz here is DNS model size

327 //position in gaussian weight quibe

328 int xg = x-pmin.x;

329 int yg = y-pmin.y;

330 int zg = z-pmin.z;

331 //printf("Filter ind=%d xg=%d yg=%d zg=%d\n",ind,xg,yg,zg);

332 sum += v[ind]*f.weight(xg,yg,zg);

333

334 }

335

336 return sum;

337 }

Here is the call graph for this function:

Here is the caller graph for this function:

int core::get_filter_width ()

double * core::get_filtered_u ()

120

Referenced by plugins::Smagorinsky::stress().

Here is the caller graph for this function:

double * core::get_filtered_v ()

Here is the caller graph for this function:

double * core::get_filtered_w ()

Here is the caller graph for this function:

int core::get_index (size & pos)

Here is the caller graph for this function:

int core::get_model_size () [inline]

References m_model_size.

int core::getdir (std::string dir, std::string ext, std::vector< std::string > & vfiles, const

std::string & optional = "") [private]

References compare().

121

Referenced by createLES_DB().

408 {

409 DIR *dp;

410 struct dirent *dirp;

411 if((dp = opendir(dir.c_str())) == NULL) {

412 cout << "Error(" << errno << ") opening " << dir << endl;

413 return errno;

414 }

415

416 list<string> lfiles;

417 const string empty;

418

419 while ((dirp = readdir(dp)) != NULL) {

420 string file = dirp->d_name;

421

422 //cout << "IG: file=" <<file << endl;

423 int idx = file.rfind('.');

424 if(idx != string::npos)

425 {

426 if(optional == empty)

427 {

428 if(file.substr(idx+1) == ext) lfiles.push_back(file);

429 }

430 else

431 {

432 int len = file.length();

433 int opt = optional.length();

434

435

436 if(len > opt)

437 {

438 string substr = file.substr(len-opt,opt);

439 if(substr == optional) lfiles.push_back(file);

440 }

441

442 }

443 }

444 }

445 lfiles.sort(compare);

446 list<string>::iterator it;

447 for(it=lfiles.begin();it != lfiles.end(); it++)

448 {

449 vfiles.push_back(*it);

450 }

451

452 closedir(dp);

122

453 return vfiles.size();

454

455 }

Here is the call graph for this function:

Here is the caller graph for this function:

void core::getFilteredVelosity (LIST_POINTS & pl, LIST_DATA & ld, Database * db)

References getFilteredVelosity().

117 {

118 LIST_POINTS::iterator ip;

119

120 /*

121 list<int> tl;

122 list<int>::iterator it;

123 tl.push_back(5);

124 for(it = tl.begin() ; it != tl.end(); it++)

125 {

126 }

127 */

128

129 for(ip = pl.begin(); ip != pl.end(); ++ip)

130 {

131 point p=*ip;

132 FilteredData fd = getFilteredVelosity(p,db);

133 dl.push_back(fd);

134 }

135 }

Here is the call graph for this function:

123

FilteredData core::getFilteredVelosity (point & p, Database * db)

References getFilterWidth(), getModelSize(), indx(), m_db, m_fw, m_size,

Database::query(), size::set(), point::x, point::y, and point::z.

Referenced by getFilteredVelosity(), and main().

138 {

139 if(m_db != db)

140 {

141 m_db = db;

142 m_fw = getFilterWidth(db);

143 int len = getModelSize(db);

144 m_size.set(len,len,len);

145 }

146

147 int ind = indx(m_size,p.x,p.y,p.z);

148 stringstream sind;

149 sind<<ind;

150

151 string query="SELECT * FROM data WHERE ind=";

152 query += sind.str();

153

154 table res = db->query((char*)query.c_str());

155 table::iterator it;

156 for(it = res.begin(); it < res.end(); ++it)

157 {

158 row rw = *it;

159 /*

160 cout << "Values: (ind=" << rw.at(0) <<

161 ", u=" << rw.at(1) <<

162 ", v=" << rw.at(2) <<

163 ", w=" << rw.at(3) <<

164 ")" << endl;

124

165 */

166 double u = atof(rw.at(1).c_str());

167 double v = atof(rw.at(2).c_str());

168 double w = atof(rw.at(3).c_str());

169 FilteredData pnt(u,v,w);

170 return pnt;

171

172 }

173 }

Here is the call graph for this function:

Here is the caller graph for this function:

int core::getFilterWidth (Database * db)

References Database::query().

Referenced by getFilteredVelosity(), and main().

104 {

105 table res = db->query((char*)"SELECT filter_width FROM source;");

106 table::iterator it = res.begin();

107 return atoi((*it).at(0).c_str());

108 }

125

Here is the call graph for this function:

Here is the caller graph for this function:

int core::getModelSize (Database * db)

References Database::query().

Referenced by getFilteredVelosity(), and main().

110 {

111 table res = db->query((char*)"SELECT LES_model_sz FROM source;");

112 table::iterator it = res.begin();

113 return atoi((*it).at(0).c_str());

114 }

Here is the call graph for this function:

Here is the caller graph for this function:

size core::getPos ()

Referenced by plugins::Smagorinsky::stress().

Here is the caller graph for this function:

126

int core::indx (size & sz, int x, int y, int z) [private]

References size::lenX, size::lenY, size::lenZ, and periodic_indx().

Referenced by createLES_DB(), filter(), getFilteredVelosity(), and read_file().

511 {

512

513 int xp = periodic_indx(sz.lenX,x);

514 int yp = periodic_indx(sz.lenY,y);

515 int zp = periodic_indx(sz.lenZ,z);

516 int ind = yp + sz.lenY*(xp + sz.lenX*zp);

517 return ind;

518 }

Figure 6.2 The code above implements the idea of periodic boundary conditions, where we are

simulating infinity by a finite number of cells. If a point crosses the boundary, another one comes

inside from the other side.

Here is the call graph for this function:

Here is the caller graph for this function:

127

Figure 6.3 Diagram to show objects to references index class

void core::load_plugin ()

References construct(), m_handle, and m_plugin.

Referenced by model_stress().

46 {//this method dynamicly load plugin and granted access to core object

47

48 //void *handle = NULL;

49 if(!(m_handle = dlopen("lib/libplugin.so", RTLD_LAZY)))

50 {

51 std::cerr << "Plugin: " << dlerror() << std::endl;

52 return;

53 }

54 dlerror();

55

56 pluginConstructor construct = (plugins::Plugin* (*)(void)) dlsym(m_handle,

"construct");

57 char *error = NULL;

58 if((error = dlerror()))

59 {

60 std::cerr << "Plugin: " << dlerror() << std::endl;

61 dlclose(m_handle);

62 return;

63 }

64

65 //plugins::Plugin *plugin = construct();

66 //std::cout << plugin->toString() << std::endl;

67 //delete plugin;

68 m_plugin = construct();

69 //dlclose(handle);

70 }

128

Here is the call graph for this function:

Here is the caller graph for this function:

void core::model_stress ()

References plugins::Plugin::load_core(), load_plugin(), m_plugin, plugins::Plugin::name(),

plugins::Plugin::stress(), and unload_plugin().

340 {

341 load_plugin();

342 m_plugin->load_core(this);

343

344 std::cout << "simulating stress by " << m_plugin->name() << " model" << std::endl;

345

346 Matrix m(3,3);

347 m_plugin->stress(m);

348

349 unload_plugin();

350

351 }

Here is the call graph for this function:

std::string core::name ()

129

Referenced by plugins::Smagorinsky::load_core().

86 {

87 return std::string(" The core");

88 }

Here is the caller graph for this function:

int core::periodic_indx (int size, int ind) [private]

Referenced by indx().

499 {

500 int res;

501 if (ind < size && ind >= 0) return ind;

502 if (ind >= size) { res = ind +1 - size; return res; }

503 if (ind < 0) { res = ind -1 + size; return res;}

504

505 // should not ever come to this point of return

506 // return unchange indx;

507 return ind;

508 }

Here is the caller graph for this function:

int core::read_file (string & path, string & fname, size & sz, int iz, double * u, double

* v, double * w) [private]

References indx(), and size::lenX.

Referenced by createLES_DB().

458 {

459 string fullname=path+fname;

130

460 ifstream infile(fullname.c_str());

461 string line;

462

463

464 int ix=0;

465 int iy=0;

466 int ind;

467 while (getline(infile, line))

468 {

469 //ind = ix + sz.x*(iy + sz.y*iz);

470 // //ind = iy + sz.y*(ix + sz.x*iz);

471 //

472 ind = indx(sz,ix,iy,iz);

473

474 istringstream iss(line);

475 double v1,v2,v3;

476 if (!(iss >> v1 >> v2 >> v3))

477 {

478 break;

479 }

480

481 u[ind] = v1;

482 v[ind] = v2;

483 w[ind] = v3;

484

485

486 if(ix < sz.lenX) ix++;

487 if(ix == sz.lenX)

488 {

489 ix = 0;

490 iy += 1;

491 }

492

493

494 }

495 infile.close();

496 }

Here is the call graph for this function:

Here is the caller graph for this function:

131

void core::set_size (size & s) [inline]

References m_size.

30 {m_size = s;}

void core::unload_plugin ()

References m_handle, and m_plugin.

Referenced by model_stress().

80 {

81 delete m_plugin;

82 dlclose(m_handle);

83 }

Here is the caller graph for this function:

void core::use_plugin ()

References plugins::Plugin::load_core(), m_plugin, and plugins::Plugin::name().

73 {

74 std::cout << "using plugin " <<std::endl;

75 std::cout << m_plugin->name() << std::endl;

76 m_plugin->load_core(this);

77 }

Here is the call graph for this function:

132

The object of the core system can be created by the following call.

6.2.6 MEMBER DATA

Database* core::m_db [private]

Referenced by getFilteredVelosity().

int core::m_fw [private]

Referenced by getFilteredVelosity().

void* core::m_handle [private]

Referenced by load_plugin(), and unload_plugin().

int core::m_model_size [private]

Referenced by get_model_size().

plugins::Plugin* core::m_plugin [private]

Referenced by load_plugin(), model_stress(), unload_plugin(), and use_plugin().

size core::m_size [private]

core *a = new(core);

The core class is a singleton, so only one instance of this object will be available. After the

object of the core has been instantiated the user can access its public members listed below:

133

Figure 6.4 The relationships between the core class and the database class is the call graph that

demonstrates the hierarchy employed by the core to generate a LES database. For example, the

core applies filters of a given width and weight to those elements

134

Figure 6.5 The hierarchy of instructions issued by the core to generate an LES database and

comparator. This method is referred in the Figure 6.4

The core is aware of the periodicity of the data and compensates for this when reading beyond

the file width. It is capable of identifying the data to be manipulated, carrying out the requested

filtering and comparing the LES and DNS models on a time scale of about 10-3 seconds.

6.3 FILTERING OPERATIONS

6.3.1 FILTER_BASE CLASS REFERENCE

#include <filter.h>

135

Figure 6.6 Inheritance diagram for filter_base

Public Member Functions

 filter_base (int fr)

 virtual double weight (int x, int y, int z)=0

 int get_fw ()

Protected Attributes

 int m_fr

 int m_fw

6.3.2 CONSTRUCTOR & DESTRUCTOR

filter_base::filter_base (int fr) [inline]

References m_fw.

7 :m_fr(fr){m_fw = 2*fr+1;};

6.3.3 MEMBER FUNCTION DOCUMENTATION

int filter_base::get_fw () [inline]

136

References m_fr.

Referenced by core::createLES_DB(), and core::filter().

9 {return 2*m_fr+1;}

Here is the caller graph for this function:

virtual double filter_base::weight (int x, int y, int z) [pure virtual]

Implemented in Gaussian.

Referenced by core::filter().

Here is the caller graph for this function:

6.3.4 MEMBER DATA

6.3.4.1 int filter_base::m_fr [protected]

Referenced by gaussian::gaussian(), and get_fw().

 int filter_base::m_fw [protected]

Referenced by filter_base(), and gaussian::gaussian().

6.4 FILTEREDDATA CLASS REFERENCE

#include <point.h>

137

6.4.1 PUBLIC MEMBER FUNCTIONS

FilteredData ()

FilteredData (double u, double v, double w)

FilteredData & operator= (const FilteredData &pp)

FilteredData (const FilteredData &pp)

6.4.2 PUBLIC ATTRIBUTES

 POINT3D p

6.4.3 CONSTRUCTOR & DESTRUCTOR

FilteredData::FilteredData () [inline]

11 {//Default constructor of Filterdata class};

FilteredData::FilteredData (double u, double v, double w) [inline]

References p.

13 { //Constructor of Filter Data class

14 p[0] = u;

15 p[1] = v;

16 p[2] = w;

17

18 };

FilteredData::FilteredData (const FilteredData & pp) [inline]

References p.

29 { //Copy constructor of FilterData class

30 p[0] = pp.p[0];

31 p[1] = pp.p[1];

32 p[2] = pp.p[2];

33 };

6.4.4 MEMBER FUNCTION

FilteredData& FilteredData::operator= (const FilteredData & pp) [inline]

138

References p.

21 { // Method to define operator equal which is going to be used in comparison operator

22 p[0] = pp.p[0];

23 p[1] = pp.p[1];

24 p[2] = pp.p[2];

25 };

6.4.5 MEMBER DATA

6.4.5.1 POINT3D FilteredData::p

Referenced by FilteredData(), main(), and operator=().

6.5 GAUSSIAN CLASS REFERENCE

#include <gaussian.h>

Figure 6.7 Inheritance diagram for gaussian

Collaboration diagram for Gaussian:

139

6.5.1 PUBLIC MEMBER FUNCTIONS

 gaussian (int fr)

 virtual double weight (int x, int y, int z)

6.5.2 PRIVATE ATTRIBUTES

 array3D m_weights

140

6.5.3 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION

gaussian::gaussian (int fr)

References filter_base::m_fr, filter_base::m_fw, and m_weights.

6 :filter_base(fr)

7 {

8 int sp = m_fw*m_fw;

9 printf("m_fw=%d m_fr=%d\n",m_fw,m_fr);

10

11

12 m_weights.resize(m_fw);

13 double sum = 0;

14 for(int z = -m_fr; z <= m_fr; z++)

15 {

16 m_weights[z+m_fr].resize(m_fw);

17 for(int x = -m_fr; x <= m_fr; x++)

18 {

19 m_weights[z+m_fr][x+m_fr].resize(m_fw);

20 for(int y = -m_fr; y <= m_fr; y++)

21 {

22 double w = exp(-6*(x*x + y*y + z*z)/sp);

23 sum += w;

24 m_weights[z+m_fr][x+m_fr][y+m_fr] = w ;

25 }

26 }

27 }

28

29

30 for(int z = -m_fr; z <= m_fr; z++)

31 {

32 for(int x = -m_fr; x <= m_fr; x++)

33 {

34 for(int y = -m_fr; y <= m_fr; y++)

35 {

36 m_weights[z+m_fr][x+m_fr][y+m_fr] /= sum;

37 }

38 }

39 }

40

41 // check weights

42 /*

43 sum = 0;

44 for(int z = -m_fr; z <= m_fr; z++)

45 for(int x = -m_fr; x <= m_fr; x++)

141

46 for(int y = -m_fr; y <= m_fr; y++)

47 sum += m_weights[z+m_fr][x+m_fr][y+m_fr];

48

49 printf("done gaussian sum = %f\n",sum);

50 */

51

52 }

6.5.4 MEMBER FUNCTION

double gaussian::weight (int x, int y, int z) [virtual]

Implements filter_base.

References m_weights.

55 {

56 return m_weights[z][x][y];

57 }

6.5.5 MEMBER DATA

array3D gaussian::m_weights [private]

Referenced by gaussian(), and weight().

142

7 SMAGORINSKY PLUGIN

7.1 INTRODUCTION

To begin using the platform and evaluate potential LES models, the user has to implement a

small piece of code for the subgrid model. Because it is based on a plugin architecture, the

language that is used is not particularly important. One of the first sub-grid-scale models was

suggested in Smagorinsky’s classic work (Smagorinsky, 1963), and it can be summarised as:

(7.1)

where

ijij

i

j

j

i
ij SSS

x

u

x

u
S 2||),(

2

1

(7.2)

In (7.1), the eddy viscosity is modelled by

𝜇𝑠𝑔𝑠 = 𝜌(𝐶𝑠 , ∆)2 ∣ �̅� ∣ , ∆ = (𝑣𝑜𝑙𝑢𝑚𝑒)
1
3, 𝐶𝑠 = 0.11 (7.3)

Let us see what methods and data are required to implement a plugin to evaluate this relatively

simple model. First, it is necessary to access a filtered velocity, and then we require the ability to

calculate its derivatives. Furthermore, the plugin will need to know the geometrical position to be

interrogated and the size of the model. The core system will supply these data. The plugin will

return two variables – stress and eddy viscosity. As we have mentioned above, this is a fully

independent component and after compilation will reside in the plugin.so share library.

ijsijsgsijkkij SSCS ||)(22
3

1 2

143

Figure 7.1 illustrates schematically how the user can implement a plugin to form a LES database

from DNS data and evaluate the accuracy of, in this case, a Smagorinsky model. However, it

should be noted that the user is free to devise any LES model and check its efficacy.

144

Figure 7.2 The diagram shows the interaction between the plugin and the core.

The core subsumes ‘know-how’ on locating the DNS data to be analysed, methods of filtering,

creating a LES database and comparing DNS and LES data. The operations of the core are

invisible to the CFD developer.

145

Our platform has a built-in directory of examples that includes a subdirectory in which plugin

examples are provided. It includes a template which can be used to develop and test alternative

LES models

7.2 DETAILED PLUGIN DOCUMENTATION

plugins:: Plugin Class Reference

#include <plugin.hpp>

Figure 7.3 Inheritance diagram for plugins::Plugin

146

Figure 7.4 Collaboration diagram for plugins::Plugin:

147

7.2.1 PUBLIC MEMBER FUNCTIONS

 virtual std::string name ()=0

 virtual void load_core (core *a)=0

 virtual void stress (Matrix &m)=0

7.2.2 PUBLIC ATTRIBUTES

 core * m_core

7.2.3 MEMBER FUNCTION DOCUMENTATION

virtual void plugins::Plugin::load_core (core * a) [pure virtual]

Implemented in plugins:: Smagorinsky.

Referenced by core::model_stress(), and core::use_plugin().

Here is the caller graph for this function:

virtual std::string plugins::Plugin::name () [pure virtual]

Implemented in plugins:: Smagorinsky.

Referenced by core::model_stress(), and core::use_plugin().

Here is the caller graph for this function:

virtual void plugins::Plugin::stress (Matrix & m) [pure virtual]

Implemented in plugins:: Smagorinsky.

Referenced by core::model_stress().

Here is the caller graph for this function:

148

void plugins::Smagorinsky::stress (Matrix & s) [inline, virtual]

Implements plugins:: Plugin.

References core::dfdx(), FOUR, core::get_filtered_u(), core::get_filtered_v(),

core::get_filtered_w(), core::get_index(), core::getPos(), and plugins::Plugin::m_core.

24 {

25 double *u = m_core->get_filtered_u();

26 double *v = m_core->get_filtered_v();

27 double *w = m_core->get_filtered_w();

28 size pos = m_core->getPos();

29 int ind = m_core->get_index(pos);

30

31 order_t order=FOUR;

32

33 /*

34 double dudx = m_core->dfdx(ind,order,u);

35 double dudy = m_core->dfdy(ind,order,u);

36 double dudz = m_core->dfdz(ind,order,u);

37

38

39 double dvdx = m_core->dfdx(ind,order,v);

40 double dvdy = m_core->dfdy(ind,order,v);

41 double dvdz = m_core->dfdz(ind,order,v);

42

43 double dwdx = m_core->dfdx(ind,order,w);

44 double dwdy = m_core->dfdy(ind,order,w);

45 double dwdz = m_core->dfdz(ind,order,w);

46 */

47 double dudx = m_core->dfdx(ind,order,u);

48 double dudy = 0;

49 double dudz = 0;

50

51

52 double dvdx = 0;

53 double dvdy = 0;

54 double dvdz = 0;

55

56 double dwdx = 0;

57 double dwdy = 0;

58 double dwdz = 0;

59

60

149

61

62

63 s(0,0) = -0.5*(dudx + dudx);

64 s(0,1) = -0.5*(dudy + dvdx);

65 s(0,2) = -0.5*(dudz + dwdx);

66 s(1,1) = -0.5*(dvdy + dvdy);

67 s(1,2) = -0.5*(dvdz + dwdx);

68 s(2,2) = -0.5*(dwdz + dwdz);

69

70 s(1,0) = s(0,1);

71 s(2,0) = s(0,2);

72 s(2,1) = s(1,2);

73

74

75 }

Here is the call graph for this function:

7.2.4 MEMBER DATA DOCUMENTATION

core* plugins::Plugin::m_core

Referenced by plugins::Smagorinsky::load_core(), and plugins::Smagorinsky::stress().

150

7.3 POINT OBJECTS

point Class Reference

#include <point.h>

7.3.1 PUBLIC MEMBER FUNCTIONS

 point ()

 point (int init_x, int init_y, int init_z)

 point (const point &s)

 point & operator= (const point &s)

 bool operator< (const point &rhs) const

7.3.2 PUBLIC ATTRIBUTES

 int x

 int y

 int z

7.3.3 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION

point::point () [inline]

41 {};

point::point (int init_x, int init_y, int init_z) [inline]

References x, y, and z.

43 {

44 x = init_x;

45 y = init_y;

46 z = init_z;

47 }

point::point (const point & s) [inline]

49 : x(s.x),y(s.y),z(s.z){};

151

7.3.4 MEMBER FUNCTION

bool point::operator< (const point & rhs) const [inline]

References x, y, and z.

62 {

63 if((x*x + y*y + z*z) < (rhs.x*rhs.x + rhs.y*rhs.y + rhs.z*rhs.z)) return true;

64 else return false;

65 }

point& point::operator= (const point & s) [inline]

References x, y, and z.

52 {

53 x = s.x;

54 y = s.y;

55 z = s.z;

56 return *this;

57 }

7.3.5 MEMBER DATA

 int point::x

Referenced by core::createLES_DB(), core::filter(), core::getFilteredVelosity(), operator<(),

operator=(), and point().

 int point::y

Referenced by core::createLES_DB(), core::filter(), core::getFilteredVelosity(), operator<(),

operator=(), and point().

 int point::z

Referenced by core::createLES_DB(), core::filter(), core::getFilteredVelosity(), operator<(),

operator=(), and point().

152

7.4 OBJECTS OF TYPE SIZE

7.4.1 SIZE CLASS REFERENCE

#include <plugin.hpp>

7.4.2 PUBLIC MEMBER FUNCTIONS

 size ()

 size (int init_x, int init_y, int init_z)

 void set (int init_x, int init_y, int init_z)

 size (const size &s)

 size & operator= (const size &s)

7.4.3 PUBLIC ATTRIBUTES

 int lenX

 int lenY

 int lenZ

7.4.4 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION

size::size () [inline]

20 {};

size::size (int init_x, int init_y, int init_z) [inline]

References lenX, lenY, and lenZ.

22 {

23 lenX = init_x;

24 lenY = init_y;

25 lenZ = init_z;

26 }

153

size::size (const size & s) [inline]

34 : lenX(s.lenX),lenY(s.lenY),lenZ(s.lenZ){};

7.4.5 MEMBER FUNCTION

size& size::operator= (const size & s) [inline]

References lenX, lenY, and lenZ.

37 {

38 lenX = s.lenX;

39 lenY = s.lenY;

40 lenZ = s.lenZ;

41 return *this;

42 }

void size::set (int init_x, int init_y, int init_z) [inline]

References lenX, lenY, and lenZ.

Referenced by core::getFilteredVelosity().

28 {

29 lenX = init_x;

30 lenY = init_y;

31 lenZ = init_z;

32 }

Here is the caller graph for this function:

7.4.6 MEMBER DATA

int size::lenX

Referenced by core::alocate_3Darr(), core::indx(), operator=(), core::read_file(), set(), and

size().

154

int size::lenY

Referenced by core::alocate_3Darr(), core::indx(), operator=(), set(), and size().

int size::lenZ

Referenced by core::alocate_3Darr(), core::indx(), operator=(), set(), and size().

7.4.7 FULL PLATFORM DETAILED PROJECT

ORGANIZATION

7.5 TASK STRUCT REFERENCE

#include <task.h>

Collaboration diagram for task:

155

7.5.1 PUBLIC ATTRIBUTES

 int size

 string source_dir

 string output_dir

 string name

7.5.2 MEMBER DATA DOCUMENTATION

 string task:: name

 string task::output_dir

 int task:: size

 string task::source_dir

7.5.3 FILE DOCUMENTATION

7.6 CORE.H FILE REFERENCE

#include "plugin.hpp"

#include "filter.h"

#include "point.h"

#include <list>

#include "database.h"

Include dependency graph for core.h:

This graph shows which files directly or indirectly include this file:

7.6.1 CLASSES

 class core

156

7.6.2 TYPEDEFS

 typedef list< point > LIST_POINTS

 typedef list< FilteredData > LIST_DATA

7.6.3 TYPEDEF DOCUMENTATION

 typedef list<FilteredData> LIST_DATA

 typedef list<point> LIST_POINTS

7.7 DATABASE.H FILE REFERENCE

#include <string>

#include <vector>

#include <sqlite3.h>

Include dependency graph for database.h:

This graph shows which files directly or indirectly include this file:

7.7.1 CLASSES

 class Database

7.7.2 TYPEDEFS

 typedef std::vector< std::string > row

 typedef std::vector< row > table

157

7.7.3 TYPEDEF DOCUMENTATION

 typedef std::vector<std::string> row

 typedef std::vector<row> table

158

7.8 FILTER.H FILE REFERENCE

This graph shows which files directly or indirectly include this file:

7.8.1 CLASSES

 class filter_baseGAUSSIAN.H FILE REFERENCE

#include "filter.h"

#include <vector>

Include dependency graph for gaussian.h:

This graph shows which files directly or indirectly include this file:

7.8.2 CLASSES

 class gaussian

7.8.3 TYPEDEFS

 typedef std::vector< std::vector< std::vector< double > > > array3D

159

7.8.4 TYPEDEF DOCUMENTATION

typedef std::vector<std::vector<std::vector<double> > > array3D

7.9 MAINPAGE.DOX FILE REFERENCE

7.10 PLUGIN.HPP FILE REFERENCE

#include <boost/numeric/ublas/matrix.hpp>

#include <boost/numeric/ublas/io.hpp>

#include <boost/function.hpp>

#include <string>

Include dependency graph for plugin.hpp:

This graph shows which files directly or indirectly include this file:

7.10.1 CLASSES

 class size

 class plugins::Plugin

7.10.2 NAMESPACES

 namespace plugins

7.10.3 TYPEDEFS

 typedef matrix< double > Matrix

160

7.10.4 ENUMERATIONS

 enum order_t { ONE = 1, FOUR = 4 }

7.10.5 TYPEDEF DOCUMENTATION

typedef matrix<double> Matrix

7.10.6 ENUMERATION TYPE DOCUMENTATION

enum order_t

Enumerator:

ONE

FOUR

16 { ONE=1,FOUR=4 } ;

7.11 POINT.H FILE REFERENCE

This graph shows which files directly or indirectly include this file:

7.11.1 Classes

 class FilteredData

 class point

7.11.2 Typedefs

 typedef double POINT3D [3]

7.11.3 TYPEDEF DOCUMENTATION

typedef double POINT3D[3]

161

7.12 TASK.H FILE REFERENCE

7.12.1 CLASSES

 struct task

7.13 CORE.CPP FILE REFERENCE

#include <stdio.h>

#include <iostream>

#include <fstream>

#include <sstream>

#include <vector>

#include <string>

#include <list>

#include <dlfcn.h>

#include <sys/types.h>

#include <dirent.h>

#include <errno.h>

#include <stdlib.h>

#include "database.h"

#include "plugin.hpp"

#include "core.h"

#include "filter.h"

#include "point.h"

#include <sys/stat.h>

Include dependency graph for core.cpp:

7.13.1 TYPEDEFS

 typedef boost::function< plugins::Plugin *()> pluginConstructor

7.13.2 FUNCTIONS

 bool compare (const std::string &first, const std::string &second)

162

7.13.3 TYPEDEF DOCUMENTATION

7.13.3.1 typedef boost::function<plugins::Plugin* ()> pluginConstructor

7.13.4 FUNCTION DOCUMENTATION

7.13.4.1 bool compare (const std::string & first, const std::string &

second)

Referenced by core::getdir().

26 {

27

28 int pos1=first.find('_')+1;

29 int pos2=second.find('_')+1;

30 int one = atoi(first.substr(pos1,first.length()-8).c_str());

31 int two = atoi(second.substr(pos2,second.length()-8).c_str());

32

33 if(one > two) return false;

34 return true;

35

36 }

Here is the caller graph for this function:

7.14 DATABASE.CPP FILE REFERENCE

#include "database.h"

#include <iostream>

Include dependency graph for database.cpp:

163

164

7.15 DNS_PLUGIN.CPP FILE REFERENCE

#include "core.h"

#include "database.h"

#include <boost/function.hpp>

#include "gaussian.h"

#include <iostream>

#include <stdlib.h>

Include dependency graph for dns_plugin.cpp:

7.15.1 FUNCTIONS

 int main (int argc, char **argv)

7.15.2 FUNCTION DOCUMENTATION

7.15.2.1 int main (int argc, char ** argv)

References Database::close(), core::getFilteredVelosity(), core::getFilterWidth(),

core::getModelSize(), and FilteredData::p.

16 {

17 /*

18 ArgvParser cmd;

19 // init

20 cmd.setIntroductoryDescription("This is foo written by bar.");

21 //define error codes

22 cmd.addErrorCode(0, "Success");

23 cmd.addErrorCode(1, "Error");

24 cmd.setHelpOption("h", "help", "Print this help page");

25

26 // cmd.defineOption("version", ArgvParser::NoOptionAttribute, "Be verbose");

27 cmd.defineOption("version", "Be verbose", ArgvParser::NoOptionAttribute);

165

28

29

30 cmd.defineOptionAlternative("verbose","v");

31

32 // cmd.defineOption("foo", ArgvParser::OptionRequiresValue, "Fooishness. Default

value: 0");

33 cmd.defineOption("foo", "Fooishness. Default value:

0",ArgvParser::OptionRequiresValue);

34

35 cmd.defineOption("createDb");

36 cmd.defineOption("sp", "", ArgvParser::OptionRequired);

37

38

39 // finally parse and handle return codes (display help etc...)

40 int result = cmd.parse(argc, argv);

41

42 if (result != ArgvParser::NoParserError)

43 {

44 cout << cmd.parseErrorDescription(result);

45 exit(1);

46 }

47

48 // now query the parsing results

49 if (cmd.foundOption("foo"))

50 {

51 // string = cmd.optionValue("foo");

52 cout << cmd.optionValue("foo") << endl;

53 }

54 if(cmd.foundOption("createDb"))

55 {

56 cout << cmd.optionValue("createDB") << endl;

57 }

58

59

60 return 0;

61 */

62

63 core *a = new(core);

64

65 string source_dir = string("/home/projects/pVict0004/512/DnsData/");

66 string out_dir = "/home/projects/pVict0004/512/LES/";

67

68 /*

69 out_dir += "LES_2_DB";

70 gaussian g(2);

71 a->createLES_DB(source_dir, g,out_dir);

166

72 */

73

74 /*

75 out_dir += "LES_4_DB";

76 gaussian g(4);

77 a->createLES_DB(source_dir, g,out_dir);

78 */

79

80 /*

81 out_dir += "LES_6_DB";

82 gaussian g(6);

83 a->createLES_DB(source_dir, g,out_dir);

84 */

85 /*

86 out_dir += "LES_8_DB";

87 gaussian g(8);

88 a->createLES_DB(source_dir, g,out_dir);

89 */

90

91 /*

92 out_dir += "LES_16_DB";

93 gaussian g(16);

94 a->createLES_DB(source_dir, g,out_dir);

95 return 0;

96 */

97

98 Database *db;

99 db = new Database((char*)"/home/projects/pVict0004/512/LES/LES_2_DB");

100

101 cout << "fw=" << a->getFilterWidth(db) <<endl;

102 cout << "sz=" << a->getModelSize(db) <<endl;

103

104 point p(12,24,32);

105

106 FilteredData res = a->getFilteredVelosity(p,db);

107

108 cout << "u=" << res.p[0] << endl;

109

110 int y = 10;

111 int z = 10;

112 LIST_DATA ld;

113 LIST_POINTS lp;

114 LIST_DATA::iterator it;

115 for(int x=0; x< 10; x++)

116 {

117 point p(x,y,z);

167

118 lp.push_back(p);

119 }

120 a->getFilteredVelosity(lp,ld,db);

121

122 for(it=ld.begin(); it != ld.end() ; ++it)

123 {

124 cout << "u=" << (*it).p[0] << endl;

125 }

126

127

128

129

130

131 /*

132 table res = db->query((char*)"SELECT * FROM data WHERE ind=2;");

133

134 table::iterator it;

135 for(it = res.begin(); it < res.end(); ++it)

136 {

137 row rw = *it;

138 cout << "Values: (ind=" << rw.at(0) <<

139 ", u=" << rw.at(1) <<

140 ", v=" << rw.at(2) <<

141 ", w=" << rw.at(3) <<

142 ")" << endl;

143 //cout << "Values: (A=" << rw.at(0) << ", B=" << rw.at(1) << ")" << endl;

144 }

145 */

146 db->close();

147

148 //a->load_plugin();

149 //a->use_plugin();

150 //a->unload_plugin();

151

152 //a->model_stress();

153

154

155 /*

156 Database *db;

157 db = new Database((char*)"/home/vu-s3931905/DNS_plugins/src/Database.sqlite");

158

159 db->query((char*)"CREATE TABLE a (a INTEGER, b INTEGER);");

160 db->query((char*)"INSERT INTO a VALUES(1, 2);");

161 db->query((char*)"INSERT INTO a VALUES(5, 4);");

162 table::iterator it;

163

168

164

165

166 table res = db->query((char*)"SELECT a, b FROM a;");

167

168 for(it = res.begin(); it < res.end(); ++it)

169 {

170 row rw = *it;

171 cout << "Values: (A=" << rw.at(0) << ", B=" << rw.at(1) << ")" << endl;

172 }

173

174 db->close();

175 */

176

177

178

179

180 }

Here is the call graph for this function:

7.16 GAUSSIAN.CPP FILE REFERENCE

#include "gaussian.h"

#include <cmath>

#include <iostream>

#include <stdlib.h>

Include dependency graph for gaussian.cpp:

169

7.17 PLUGIN.CPP FILE REFERENCE

#include "plugin.hpp"

#include <iostream>

#include "core.h"

Include dependency graph for plugin.cpp:

7.17.1 CLASSES

 class plugins::Smagorinsky

7.17.2 NAMESPACES

 namespace plugins

7.17.3 FUNCTIONS

 plugins::Plugin * construct ()

170

7.17.4 Function Documentation

7.17.4.1 plugins::Plugin* construct ()

Referenced by core::load_plugin().

83 {

84 return new plugins::Smagorinsky();

85 }

Here is the caller graph for this function:

7.17.5 COMPARATOR OPERATOR

Engineers and fluid dynamicists must have access to a tool that enables the accuracy of

alternative LES models. In the existing version of our platform, we verify our results by plotting

spectra on log-log coordinates. However, this is a subjective approach, and we are implementing

a quantitative method that will result in a simple index that will inform users of the accuracy of

their models. The idea is to quantify the similarity of patterns based on principal component

analysis, and particularly by making use of the Pearson correlation coefficient [11].

The squared PSX correlation coefficient 𝑟2 can be calculated by dividing covariance of 𝑠𝑠𝑎𝑏 of

two spectra a and b by the product of their standard deviations 𝑠𝑠𝑎𝑎 and 𝑠𝑠𝑏𝑏

𝒓𝟐 =
𝑺𝑺𝒂𝒃

𝟐

𝑺𝑺𝒂𝒂𝑺𝑺𝒃𝒃

 (7.4)

where

171

𝑠𝑠𝑎𝑎 = ∑(𝑎𝑖 − 𝑎)2

𝑛

𝑖=1

 (7.5)

𝑠𝑠𝑏𝑏 = ∑(𝑏𝑖 − 𝑏)2

𝑛

𝑖=1

 (7.6)

𝑠𝑠𝑎𝑏 = ∑(𝑎𝑖 − 𝑎)(𝑏𝑖 − 𝑏)

𝑛

𝑖=1

 (7.7)

The comparison process proceeds by calculating the distribution of a macroscopic property such

as shear stress, the rate of energy dissipation and so on. This gives rise to sz×sz×sz values where

sz is the dimension of our domain. The next step which will be invisible to the user is to create

the FFT of the values that reduce the number of components to sz numbers. The final step is to

calculate the Pearson correlation coefficient that provides a single measure of the quality of the

LES model.

7.18 RESULTS AND PRACTICAL USAGE

EXAMPLES

To demonstrate the operability of our approach we compared the spectra generated by DNS and

those arising from LES with a range of filter widths. The example chosen makes use of data

172

accessible from the Johns Hopkins University database of DNS solutions [12], and we consider

one that concerns forced isotropic turbulence. The problem is described in [12] thus:

Direct numerical simulation using 1,0243 nodes.

The Navier-Stokes equations are solved using a pseudo-spectral method.

Energy is injected by keeping constant the total energy in shells such that |k| is less or equal to 2.

After the simulation has reached a statistically stationary state, 1,024 frames of data with three

velocity components and pressure are stored in the database. Extra time frames at the beginning

and at the end have been added to be used for temporal-interpolations.

The Taylor-scale Reynolds number fluctuates around Reλ~ 433

There is one dataset with 1024 time-steps available, for time t between 0 and 2.048 (the frames

are stored at every 10 time-steps of the DNS). Intermediate times can be queried using temporal

interpolation.

In our problem, this requested the loading of a 512×512×512 domain and for all filter widths in

the range 2 to 32 we calculated filtered spectra. Figure 7.5 shows that the stress components

calculated by DNS and arising from a LES solution with a filter width of four are in close

agreement; hence a LES solution would be expected to provide accurate solutions in about two

orders less time than a DNS solution.

173

Figure 7.5 A comparison of stress components obtained from DNS and those obtained with a

Smagorinski filter of width 4

Figure 7.6 demonstrates the transfer function of the velocity as a function of the filter width. If

the LES and DNS solutions were coincident, the transfer function would be unity; however, it

can be seen that this ideal is approached as the filter width is reduced.

174

Figure 7.6 The transfer function calculated with filter widths of 2, 4, 6 and 8.

7.19 CONCLUSIONS

Databases of solutions of the Navier-Stokes equations generated by direct numerical simulation

are necessarily broad. They are nevertheless handy for developing new, more practical yet

accurate approximations of the Navier-Stokes equations. Motivation of this work is to develop

an intellectual framework whereby CFD practitioners have an easy-to-use tool that enables them

to evaluate their LES models. At the heart of the method database technology that harnesses the

following ideas::

 Very large volumes of data are manipulated by storing variables in heap memory.

 A readily available client-based database engine implemented

 Fast-Fourier transforms algorithms are used to ensure that analyses are carried out

efficiently.

The principal idea behind the method is that a core is defined that contains the ‘know-how’

associated with accessing and manipulating data, and which operates independently of a plugin.

This enables users to propose LES models and obtain results almost instantaneously. As a result,

users can operate on large sets of data and obtain results almost instantaneously.

175

8 CONCLUSIONS

Modern engineering requires practical solutions of turbulent flows for models with complex

geometries and boundary conditions. This entails dealing with large amounts of data and time-

consuming calculation. In this work, we demonstrate how both of these requirements can be

satisfied.

In the first part of the thesis, we develop paradigm and methodology for speeding up massive

calculations by parallelisation of Navier Stokes equations. We discuss and demonstrate new

phenomena which only appear in the parallel world and explain how they can be used in

turbulent flow simulation.

 Parallelisation can be defined as a process of discovery of independent parts of the task.

There are several tasks which are naturally parallel. For example, this is the case in the area of

an image. An image is essentially an array of independent pixels with corresponding properties,

and it can be argued that the parallelisation of the image is a trivial task. However, there are

many tasks such as rendering in computer visualisation (Eilemann, 2019), brute force searches

Loesch (1990) and so on. Moler (1986) coined the phrase “embarrassingly parallel” to describe

problems that are parallel and easy to solve.

In contrast, performing parallelisation of applications in the domain of computational fluid

dynamics is relatively quite challenging (Simon, 1991), Griebel & Zaspel, 2010 and Hauser

& Williams, 1992). This is because CFD simulations require solving several interdependent

equations with many parameters that are also interdependent. It is significant to note that a

Google Scholar search for ‘Navier Stokes Parallelization’ limited to the years 2018-2019 returns

more than 4000 articles. This is just another prove that Navier Stokes Parallelization is not as

trivial and so so many researchers still working on the problem

The term ‘paradigm’ is defined in the Cambridge English Dictionary as – “a model of something,

or an obvious and typical example of something”:

What we have achieved in this thesis is to devise a paradigm such that several necessary steps

are carried out in parallel, but the specific implementation of

176

 each step is left open. Finally, we have demonstrated this paradigm in a specific sequential

CFD application and demonstrated how this application was converted to parallel.

Another point is the development of parallel applications leaves many ordinary developers in the

dark. They are entirely unfamiliar with the subtleties of parallelisation. This was my motivation

for writing Chapter 3, in which I discuss in detail several scenarios and terminologies that appear

only in the parallel world of software development. These include parallel overheads, dead-

locks, mutexes, threads and thread functions, thread safety, locks, synchronisations, and so on. It

is advanced software concepts such as these that are implemented in the thesis. All of these

phenomena exist only in the parallel world of software development.

We developed a standalone thread pool class which we inject into a sequential channel flow

solver to execute those regions of the code that are computationally intensive. We have

demonstrated that increasing the number of threads to two is speeding up of calculations more

than double. A significant contribution of this work is that we exploit the benefits of

encapsulation which allow multiple users to work in the same space.

Multithreading applications do not always run faster. This is because of overheads in creating

threads and communication between the threads and attempts to run the sequential algorithm in

parallel which requires using many mutexes. Difficulties in decomposing problems into a

parallel form often require considerable intellectual effort to overcome. There are many pitfalls

in the parallel world, and they have been discussed in great detail. The fact that our paradigm

enables us to reduce calculation time for channel flow is evidence that the classes we have

developed can be reused for other serial Large Eddy Simulation applications.

We developed an application that simulates channel flow by performing calculations in a

parallel, and I compared the results with an application that simulates channel flow by

implementing a serial paradigm.

Code validation is not to determine differences. The aim is to show there are no differences in

the results (Foster, I., Olson. R., & Tuecke, S., 1992). This was carefully done by comparing

the outputs of each function and member classes. Once that is successfully achieved, there is no

need to run the same code repeatedly for the different sizes of systems because system size does

not influence calculation logic.

177

Also, encapsulation can be described as the protection of data elements and the provision of

methods with which to access the data, thus “encapsulating” the state of an object with the

actions that can be performed upon it. However, the benefits of this concept are much more

comprehensive. It not only allows one to carry out calculations in parallel, but it also allows one

to perform development in parallel (Cantor, 1998), Culler, Singh, J. & Gupta, 1999)

For example, a research team may have a mammoth task to develop new classes for the IT

industry. Each member of the team works on developing one common object, but each member

has access to the relevant private areas of the task. The concept of encapsulation assures there

will be no clashes. Even application testers can work in parallel and write their scripts without

waiting until the developers complete their coding. Ultimately, new objects can be created, tested

and validated by a small team, working in parallel, and the approach enables tasks to be

completed in shorter times. This is an underlying approach adopted in this thesis.

In this work, the method of local parallelisation has been applied to channel flow. However, the

technique is quite general and powerful, and it can be used to a myriad of practical and research

problems that involve turbulent flows.

The direct numerical solutions of the Navier-Stokes equations are obtained using short time and

length scales. As a result, these solutions inevitably contain prodigious quantities of data. In this

work, we have developed an approach to rapidly and conveniently analyse the solutions. We

demonstrate a developmental approach to deal with large sets of data. We have created a

highly efficient platform that is intended to be easy to use by the scientific community to devise

and test their sub-grid LES models against the results of DNS, Johns Hopkins database of DNS

solutions was used as for comparison. To help scientists and engineers to evaluate their LES

models, we present a comprehensive comparator operator to quantify the accuracy of the models.

Furthermore, the method releases the researcher from the need to write a comprehensive code

because the LES models can be implemented as plugins.

 This work has presented an intellectual framework whereby CFD practitioners can readily and

quickly examine the accuracy of new models they might wish to propose. The method is based

on database technology and includes the following concepts:

178

 Use and manipulation of heap memory to handle vast volumes of data;

 The implementation of a client-based database engine; and

 The incorporation of efficient fast-Fourier transforms algorithms.

The package is implemented on an HPC cluster. An idea permeating the methodology is that a

core is defined that contains the ‘know-how’ associated with accessing and manipulating data,

and which operates independently of a plugin. This enables users to propose LES models and

obtain results almost instantaneously.

Heap memory manipulation presented in Chapter 6.2 shows there is core class and there is a

class member allocate_3Darray, this member returns a pointer to a chunk of heap memory.

Passing this pointer as a parameter to a function allows the use as a statically defined three-

dimensional array. This approach overcame stack data type memory limitations and manipulates

extensive data arrays and work with them like a usual indexed array. As to FFTW, Running FFT

in parallel is another trigger that we use to speed up simulation processes. FFTW (Frigo et al.,

1998) is an open-source implementation of FFT. At the moment, it is still considered the fastest

implemented FFT algorithm. FFTW has inbuilt multithreaded capabilities which make

encapsulating it in DNS code relatively easy. Using parallel stand-alone libraries will probably

be an increasingly popular way to speed up sequential processes.

This concept was accepted and presented by me on First Thermal and Fluids Engineering

Summer Conference, 9-12 August 2015, New York, NY, USA

https://www.astfe.org/conferences/tfesc/TFESC_Conference_Technical_Program.pdf

This was presented to JHTDB researchers and received with great interest, as it significantly

speeds up using JHTB and delivers practical results to scientists almost immediately.

https://www.astfe.org/conferences/tfesc/TFESC_Conference_Technical_Program.pdf

179

9 INDEX

/home/vu-s3931905/DNS_plugins/include/core.h,

126

/home/vu-

s3931905/DNS_plugins/include/database.h, 127

/home/vu-s3931905/DNS_plugins/include/filter.h,

128

/home/vu-

s3931905/DNS_plugins/include/gaussian.h, 129

/home/vu-

s3931905/DNS_plugins/include/mainpage.dox,

130

/home/vu-

s3931905/DNS_plugins/include/plugin.hpp, 131

/home/vu-s3931905/DNS_plugins/include/point.h,

133

/home/vu-s3931905/DNS_plugins/include/task.h, 134

/home/vu-s3931905/DNS_plugins/src/core.cpp, 135

/home/vu-s3931905/DNS_plugins/src/database.cpp,

137

/home/vu-

s3931905/DNS_plugins/src/dns_plugin.cpp, 138

/home/vu-s3931905/DNS_plugins/src/gaussian.cpp,

143

/home/vu-s3931905/DNS_plugins/src/plugin.cpp,

144

~Database

Database, 76

alocate_3Darr

core, 83

array3D

gaussian.h, 129

BaseTask

Run, 58

begin

Database, 76

close

Database, 76

commit

Database, 77

compare

core.cpp, 135

construct

plugin.cpp, 144

core, 80

alocate_3Darr, 83

core, 83

createLES_DB, 83

dfdx, 87

dfdy, 87

dfdz, 87

filter, 87

get_filter_width, 89

get_filtered_u, 89

get_filtered_v, 89

get_filtered_w, 89

get_index, 89

get_model_size, 90

getdir, 90

getFilteredVelosity, 91, 92

getFilterWidth, 94

getModelSize, 94

getPos, 95

indx, 95

load_plugin, 96

m_db, 101

m_fw, 101

m_handle, 101

m_model_size, 101

m_plugin, 101

m_size, 101

model_stress, 97

name, 97

180

periodic_indx, 98

read_file, 98

set_size, 100

unload_plugin, 100

use_plugin, 100

core.cpp

compare, 135

pluginConstructor, 135

core.h

LIST_DATA, 126

LIST_POINTS, 126

createLES_DB

core, 83

database

Database, 79

Database, 75

~Database, 76

begin, 76

close, 76

commit, 77

database, 79

Database, 75

end, 77

open, 77

query, 78

database.h

row, 127

table, 127

dfdx

core, 87

dfdy

core, 87

dfdz

core, 87

dns_plugin.cpp

main, 138

end

Database, 77

filter

core, 87

filter_base, 104

filter_base, 104

get_fw, 105

m_fr, 105

m_fw, 105

weight, 105

FilteredData, 106

FilteredData, 106

operator=, 107

p, 107

FOUR

plugin.hpp, 132

gaussian, 108

gaussian, 109

m_weights, 111

weight, 111

gaussian.h

array3D, 129

get_filter_width

core, 89

get_filtered_u

core, 89

get_filtered_v

core, 89

get_filtered_w

core, 89

get_fw

filter_base, 105

get_index

core, 89

get_model_size

core, 90

getdir

core, 90

getFilteredVelosity

core, 91, 92

getFilterWidth

core, 94

getModelSize

core, 94

getPos

core, 95

indx

core, 95

lenX

size, 124

lenY

size, 124

lenZ

size, 124

LIST_DATA

core.h, 126

LIST_POINTS

core.h, 126

load_core

plugins::Plugin, 117

load_plugin

core, 96

m_core

plugins::Plugin, 119

m_db

core, 101

m_fr

filter_base, 105

m_fw

core, 101

filter_base, 105

m_handle

core, 101

m_model_size

core, 101

m_plugin

181

core, 101

m_size

core, 101

m_weights

gaussian, 111

main

dns_plugin.cpp, 138

Matrix

plugin.hpp, 131

model_stress

core, 97

name

core, 97

plugins::Plugin, 117

task, 125

ONE

plugin.hpp, 132

open

Database, 77

operator<

point, 121

operator=

FilteredData, 107

point, 121

size, 123

order_t

plugin.hpp, 132

output_dir

task, 125

p

FilteredData, 107

periodic_indx

core, 98

plugin.cpp

construct, 144

plugin.hpp

FOUR, 132

Matrix, 131

ONE, 132

order_t, 132

pluginConstructor

core.cpp, 135

plugins::Plugin, 115

load_core, 117

m_core, 119

name, 117

stress, 117

plugins::Smagorinsky

stress, 118

point, 120

operator<, 121

operator=, 121

point, 120, 121

x, 121

y, 121

z, 121

point.h

POINT3D, 133

POINT3D

point.h, 133

query

Database, 78

read_file

core, 98

row

database.h, 127

Run

BaseTask, 58

set

size, 123

set_size

core, 100

size, 122

lenX, 124

lenY, 124

lenZ, 124

operator=, 123

set, 123

size, 122, 123

task, 125

source_dir

task, 125

stress

plugins::Plugin, 117

plugins::Smagorinsky, 118

table

database.h, 127

task, 124

name, 125

output_dir, 125

size, 125

source_dir, 125

unload_plugin

core, 100

use_plugin

core, 100

weight

filter_base, 105

gaussian, 111

x

point, 121

y

point, 121

z

point, 121

10 TABLE OF FIGURES

Figure 1.1 Sketch of the computer power available and that needed for LES as a function of

time. The cross-over time is the transition from the era of insufficient computer power to the era

of sufficient computer power. (Pope, 2004) .. 27

Figure 2.1 The geometry of the system used to study flow between two parallel plates. The

system is semi-infinite in the 𝑥1 and 𝑥2 directions, and the fluid velocity at the lower and upper

walls is set to zero to conform to the no-slip boundary condition. (Gibson, 2014) 31

Figure 3.1 A thread can be considered to be a stream which carries a list of computer

instructions that are to be executed independently (Leslie,1979) ... 41

Figure 3.2 Concurrent execution on a single-core system ... 49

Figure 3.3 - Parallel execution on multi-core system .. 50

Figure 3.4 MPI allows creating message interface in between two processes to send a message,

size, type, source, destination, tag, communicator, status etc… ... 51

Figure 3.5 OpenMP shared memory management. Processes can communicate by accessing the

memory which can be shared in between different processes. ... 51

Figure 3.6 Example of the object - Vehicle ... 53

Figure 4.1 Discretization of the domain using a scheme that is amenable to parallelization 64

Figure 4.2 Diagram to show parallelization paradigm, thread injection, and simulation process.

On the bottom of the diagram, there is the list of sequential instructions. One of them is

overwritten by the thread injection. As shown above, thread pool takes control over one of the

sequential steps, and execute it in parallel. Then control is a return to the next sequential

instruction ... 65

Figure 4.3 Thread Pool Organization diagram... 67

Figure 4.4 Diagram to show inheritance used by Base Task class to establish communication

with concrete algorithms to calculate non-linear part of Navier-Stokes equation. 79

Figure 4.5 The speeding up of CFD Channelflow by adopting thread injection method 88

Figure 5.1 The platform comprises two components. A is known as the core, and B represents

plug-ins that enable researchers to test the accuracy of their proposed LES models almost

instantaneously .. 94

Figure 6.1 Collaboration diagram for core class .. 104

Figure 6.2 Code above implements idea of periodic boundary conditions, where we are

simulating infinity by a finite number of cells. If a point cross the boundary another one come

inside from the other side. ... 117

Figure 6.3 Diagram to show objects to references index class .. 118

Figure 6.4 The relationships between the core class and the database class . is the call graph of

that demonstrates the hierarchy employed by the core to generate an LES database. For

example, the core applies filters of a given width and weight to those elements 124

Figure 6.5 The hierarchy of instructions issued by the core to generate an LES database and

comparator. ... 125

Figure 7.1 The grayed out box shows a schematic of how a plugin is implemented. 134

Figure 7.2 The diagram to show the interaction between the plugin and the core. 135

Figure 7.3 Inheritance diagram for plugins::Plugin ... 136

Figure 7.4 Collaboration diagram for plugins::Plugin: .. 137

Figure 7.5 A comparison of stress components obtained from DNS and those obtained with a

Smagorinski filter of width 4 .. 166

11 NOMENCLATURE

Cs Smagorinsky constant

f Arising from body force, m/s2

G Filter function

p Pressure, Pa

S Rate of strain tensor, s-1

t Time,s

u Velocity, m/s

x Distance in x-direction, m

y Distance in the y-direction, m

z Distance in the z-direction, m

N Number of computational nodes

L Dimension of the computational domain

 𝜀 Rate of kinetic energy dissipation, J/kg

Re Reynolds number

Reλ Taylor-scale Reynolds number

Greek symbols

Δ Width of filter, Laplacian, Change in the value of the variable, m

δi,j Dirac delta function

𝜇 Dynamic viscosity, kg/(ms)

ν Kinematic viscosity, m2 s⁄

 ρ Density, kg/m3

φ General filter function

Subscripts

i,j Denotes i and j coordinates

 Acronyms

sgs Sub-grid scale

LES Large eddy simulation

RANS Reynolds averaged Navier-Stokes equations

DNS Direct numerical simulation

CFD Computational Fluid Dynamics

CPU Central Processing Unit

HPC High-Performance Computer

OOP Object-Oriented Programming

OOA Object–Oriented Analysis

12 REFERENCES

Arbenz, P, & Obrist, D, (2018) Comparison of Parallel Time-Periodic Navier-Stokes

Solvers, Parallel Processing and Applied Mathematics,2018

Barney, B. Introduction to Parallel Computing. Retrieved from

https://computing.llnl.gov/tutorials/parallel_comp/#Terminology,

Blaise. B, (2010) POSIX Threads Programming, Lawrence Livermore National Laboratory,

2010, https://computing.llnl.gov/tutorials/pthreads/

Bodis, L. (2007). Quantification of Spectral Similarity. (Computer Science), Babes-Bolyai

University, Romania. (17361)

Booch, G. (1982). Object-oriented design. Ada Lett., I(3), 64-76.

doi:10.1145/989791.989795

Canuto, C. (1988). Spectral methods in fluid dynamics: Springer-Verlag.

Cantor, M., (1998). Object-Oriented Project Management with UML, ISBN: 0471253030

,1998, Publisher: John Wiley & Sons, Inc.

Chapman, D. (1979). Computational Aerodynamics Development and Outlook. AIAA

Journal, 17(12), 1293-1313. doi:10.2514/3.61311

Culler, D. & Singh, J. & Gupta, A, (1999) . Parallel Computer Architecture - A

Hardware/Software Approach. Morgan Kaufmann Publishers, 1999. ISBN 1-55860-343-3,

pg 15

Dahl, O.-J. (2004). The Birth of Object Orientation: the Simula Languages.

 Owe, S. Krogdahl, & T. Lyche (Eds.), From Object-Orientation to Formal Methods:

Essays in Memory of Ole-Johan Dahl (pp. 15-25). Berlin, Heidelberg: Springer

Berlin Heidelberg.

Darlington, J., Ghanem, M., Guo, Y., & To, W. T. (1996).), Guided Resource Organisation

in Heterogeneous Parallel Computing. Journal of High-Performance Computing, 4

(1), 13-23.

Drysdale, D. (2007). High-Quality Software Engineering: Lessons from the

Six-Nines Worlds: Lulu.com.

Eilemann, S. (2019), Parallel Rendering and Large Data Visualization, PhD thesis,

University of Zurich, Neuchatel, NE, Switzerland,

https://arxiv.org/pdf/1902.08755.pdf

Elke, J. (2004). Origin of the Virtual Memory Concept. IEEE Annals of the History of

Computing, 26(4), 71-72.

Feynman, R., Leighton, R., & Sands, M. (1963) The Feynman lectures on physics (2nd ed.).

Oxford: Addison-Wesley World Student Series.

Foa, E., Cashman, L., Jaycox, L., & Perry, K. . (1997). The validation of a self-report

measure of PTSD: The Posttraumatic Diagnostic Scale. Psychological Assessment, 9,

445-451.

Foster, I., Olson. R., & Tuecke, S., (1992) Productive Parallel Programming: The PCN

Approach. Scientific Programming Volume 1, Issue 1, 51-66, 1992

Foundation, N.. (2014). Johns Hopkins Turbulence Databases – Forced Isotropic

Turbulence. . Retrieved from http://turbulence.pha.jhu.edu/datasets.aspx

Fox, L., & Parker, I. (1968). Chebyshev polynomials in numerical analysis. Oxford:

University Press.

Frigo, M., & Johnson, S. G. (1998, 12-15 May 1998). FFTW: an adaptive software

architecture for the FFT. Paper presented at the Acoustics, Speech and Signal

Processing, 1998. Proceedings of the 1998 IEEE International Conference on.

Frigo, M., & Johnson, S. G. (2005). The Design and Implementation of FFTW3.

Proceedings of the IEEE, 93(2), 216-231. doi:10.1109/JPROC.2004.840301

Frumkin, M. & Schultz, M. & Jin, H. & Yan,J. (2003) Performance and scalability of the

NAS parallel benchmarks in Java, Proceedings International Parallel and

Distributed Processing Symposium, Nice, France, 2003, pp. 6 -8.doi:

10.1109/IPDPS.2003.1213267

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., . . . Rossi, F. (2009).

GNU Scientific Library Reference Manual Retrieved from UK:

Gibson, J. (2014). Channelflow: a spectral Navier–Stokes simulator in C++.Retrieved from

www.channelflow.org.

Gnanaskandan, A., & Mahesh, K. (2016). Large Eddy Simulation of the transition from

sheet to cloud cavitation over a wedge. International Journal of Multiphase Flow, 83,

86-102.

Gottlieb, D., & Orzag, S. (1977). Numerical Analysis of Spectral Methods: Theory and

Application, : Philadelphia, PA.

Griebel, M. & Zaspel. P., (2010) A multi-GPU accelerated solver for the

three-dimensional two-phase incompressible Navier Stokes equations.

Computer Science-Research and Development, 2010 - Springer

Gropp,W. & Kaushik, D. & Smith, B., (2001), High-performance parallel implicit CFD,

parallel Computing 27(4) 337-362

Grossman, I. (2015) Begell house, A PLATFORM THAT ACCEPTS SUB-GRID MODELS

AS PLUGINS TO ENABLE THE TESTING OF LES MODELS AGAINST DNS DATA,

http://search.begellhouse.com/index.php

Grossman, I. (2015) First Thermal and Fluids Engineering Summer Conference, 9-12

August 2015, New York, NY, USA

https://www.astfe.org/conferences/tfesc/TFESC_Conference_Technical_Program.pdf

Haldar, S. (2015). SQLite Database System Design and Implementations:

https://books.google.com/.

Hauser, J., & Williams, R. (1992). Strategies for parallelizing a Navier

Stokes code on the Intel touchstone machines. Journal for numerical

methods in fluids, 1992

Hollman, D. & Bennett, J. & Kolla, H. & Lifflander, J. & Slattengren, N. & Wilke, J. (2016

)Metaprogramming-Enabled Parallel Execution of Apparently Sequential C++

Code, 2016 Second International Workshop on Extreme Scale Programming Models

and Middlewar (ESPM2), Salt Lake City, UT, 2016, pp. 24-31. doi:

10.1109/ESPM2.2016.009

https://books.google.com/

Imlay, S. (2017, December 14). Tecplot. [Blog] Why One Trillion Cells?. Available at:

http://www.tecplot.com/blog/2014/12/03/one-trillion-cells/ [Accessed 2 Sep. 2016]

Jacobson, I. (1992). Object-oriented software engineering: ACM.

John, V. Comput Visual Sci (1999) 1: 193.https://doi.org/10.1007/s007910050

Journal of Fluid Mechanics, 774, 395-415.

Katz, A. & Jameson, A.(2010), Meshless Scheme Based on Alignment Constraints, AIAA

Journal,Vol.48. No. 11, November 2010

Kay, A. (1972). A Personal Computer for Children of All Ages. Paper presented at the

Proceedings of the ACM annual conference - Volume 1, Boston, Massachusetts,

USA.

Kay, A. C. (1993). The early history of Smalltalk. Paper presented at the The second ACM

SIGPLAN conference on History of programming languages, Cambridge,

Massachusetts, USA.

Kerr, R.., & Kimura. Y., (editors) 2000: Developments in Geophysical Turbulence.

Proceedings of the IUTAM symposium at the National Center for Atmospheric

Research, Boulder, CO 16-19 June 1998. Kluwer Academic Publishers, Dordrecht

Knuth, D. (2007). Fundamental Algorithms, Section 2.5: Dynamic Storage Allocation, .

Krist, S., & Zang, T. (1987). Numerical simulation of channel flow transition (NASA-TP-

2667, L-16204, NAS 1.60:2667). Retrieved from Hampton VA United States:

Kroll, N., & Rossow, C. (2015). Current status and challenges in CFD at the DLR Institute

of Aerodynamics and Flow Technology. Retrieved from.

https://www.grc.nasa.gov/hiocfd/wp-

content/uploads/sites/22/AIAA2015_Challenges_for_CFD_DLR_Kroll.pdf

Krüger, J., & Westermann, R. (2003). Linear algebra operators for GPU implementation of

numerical algorithms. ACM Transactions on Graphics (TOG) - Proceedings of ACM

SIGGRAPH 2003, 22(3), 908=916.

Lamport, L. (1979). How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs. IEEE Transactions on Computers, C-28(9), 690-691.

doi:10.1109/TC.1979.1675439

Lanczos, C. (1938). Trigonometric Interpolation of Empirical and Analytical Functions.

Journal of Mathematics and Physics, 17(1-4), 123-199.

doi:10.1002/sapm1938171123

Lavington, S. (1998). History of Manchester Computers. Swindon: British Computer

Society.

Lavington, S. H. (1975). A history of Manchester computers: NCC Publications.

Lee, M., & Moser, R. . (2015). Direct numerical simulation of turbulent flow up to Re≈5200

Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R.,Eyink, T.(2008). A public

turbulence database cluster and applications to study the Lagrangian evolution of

velocity increments in turbulence. Journal of Turbulence, 9, 1-29.

Loan, C. (1992). Computational Frameworks for the Fast Fourier Transform. Philadelphia:

SIAM Press

Loesch, H & Remscheid, A (1990) Brute force in molecular reaction dynamics: A novel

technique for measuring steric effects,J. Chem. Phys. 93, 4779

(1990); https://doi.org/10.1063/1.458668

Losavio, F., Matteo, A., & Schlienger, F. (1994). Object-oriented methodologies of Coad

and Yourdon and Booch: comparison of graphical notations. Information and

Software Technology, 36(8), 503-514. doi:https://doi.org/10.1016/0950-

5849(94)90028-0

Lyle B. (1966). Algorithm 277. Computation of Chebyshev series coefficients, 9 (2), 86–87.

doi: doi:10.1145/365170.365195

McCalpin, J. & Moore, C. & Hester, P. (2011). The Role of Multicore Processors in the

Evolution of General-Purpose Computing. CTWatch Quarterly. 3. 18-30.

Menabrea, L.(1842). Sketch of the Analytical Engine Invented by Charles Babbage, Esq:

Richard and John E. Taylor.

Mitchell, D., Arun N. (1988). Reconstruction filters in computer-graphics Paper presented

at the International Conference on Computer Graphics and Interactive Techniques.

Moler, C. (1986). Heath, Michael T. (ed.). Matrix Computation on Distributed Memory

Multiprocessors. Hypercube Multiprocessors. Society for Industrial and Applied

Mathematics, Philadelphia. 1986, ISBN 978-0898712094.

Moore, G. (1965). Cramming more components onto integratedcircuits Electronics, 86(1),

114-117.

Muriel, A. (2010) An Exact Solution of the 3-D Navier-Stokes Equation, Department of

Electrical Engineering Columbia University and Department of Philosophy Harvard

University, Retrieved from

Muriel, A. and Dresden, M., An Exact Solution of the 3-D Navier-Stokes Equation Physica

D 101, 297 (1997).

Naveed,A, & Ulrich,W, (2017) An assessment of some solvers for saddle point problems

emerging from the incompressible Navies-Stokes equations, Computer Methods in

Applied Mechanics and Engineering, 2017

Norberg. A, & O’Neill. J (1996) Transforming Computer Technologies, Johns

Hopkins Press,Baltimore and London, MAIN QA 76 .17 N67 1996

Nvidia, (2007), CUDA, https://www.nvidia.com/object/cuda_home_temp.html,

 Parallel CFD conference, (2018), http://www.indiana.edu/~parcfd18/

Perlman, E., Burns, R., Li, Y., & Meneveau, C. (2007). Data exploration of turbulence

simulations using a database cluster. Paper presented at the Proceedings of the 2007

ACM/IEEE conference on Supercomputing, Reno, Nevada.

Pope, S. (2004). Ten questions concerning the large-eddy simulation of turbulent flows New

Journal of Physics, 6(35), 8-9.

Premerlani, W. J., Rumbaugh, J. E., Blaha, M. R., & Varwig, T. A. (1990). An object-

oriented relational database. Commun. ACM, 33(11), 99-109.

doi:10.1145/92755.92772

Reveillon, J., Pera, C., & Bouali,Z., Examples of the potential of DNS for the understanding

of reactive multiphase flows.International journal of spray and combustion dynamics

· Volume. 3 Number . 1 .2011 – pages 63–92

Reynolds, O. (1895). On the Dynamical Theory of Incompressible Viscous Fluids and the

Determination of the Criterion. Philosophical Transactions of the Royal Society of

London. (A.), 186, 123-164. doi:10.1098/rsta.1895.0004

Richardson, L. The problem of contiguity: An appendix to Statistic of Deadly

Quarrels. General systems: Yearbook of the Society for the Advancement of General

Systems Theory. 1961

Sanders, M. J., Leslie, M., & Catlow, C. R. A. (1984). Interatomic potentials for SiO2.

Journal of the Chemical Society, Chemical Communications(19), 1271-1273.

doi:10.1039/C39840001271

Sarwar, M., Cleary, M.J., Moinuddin, K.A.M, Thorpe G. R. (2017). International Journal of

Heat and Fluid Flow. On linking the filter width to the boundary layer thickness in

explicitly filtered large eddy simulations of wall bounded flows, 73-89

Scott .M, (2009) Semantic Analysis, Programming Language Pragmatics. 2009. pp. 175-

211

Shelly, A. (2008). Multicore Programming (Multiprocessing) Visual C++ Tips: Design

Guidelines.

Shelly, A. (2010). HOW TO: Multicore Programming (Multiprocessing) Visual C++ Class

Design Guidelines, Member Functions. Retrieved from

https://www.revolvy.com/main/index.php?s=Object%20Oriented&item_type=topic

Shen, J. P., & Lipasti, M. H. (2013). Modern processor design : fundamentals of

superscalar processors. Long Grove: Waveland Press.

Silberschatz A., Gagne G. G., & Galvin P. (2012). Operating System Concepts (Ninth ed.).

United States: John Wiley & Sons, Inc.

Simon, H. (1991) Partitioning of unstructured problems for parallel processing, Computing

Systems in Engineering Volume 2, Issues 2–3, 1991, Pages 135-148

Singh, P, & Singh, A. (2018). Growth Trend in Global Big Data Research Publications as

Seen From SCOPUS Database. Professional Journal of Library and Information

Technology, 8 (1),49-61. (ISSN: 0976-7574),

https://www.academia.edu/38667284/Growth_Trend_in_Global_Big_Data_Research

_Publications_as_Seen_from_SCOPUS_Database

Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., & Mavriplis,

D. (2014). CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences.

Retrieved from United States:

Smagorinsky, J. (1963). General circulation experiments with the primitive equations.

Monthly Weather Review, 91(3), 99-164.

Smits, A., & Marusic, I. (2013). Wall-bounded turbulence. Physics Today, 66(9), 25-30.

Stephen, B. P. (2004). Ten questions concerning the large-eddy simulation of turbulent

flows. New Journal of Physics, 6(1), 35.

Strazdins, P. E. (2012, 21-25 May 2012). Experiences in Teaching a Specialty Multicore

Computing Course. Paper presented at the 2012 IEEE 26th International Parallel and

Distributed Processing Symposium Workshops & PhD Forum.

Sutter. H, (2005) The free lunch is over. A Fundamental Turn Towards Concurrency in

Software, Dr. Dobb’s Journal,38(3),March 2005

Tennekes, H., & Lumley, J. L. (1972). A First Course in Turbulence: MIT Press.

Trebotich, D. & , Straalen, B. & D Graves, D. & Colella,P. (2008), Performance of

embedded boundary methods for CFD with complex geometry, © 2008 IOP

Publishing Ltd

Journal of Physics: Conference Series, Volume 125, Number 1

Tritton, D. J. (1988). Physical Fluid Dynamics (Second Edition ed.). Oxford: Oxford

University Press.

Van Heesch, D. Doxygen: Generate documentation from source code. Retrieved from

http://www.stack.nl/~dimitri/doxygen/

Van Loan, C. (1992). Computational Frameworks for the Fast Fourier Transform: Society

for Industrial and Applied Mathematics.

Vyšohlíd, M. (2007). Large Eddy Simulation of crashback in marine propellers. (Aerospace

Engineering), University of Minnesota, United States -- Minnesota. (3266766)

Walshaw, C. & Gross, M. & Everett, M. (1997), Parallel Dynamic Graph Partitioning for

Adaptive Unstructured Meshes,Journal of Parallel and Distributed

Computing,Volume 47, Issue 2, 15 December 1997,pp. 102-108

Wang,Y. & Baboulin,M. & Rupp,K. & Le Maitre, O. (2014) Solving 3D incompressible

Navier-Stokes equations on hybrid CPU/GPU systems; Talk: High Performance

Computing Symposium (HPC), Tampa, Florida, USA; 2014-04-13 - 2014-04-16; in

"HPC '14 Proceedings of the High Performance Computing Symposium", (2014), 1 -

8.

Westermann, K. (2005). Linear algebra operators for GPU implementation of numerical

algorithms. Paper presented at the International Conf. on Computer Graphics and

Interactive Techniques.

Wilson, P. R., Johnstone, M. S., Neely, M., & Boles, D. (1995). Dynamic storage

allocation: A survey and critical review. In H. G. Baler (Ed.), Memory Management:

International Workshop IWMM 95 Kinross, UK, September 27–29, 1995 Proceedings

(pp. 1-116). Berlin, Heidelberg: Springer Berlin Heidelberg.

Yang, H., Zimmerman, A., & Lehner, L. (2015). Turbulent Black Holes. Physical Review

Letters, 114 (8), 081101.

You, D., & Moin, P. (2007). A dynamic global-coefficient subgrid-scale eddy-viscosity

model for large-eddy simulation in complex geometries. Physics of Fluids, 19(6),

065110.

Yuan, J., & Piomelli, U. (2015). Numerical simulation of a spatially developing accelerating

boundary layer over roughness. Journal of Fluid Mechanics, 780, 192-214.

