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ABSTRACT 

 

Flow structures in turbulent flows span many orders of magnitude of length and time scales.  

They range from the length scale at which very small eddies lose their coherence as their 

translational kinetic energy is dissipated into heat, up to eddies the size of which is related 

to that of the macroscopic system.  The behaviour of the range of flow structures can be 

captured by assuming that the fluid is a continuum, and they can be described by solving the 

Navier-Stokes equations. However, analytical solutions of the Navier-Stokes equations exist 

only for simple cases. 

A complete description of turbulent flow in which the flow variables velocity and pressure 

are resolved as a function of space and time can be obtained only numerically. The 

instantaneous range of scales in turbulent flows increases rapidly with the Reynolds 

number. As a result, most engineering problems have a wide range of scales that can be 

computed using direct numerical simulation (DNS).  As the complexity of the calculated 

flows increases, an improvement in turbulence models is often needed. One way to 

overcome this problem is to search for models that better capture the features of turbulence. 

Furthermore, the models should be parameterised in a way that allows flows to be simulated 

under a wide range of conditions. DNS is a useful tool in this endeavour, and it can be used 

to complement the long-established methodologies of experimental research. A large 

number of computational grids must be used to simulate a high Reynolds number inflows 

that occur in the complicated geometries often encountered in practical applications. This 

approach requires a considerable amount of computational power.  For example, reducing 

the grid spacing in half increases the computational cost by a factor of about sixteen.  

 Challenges presented by limitations imposed by computer hardware significantly limit the 

number of practical numerical solutions required to satisfy engineering needs.   

In this work, we propose an alternative approach. Rather than running an application that 

solves the Navier-Stokes equations on one computer, we have developed a platform that 
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allows a group of computers to communicate with one another working together to obtain a 

solution of a specific flow problem. 

This approach helps to overcome the problem of hardware limitations.  However, to grasp 

these challenges, we must devise new strategies to computational paradigms associated with 

parallel computing.  In the case of solving the Navier-Stokes equations, we have to deal 

with significant computational and memory requirements.  To overcome these 

requirements, software should be able to be run on many high-performance computers 

simultaneously, and network communication may become a new limiting issue that is 

specific only to parallel environments. Translating to parallel environments triggers several 

scenarios that do not exist when developing software that executes sequential operations.  

For example, "racing conditions" may appear that result in many threads that attempt to use 

different values of a shared variable, or they simultaneously attempt to overwrite it.  The 

order of executions may be random as the operating system can swap between the threads at 

any time. Attempts to synchronise the threads may result in "deadlock" when all resources 

become simultaneously locked. Debugging and problem-solving in parallel environments is 

quite often difficult due to the potentially random nature of the orders in which threads run.  

All of these features require the development of new paradigms, and we must transform our 

way of envisioning the development of software for parallel execution.  The solution to this 

problem is the motivation for the work presented in this thesis. 

A significant contribution of this work is to strategically use the ideas of thread injection to 

speed up the execution of sequential code.  Bottlenecks are identified, and thread injection 

is used to parallelise the code that may be distributed to many different systems. This 

approach is implemented by creating a class that takes control over the sequential 

instructions that create the bottlenecks.  The challenge to engineers and scientists is to 

determine how a given task can be split into components that can be run in parallel.  The 

method is illustrated by applying it to Channelflow (Gibson, 2014), which is open-source 

Direct Numerical Simulation software used to simulate flows between two parallel plates.  

Another challenge that arises when approaching representations of real geometries is the 

scale and magnitude of the data samples. For example, Johns Hopkins Turbulent Database 
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(JHTB) contains results of the solution of direct numerical simulation (DNS) of isotropic 

turbulent flow in the incompressible fluid in 3D space and only requires 100 TB data. Much 

more data needed to perform a simulation, and this is just a straightforward model. 

A natural answer to this challenge is to exploit the opportunities offered by contemporary 

applications of ‘database technology’ in computational fluid dynamics (CFD) and 

turbulence research.  Direct numerical solution of the Navier-Stokes equations resolves all 

of the flow structures that influence turbulent flows. Still, in the case of  Large Eddy 

Simulation, the Navier-Stokes equations are spatially filtered so that they are expressed in 

terms of the velocities of larger-scale structures.  The rate of viscous dissipation is 

quantified by modelling the shear stress, and this process can lead to inaccuracies.  A means 

of rapid testing and evaluation of models is therefore required, and this involves working 

with large data sets. 

The contribution of this work is the development of a computational platform that allows 

LES models to be dynamically loaded and to be rapidly evaluated against DNS data.  An 

idea permeating the methodology is that a core is defined that contains the ‘know-how’ 

associated with accessing and manipulating data, and which operates independently of a 

plug-in.  The thesis presents an example that demonstrates how users can examine the 

accuracy of LES models and obtain results almost instantaneously.  Such methods allow 

engineers or scientists to propose their own LES models and implement them as a plug-

in with only a few lines of code. We have demonstrated how it can be done by converting 

the Smagorinsky model to a plug-in to be used on our platform. 
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1 THE POWER OF PARALLEL COMPUTING 

APPLIED TO COMPUTATIONAL FLUID 

DYNAMICS 
 

1.1 INTRODUCTION 

The flow of fluids pervades our very existence (Tennekes and Lumley, 1972).  Blood moves 

through our body; air flows in our lungs - even cosmic dust clouds manifest turbulent-like 

behaviour (Yang et al. 2015) as they approach black holes.  Turbulent flow is virtually 

everywhere.  Indeed, many of the environmental and energy-related issues we face today cannot 

be resolved without detailed knowledge of the mechanics of turbulent flows. But what exactly is 

turbulence? 

Turbulence is a flow composed of eddies or vortices: patches of often swirling fluid, moving 

randomly about the overall direction of motion. Technically, the chaotic state of fluid motion 

arises when the speed of the fluid exceeds a specific threshold, below which viscous forces damp 

out the chaotic behaviour (Tritton, 1988). 

Perhaps the simplest way to define turbulence is to invoke the Reynolds number, a parameter 

that compactly characterises a flow.  The magnitude of the Reynolds number indicates the ratio 

of inertial to viscous forces that arise as a result of fluid flow (Smagorinsky, 1963). If we list the 

flows that capture the attention of most scientists and engineers, we will find that practically all 

of them are turbulent. Turbulence is the rule, not the exception, in the behaviour of fluids.  The 

flow of fluids is governed by the Navier-Stokes equations, which are derived from the principle 

of the conservation of momentum.  One of the terms in the equation is non-linear in velocity, and 

this accounts for the formation of instabilities that can occur within fluid flows. 

Nobel Laureate Richard Feynman was moved to declare turbulence to be "the most important 

unsolved problem of classical physics" (Feynman et al., 1963). The question can be invited – 

how do engineers deal with problems involving turbulent flows if the nature of turbulence is still 

considered an unsolved problem?  Fundamentally, they use the best science available to them at 

the time. 
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1.2 AN ENGINEERING APPROACH 

Engineering projects generally pass through several stages. They begin with preliminary research 

during which the project requirements need to be specified. Next, the requirements of the project 

are addressed, and engineers produce some possible solutions and select the one they believe will 

best suit their needs.  When performing calculations, engineers generally draw on contemporary 

science. Still, often this comprises little more than simplified equations, a sort of “recipe” or 

“cookbook”, empirical formulae and an endless number of parameters reflecting generations of 

accumulated data and experience. After this stage, development can begin with the introduction 

of a working prototype. 

To arrive at this point, a great deal of money has generally been invested – and this is only the 

first iteration. The question arises – is there any other way? This question can be answered in two 

words - computer simulation (Pope, 2004). If we condensed all the time that the study of 

turbulent flows has been carried out to the duration of one week, the most significant advances in 

our practical results would have taken place in the last hour. A result of this is the introduction of 

computer simulation and the emergence of supercomputing (Sanders et al., 2011). 

An example is a critical role that supercomputers have played in the success of biomedical 

science.  In 1999 IBM announced a $100 million dollar initiative to build the petaflop-scale 

supercomputer to tackle the protein folding problem. The IBM Blue Gene project was targeting 

massive parallel simulations of biomolecular systems to advance our knowledge in the 

understanding of biological processes. 

 

 

 

 



17 

 

1.3 MATHEMATICAL MODELING OF TURBULENT 

FLOWS 

The governing equations for laminar, transition and incompressible turbulent flows are the 

Navier-Stokes equations 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= 𝑓𝑖 −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥
(𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗
)  , (1.1) 

complemented with the mass conservation and incompressibility constraint  

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (1.2) 

where ui is the velocity component in the xi direction, fi represents external forces, p pressure and 

𝜈 is the kinematic viscosity of the fluid. These equations were derived independently almost two 

centuries ago by the French engineer Claude Navier and the Irish mathematician George Stokes.  

They are equations which govern the velocity and pressure of fluid throughout a flow field.  The 

computational difficulty arises principally from the non-linear term, 𝑢𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
, which is ultimately 

responsible for the growth in the number of lengths and time scales as a flow undergoes a 

transition from laminar to turbulent flow. The evaluation of this term is computationally 

resource-intensive. In this work, we shall enter the realm of parallel computing with its unique 

paradigms and logic to expedite the computation of this non-linear term.   

 

1.4 NUMERICAL SIMULATION 

The Navier-Stokes equations are strongly non-linear, and mathematically they cannot be readily 

solved when the Reynolds number is high, or the domain in which the fluid occupies is complex. 

It is only recently that fluid dynamicists have been able to solve them approximately by making 
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use of computers.  As a result, a new sub-branch of classical physics, namely computational fluid 

dynamics, was born. 

Geometrical representation, along with computer visualisation, has transformed how the results 

of CFD are portrayed and interpreted. This is a complex task, bringing together mathematicians, 

computational scientists and engineers. Generally speaking, it is required to find the numerical 

“recipe” to split the geometry into several smaller entities of simple shapes which constitute a 

computational spatial mesh. The success of commercial CFD packages depends in part on the 

speed, accuracy, and reliability in which this can be done.  Having developed a suitable mesh 

generator, the differential equations that govern the flow are discretised on the mesh and solved 

by advancing the solution in finite time steps.  

Currently, there are three different levels of approximation used to simulate turbulent flows using 

computers.  They range from the most detailed, refined and accurate solutions through to those 

that embody sweeping approximations.  They are: 

                Direct numerical simulation (DNS) (Krist and Zang, 1987) 

  In DNS, the Navier-Stokes equations (1.1-1.2) are solved numerically by 

resolving the shortest time and spatial scales of the flow field.  The principal 

application of DNS is to help establish the fundamentals of turbulence.  As a   

result, much of the literature about DNS is carried out in simple geometries as 

exemplified by the work of Reveillon et al. ( 2011).  Furthermore, DNS can only 

simulate flows at relatively low Reynolds numbers because of the limitations of 

current computer power in terms of computation speed and memory. 

                Large-eddy simulation (LES) (Smagorinsky, 1963). 

Large Eddy Simulation has features that are akin to both Reynolds averaged and 

direct numerical simulation methods. It solves the unsteady partial differential 

equations that account for the conservation of mass, momentum, and energy at the 

large scales of motion and the small eddies are modelled. 

 Reynolds averaged Navier-Stokes (RANS) (Reynolds, 1895) computational fluid 

dynamics (CFD). The Reynolds-averaged or RANS equations usually are time-
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averaged equations of motion that govern fluid flow. The idea behind these 

equations is the partitioning of the instantaneous flow field into the sum of time-

averaged and time-fluctuating components that are deemed to influence the flow.  

 

1.4.1 DIRECT NUMERICAL SIMULATION (DNS) 

The Navier-Stokes equations have been established for almost 200 years. Except in the cases of a 

few simple flows Muriel, (2010), Muriel and Dresden, (1997), no analytical solutions have been 

obtained.  Flow structures in turbulent flows span many orders of magnitude of length and time 

scales.  They range from the length scale at which very small eddies lose their coherence as their 

translational kinetic energy is dissipated into heat, up to eddies the size of which are related to 

that of the macroscopic system.  The behaviour of the range of flow structures can be captured 

by assuming that the fluid is a continuum, and they can be described by solving the Navier-

Stokes equations. Richardson (1961), who introduced point iterative schemes for numerically 

solving Laplace's equation, is regarded as the progenitor of computational fluid dynamics and his 

concept of turbulence endures to the present time.  He is well known for the ditty he composed 

that captures the nature of energy cascade in turbulent flows, namely 

 Big whorls have little whorls that feed on their velocity, 

 and little whorls have lesser whorls and so on to viscosity. 

The underlying idea is that those turbulent flows are composed of ‘eddies’ of different sizes. 

Increasing the Reynolds number leads to the activation of smaller turbulent flow scales down to 

a lower limit. The smallest scale is known as the Kolmogorov scale, and it needs to be resolved 

in the most detailed of numerical simulations. The accuracy of the solutions is strongly 

dependent on the spatial and temporal resolutions employed.   

Direct numerical simulation (DNS) is simulation when results of numerically solving Navier-

Stokes equations are achieved without any turbulence model.  This will be thought of as all 

properties of turbulent flow can be retrieved based on smallest time and smallest space intervals. 

The requirement of the mesh size can be determined by the Kolmogorov scale and given by 
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ŋ =  (𝜈3

𝜀⁄ )1/4  (1.3) 

 

where 𝜈 is the kinematic viscosity, and 𝜀  is the rate of kinetic energy dissipation. The integral 

scale depends on a spatial scale for given boundary conditions. To satisfy this requirement, 

several node points for the mesh must maintain the integral scale in the range of the 

computational domain 

 

𝑁ℎ > 𝐿 (1.4) 

where N is a number of points in mesh direction and h is a space step size. 

All the above make step h is to follow equation (1.5) 

 

ℎ ≤  ŋ (1.5) 

And because  

𝜀 ≅  𝑢′3
/𝐿 (1.6) 

where 𝑢′   is the root mean square of the velocity and for three-dimensional space, the 

number of mesh points should satisfy  

𝑁3  ≥  𝑅𝑒9/4 (1.7) 

  and Re is turbulent Reynolds number: 

𝑅𝑒 =  
𝑢′𝐿

𝜈
 (1.8) 

all the above equations conclude that the storage requirement is growing very fast when 

we try to simulate flows with high Reynolds numbers.  Also, the time step to produce 

accurate results should be correspondingly small.  All that makes DNS very expensive, 

even for most powerful computers. DNS is mainly suitable for numerical experiments but 
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can hardly be used for practical engineering tasks.REYNOLDS-AVERAGED 

NAVIER-STOKES EQUATIONS 

 One of the approaches to simplify Navier-Stokes equations of motion of the fluid flow is to 

formulate Reynolds averaged or (RANS) equations. They are time-averaged equations of motion 

for turbulent flow and can be expressed as:  

𝜌�̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗
=  𝜌𝑓�̅� +  

𝜕

𝜕𝑥𝑗
 [– �̅� 𝛿𝑖𝑗 +  𝜇 (

𝜕�̅�𝑖

𝜕𝑥𝑗
+  

𝜕�̅�𝑗

𝜕𝑥𝑖
) − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ] 

          (1.9) 

The idea behind the Reynolds-averaged approach  is separating velocity into two components, 

namely a mean (time-averaging) component, and a fluctuating component as follows 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =  𝑢(𝑥, 𝑦, 𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  +  𝑢′(𝑥, 𝑦, 𝑧, 𝑡) 

This approach was initiated by Reynolds (1895). 

 
      (1.10) 

1.4.3 LARGE-EDDY SIMULATION (LES) 

Large-eddy simulation (LES) is a three-dimensional unsteady simulation procedure that attempts 

to capture the physics of turbulence. In LES, turbulence contained in large length scales is 

resolved, and small-scale turbulence is modelled (You & Moin 2007). The resolved scales are 

obtained by solving the Navier-Stokes equations directly, and this allows the temporal and 

spatial evolution of those eddies to be captured. However, modelling is required for the effects of 

dissipation of kinetic energy in the unresolved small-scale eddies (Yuan & Piomelli 2015, You & 

Moin 2007). These models are known as the sub-grid scale (SGS) models. LES partitions the 

large and small-scale eddy motions in physical space by using a filtering technique. Eddies 

smaller than the filter width are modelled by the filtering process, which reduces the 

computational cost compared to direct numerical simulation (DNS) (You & Moin 2007). 

Traditional LES employs implicit filtering schemes in which the filter width usually is the same 

as the grid size. This effectively means that if the grid changes, the model changes with the grid 

size, which is likely to give different solutions. 
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Moreover, there is less control over the rise of numerical errors due to direct dependency on the 

grid size (Gnanaskandan & Mahesh 2016). Thus, grid independence becomes elusive using 

implicit LES  (Sarwar et al., 2017). Unless a grid-independent result is obtained, questions will 

remain about the numerical accuracy of a CFD simulation. 

In LES explicit filters apply to the discretised Navier-Stokes equation with well-defined filter 

shapes. The approach is based on means of controlling numerical errors that result when finite-

different methods are used and operation that reduce truncating errors. However, using explicit 

filtering requires a much higher density grid and computational costs increase with (∆𝑥)4 

One of the central tenets of LES is Kolmogorov’s theory of “self-similarity” which allows one to 

separate small and large eddies. The large eddies of the flow are dependent on the geometry of 

the domain while the minor scales are more or less universal.  Large-eddy motions are retained 

and obtained directly using a transient calculation.  Large-eddy simulations are inherently 

approximate because the effects on the flow field of the small eddies are based on heuristically 

formulated models.  We shall show in Chapter 5 a computationally efficient way of establishing 

the accuracy of LES models by comparing them with data generated by DNS.  However, the 

flow fields associated with DNS require the manipulation of perhaps petabytes of data, and it is 

one of the aims of this thesis to develop powerful computational methods of efficiently analysing 

such large data sets. 

In LES, a spatial filtering operation using a kernel G is applied to the flow field as follows: 

 

�̅� =  ∫ 𝐺( �⃗� −  �⃗� ) 𝜑(�⃗�)𝚍�⃗� 
           (1.11) 

resulting in one being able to express a flow variable, 𝜑, as the sum of two components thus 

𝜑 =  �̅� +  �̃�            (1,12) 

where   is the resolvable scale component and ~ is a sub-grid-scale component. 
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Using the decompositions 𝑢𝑖 =  �̅�𝑖 +  �̃�𝑖 and 𝑝 =  �̅� + 𝑝 and applying the filtering operation to 

the Navier-Stokes and continuity equations, we obtain 

𝜌 (
𝜕�̅�𝑖

𝜕𝑡
 +  �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗
) =  𝜌𝑓�̅� −  

𝜕�̅�

𝜕𝑥𝑖
 +  

𝜕

𝜕𝑥𝑗
(𝜇

𝜕�̅�𝑖

𝜕𝑥𝑗
) + 

𝜕𝜏𝑖𝑗

𝜕𝑥𝑖
  

        (1.13) 

𝜕�̅�𝑖

𝜕𝑥𝑖
= 0 

        (1.14) 

wherein (1.13), 

𝜏𝑖𝑗 =  𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ −  �̅�𝑖�̅�𝑗          (1.15) 

The term 𝜏𝑖𝑗 in (1.15) captures the residual stresses which need to be modelled using suitable 

sub-grid-scale methods.  Equation 1.15 gives rise to one of the central challenges of LES, 

namely, how do we accurately model the residual stresses?  The statistical properties of turbulent 

flows can be accurately determined by making use of DNS, and the latter can provide benchmark 

solutions against which LES can be evaluated.  However, because DNS solutions are data-

intensive, engineers and scientists require computationally efficient methods of handling large 

amounts of data.  As part of this research, we have developed an easy-to-use platform that 

enables a range of LES models to be evaluated against DNS data. 

1.4.4 COMPUTATIONAL CHALLENGES 

It is somewhat trite to claim that experiments are expensive and time-consuming to carry out and 

that these difficulties can be obviated by performing numerical experiments.  However, there is a 

serious impediment to simulating many of the systems that arise in practice, namely the inability 

of computers to solve the vast number of simultaneous equations that govern the flow of fluids.  

Because of the economic value and safety requirements imposed on the design of aircraft, it 

appears that aircraft manufacturers have supported a considerable amount of experimental and 

computational fluid dynamics research.  The research presented in this thesis contributes know-

how to the requirements to adapt computer code to HPC architectures, and the need for improved 
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physical modelling.  This is closely aligned with the directions of future CFD research outlined 

by Kroll et al.  (2015).  For example, aircraft must decrease their speed as they are landing, and 

this has the potential to reduce the lift that is essential in keeping them airborne.  Aircraft 

designers, therefore, resort to modifying the shape of the airfoils that constitute the wings 

employing a complex array of flaps and slats that control the flow to prevent the streamlines 

from separating from the surfaces of the wings which result in a loss of lift.  Many details of the 

flow can be resolved using LES, but if the behaviour of the complete airframe is to be 

determined, about one trillion grid cells must be used (Chapman, 1979). This is but one example 

where numerical experiments are challenging to carry out.  For example, Jameson points out that 

on a petaflop computer, a DNS solution of flow around an A380 would take about 30 years.  To 

correctly simulate turbulent flow the grid must be significantly refined in the direction of the 

wall. This makes for Re>O (105), over 90% of the grid points are needed to resolve less than 

10% of the computational domain. Without a doubt, the requirement for simulation is quite high 

– the number of the grid point is proportional to  𝑅𝑒9/4  and the overall cost is proportional to 

𝑅𝑒3.  According to Moore’s law (Moore et al. 1965), the density of transistors will double every 

two years. However, when we are getting closer to the atomic scale increase, the computer power 

will cease, and we are approaching this limit. 

The fact is this: we do not expect the one-trillion cell memory to be available soon ( Kroll et al. 

2015). With a petaflop computer (IBM Roadrunner, 2008), the DNS of the A380 would take 

about 109seconds –-about 30 Years!   
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Figure 1.1 Sketch of the computer power available and that needed for LES as a function of 

time. The cross-over time is the transition from the era of insufficient computer power to the era 

of sufficient computer power.  (Pope, 2004) 

Figure 1.1 shows the relation of power available and needed for LES.  It is quite evident that 

until we have enough computational capabilities, simulation can be done only for the simple 

flows and simplifications are unavoidable. However, when we come to the second era of 

significant power, we expect that it will grow not only in quantity but also in quality.  This will 

occur when computer power starts to grow via computers joining in one global network. So, one 

complicated flow simulation should be viable if solved by many computers. 

This research approach is to remove the impediment that prevents significant, practical problems 

being solved by developing new approaches to the design of the software. 

1.4.5 PARALLELISATION 

Two principal factors are driving the parallelisation of computer hardware and software.  The 

rate of acceleration of the speed of processors is slowing (Lavington, 1998; Norberg and O’Neil, 

1996).  This thesis is concerned with solving the Navier-Stoke equation, the fundamental 

equation that governs how flowing fluids behave.  Parallelisation is the key to making further 

progress in this area of research, and it will also help us to develop accurate, but computationally 

efficient methods of modelling flow in fluids.  This latter consideration is also addressed in this 

work. 
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The conventional development of software was based on serial programming Scott (2009).  In 

this traditional approach, algorithms were assembled into discrete instructions, each of which is 

executed one by one by a central processor. Only when one such instruction is finished will the 

execution of the next instruction be initiated.  In the meantime, all of the computer resources are 

waiting.  This represents a considerable waste of resources 

Although serial processing has severe limitations, there is no doubt that over the three or so 

decades-spanning 1970 – 2004 developments in CPUs resulted in significant increases in 

processing speed.  For example, Sutter (2005) has quantified the trend in Intel CPU development 

and Figure 1 illustrates the increase in performance of Pentium® personal computer chips. 

Examining this graph and comparing CPU performance for Pentium Personal Computers, we can 

acknowledge that regardless of software quality, any new generation of hardware will 

significantly speed up any application.  Progress occurred at a high pace as new generations 

of hardware appeared on personal computers.   However, it can be seen from Figure1.2 that the 

rate of increase in speed began to decrease around 2005.                                                
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Figure 1.2 The trend in Intel CPU development illustrates that the increase in the speed of 

computer chips decreases after about 2005.  The time in years is plotted on the abscissa and 

the number of transistors, clock speed, power consumption and the number of computer 

instructions per second are plotted on the ordinate. The graph was updated in August 

2009, but the original source is Sutter (2005).  

 

Similar results were garnered by McCalpin et al. (2011), for other chips, suggesting that the 

increase in performance of single-threaded CPU performance has begun to decline.  
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Figure 1.3 These data presented by McCalpin et al. (2011) suggest that the rate of increase 

in chip performance is slowing. 

The overarching message portrayed in the figures is that in around the ’80s and 90’s virtually any 

software ran faster in terms of doubling its speed in around 18-20 months.  However, eventually, 

the growth in performance of single-threaded CPUs began to slow, and it appeared to hit a limit 

(Sutter, 2005). By 2005 the increase in the speed of single-threaded software plateaued.  That 

was a time when the focus turned to the development of parallel software.   

According to Culler et al. (1999), there are three types of parallelism, namely 

 Bit-level parallelism: This is the form of parallel computing which is based on 

increasing the word size of the processor. Increasing the word size usually results in 

reducing the number of instructions that the system must execute to perform a given task. 

 Instruction-level parallelism: At run time the processor is dynamically ordered to 

process instructions in parallel  

 Task Parallelism: Task parallelism employs the decomposition of a task into subtasks 

and then allocates each of the subtasks for execution. The processors perform execution 

of sub-tasks concurrently. 

 

When bit-level parallelism and instruction-level parallelism are performed automatically by the 

hardware and operating system, we have already noted that this way of the increasing power of 

computer calculations reached its apogee in 2004.  
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Task parallelism requires direct intervention by software developers if the performance of 

computers is to be advanced, and this is at the core of the research presented in this thesis. 

Developments in this direction, initiated by Gropp et al. (2001), gave birth to new constraints on 

how computer software is conceived and written, especially where the underlying computer 

architecture been directly accessed through the application programming interface (API).   

A significant step in parallel software development was made by Hollman (2016), who created 

the pThread library for C++.  This add-on enabled software developers to use sequential C++ 

language to develop parallel code using API located in the pThread library and that incorporated 

100 functions. Subsequently, parallel concepts were directly encapsulated at the software 

language level. For example, from the time of its inception Java (Frumkin, 2003) incorporates a 

runnable thread interface. 

 

Eventually, new languages like CUDA (Nvidia, 2007) were created to target massive parallel 

software development especially. CUDA has been bound to many software languages such as 

FORTRAN, IDL, Java, MATLAB, Mathematica, Pyton, .Net, and so on.  A significant 

difference in parallel software development compared to sequential programming is a necessity 

to split the underlying task into several independent subtasks, each of which can be executed 

concurrently. This makes parallel development very targeted to the type of application. 

There are some tasks which are naturally parallel, like rendering in computer visualisation 

Eilemann (2019), brute force searches Loesch (1990) and so on. Moler (1986) coined the phrase 

“embarrassingly parallel” to describe problems that are definitively parallel and easy to solve. In 

contrast, performing parallelisation in CFD applications is quite challenging; Simon (1991). 

However, the growing trend of publications on CFD Singh et al. (2018) shows the significant 

interest of researchers in this area.   

 

At the International parallel CFD conference held in 2018, a number of the new directions was 

presented to attack problems of parallelisation.  They included: 

 

 Parallel Algorithms and Solvers 

 Extreme-Scale Computing 

 Mechanical and Aerospace Engineering Applications 
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 Atmospheric and Ocean Modelling 

 Medical and Biological Applications 

 Fluid-Structure Interactions 

 Turbulence and Combustion 

 Acoustics 

 Software Frameworks and GPU Computing 

 

The fact that the implementation of parallel CFD has given rise to so many strands of research 

and applications is a clear demonstration of the intensity of the research effort in this area.  The 

discovery of reusable independent parts with the ability to perform parallel CFD provokes many 

new questions such as: 

 

Large scale CFD is based on several unstructured domains, and the question arises regarding 

how to distribute this large number of unstructured domains over several processors with 

distributed memory, and how to achieve a balance of load and what the optimum number of 

processors required. This question was addressed by Simon (1991) and an algorithm using a 

graph of the theoretical framework with three decompositions was introduced. The authors show 

that the computation of an eigenvector of Laplacian matrix associated with a graph gets superior 

results for this spectral bisection algorithm, and it leads to the solution of distribution of 

unstructured domains through the number of processors and achieving a balance of load. 

Another question on how to dynamically partition unstructured meshes in a parallel way was 

addressed by Walshaw et al.  (1997) who introduced an iterative gain optimisation technique to 

archive load balancing and minimised inter-process communication overhead. Their experiments 

show that adaptively refined meshes produced similar or higher quality partitioning and much 

more rapidly than a sequential approach. 

Solver for parallel CFD for steady-state flows ends up in requirement for reusable algorithm for 

solutions partial differential equations and how it can be run on many processors.  Trebotich et 
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al.  (2008) presented the algorithm to obtained higher performance for the complex geometries 

for solution elliptical problems and demonstrated how it can be run on 1000 processors. 

Another direction in parallel CFD computations is creating mesh-less algorithms. Successful 

implementation will directly lead to almost embarrassingly parallel CFD. Katz  & Jameson 

(2010), developed a new mesh-less technique scheme based on the well known Taylor series 

expansions with least squares. The authors discussed difficulties associated with the application 

of a reusable algorithm for an arbitrary cloud of points. The proposed scheme significantly 

reduces the storage requirement compared to other mesh-less schemes. They applied this method 

to the Euler equations and show that this approach agrees with other established methods.  

Another question that arises is how to reduce the number of dependencies in iteration solver. 

The approach was made an example of optimising time steps Arbenz & Obrist (2018) when 

simulating time-periodic steady states of the Navier-Stokes equations. Two methods were 

compared, one with a standard time-stepping and another where the time step was recalculating 

based on periodic boundary conditions in time. The methods are compared concerning accuracy 

and scalability by solving for a time-periodic Taylor-Green vortex. It has been shown that the 

second approach converges much faster to simulate equilibrium, reducing the number of 

dependencies from previous steps lead to the parallel execution of the algorithm.  

 

Our contribution. 

In the first part of the thesis, we develop paradigm and methodology for speeding up massive 

calculations by parallelisation of Navier Stokes equations. We discuss and demonstrate new 

phenomena which only appear in the parallel world and demonstrate how they can be used in 

turbulent flow simulation.  

 

We have developed the thread pool class. The object of this class can dynamically add or remove 

threads to optimise the speed of simulations. This class uses interfaces to allow different 

numerical schemes to be supplied as parameters. This makes the object of this class reusable. 

 As an example of application, we use this thread pool class into a sequential channel flow solver 

to execute those regions of the code that are computationally intensive.  We demonstrate that 
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when the number of threads is increased by a factor of two, the speed of the calculation is more 

than doubled.  A significant contribution of this work is that we exploit the benefits of 

encapsulation which makes develop thread pool class applicable to other CFD applications. 

 

The direct numerical solution of the Navier-Stokes equations is obtained using short time and 

length scales.  As a result, these solutions inevitably contain a large amount of data.  In this 

work, we have developed an approach to rapidly and conveniently analyse the solutions. We 

demonstrate an approach to deal with the huge amount of data.  We have created a 

highly efficient platform that is intended to be easy to be used by the scientific community to 

devise and test their sub-grid LES models against the results of DNS.  The Johns Hopkins 

University database of DNS solutions was used for comparison. To help scientists and engineers 

to evaluate their LES models, we present a comprehensive comparator operator to quantify the 

accuracy of the models.  Furthermore, the method releases researchers from the need to write a 

comprehensive code because the LES models can be implemented as plugins. 

 This work has presented an intellectual framework whereby CFD practitioners can readily and 

quickly examine the accuracy of new models they might wish to propose.  The method is based 

on database technology and includes the following concepts: 

 Use and manipulation of heap memory to handle huge volumes of data; 

 The implementation of a client-based database engine; and 

 The incorporation of efficient fast-Fourier transforms algorithms. 

The package is implemented on a high performance computing cluster.  An idea permeating the 

methodology is that a core is defined that contains the ‘know-how’ associated with accessing and 

manipulating data, and which operates independently of a plugin, this enables users to propose 

LES models and obtain results almost instantaneously. This research was presented on First 

Thermal and Fluids Engineering Summer Conference, USA, and subsequentially published in 

Begell house magazine Grossman (2015). 
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2 THE STUDY OF CHANNEL FLOW 

2.1 INTRODUCTION 

The Navier-Stokes equations are derived from the axioms of continuum mechanics and well 

established constitutive relations.  Countless observations and experiments have established their 

veracity.  However, difficulties persist in experimentally quantifying to a high degree of 

accuracy, even the large-scale features of turbulent flows.  The problem is compounded when 

attempting to measure the smallest length and time scales that may be less than 0.1mm or 1 ms 

respectively.  Although it may seem to contravene the paradigms of the scientific method, 

scientists and engineers are prepared to accept accurate DNS solutions of the Navier-Stokes 

equations to establish features of turbulent flows that are not yet amenable to sufficiently 

accurate experimentation. 

The flow between two parallel plates, channel flow, is one of the most straightforward 

configurations to simulate.  The flow may be driven by the relative motion of the two plates, or a 

pressure gradient may drive it.  These features make this flow configuration relatively easy to 

model, but the results can nonetheless provide us with deep insights into the nature of the 

turbulent flow. 

Lee et al. (2015) reported several of the issues that the DNS of channel flow can address.  For 

example, they point out that Smits and Marusic (2013) note that turbulent flows with Reτ of 

about 103 and higher are technologically significant.  This can be appreciated if we consider air 

at atmospheric temperature and pressure flowing with a velocity of 15 m/s through a straight, 

circular pipe that has an internal diameter of 10 cm; we find that Re is on the order of 105 and 

Reτ ≈ 4×103.   

From an industrial point of view, the preceding example may be considered entirely 

inconsequential – engineers would almost certainly resort to empirical correlations to calculate 

the pressure gradient, say, along with the pipe. However, DNS can be a powerful tool to 

elucidate the nature of turbulent flows.  The universal logarithmic law that governs the mean 

velocity of turbulent flows in the vicinity of walls is described in most fluid dynamics textbooks. 

In such works, it is generally assumed that von Kármán’s constant, κ, is indeed universal 
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although a range of values is reported in textbooks. Lee et al. (2015) report several studies that 

indicate κ is not a universal constant but is affected by the geometry of the flow domain.  

Furthermore, flows with Reynolds numbers, Reτ, of less than 2,000 appear not to exhibit a Reτ-

independent logarithmic mean velocity profile.  This is but one of the many contemporary issues 

that fluid mechanics are addressing employing computational fluid dynamics. 

One of the principal aims of this work is to harness the philosophy and practice of contemporary 

parallelisation methods, particularly multiprocessing and multithreading. The underlying idea 

that motivates this work is to identify bottlenecks in serial codes and to devise simple 

interventions that parallelise the code through thread injection. Gibson (2014) has developed 

Channelflow, which is written as a set of C++ classes and is used to model flow between two 

parallel plates.  Channelflow uses spectral discretisation in the three spatial dimensions, and 

Fourier series are used to discretise the governing equations in the streamwise and spanwise 

directions, and a Chebychev series is used in the wall-normal direction.  As Gibson (2014) points 

out, the mathematical treatment has been presented by Canuto et al. (1988). 

 The system researched in this study displayed in  Figure 2.1    The stream, spanwise and wall-

normal directions are co-linear with the 𝑥1, 𝑥2and 𝑥3 axes respectively.    

 

Figure 2.1 The geometry of the system used to study the flow between two parallel plates.  The 

system is semi-infinite in the 𝑥1 and 𝑥2 directions and the fluid velocity at the lower and upper 

walls is set to zero to conform to the no-slip boundary condition. (Gibson, 2014) 
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The stream direction denoted as 𝑥1 ,𝑥2 is the spanwise direction and the 𝑥3  direction is normal 

to the walls.  The extent of the domain is prescribed by L1, L2 and L3 and periodic boundary 

conditions are imposed on both the streamwise and spanwise directions. The no-slip boundary 

condition is imposed at the walls. 

A fully spectral method used to the discretised Navier-Stokes equations are repeated here for 

completeness: 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
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𝜌

𝜕𝑝
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+

𝜕

𝜕𝑥
(𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗
)  , (2.1) 

along with the mass conservation and incompressibility constraint  

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (2.2) 

A Fourier representation is used in the wall-parallel direction and Chebyshev expansions in the 

wall normal directions.   

 

The approximation for the velocities is given by: 

𝑢𝑖(𝑥1, 𝑥2, 𝑥3, 𝑡) = ∑ ∑ ∑ �̂�𝑖

𝑘3𝑘2𝑘1

(𝑘1, 𝑘2, 𝑘3, 𝑡)𝑒2𝜋𝑖(
𝑘1𝑥1

𝐿1
+

𝑘2𝑥2

𝐿2
)𝑇𝑘3

(𝑥3)�̂�𝑖              (2.3) 

where 𝑖 = √−1 and 𝑘𝑗  are wave numbers. The spectral velocity is denoted by �̂�𝑖.  

The Chebyshev polynomial 𝑇𝑘3
(𝑥3) is given by 

𝑇𝑘3
(𝑥3) =  𝑐𝑜𝑠 (𝑘3 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥3))              (2.4) 

 

In the wall-parallel direction, the computational nodes are uniformly spaced 
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∗∆𝑥 =  
𝐿1

𝑁1
⁄   and  ∆𝑦 =  

𝐿2
𝑁2

⁄             (2.5) 

where 𝑁1 and 𝑁2 are the numbers of computational nodes in 𝑥1and 𝑥2directions respectively. 

The discretization mesh in the direction x3 is non-uniform and is defined by Chebyshev (Lyle et 

al., 1966) 

𝑥3,𝑗 = 𝑐𝑜𝑠 (𝑗𝜋 𝑁3⁄ ) ,   0 ≤ j ≤ 𝑁3 – 1         (2.6) 

 

Periodic boundary conditions are imposed in the x1 and x2 directions. This makes it possible to 

use the Galerkin method for minimising the residuals.  Chebyshev polynomials did not satisfy 

no-slip conditions, so the tau method is being used. The tau method was discovered by Lanczos 

(Lanczos et al. 1938) when he worked under Albert Einstein on the theory of relativity. He 

introduced the use of Chebyshev polynomials for the procedure of finding the solution of linear 

differential equations with polynomial coefficients. 

𝐷𝑦(𝑥) = 0       (2.7) 

Instead of trying to develop an nth order approximation of equations of the general type given by 

2.5 by truncating infinite power series expansions, the method attempts to find an exact 

polynomial solution to a modified version of this equation. This equation is a perturbed version 

of equation 2.5 and is obtained by adding to the right-hand side of a polynomial perturbation 

term.  The term is chosen in such a way that it becomes possible to find power series solutions 

with only a small number of terms. 
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2.2 THE IMPLEMENTATION OF CHANNEL FLOW 

Channelflow is written using an object-oriented development paradigm (Gibson, 2014). It is 

written as a C++ class library. Instances of how these classes act can be integrated to develop 

detailed simulations of channel flows.  It includes time integration for plane Couette laminar and 

turbulent flows in the space between two parallel plates, one of which moves relative to the 

other; pressure-driven channel flow, along with algorithms for computing travelling waves and 

periodic orbits; and algorithms for computing linear stability of exact solutions.  Channelflow 

uses dynamic memory allocation, and each class controls its dynamic memory.  The underlying 

mathematical approach is based on spectral discretisation in the spatial directions, and finite 

differencing in time. For time stepping it invokes semi-implicit backward differentiation of 

orders 1-4, two 2nd-order Runge-Kutta schemes, and the classic 2nd-order Crank-Nicolson 

Adams-Bashforth algorithm. Channelflow uses a powerful FFTW library for its Fourier 

transforms.   

As it stands, Channelflow is used as an object-oriented paradigm, but it is not ready for the 

parallelisation. This renders Channelflow as a good candidate for implementing parallelisation 

paradigm. In the following chapters, we will investigate ways to apply parallelisation 

to Channelflow software. Then we will implement a new “thread injection method” which can be 

applied to a wider range of Computational Flow Dynamics problems. 
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2.3 PARALLEL DECOMPOSITION 

2.3.1 SIMULATION METHOD 

Although this approach is quite general, this research will use a Chanelflow direct numerical 

simulator where classes and objects will use to demonstrate this research model. 

 

2.3.2 SPECTRAL METHODS 

Spectral methods are a technique where we apply mathematics and physics to solve certain 

differential equations. The idea behind this is to write the solution as a sum of “basic functions”, 

the coefficients in this sum then choose to satisfy differential equations as well as initial and 

boundary conditions (Kerr & Kimura, 1998) 

 Quite often, this is done using Fourier series and requires involving Fast Fourier Transform 

Technik (Loan, 1992). 

The implementation of spectral methods is generally based on using Galerkin (Gottlieb et al., 

1977) or Tau’s methods (Fox et al., 1968). 

 

 

 

2.3.3 GOVERNING EQUATIONS 

The incompressible hydrodynamic turbulence was  described by Navier-Stokes equations (1.1, 

1.2)  in a tensor form, however for parallel decomposition and derivation of spectral methods 

better suits equations in vector form  

𝜕𝑡𝒖 + (𝐮 · ∇)𝐮 =  − 𝛁𝑝 +  𝜈𝛁𝟐𝐮          (2.8) 

∇ · 𝒖 = 𝟎          (2.9) 
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where 

u - is the velocity vector  

p - is the pressure 

𝜈 - is the kinematic viscosity 

These equations contain: 

(𝐮 · ∇)𝐮  - the term responsible for the advection of momentum and  

𝜈𝛁𝟐𝐮  - the term responsible for energy dissipation. 

Equation (2.9) represents the incompressibility constraint. 

 

 

2.3.4 BOUNDARY CONDITIONS AND PRESSURE 

To derive an equation for pressure, let’s apply a divergence operator to the left and right side of 

Navier-Stokes equations: 

𝛻(𝜕𝑡𝐮 + (𝐮 · ∇)𝐮) = 𝛁( 𝜈𝛁𝟐𝐮 –  𝛁𝑝),        (2.10) 

and substitute incompressibility constraint ∇ · 𝑢 = 0  in (2.3); we will get 

−𝛁𝟐𝑝 =  𝛛𝐢𝐮𝐣 𝛛𝐣𝐮𝐢         (2.11) 

This equation is called the Poisson equation for pressure. 

To define a complete system of equations we need to specify initial and boundary conditions.   

Generally, a pressure condition cannot be used at the boundary where velocities are also 

specified, because the velocity is derived by a pressure gradient. Usually, the velocity at the 

boundary is assigned based on zero normal derivatives to the wall 
𝛛𝒖 

𝛛𝒏
 = 0 as well as zero 

velocity at the wall 𝒖𝑤 = 0 

2.3.5 SPECTRAL DECOMPOSITION 

To derive a spectral decomposition approach, let’s assume that:  

 u(x) is the periodic function in x-direction with period 2π 

𝑢(𝑥) =  ∫ 𝑢(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘 

       

       (2.12) 
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and where  

𝑢(𝑘) =  
1

2π
∫ 𝑢(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥 

 

        

        (2.13) 

By substituting this definition into Navier-Stokes equations, we will obtain the following: 

𝜕𝑢(𝑥)

𝜕𝑥
=  ∫ 𝑢(𝑘)

𝜕

𝜕𝑥
𝑒𝑖𝑘𝑥𝑑𝑘 = 𝑖𝑘𝑢(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘 

in 3D space, the above equation will become:  

        

          (2.14) 

�⃗⃗�(𝑟) =  ∫ �⃗⃗�(�⃗⃗�)𝑒𝑖�⃗⃗�𝑟𝑑3𝑘  

        

          (2.15) 

 

with the corresponding equation 
 

�⃗⃗�(�⃗⃗�) =  
1

(2π)3
∫ �⃗⃗�(𝑟)𝑒−𝑖�⃗⃗�𝑟𝑑3𝑟 

 

       

           (2.16)  

2.3.6 ENERGY DISSIPATION 

We substitute the above definition of u to energy dissipation equation 

𝜈𝛁𝟐𝐮         (2.17) 

Also, because we transfer 𝜕𝑥
2 + 𝜕𝑦 

2 + 𝜕𝑧  
2  in Fourier space 

𝜕𝑥
2 + 𝜕𝑦 

2 + 𝜕𝑧  
2 →   (𝑖𝑘𝑥)2 + (𝑖𝑘𝑦)2 + (𝑖𝑘𝑧)2 =  −|𝐤|2 

we obtain the following formula for energy dissipation: 

𝜈𝛁𝟐𝑢(𝒓) =  𝜈 ∫ −|𝒌|2𝒖(𝒌)𝒅
3

𝒌 
           (2.18) 

        

This assumes that we know the nonlinear term: 
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𝐹(𝑟) = (𝑢(𝑟) · 𝛁)u(r) 

and the corresponding term in Fourier space F(k).  

        

      (2.19) 

Then the diffusion equation can be solved in time exactly and efficiently in Fourier space, and 

the forced Navier-Stokes equations in physical space are:  

�̇�(𝒓) +  𝑭(𝑟) =
𝜕

𝜕𝑡
𝒖 + 𝑭(𝒓) =  −𝜵𝑝 +  𝜈𝜵2𝒖  

        

           (2.20) 

and the corresponding equation in Fourier space is   

�̇�(𝒌) +  𝑭(𝑘) =  −𝑖𝒌𝑃(𝑘) −  𝜈|𝒌|2𝒖(𝒌)  

 

       

           (2.21) 

Including incompressibility 𝒌 ·  𝒖 = 0  we will get the following, 

where the pressure equation is reduced to: 

|𝒌|2𝑃(𝑘) =  𝑖𝒌 · 𝐅(k) 

 

        

          (2.22) 

Instead of having to invert the pressure equation in physical space, all terms are linear in the 

Navier Stokes equations in Fourier space 

�̇�𝑖  (𝑘) +  (𝛿𝑖𝑗 −
𝑘𝑖𝑘𝑗

𝑘2
 ) 𝐹𝑗(𝑘) =  −𝜈|𝑘|2𝑢𝒊(𝑘) 

        

          (2.23) 

2.3.7 FOURIER TRANSFORMATION OF THE NON-LINEAR 

TERM 

Returning to equation (2.12) in Fourier space, 



42 

 

𝐹𝑖(𝑘) =  ∫ 𝚍3 𝑟𝑒−𝑖𝑘⋅𝑟(∫ 𝚍3 𝑞𝑒−𝑖𝑞⋅𝑟𝑢𝑗  (𝑞))(∫ 𝚍3 𝑝𝑒−𝑖𝑝⋅𝑟𝑢𝑗  (𝑝)) 
          (2.24) 

and 

∫ 𝚍3 𝑟𝑒−𝑖𝑘−𝑝−𝑞)⋅𝑟 =  𝛿(−𝑘 + 𝑝 + 𝑞)  

 

        

          (2.25) 

 

𝜕𝑗𝑒−𝑖𝑝⋅𝑟 = 𝑖𝑝𝑒𝑖𝑝⋅𝑟 

 

       

          (2.26) 

 the non-linear function F(k) in Fourier space is:  

𝐹(𝑘) =  ∑ 𝑖(𝒑 ⋅ 𝒖(𝒒))𝒖(𝒑)

𝑘=𝑝+𝑞

 

 

        

          (2.27) 

or 

𝐹𝑖(𝑘) =  ∑ 𝑖 (𝑝𝑗 ⋅ 𝑢𝑖(𝑝)) 𝑢𝑗(𝑞)

𝑘=𝑝+𝑞

 

 

        

          (2.28) 

Let us calculate how computationally expensive is this term. 

For the grid with n nodes, mesh size is about 

𝑛3 and roughly it requires 𝑛3 wavenumber operations. To calculate non-linear terms for each 

k we have to do another 𝑛3  wavenumber sum. 

The total number of operations is 𝑛3 × 𝑛3 =  𝑛6 

This makes the nonlinear convection term in the Navier-Stokes equations the most 

computationally expensive, and we will show how we can apply a parallelisation object-oriented 

approach to eliminate this obstacle.  

Let us continue to analyse of computational expense for full Fourier transformed Navier-Stokes 

equations: 

.�̇�𝑖  (𝑘) +  (𝛿𝑖𝑗 −
𝑘𝑖𝑘𝑗

𝑘2  ) ∑ 𝑖 (𝑝𝑗 ⋅ 𝑢𝑖(𝑝)) 𝑢𝑗(𝑞)𝑘=𝑝+𝑞 =  −𝜈|𝑘|2𝑢𝒊(𝑘) 

      

          (2.29)   
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In the above equation, the linear terms are evaluated efficiently in Fourier space.  However, the 

non-linear term is expensive.  Furthermore, linear terms involving the evaluation of Laplacians 

are also expensive to compute.  In this research, we have adopted the strategy of expressing the 

non-linear terms as a finite difference approximation, i.e.   Equation 2.30 is simply a numerical 

representation of a finite element derivative, and it forms a component of the derivation. 

𝑢𝜕𝑥𝑢 → 𝑢(𝑥𝑖 )
𝑢(𝑥𝑖+1) −  𝑢(𝑥𝑖−1) 

𝑥𝑖+1 −  𝑥𝑖−1
 

 

        

          (2.30) 

2.3.8 SIMPLIFY SPECTRAL METHODS AND ALIASING 

PROBLEMS 

 

To summarise, all the above spectral methods are based on the following steps: 

 Calculate derivatives exactly in Fourier space; 

 Revert velocities and derivatives to physical space; 

 Calculate non-linear terms; 

 Transform non-linear terms to Fourier space; and 

 Solve Navier-Stokes equations.  

However, this approach creates aliasing errors. Backward and forward Fourier transformation 

gives in additional terms responsible for aliasing problems. For example, n-grid points 

produce n real numbers u(𝑥𝑖), 𝑖 = 1,2, … 𝑛.  Then n-Fourier coefficients have n complex 

numbers, which are 2n real numbers.  So, when multiplying the non-linear terms, we will 

have the following: 

 

𝑢 (𝑘 =
𝑛

3
+ 1) 𝑢 (𝑘 =

𝑛

3
+ 1) = 𝑁𝐿 (𝑘 =

2𝑛

3
+ 1 ) =  𝑁𝐿 (𝑘 =  −

𝑛

3
+ 1)

=  𝑁𝐿(
𝑛

3
− 1) 

 

         

           (2.31) 
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Two high wavenumbers which should create a still higher wavenumber create a lower 

wavenumber.  There are several attempts to leverage accuracy and computational costs.  To 

overcome this problem, one of the approaches is using truncation all |k| > n/3.  This is called the 

2/3rds number because we are keeping 2/3 of the wave numbers 

1/3 for  -n/3 <k < 0 

and 

1/3 for 0<k<n/3 

 

2.3.9 This work approach  

 

This work proposes that instead of simplifying and using a truncated Fourier transform described 

above, it uses an Object-Oriented Approach to apply parallelisation to massive but accurate 

calculations on multiple computers. This will reduce simulation times due to its ability to do 

many calculations in parallel, and this is a key motivation of this research. This approach is 

based on the fact that most time-consuming calculation of the non-linear term of the Navier–

Stokes equations 
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3 GOING PARALLEL  

           

3.1 INTRODUCTION    

The parallel world of computing is quite different from the serial world.  Some aspects of this 

will be discussed below in more detail. 

 

Parallelisation is one of the modern and powerful ways in computational fluid dynamics to solve 

Navier-Stokes equations. However, this presents the challenge of solving the equations 

simultaneously by making use of many building blocks or threads.  When a computer code runs 

on some blocks, a new paradigm is considered because running in parallel generates scenarios 

which do not exist in the sequential world of computing and this requires the use of new 

terminology and language which we shall now briefly discuss. 

 

 

Figure 3.1 A thread can be considered to be a stream which carries a list of computer 

instructions that are to be executed independently (Silberschatz et al., 2012) 

 

In the sequential world, only one thread exists which is known as the main thread.  In parallel 

systems, there are many threads within the same process, and each of these threads contains its 

data, a list of executable instructions, a stack and the set of registers. 
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Thread function 

To create a new thread, we call  pthread_create() or a similar function depending on the 

operating environment and computer language. After a thread is created the first thing it starts 

doing is to execute start routine () – called thread function – passed as the sole argument of the 

thread creation function. Because threads can coexist, we have computer logic written in each 

thread function run in parallel. This architecture is a door from sequentially executed computer 

instructions to the world of parallel computing.   

In Computational Fluid Dynamics, we consider that the flow consists of several independent 

streams, and the multithreading computer paradigm is much closer to the physics of what we are 

trying to simulate. As to thread function, in CFD, for example, this feature may hold a list of 

instructions on how to navigate along with the computational domain or sub-domain and 

compute some of the properties like, for instance, velocities or pressure distribution. 

If computed variables are dependent on global space or dependent on results of calculations of 

another thread, then thread synchronisations may be required. 

 

Parallel Overheads 

  Parallel computing environments offer the possibility of speeding up execution, but they 

introduce certain execution time-consuming overheads. These expenses are associated with the 

amount of time required to coordinate parallel tasks, as opposed to doing useful work. Parallel 

overheads can include factors such as (Shen et al., 2004): 

 Time to start-up; 

 Synchronisations; 

 Data communications; and 

 Time to terminate the thread. 
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Thread-safe  

In computational fluid dynamics, often the value of the flow field velocity in the grid depends on 

the value of its neighbours. To get the right result,  an order of calculations becomes imperative. 

This leads us to thread-safe calculations. 

To be thread-safe, the program should protect shared data; for example, one thread trying to read 

the value of the shared data when at the same time, another thread wants to modify it. The 

multiple threads running in an application may create potential issues regarding safe access to 

resources. This may create a scenario where a program runs in unintended ways. For example, 

one thread might override other changes or put the application into an unknown and potentially 

invalid state. In a real case scenario, the corrupted resource might cause obvious problems like 

performance issues or crashes.  In a worst-case scenario, however, corruption may cause serious 

errors that do not manifest themselves until much later. This kind of problem might require a 

significant overhaul in the software development process. 

The scenario described above can be a serious issue in the numerical simulation of turbulent 

flow. As already mentioned, the scale of the physical tasks can be considered as large data with 

up to petabyte related variables.  Access and calculation related variables by number 

simultaneously running threads can be potentially very harmful, as the value of the variable can 

be corrupted based on the random order of accessing it. If this happens, it is a very challenging 

task to debug a problem of such scale.  The best protection when it comes to thread safety is 

good design. Avoiding shared resources and minimising the interactions between threads makes 

it less likely that those threads will interfere with each other. However, an entirely interference-

free design is not always possible. In cases where threads must interact, synchronisation tools are 

required to ensure that when they interact, they do so safely. Developing trade-safe code requires 

the needs of the software primitive, which will be able to take control over random access to the 

shared variables and be able to synchronise it. One of the ways to do that is to use Mutexes, 

which are the abstraction that can also be used for synchronisation.   
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Mutex - Suppose we have the shared variable which can be accessed and changed by two 

threads.  For example, in our work on parallelising the solution of the Navier-Stokes equations, 

there may be a possibility that two threads simultaneously access a velocity flow field variable. 

We must ensure that our algorithm does not inadvertently overwrite this variable. This is 

achieved by invoking a mutex – a mutually exclusive lock that acts as a protective wall around a 

resource. We can view the mutex as a traffic light which works like a semaphore that grants 

access to only one thread at a time. A mutex is an object of the class responsible for 

synchronisations in between threads. If we did not have a mutex,  then the value of this variable 

would be random depending on which thread accesses this variable first. 

In computational fluid dynamics, we may need mutex primitive, for example, in the following 

scenario. Say we have one thread which is solving differential equations and produces the array 

of velocity vectors. Another thread will need to read this array and then draw on the screen an 

image of this velocity field. Using mutexes allows this to synchronise in such a way that as soon 

as the first thread finishes its calculation, the second thread starts to draw. 

 

To fulfil its duty, a Mutex class usually has the following methods:   

Lock() – If any thread does not currently lock the mutex, the calling thread locks it until the 

same thread unlock is called.  

Unlock() - Unlocks the mutex and releases ownership of it.   

If the mutex is currently locked by the same thread calling this function, it produces a deadlock 

(with undefined behaviour).  

Dead-lock – does not exist in the sequential world but is a common problem in multithreaded or 

multiprocessing systems, parallel computing or distributed systems where process 

synchronisation uses locks. 

This mechanism by which the dead-lock operates is illustrated in Figure 3.2.  It can be observed 

that Thread1 requests resource A and get it. Then Thread2 requests resource B and gets it. Then 

Thread1 requests resource B and starts waiting for resource B, which is locked by Thread2. Then 

Thread2 requests resource A which is blocked by Thread1. In the above scenario, Thread1 and 

Thread2 end up in an infinitive waiting stage called deadlock. Another example of deadlock can 

be a scenario where the mutex is currently locked by the same thread called lock function and 

produces a deadlock with undefined behaviour. 
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  Figure 3.2 Dead-lock schematic example 

 

 

Before describing our development, we will be narrating what building blocks for parallel 

simulation are available. 

3.1.1 PROCESSES 

Here we recount the steps required to generate a computer program. First, the computer code 

needs to be created. Computer or source code is a text used to write instructions which a 

computer can interpret, and is done by using computer languages. As with any language, 

computer languages are split into two components – syntax and semantics. The next step is to 

compile the source code, which will validate the syntax and produce a positive result that will 

generate objects. Those objects are important binary files which a computer understands. The 

last step is when the object code is passed to the linker. When this is done, an executable 

program is created.  However, it still needs to be loaded into memory. 

This process is an instance of an executable program. If, for example, four people are running the 

same program, there will be four processes running simultaneously, not one. We may have more 

 

Thread 1 

Thread 2 

 

Resource A Resource B 

Owned by Waiting for 

Waiting for Owned by 
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than one process running with only one person starting the program. This is due to the ability of 

the process to clone some concurrently running processes. 

Each running process is identified by a unique Process Identification Number (PID). This 

number is assigned when the process is created. 

If we run the command on UNIX terminal shell 

>  ps –ef 

operational system (OS) will respond with a list of all running processes. 

OS is the time-sharing system, and each process allocates a time slice in its turn to run on CPU. 

So even when we have a little job and it stays in a queue behind the large job it is executed 

without delay. 

In applications in computational fluid dynamics we target that, some processes will solve one 

task and particularly Navier-Stokes equations. 

To be able to build such systems, processes should not run independently but rather together and 

be able to communicate with each other. We need to be able to bypass the OS time slice 

mechanism and make processes synchronise so that they execute and even stop and wait until 

other processes finish their steps. 

We will now discuss what options we have and how this done. 

 

3.1.2 FOREGROUND AND BACKGROUND PROCESSES 

If we do not want to wait for a process to finish, we can start the process in the background. 

Multi-tasking operational systems allow multiple processes to be run in the background and 

foreground. Adding ampersand at the and of command lets OS know that the process is executed 

in the background – $ command &.  After starting a process in the background, OS returns the 

shell to the user so that it can continue. 

Within these memory limits, multiple processes can be started, running concurrently in this way. 

A foreground process is different from a background process in two ways.  Firstly, foreground 

processes may show the user an interface through which he/she can interact with the program 

and secondly, the user must wait for one foreground process to be completed before running 

another one. 
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We can use this feature to separate simulation processes of solutions of Navier-Stokes equations 

on several processes. For example, one process can be responsible for visualisation, another for 

solving the system of the equations and another one can manage these two processes and 

synchronise those using interprocess messages. 

3.2 INTERRUPTS AND SIGNALS 

The paradigm we are trying to build will solve Navier-Stokes equations and do the numerical 

simulation based on a number independent CPUs which require being able to communicate with 

different processes and involve a different part of calculations based on physics.  The signal is a 

trigger that is used to notify the processes about the occurrence of a particular event. Signals are 

often used as a mechanism for inter-process communications. (IPC) interrupts are conceptually 

similar to signals and can be viewed as triggers to communicate between the CPU and OS 

kernel, rather than as signals responsible for communication between the OS kernel and OS 

processes. 

To implement multitasking, we can use a hardware interrupt. In the next chapter, we demonstrate 

how interrupts are used in the implementation of the thread pool class, which we develop for 

thread injection as a method of speeding up Navier-Stokes simulations. 

 

3.3 SOCKETS 

When we are targeting the task of solving Navier-Stokes equations on many simultaneously 

running computers, we need to have a mechanism to exchange data between them. 

And this mechanism is based on using sockets. A socket is an object which allows us to send and 

receive data in between processes.  Sockets are a fundamental component of inter-process and 

intersystem communication. They provide point-to-point, two-way communication between 

processes. The socket is an abstraction that provides a set of protocols and allows them to 

exchange data.   
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3.4 EVENT DRIVEN COMMUNICATIONS 

Moving in the direction of parallel development reflects the need to change a computing 

paradigm. Instead of acts like in Procedural Programming, parallel development needs the 

software’s ability to react. In general, event-driven communication is programming where the 

primary activity is a reaction to semantically significant signals (events). 

In sequential programming, the flow of calculations is followed by the subsequent run of the 

instruction. As the thesis aims to study parallel development and turbulence flow, the very logic 

is to have a software paradigm which more closely reflects the physic of our phenomena. So, we 

can define an event as to where the flow of calculations determines a reaction to messages 

received from other processes or threads. 

 

3.5 MULTI-THREADING 

Multithreading is a particular form of multitasking. We may divide multitasking into two main 

types: process-based and thread-based. 

Process-based multitasking is about the concurrent execution of programs, while thread-based 

multitasking deals with simultaneous execution of pieces of the same program. 

Thread-based multitasking consists of some parts that can run concurrently, and each of these 

pieces is called a thread. Each thread is defined by its logic in the path of execution. 

We can see multithreading as multiple execution agents working on solving common problems 

operating simultaneously. 

 Using multi-threading may create many benefits for computational flow dynamics (Drysdale, 

2007), such as: 

  Responsiveness – for example, one thread can provide a quicker response than another 

when doing massive calculations; 

 Resource sharing –  threads share common code, data, and other resources that create an 

environment for multiple tasks to be performed simultaneously in a single address space; 

  Performance –  switches between threads and context are much faster than performing 

the same tasks for processes; and 
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  Scalability – a single-threaded process can only run on one CPU, regardless of how 

many CPU are available. However, multithreaded processes can benefit from multicore 

and multiprocessor architecture.     

 

In the next chapter, we will discuss a ThreadPool class which we develop to use multithreading 

to speed up solutions with Navier –Stokes equations. 

3.6 MULTIPROCESSORS AND MULTI-CORE 

A Central Processor Unit (CPU) contains many discrete parts such as instructions decoders, 

memory caches, and executions units. Multiprocessor systems have more than one CPU allowing 

them to work in parallel. Multi-Core CPUs has multiple execution cores inside of one CPU. 

Multiple cores can also work in parallel in separate operations. This architecture is very flexible 

and allows a very complex system for parallel operations to be established. For example, we can 

create a multiprocessor multicore multithreaded system ( Darlington et al., 1996). 

In a modern computer, architecture is quite common to produce chips with multiple cores on a 

single chip. A multi-threaded application running on a single-core chip would have to intersperse 

the threads, as shown in Figure 3.1. However, on a multi-core chip, the threads could be spread 

across the available cores allowing real parallel processing, as shown in Figure 3.3. 
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Figure 3.3 Concurrent execution on a single-core system 

 

 

 

 

Figure 3.4 - Parallel execution on a multi-core system 

In Figure 3.3 and Figure 3.4  T_1…….T_n  represent simultaneously running threads, where 

each one carries instructions for OS to follow. This example demonstrates how threads run on 

single or multiple core systems. 

On the one hand, hardware development boosted demand for new software algorithms for multi-

core chips. On the other hand, multithreading software became more and more pervasive. 

Applications started using thousands instead of tens threads, and this boosts new demand for new 

hardware where CPU's can support more threads per core. This cycle of rapid growth creates 

enormous opportunities for computational flow dynamic modelling, where bigger and more 

realistic simulations are performed (Lavington et al., 1998). 
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3.7 MPI 

As already discussed, processes communicate using messages and events which are a trigger on 

such messages. It is very logical to build a stand-alone platform which will be responsible for 

this messaging mechanism. Message Passing Interface (MPI) is a stand-alone abstraction that 

allows multiple programs to communicate using queues and non-OS managed channels. We can 

see MPI as clear inter-process communication (IPC). 

In a parallel environment, multiple execution agents work concurrently to solve a common task. 

This agent is not necessarily even located on the same physical server. All the above creates the 

need for another level of communications and this where MPI becomes useful. 

 

Figure 3.5 MPI allows the creation of a message interface in between two processes to send a 

message, size, type, source, destination, tag, communicator, status etc… 

 

3.8 OpenMP 

Another way for processes to communicate is to use shared memory. OpenMP is a system 

specification for a set of directives, library routines, and environment variables that can be used 

to specify shared-memory parallelism. 

It uses a portable and scalable interface for developing parallel applications running from a 

desktop computer to a supercomputer. 
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Figure 3.6 OpenMP shared memory management. Processes can communicate by accessing the 

memory which can be shared in between different processes. 

 

3.9 GPU AND CPU DEVELOPMENT 

A graphics processor unit (GPU) was originally designed to speed up computer graphics. 

The recent discovery that GPU can be used not only for accelerating graphics applications but 

also for massive computer calculations has taken the scientific world by storm. This all happened 

due to the dramatic increase in the speed of calculations on GPUs. Even the fact that a single 

core in a GPU unit is relatively slow compared with CPU provides a significantly bigger number 

of simple, data-parallel and deeply multithreaded cores and very high memory bandwidths.  

 

GPU architecture involves more software developers as it has a potential for dramatically 

increasing the speed of applications, and especially computational flow dynamics as it is a very 

time-consuming process (Kruger et al., 2005). 

3.10 OBJECT-ORIENTED LANGUAGES AND 

DESIGN 

So far, we have seen that the history of operation system evolution has been moving towards 

reusable components. These components more or less encapsulated and were intended to serve 

various requests or tasks. Software languages started to follow this pattern. Originally computer 
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languages were designed to perform functional and sequential operations, but recently they 

became object-oriented. Here, it is probably necessary to define the object. 

 

An object is an abstraction which reflects typical properties of the real-world system which we 

are going to simulate and about which we want to store information.  An object could be a 

differential equation, flow field, temperature sensor, etc. 

One example of an object would be a shape used in CFD for mesh generation development.  

 

 

Figure 3.7 Example of the object – Shape 

There are many different objects in the real world, such as dog, desk, television. They always 

exist, but only recently, the concept of objects started to be encapsulated in computer languages. 

 

When we consider real-world objects, we may see that they share two general characteristics: 

state and behaviour. Identifying the state and behaviour of real-world objects is a first step in 

creating an architecture for object-oriented development. Real-world objects vary in complexity, 

as some objects may contain other objects.  

 

These real-world observations all translate into the world of object-oriented programming. 

In software development objects are similar to real-world objects:  software objects also consist 

of state and behaviour. A computer object stores its state in variables and exposes its behaviour 
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through methods.  Methods deal with an object's internal data state and work as the mechanism 

for object-to-object communication.  

Bundling computer code into individual software objects provides some benefits and makes 

applications more modular. The source code for an object is written and maintained 

independently of the system of equipment for other parts. When the process of object 

instantiating finishes, it may pass around and start to reuse. 

This approach is a very convenient model to apply to CFD and parallelisation paradigm. As we 

can see, we can use the idea of objects to create independent data types such as vertex, points, 

and streams. Then building a CFD model becomes more closely aligned to physics. 

Information-hiding: by interacting only with an object's methods, the details of its internal 

implementation remain hidden from the outside world. Information hiding is another very useful 

paradigm which has a direct connection to turbulent flow study; for example, such abstractions 

like eddies in LES can be viewed as information hiding entities to produce macro properties for 

the turbulent flow, like pressure or temperature distribution. Object-oriented programming has 

become the most widely used approach to software development. 

 

3.10.1 OBJECTS IN PROGRAMMING 

Object-oriented programming (OOP)  is a methodology for problem-solving where all 

computations are performed by using objects. The code in object-oriented programming is 

organised around objects. Once objects are defined, they can interact with each other to make 

something happen; for example, we need an application where a person gets into a car and drives 

it.  To do so, we will define the required objects, such as a person and car. That includes 

methods: a person knows how to drive a car and a car knows what it is like to be driven. Once 

objects instantiate, they can be brought together so the person can get into the car and drive. 

In this research, we create and use some stand-alone objects. In particular, each algorithm now is 

an object. We have objects responsible for memory allocation when we are going in significant 

data areas etc. The detailed list of developed classes that describe this job objects is shown in 

chapters 4 and 5. 
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3.10.2 CLASSES AND OBJECTS 

A class is a design for the ultimate object. The class is considered as a concept and object is the 

implementation of this idea. Classes are very useful in programming; for example, if we need to 

model 1000 people rather than one person.  Instead of describing each one in detail, we may 

create 1000 objects of type ‘person’ and then allocate properties to them like name, address, etc.  

And all this can be done by using only one class – person. 

Similar to computational flow dynamics, the objects oriented approach is very useful to apply. 

For instance, consider that we need to describe and model computational grid or mesh, and the 

mesh can consist of 2D objects like triangles or quadrilateral, or 3D objects like tetrahedral 

shapes. An object-oriented approach to doing that will be to define the class shape. Then set a 

class triangle, class Quadrilateral, and class Tetrahedral. All these classes derive from one based 

class – Shape. So, to describe hundreds of thousands of mesh cells we only need four Classes, 

and then we create our hundred thousand objects which are ready to communicate as one object 

called mesh.  The benefit of this approach is that it directly links to parallel and distributed 

computer systems. Here we can see two different types of Classes. 

The first type is the shape class. There is no object of this Class that we anticipate need to be 

created. Classes like that are called Abstract Classes. 

The second type is a Class that represents geometrical shapes – Triangle, Quadrilateral, and 

Tetrahedral. These types signify more complex objects as they all have another object inside –  

shape – as they are derived from it. The class shape then becomes an interface to manipulate 

objects of the different types that derived from it. 

 

3.10.3 METHODS AND FUNCTIONS 

The method can be seen as an action that an object can perform, and that defines the behaviour 

of the objects which are created from the class. 

A function is a combination of instructions that are merged to achieve something, and typically 

requires some input (called arguments) and returns some results. 

How is the function different from the method? A function is independent, whereas the method 

always belongs to the class which represents the object. The function can be used anywhere in 
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the code and don't need to have an object to use it. However, methods always stay with their 

object. 

All the above objects make reusable building blocks. To summarise, the object is an abstraction 

of something that exists in the real world or in our minds which belongs to the system we want to 

model and about which we want to store information (Shelly et al., 2008). 

The development of the object-oriented paradigm is now briefly outlined. It stemmed from the 

initial ideas of a new programming approach, while the design and analysis methods came much 

later (Dahl et al., 2004). The first object-oriented language was Simula (Simulation of real 

systems) that was developed in 1960 by researchers at the Norwegian Computing Center. Then 

in 1972, Alan Kay and his colleagues at Xerox PARK created the first pure object-oriented 

programming language (OOPL), Smalltalk, for programming in the first personal computer 

Dynabook (Kay,1972). 

Grady Booch G.,(1982)  published a paper titled Object-Oriented Design that initially presented 

a model for the programming language - Ada.  And in the following editions, he extended his 

ideas to a complete object-oriented paradigm. Schlienger, F.et al.,(1994) presented ideas to 

object-oriented methods. The other substantial innovations were Object Modelling Techniques 

(OMT) by Rumbaugh, J. et al.,(1990)  and Object-Oriented Software Engineering (OOSE) by 

Jacobson, I., (1992). 

3.11 OBJECT-ORIENTED ANALYSIS 

Object-Oriented Analysis (OOA) is the methodology of identifying independent software 

engineering requirements and developing specifications regarding object models. 

The object-oriented analysis differs from other forms of analysis as it requires and is organised 

around objects; they are modelled after real-world objects and system built based on the 

interaction between objects. In traditional analysis, methodologies, functions, and data are 

considered separately. 

 

The object-oriented analysis (OOA) started from identifying objects; then objects needed to be 

organised by creating a model diagram following the definition of the internals of the objects, or 

object attributes. Part of OOA is defining the behaviour of the objects; i.e., object actions and 

describing how the objects interact. 
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The aforementioned described steps are utilised in this research paper. When building a 

paradigm for numerical simulation Navier-Stokes equations in this research, I am trying to 

identify stand-alone parts of the algorithm, then convert them to objects, identifying properties of 

those objects and seeing which of them can be used in parallel. Then identify bottlenecks at 

runtime and use created objects to take control of existing sequential calculations to split them 

into some independently running threads  

 

 

3.12 OBJECT-ORIENTED DESIGN 

Object-Oriented Design (OOD) involves the implementation of the conceptual model produced 

during object-oriented analysis. The implementation steps usually include: 

 If necessary, data restructuring of the Class; 

 Developing source for methods; i.e., internal data structures and algorithms; and 

  Developing source code for controls and associations. 

     

    

3.13 OBJECT-ORIENTED PROGRAMMING 

Object-oriented programming (OOP) is a paradigm based on using objects. The main aim here is 

to incorporate the advantages of modularity and reusability.  Objects, which are instances of 

classes, are used to interact with one another to fulfil application design and computer programs. 

The important features of object-oriented programming are: 

 Approaching program design from the bottom to the top; 

 Organising an application around objects, and grouping them in classes; 

 Developing data and methods to operate on an object’s data; 

 Designing interaction between objects through its methods; and 

 Designing reusability of the object by creating new classes and adding new features to 

existing classes. 
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3.14 OBJECT-ORIENTED PRINCIPLES 

3.14.1 ENCAPSULATION 

From an object-oriented point of view, the object is a fundamental building block. We start using 

object concepts by dividing development and design into two parts. 

The first part is logic and functionality inside the object. The second part is public interfaces – 

what object is used to communicate with other regions of the application. 

Development and know-how inside the object logic do not always need to be visible to the user. 

In other words, encapsulation is about hiding complexity.  In the real world, objects quite often 

hide their information and how they work; we don’t need to know the internal details of the 

object.  

When we create an object in an object-oriented language, the complexity of the inner workings 

of the object can be hidden.  

For example, a computational flow analyst can get a solution to his task by using objects in a 

simulation package without knowing the mathematical methods encapsulated inside the objects 

that this simulation package uses.  

Information hiding is a key in object-oriented design as it allows anyone to use the object and 

reuse it if needed.  Another reason for hiding complexity is to manage changes.   

Any big system at present is almost always going to be in a new development cycle where new 

features and new functionality are added, and this may require making some changes inside one 

particular object. However, overall it does not affect the whole system. When changes inside the 

object are completed, they will automatically be reused by rest of the system. 

 A detailed example in CFD is, for instance, that almost always any numerical simulation 

requires a system for solving equations. Creating a solver object will separate use of this purpose 

and the object implementation. When or if the solver object will need to have an upgrade for 

whatever reason, it will not affect users, and the system will continue running. 
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The encapsulation of the object is controlled by a public and private keyword to grant access or 

remove it from the different parts of the object, where private and public methods of the object 

became handy. 

 

3.14.2 INHERITANCE 

Inheritance – the ability to derive something specific from something generic – can be 

encountered in everyday life. In Object-Oriented inheritance, it enables new objects to take on 

properties of existing objects. There is always an excellent way to reuse existing functionality 

rather than create the same thing again and again, and an essential feature of the Object-Oriented 

approach is reusability. Reusing the properties of the objects lets us not only save time and 

money but also makes the application more reliable.  

Inheritance allows a software developer to write clearer code as the complexity is reduced by 

reusing similar properties and sharing code between derived objects. 

 

3.14.3 POLYMORPHISM 

The word Polymorphism comes from Greek and means “having multiple forms”. 

In object-oriented programming, this is the characteristic of being able to assign a different 

meaning or usage to various entities such as variables, functions or objects that have multiple 

forms; in other words, polymorphism describes a pattern in object-oriented programming in 

which classes have different functionality while sharing a common interface.  Polymorphism can 

be of two types – static and dynamic. 

In dynamic polymorphism, the response to the message is decided at runtime while in static 

polymorphism it is decided on compilation time. 

3.15 OBJECTS IN CFD  

Development in parallel and distributed systems has resulted in dramatically increased 

computational power and efficiency. From the implementation point of view, modern 
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programming languages offer potent tools for flexibility, such as the inheritance of object-

oriented programming. 

In our research, we develop computer code which is based on highly parallel principals for 

solving Navier-Stokes equations for incompressible turbulent flows. Also, we design and 

implement modular mathematical abstractions objects which are reusable in many simulation 

applications. 
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4 OBJECT-ORIENTED DEVELOPMENT AND 

PARALLELIZATION OF THE NONLINEAR 

CONVECTION TERM 

4.1 INTRODUCTION 

Here we are back to developing an Object-Oriented Approach to compute a  𝒖𝛁𝒖 -  non-linear 

term in Navier-Stokes equations which is responsible for the transfer of kinetic energy in the 

turbulent flow. There are some numerical algorithms to calculate this term: 

The convection form 𝒖 · 𝛁𝒖 (4.1) 

The divergence form 𝛁 · (𝒖𝒖) (4.2) 

The skew-symmetric form 𝟏

𝟐
𝒖 · 𝛁𝒖 +  

𝟏

𝟐
𝛁(𝒖 · 𝒖) 

(4.3) 

The rotational form 
(𝛁 × 𝒖) × 𝒖 +  

𝟏

𝟐
𝛁(𝒖 · 𝒖) 

(4.4) 

 

These expressions are numerically equivalent but have different calculation costs.  When 

discretised the rotational form is less expensive to compute, but it introduces some errors in the 

high spatial frequencies, which can be reduced by applying a de-aliased transformation (Mitchell 

et al., 1988). 

The calculation cost of the skew-symmetrical method lies between the convection and 

divergence forms and is free from such errors. However, it is twice as expensive to calculate.  

This averaging is simulated by alternating between the convection and divergence forms on 

successive time steps. Such an approach produces excellent results as in practice, the skew-

symmetric method is almost as fast as the rotational method. 
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Krist and Zang (1987) recommend using the skew-symmetric or alternating forms with aliased 

transforms or the rotational form with idealised transforms.  The Channelflow application 

implements the rotational, convection, divergence, skew-symmetric, and alternating forms. The 

computational algorithms of each of the methods assume a common form; i.e. 

 for (int i=0; i<3; ++i) 

  for (int j=0; j<3; ++j) { 

  int ij = i3j(i,j); 

   for (int ny=0; ny<Ny; ++ny) 

   for (int nx=0; nx<Nx; ++nx) 

   for (int nz=0; nz<Nz; ++nz) 

    f(nx,ny,nz,i) += …….. 

 

It is these five nested loops that open the door to speed up calculations using threads.  To achieve 

this, we wish to introduce thread injection at a localised point in the existing Channelflow serial 

code.   
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Figure 4.1 Discretization of the domain using a scheme that is amenable to parallelisation 

The primary area is divided into slices as shown in Figure 4.1 Instead of traversing the entire 

domain, and each subdomain is traversed concurrently by individual threads. Thread function 

will receive one of the above computational methods through a parameter. When a thread 

completes its task, it should wait until all other threads have also completed their tasks. When all 

threads have finished their tasks, they have to return to the main thread. 

As the thread creation process takes some time, the threads should be created only once at the 

beginning of simulations. When a thread has completed its task, it should just stay waiting for 

another job to pass into the thread function as a parameter. To be able to do such a thing, our 

design should consider a way of talking to threads without stopping and starting them. Firstly, 

we develop a stand-alone Thread Pool class. The object of this class will be to hold all our 

threads in preparation for them to execute their assigned computations. Creation of the threads 

has overhead, so we want the pool to be created only once and destroyed only when the 

simulation finishes.  

The pool will use a hardware interrupt as a signal to the process to communicate with the main 

thread and notify it with instructions. 
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Figure 4.2  The parallelisation paradigm showing thread injection and the simulation process. At 

the foot of the diagram is a list of sequential instructions. The thread injection overwrites one of 

them. The thread pool takes control over one of the subsequent steps and executes it in parallel. 

Then control is returned to the next sequential instruction 

The existing Channelflow program is executed serially, and an objective of our work is to 

identify those sections of the code that would benefit from parallelisation.  Hence, we have 
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modified it so that it continues to run serially until it is signalled that those regions which would 

benefit from parallelisation have been reached.  At this point, threads that control the 

computations are injected.  The number of threads created by the thread pool depends on the size 

of the grid.  In general, the more extensive the network, the more threads are created.  Here we 

observe that when the computational fluid dynamics system consists of a small number of nodes, 

the number of threads is limited to reduce computational overheads.  As a result, our approach 

automatically responds to the size of the problem and memory is dynamic; i.e. it is allocated on a 

needs basis. 

To fulfil the described functionality, we create the following data functions: 

 CreateThreads - will set up and start as many threads as specified by the parameter 

 m_nmbThreads; 

 Run – will unleash threads and let them run; 

 DestroyThreadPool -  will stop all threads running and remove the object of the Thread 

Pool from the system; 

 SetLimits – specifying the location of the boundary and boundary conditions; 

 GetInstance -  return pointer for the object of the ThreadPool; only one object of this class 

is created; 

 WaitToComplete - synchronize all threads completion. It makes sure there will not be a 

return from the ThreadPool until all threads have finished their computations. After all, 

tasks are finished all threads remain in the waiting mode; and WakeUp - let all threads 

know that a new execution task has arrived and they need to proceed with calculations.  

When a new task arrives, the thread pool wakes up its threads, and they begin to execute 

this task in parallel. 

4.1.1.1 THREAD POOL ORGANIZATION 

Below is a diagram that shows how the pool is organised. The highlighted box represents the 

ThreadPool class and on a chart is shown its collaboration with other objects. 
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Figure 4.3 Thread Pool Organization diagram. Each box on the diagram represent a class and is 

divided into two parts; the top one lists the class variables and bottom one lists class public 

member functions. 
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The following class data members are implemented: 

 m_nmbThreads. Variable to hold the number of threads that are going to be used by 

the Thread Pool; 

 m_total_running_threads. A mutually exclusive variable to hold some running 

threads. When a particular thread has finished executing its task, this variable is 

reduced by one. Ultimately, m_total_running_thread is used to notify the thread pool 

that all threads have finished execution and the thread pool can return control to the 

sequentially running part of the application; 

 m_stop_threads. Boolean variable used to control flow of running’s threads; 

 m_task. Base task pointer used as an interface to one of the CFD tasks; 

 m_work. Dynamic array of Boolean flags. The size of the array is m_nmbThreads; 

Each flag represents a thread available for new work or still doing its current work; 

 m_map. Map of threads handles; 

 m_lim. The object of limits class, to hold the limits of the geometry domain; 

 m_mutex. The instance of the class mutex to synchronise the data on threads access 

and signalling data engine; 

 m_cond. Thread pool condition variable responsible for synchronisation of threads 

execution; 

 m_mutex_done _t m_cond_done . Mutex and conditional variable responsible for 

control over signalling that execution of the job by thread is done; and 

 

 pInstance- Pointer to an instance of the ThreadPool object. ThreadPool is a singleton 

class and pInstance use to control that only one object of this class created. 

Threads are always running, so there is no overhead to create and start them. A thread pool 

communicates with the sequential part of the program by the signals, making this approach very 

flexible and dynamic. When the thread pool receives a request for the new task to be carried out, 

each thread independently starts traversing its sub-domain and collects the corresponding 

flowfield variable f(nx, ny, nz, i). When a thread has finished its calculation, it signals the pool 

that it has completed its task. When all threads have finished their work, the pool collects data 

from the threads and put threads in the waiting mode until a new task arrives. This technique 
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appears to be very elegant because it does not require the original source code to be changed.  

The thread pool class is instantiated only once during the startup. Then we inject our threads to 

parallelise the most time-consuming part of the simulation. 

4.2 THREADPOOL CLASS REFERENCE 

 

4.2.1 PUBLIC MEMBER FUNCTIONS 

 

One of the aims of this research is to devise an object-oriented approach that facilitates users to 

easily and rapidly solve the Navier-Stokes equations.  In meeting this goal, we specify the 

number of public member functions.  These allow the user to specify the characteristics of the 

system that is under investigation, but there is no necessity to have a deep knowledge of the 

architecture and details that lie behind the program. CreateThreads enables the user to nominate 

the number of threads that may act as working agents and that are ready to execute the task.  

Furthermore, by making use of public member functions, users can specify the physical 

characteristics of the system they are investigating; these include the physical size of the system 

and the properties of the fluid.  Through the object setLimits (Limits &) users are also able to 

specify numerical parameters that govern the calculation, such as the number of nodes in each of 

the three spatial directions.  In Channelflow the time step is automatically re-calculated at each 

time to maintain the desired accuracy.    

 void CreateThreads (int numOfThreads) 

 void * Run () 

 void setLimits (Limits &) 

 void DestroyThreadPool () 

 void executeTask (BaseTask *) 

4.2.2 STATIC PUBLIC MEMBER FUNCTIONS 

The integrity of the thread pool must be protected from incursions by the user.  This is achieved 

by creating the ThreadPool as a singleton - only one object of this class can exist. This is 

accomplished by declaring the ThreadPool constructor as private. However, to let users access 

the ThreadPool object, we create the GetInstance public method, which will point the user to the 
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location of our ThreadPool class.  This provides users with access to all public interfaces but 

prevents them from making unintentional errors: it offers one stand-alone thread pool that is 

dedicated to our common task of solving Navier-Stokes equations. 

The ThreadPool function has only one address; however, each thread can make calls to 

GetInstance, and they may carry out their tasks on a distributed system.  

 

  static ThreadPool * GetInstance () 

4.2.3 PRIVATE MEMBER FUNCTIONS 

A key motivation that underpins this work is a desire to make our approach very general and in 

one sense, not problem-specific.  For this reason, we have adopted what might be termed a 

macro-management approach to handling threads.  The thread pool dispatches threads to carry 

out their tasks utilising setTask (BaseTask) but it does not direct their actions in detail.  The task 

of the ThreadPool is to ‘wake up’ the threads when they are required and synchronise their 

actions by waiting for them to complete the tasks.  These are designated private member 

functions. 

 ThreadPool () 

 void WaitToComplete () 

 void WakeUp () 

 void setTask (BaseTask *) 

4.2.4 PRIVATE ATTRIBUTES 

We have described the ThreadPool as macromanaging the threads.  However, within the 

ThreadPool the threads themselves must be managed.   For example, in Chapter 3, we briefly 

mentioned the idea of mutex, which is used to prevent two threads from corrupting common 

data.  In this particular case, we use mutexes to protect data and conflict between conditional 

flags. 

 int m_nmbThreads 

 int m_total_running_threads 

 bool m_stop_threads 
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 BaseTask * m_task 

 bool * m_work 

 map< pthread_t, int > m_map 

 Limits m_lim 

 pthread_mutex_t m_mutex 

 pthread_cond_t m_cond 

 pthread_mutex_t m_mutex_done 

 pthread_cond_t m_cond_done 

4.2.5 STATIC PRIVATE ATTRIBUTES 

We have noted that users must obtain access to the ThreadPool object using the 

ThreadPool::GetInstance method.   However, it is important that users from outside the class 

cannot accidentally corrupt this memory location.  We can ensure that this is the case by 

exploiting the fact that we declare pInstance is static private which guarantee that static 

ThreadPool * pInstance = NULL. 

4.2.6 CONSTRUCTOR AND DESTRUCTOR 

Parallelisation provides us with the capacity to solve computationally significant and substantial 

problems, possibly using several computers simultaneously.  This entails making use of dynamic 

resources (see Chapter 3) but imposes responsibilities on programmers to free up these resources 

after the program has been terminated, which can involve invoking considerable programming 

logic.  In our case, we need to consider how we de-allocate all of the threads because otherwise, 

they would continue to run, and this is achieved through a destructor.  We also need to think 

about how the ThreadPool variables are initialised, which is achieved using a constructor 

ThreadPool::ThreadPool ().  When the Threadpool object has finished, we ensure that 

ThreadPool::~ThreadPool (). 

 

Here we initialize the variables used by the object ThreadPool when it is instantiated. 

413 { 

414         m_task = NULL; 

415         m_mutex=PTHREAD_MUTEX_INITIALIZER; 
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416         m_cond=PTHREAD_COND_INITIALIZER; 

417  

418         m_mutex_done = PTHREAD_MUTEX_INITIALIZER; 

419         m_cond_done = PTHREAD_COND_INITIALIZER; 

420  

421 } 

 

The ideas discussed above require that the ThreadPool constructor is declared as private. We use 

the data hiding attribute of the  Object-Oriented Design here to create a singleton version of the 

class.  These requirements are captured by the call graph below.  It highlights the fact that the 

original Channelflow remains extant, but we implement thread injection to speed up the 

execution of the non-linear term in the Navier-Stokes equations. 

 

 

4.2.7 MEMBER FUNCTIONS  

4.2.7.1 void ThreadPool::CreateThreads (int numOfThreads) 
 

The speed of execution is a raison d’ȇtre of parallelisation.  With this in mind, we have 

developed the CreateThread function to take advantage of the properties of Map, which is a 

container which is a very efficient search algorithm used to find and manipulate a 

particular thread.   Threads are created by ThreadPool and m_map keeps track of pairs of 

thread handles and thread numbers which allow for quick communication with threads. 
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References m_map, m_nmbThreads, m_stop_threads, m_work, and start_thread(). 

433 { 

434       pthread_t handel; 

435       m_work = new bool[numOfThreads]; 

436       m_nmbThreads = numOfThreads; 

437       m_stop_threads = false; 

438  

439       for(int i = 0; i < numOfThreads; ++i)  //loop over  anticipated number of threads 

440       { 

441         m_work[i] = false;                      

442         pthread_create(&handel, NULL, &start_thread ,(void *) this );  //here threads are 

created 

443         m_map[handel] = i; 

444         //m_handel.push_back(handel); 

445  

446       } 

447 } 
 

The following caller graph demonstrates inheritance and encapsulation of Object-Oriented 

principles that we have briefly discussed in the previous chapter. ThreadPool:: Run and 

BaseTask:: Run have the same signature so that the real call will be evaluated at the run time. 

However, ThreadPool class can be compiled and linked regardless,  allowing us to separate it 

into different modules. 

 

 

 

4.2.7.2 void ThreadPool::DestroyThreadPool () 
 

When the simulation is finished, and the program needs to stop running, we need to clear 

all dynamically allocated resources.  Here we implement a method for the threadPool to 

properly destroy itself. This involves notification to all threads to stop running. 

We use a broadcast method to deliver such messages to all running threads. As we work in 

a multithreading environment, we must protect our condition variable by mutexes (see 

Chapter 3) to ensure the delivery of this message to all the running threads. 

References m_cond, m_mutex, and m_stop_threads. 
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466 { 

467   m_stop_threads = true; 

468   cout << "DestroyThreadPool called" << endl; 

469    // protecting conditional variable by mutex 

470    pthread_mutex_lock(&m_mutex); 

471       pthread_cond_broadcast(&m_cond); 

472    pthread_mutex_unlock(&m_mutex); 

473  

474 /* 

475    for(int k = 0; k < m_handel.size(); k++) 

476    { 

477       pthread_join(m_handel[k], NULL); 

478    } 

479 */ 

480    //sleep(5); 

481    

482 } 
 

4.2.7.3 void ThreadPool::executeTask (BaseTask * tsk) 
 

We have noted that we have designed the ThreadPool to be a macromanager.  This is somewhat 

starkly exemplified by the following function.  The job of the ThreadPool is to set the task, wake 

up the threads and wait for them to complete their tasks. 

 

References setTask(), WaitToComplete(), and WakeUp(). 

Referenced by skewsymmetricNL_THREAD(). 

491 { //steps to make task executed  

492   setTask(tsk); 

493   WakeUp(); 

494   WaitToComplete(); 

495  

496   delete tsk; 

497 } 
 

Below is the caller graph for this function: 
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As we can see in this diagram, the ThreadPool::executeTask has only managed the 

sequence of operations and does not have detailed knowledge of the duties of the task. This 

design is targeted to separate the core functionality from the plugin functionality. This 

makes the ThreadPool a stand-alone service.  In the next graph, we see how detailed 

physics of fluid dynamics processes propagates in the core.  This occurs during run time. 

 

Below is the caller graph for this function: 

 

 

 

 

4.2.7.4 ThreadPool * ThreadPool::GetInstance () [static] 

 

ThreadPool:: GetInstance is a public interface to access the location of the ThreadPool object 
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which was created by the private constructor. We briefly touched on encapsulation in the 

previous chapter, and here we present a detailed implementation.  This element of our design 

guarantees that only one object of ThreadPool can exist. 

The graph below shows how extensively GetInstance is called by all other classes: 

 

References pInstance, and ThreadPool(). 

Referenced by skewsymmetricNL_THREAD(). 

423 { 

424         if (pInstance== NULL) 

425         { 

426                 pInstance = new ThreadPool(); 

427         } 

428                 return pInstance; 

429 } 
 

Here is the call graph for this function: 
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4.2.7.5 void * ThreadPool::Run () 
 

This method again demonstrates our philosophy of segregating the management of the program 

logic from the physics.  It illustrates how ThreadPool delivers the Run message to the threads 

and how the threads report back when they have finished their tasks. Also, it maintains 

information on the number of currently running threads.  Hence, we can observe that Run by the 

ThreadPool has the role of macro managing; however, all of the physics is encapsulated in the 

Run method of the particular thread. 

 

References m_cond, m_cond_done, m_map, m_mutex, m_mutex_done, m_nmbThreads, 

m_stop_threads, m_task, m_total_running_threads, m_work, and BaseTask::Run(). 

Referenced by start_thread(). 

529 { 

530     for (;;) //stays in infinitive loop till get signal 

531     { 

532        pthread_mutex_lock(&m_mutex); 

533         int tn= m_map[pthread_self()]; 

534         while ( !m_work[tn] && m_stop_threads == false)  

535         { 

536           pthread_cond_wait(&m_cond, &m_mutex); 

537  

538         } 

539         pthread_mutex_unlock(&m_mutex); 

540  

541         //cout <<"IG: worker thread id=" << tn << " running " <<endl; 

542  

543          if(m_stop_threads) break; 

544  

545          if(m_task) m_task->Run(tn,m_nmbThreads); 

546          m_work[tn]= false; 

547  

548        pthread_mutex_lock(&m_mutex_done); 

549            m_total_running_threads--; 

550            pthread_cond_signal(&m_cond_done); 
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551             //cout << "IG: tn=" << tn << "finished m_total_running_threads=" 

<<m_total_running_threads <<endl; 

552        pthread_mutex_unlock(&m_mutex_done); 

553      } 

554  

555  

556   return NULL; 
557 } 

 

Below is the caller graph for this function: 

 

 

On this graph, we can see that ThreadPool:: Run and BaseTask:: Run have the same signature. 

This architectural design demonstrates the inheritance principle, and we use it here to create 

dynamic calls which will lead us to execute a vast number of instructions. 

 

Here is the caller graph for this function: 

 

 

 

 

4.2.7.6 void ThreadPool::setTask (BaseTask * tk) [private] 

 

References m_task. 

Referenced by executeTask(). 

486 { 

487  m_task = tk; 

488 } 

 

Below is the caller graph for this function: 
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4.2.7.7 void ThreadPool::WaitToComplete () [private] 

 

This is the private method of the ThreadPool class. According to the previous chapter, it should 

not be accessible from outside the object. The main idea of this approach is to use software 

interrupts to obtain signals from the thread and let it run. It is achieved by using condition wait, 

and this resource is protected by mutexes, as can be observed in the following snippet of code: 

 

 

References m_cond_done, m_mutex_done, and m_total_running_threads. 

Referenced by executeTask(). 

503 { 

504     for(;;) //stay in infinitive loop till get the signal 

505     { 

506       pthread_mutex_lock(&m_mutex_done); 

507           while(m_total_running_threads > 0) 

508           { 

509               pthread_cond_wait(&m_cond_done, &m_mutex_done); 

510               //cout << "IG wake up as thread finised " <<endl; 

511           } 

512        pthread_mutex_unlock(&m_mutex_done); 

513        if(m_total_running_threads <= 0) break; 

514      } 
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515 } 

 

Below is the caller graph for this function: 

 

 

 

4.2.7.8 void ThreadPool::WakeUp () [private] 

 

References m_cond, m_mutex, m_nmbThreads, m_stop_threads, m_total_running_threads, 

and m_work. 

Referenced by executeTask(). 

450 { 

451  

452     m_total_running_threads = m_nmbThreads;  

453     m_stop_threads = false; 

454  

455     for(int k = 0; k < m_nmbThreads; k++) 

456     { 

457        m_work[k] = true; //set the flag 
458     } 

459  

460     pthread_mutex_lock(&m_mutex); //protect conditional variable 

461       pthread_cond_broadcast(&m_cond); // broadcasting 

462      pthread_mutex_unlock(&m_mutex); // relise mutex  

463 } 
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Below is the caller graph for this function:  

 

Here we can see again our ThreadPool object is stand alone but it retains a connection with all 

ChanelFlow objects.

 

As illustrated, the thread pool class does not have a detailed knowledge of the instructions to be 

executed; it is just a carrier for them and makes the object of this class a very flexible tool to 

create an injection and take over subsequent calculations by processing them in parallel. 

Thread pool has only two interface methods – setTask and ExecuteTask – which will supply 

information to the pool about what exactly they need to execute. 

Now we have to design an interface which we are going to use to perform the calculation of the 

convection part of Navier-Stokes equations using different algorithms. For this purpose, we 

create a Base Task class. This is an abstract class, and there are no objects that can be created. 

Instead, we are going to derive our skew-symmetrical form, divergence form, convection form, 

and rotational form algorithms.  Instead, real job classes will be derived from this Base Task 

class, making it an interface to supply accurate information to the Thread Pool.   
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Figure 4.4   Diagram to show inheritance used by Base Task class to establish communication 

with concrete algorithms to calculate the non-linear part of Navier-Stokes equations. 

In Figure 4.4, the rectangles below the Base Task box represent specific classes. Objects of these 

classes are instantiated during the run time. The upper part of each box represents the private part 

of the class where the specific logic for physical calculations is implemented. The bottom part of 

those boxes represents the public member function parts of the classes. 

 

4.2.8 MEMBER FUNCTION DOCUMENTATION 

4.2.8.1 VOID BASETASK:: RUN (INT TN,   INT THREADS) [VIRTUAL] 

Note that each of these classes has a public method called Run(), and it has to be the same 

signature as a Run method of the Base Task.  Below is the caller graph for this function: 

 

Here we can see how CreateThreads trigger start_thread which follows ThreadPool: Run 

method, and subsequentially Run method of the BaseTask class. 
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4.2.8.2 LIMITS  

The location and dimensions of the boundaries, the number of computation nodes and their 

spatial distribution form key information that must be provided by the user.   This information is 

held in the Limits class. Objects of this class are designed to hold information regarding domain 

dimension, grid properties, and dimension limits. Also, the object of this class is to hold 

information regarding internal nodes and nodes that belong to the boundary. 

4.2.9 ACCESSING THREADS 

When the thread is created, it returns its handle. The Thread Pool contains the information on 

each running thread by storing its handles in the map container. In this way, the Thread Pool can 

manage running threads and, depending on the load, add or stop some of the threads. However, 

access to the running threads is hidden from the user of the thread pool class. 

In the table below, we compare existing ChannelFlow (Before) code and our Thread Injection 

approach (After).  Our approach does not only make calculation much faster but also makes 

code more concise and more comfortable to follow. 

 

Before After 

//Code snippet of Channelflow implementation  

  

// Accumulate 1/2 u_j du_i/dx_j in f_i 

  for (int i=0; i<3; ++i) 

    for (int j=0; j<3; ++j) { 

      int ij = i3j(i,j); 

      for (int ny=0; ny<Ny; ++ny) 

        for (int nx=0; nx<Nx; ++nx) 

          for (int nz=0; nz<Nz; ++nz) 

            f(nx,ny,nz,i) += 0.5*u(nx,ny,nz,j)*grad_u(nx,ny,nz,ij); 

    } 

// 

//Code snippet after thread 

injection 

 

class 

skewsymmetricNL_task:publ

ic BaseTask 

pool->executeTask( new 

skewsymmetricNL_task(u, f, 

grad_u)); 
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============================================== 

  // II. Add grad dot (u u) to f. Spell out loops because div(uu, f) 

  // would overwrite results already in f (and changing order of 

div 

  // and convex calculations would require an extra transform) 

  

  FlowField& uu = tmp; 

  

  //outer(u,u,uu); 

   t = clock(); 

  

  for (int ny=0; ny<Ny; ++ny) { 

    for (int nx=0; nx<Nx; ++nx) 

      for (int nz=0; nz<Nz; ++nz) { 

        Real u0 = u(nx,ny,nz,0); 

        Real u1 = u(nx,ny,nz,1); 

        Real u2 = u(nx,ny,nz,2); 

        uu(nx,ny,nz,0) = u0*u0; 

        uu(nx,ny,nz,1) = tmp(nx,ny,nz,3) = u0*u1; 

        uu(nx,ny,nz,2) = tmp(nx,ny,nz,6) = u0*u2; 

        uu(nx,ny,nz,4) = u1*u1; 

        uu(nx,ny,nz,5) = tmp(nx,ny,nz,7) = u1*u2; 

        uu(nx,ny,nz,8) = u2*u2; 

      } 

  } 

for (int i=0; i<3; ++i) { 

    int i0 = i3j(i,0); 

    int i1 = i3j(i,1); 

    int i2 = i3j(i,2); 
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    // Add in du_i/dx and du_i/dz, that is, d/dx_j (u_i u_j) for 

j=0,2 

    for (int my=0; my<My; ++my) 

      for (int mx=0; mx<Mx; ++mx) { 

        int kx = u.kx(mx); 

        Complex d_dx(0.0, 

2*pi*kx/Lx*zero_last_mode(kx,kxmax,1)); 

        for (int mz=0; mz<Mz; ++mz) { 

          int kz = u.kz(mz); 

          Complex d_dz(0.0, 

2*pi*kz/Lz*zero_last_mode(kz,kzmax,1)); 

          f.cmplx(mx,my,mz,i) 

            += 

0.5*(d_dx*uu.cmplx(mx,my,mz,i0)+d_dz*uu.cmplx(mx,my,mz,i

2)); 

        } 

      } 

    // Add in du_i/dy, that is d/dx_j (u_i u_j) for j=1 

    for (int mx=0; mx<Mx; ++mx) 

      for (int mz=0; mz<Mz; ++mz) { 

        for (int my=0; my<My; ++my) 

          tmpProfile.set(my, uu.cmplx(mx,my,mz,i1)); 

        diff(tmpProfile, tmpProfile_y); 

        for (int my=0; my<My; ++my) 

          f.cmplx(mx,my,mz,i) += 0.5*tmpProfile_y[my]; // j=1 

      } 

  } 

 

 

Here we demonstrate how the paradigm discussed is applied to our CFD problem. 
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 Line class skewsymmetricNL_task: public BaseTask is defined as a new type that is derived 

from the BaseTask type. Here we use inheritance to make the pool->executeTask accept this 

object as an object of the expected type. 

Line new skewsymmetricNL_task(u, f, grad_u) creates an instance of the 

skewsymmetricNL_task object. All complexity shown on the left-hand side of the diagram is 

now hidden inside the Pool->executeTask method. 

Also, we see them here the separation of duties. The skewsymmetricNL_task object responsible 

for physics, is the pool->execute_task responsible for the execution of this physics which is 

defined in the skewsymmetricNL_task object. 

pool->execute_task does not have detailed knowledge of the object it passes for execution; 

instead, it merely responds by letting some threads execute it. 

This paradigm ensures that all CFD calculations are separated by independent tasks and create a 

responsive and fast means of simulation. 

4.3 skewsymmetricNL_task Class Reference 

 

Here we arrive at the point of supplying an actual physics algorithm to our calculation of the 

non-linear part of Navier-Stokes equations. And this particular task is to implement the skew 

symmetrical scheme. 

This algorithm is captured in the object and derives from the BaseTask class object through 

inheritance. 

What we have briefly discussed in Chapter 3 is here demonstrated in detail. 

This philosophy demonstrates how we separate Navier-Stokes calculations on independent parts 

from what is required for running things in parallel. 

Below is the inheritance diagram for the skewsymmetricNL_task: 

Here we can see how it inherits from the abstract BaseTask class, and we have specific Run() 

methods, which call through the Run() method of the BaseTask: 
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4.3.1 PUBLIC MEMBER FUNCTIONS 

Here we design our interfaces where we can pass all necessary data and perform required physics 

calculations: 

 skewsymmetricNL_task (const FlowField &_u, FlowField &_f, FlowField &_grad_u) 

 void Run (int tn, int threads) 

 void setStep (int step) 

 void setAttributes (Attributes &attr) 

4.3.2 PUBLIC ATTRIBUTES 

    In our design of this class we allocate the mutex variable to fulfill safe calculations which in 

case of multiple threads will need to access the same shared variable: 

 pthread_mutex_t mut 

4.3.3 PRIVATE ATTRIBUTES 

In private attributes of this class we keep variables to fulfill our housekeeping calculations 

needed to maintain integrity with ChannelFlow: 
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 const FlowField & u 

 FlowField & f 

 FlowField & grad_u 

 int m_step 

 Attributes m_attr 

4.3.3.1 void skewsymmetricNL_task::Run (int tn,   int nThreads) 

[virtual] 

In this method we calculate flow field variable based on traversing the slice domain: 

 

References f, grad_u, i3j(), FlowField::Nx(), FlowField::Ny(), FlowField::Nz(), and u. 

207 { 

208  //cout << "Igor test skewsymmetricNL_step1 Run running " << endl; 

209  

210    int Ny = u.Ny()/nThreads; 

211    int Nx = u.Nx(); 

212    int Nz = u.Nz(); 

213  

214    int sty = Ny*tn;  

215    int edy = Ny*(tn+1); 

216  

217    for (int i=0; i<3; ++i) //loop over slice domain 

218       for (int ny=sty; ny < edy; ++ny) 

219         for (int nx=0; nx < Nx; ++nx) 

220           for (int nz=0; nz < Nz; ++nz) 

221             for(int j=0; j <3; j++) 

222             { 

223                 int ij = i3j(i,j); 

224                 f(nx,ny,nz,i) += 0.5*u(nx,ny,nz,j)*grad_u(nx,ny,nz,ij); 

225             } 

226              

227   

228 } 
 

Here is the call graph for this function: 
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4.3.3.2 void skewsymmetricNL_task::setAttributes (Attributes & attr) 

    In our design, all physical attributes pass in as a reference to an instance of the Attributes class 

object. 

This allows us to achieve several targets. Firstly, we can pass to the skewsymmetricNL_task all 

physical data in one go. Secondly, we again encapsulate this process and can easily add new data 

by altering the Attribute class. Note that this change will not require any alteration in 

theskewsymmetricNL_task::setAttributes method. 

 

References m_attr. 

202 { 

203   m_attr = attr; 

204 } 

 

4.3.3.3 void skewsymmetricNL_task::setStep (int step) 
 

References m_step. 

197 { 

198   m_step = step; 

199 } 
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4.4 PARALLEL FFTW 

Running FFT in parallel is another trigger that we use to speed up simulation processes. 

Using spectral methods in CFD require that we apply Fourier transformation to do calculations in 

spectral space. Later on, it requires doing a back Fourier Transform to a physical space. 

Equations 4.5 and 4.6  shows what exactly needs to be calculated. 

The forward FFTW transform a complex array X of size n to an array Y.   

𝑌𝑖 =  ∑ 𝑋𝑗

𝑛−1

𝑗=0

𝑒−2𝜋𝑖𝑗√−1/𝑛 

 

(4.5) 

The backward transform compute 

𝑌𝑖 =  ∑ 𝑋𝑗

𝑛−1

𝑗=0

𝑒2𝜋𝑖𝑗√−1/𝑛 

 

(4.6) 

This process is very computationally expensive and requires about n^2 operations.  The Fast 

Fourier Transform is an effective algorithm for computing the Discrete Fourier Transform and is 

significantly faster as it requires only n*log(n) operations. 

FFTW (Frigo et al., 1998) is an open-source implementation of FFT. At the moment, it is still 

considered the fastest implemented FFT algorithm. 

FFTW has inbuilt multithreaded capabilities which make encapsulating it in DNS code relatively 

easy. 

 

 

 



94 

 

4.5 TIME MEASURE IN PARALLEL ENVIRONMENT 

The raison d’être of this element of our work is to speed up the execution of Channelflow, 

although it should be realised that this is merely an exemplar of our approach.  However, this 

gives rise to an important question: how do we measure time in a parallel environment.  

Generally, one of the main reasons to use parallel processing is to make a program run faster. To 

parallelise a program or algorithm, we need to know which of its parts takes the most 

computational time. The CPU time is used as a parameter to measure performance, but it can be 

only used in sequential processes. In a parallel world, it does not work.  We need to measure wall 

clock time, including communications and synchronisation overheads. 

There are some different performance testing tools available. Profiling allows us to gather 

statistics about the time spent by applications in various program modules. Typically, it switches 

on by rebuilding applications using parameters for profiler options. Then, when the program is 

run it generates a table where time spent in different functions is listed as well as times these 

features were called. 

There is different time measurement which reproduces different clocks used in reflecting the 

performance of calculations: 

 Wall clock time is the amount of time taken to execute code in user space. It is 

calculated as the sum of CPU time, I/O time and communication channel delay; 

 User time is the time the CPU is busy executing code in user space; 

 System time is the time the CPU is busy executing code in kernel space; 

 Idle time is the time the CPU is not busy. Idle time measures unused CPU capacity; and 

 Steal time is the time consumed by the operating system to execute, but was not allowed 

to by the hypervisor. Running the top command can produce two metrics to indicate steal 

time.  Percent idle (%id) and %wa percent I/O wait (%wa). When (%id) is low, the CPU 

is working hard; however, when (%wa) is high the CPU is ready to run, but is waiting for 

I/O to complete it operation. 
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When a program runs in parallel, total CPU time for that program would be more than its elapsed 

real-time. However, the wall clock time may be significantly less. 

4.5.1 RESULTS 

We ran channel flow for default domain size Nx=64, Ny=65, Nz=32 and Re=4000 and did 

experiments with thread pool running 1, 2, 3 and 4 threads. 

Our results presented in Figure 4.5 show significant improvement in the time of simulation using 

the proposed thread injection technique. We can observe that increasing the number of working 

threads allows the same simulation to perform in significantly less time.  

 

 

Figure 4.5 The speeding up of CFD Channelflow by adopting thread injection method 

 

4.6 SUMMARY  

One of the prime motivations of this research is to help scientists and engineers who are well 

versed in the serial world of computing to realise the advantages to be gained by parallelising 

their code.  However, they will require a different mindset. 
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The method we have developed for DNS calculations has proved to be quite efficient and easy to 

implement. Thread injection replaces sequential code execution with some threads running in 

parallel. The thread pool class is a stand-alone object that can serve many CFD tasks. 

The graph presented in Figure 4.5 shows the results of speeding up of simulation channel flow 

DNS using developed in this work thread pool and thread injection technique.   We can observe 

here the significant speeding up of this simulation compared with sequential code implemented 

in ChannelFlow.  
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5 A PLATFORM THAT ACCEPTS SUB-GRID 

MODELS AS PLUG-INS TO ENABLE THE 

TESTING OF LES MODELS AGAINST DNS 

DATA 

5.1 INTRODUCTION 

The Johns Hopkins Turbulent Databases (JHTDB) is a catalogue of solutions of the Navier-

Stokes equations.  These solutions produced by direct numerical simulation (DNS) are accurate 

up to six decimal places.  However, the solution is generated at 1024×1024×1024 grid points in 

space and 1024 time-samples containing 160 petabytes of information. The size of this database 

represents a severe obstacle to using it on a routine basis for practical analysis. An answer to this 

problem is to seek the application of ‘database technology’ in turbulence research and 

computational fluid dynamics (CFD).  Direct numerical simulation **(DNS) of the Navier-

Stokes equations resolves all of the flow structures that affect turbulent flows. However, in the 

case of LES, the Navier-Stokes equations are spatially filtered so that they are expressed in terms 

of the velocities of larger-scale structures.  The rate of viscous dissipation is quantified by 

modelling the shear stress, and this process can lead to error.  

Therefore, rapid testing and evaluation of models are necessary, and this is wholly associated 

with working with large sets of data. In this work, we present a computing platform that allows 

one to dynamically load LES models and quickly compare them to DNS results. The main idea 

permeating our methodology is that the core is defined as that which contains the ‘know-how’ 

associated with accessing and manipulating data, and which operates independently of a plugin.  

In our work, we presented an example demonstrating how users can examine the accuracy of 

LES models and get results almost instantly. 
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5.2 PROBLEM DESCRIPTION 

Flow structures in turbulent flows span many orders of magnitude of length and time scales.  

They range from the length scale at which tiny eddies lose their coherence as their translational 

kinetic energy is dissipated into heat, up to eddies the size of which is related to that of the 

macroscopic system.  The behaviour of the range of flow structures is captured by assuming that 

the fluid is a continuum, and they described by solving the Navier-Stokes equations. However, 

the limitations of computers restrict solutions of the Navier-Stokes equations to low Reynolds 

number flows in simple geometries.  As alluded to above, in most practical situations these 

restrictions make it unfeasible to resolve features of turbulent flows on the smallest length and 

time scales.  Engineers and scientists must, therefore, resort to empirical models of these small-

scale phenomena that are expressed in simple mathematical terms.  The models typically involve 

some form of averaging and approximations. Hence we must have some simple way of 

comparing their accuracy with the exact solutions of the Navier-Stokes equations. 

These solutions are accurate to about six decimal places for mesh size is about  1024×1024×1024 

grid points in space and 1024 time samples — that span the most massive flow structure. The 

entire space-time history of turbulence contains more than 10E12 data points, and users can 

access this data remotely using Web-servii interfaces. The JHTDB is a valuable source of 

information for comparison and evaluation models of turbulence. 

However, the JHTDB database contains 160 petabytes (1.6×1017 B) of information, and this is a 

severe obstacle to using it routinely for practical analyses.  A natural answer to this challenge is 

to seek the application of ‘database technology’ in computational fluid dynamics (CFD) and 

turbulence research.  Turbulent flows are inherently unsteady and can have significant 

implications in many practical situations.  For example, waves may give rise to substantial 

fluctuating forces on bluff bodies immersed in turbulent flows, and methods must be found to 

attenuate these effects.  Flows through tree canopies, for example, are significant in determining 

the rate of exchange of gases such as water vapour and carbon dioxide with the atmosphere, and 

a good understanding of these phenomena is essential when studying climate change.   

This research was inspired by a paper by Lee et al. (2015) in which challenges of working with 

massive data sets are described, and a call is made for the development of “database technology” 

in the area of computational flow dynamics.  The aim is to seek automated ways of identifying 
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patterns and reduced-order descriptions, developing machine learning, and performing data 

mining and so on, to reduce a significant amount of data to be transmitted and processed. 

 

In our work, we anticipate creating a platform using modular programming which allows LES 

models to be rapidly evaluated and dynamically loaded to compare against DNS results such as 

those available in the JHTDB.  LES and DNS solutions are compared for turbulent flow with a 

Reynolds number based on the Taylor microscale, λ, of 433, and they demonstrate that refining 

the filter width results in more accurate solutions of the Navier-Stokes equations. 

 

 

5.3 GOVERNING EQUATIONS 

The flow behaviour of incompressible viscous fluids is governed by the Navier-Stokes equations 

expressed as 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
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𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥
(𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗
)  , (5.1) 

and the fluid must obey the conservation of mass that is represented by 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 (5.2) 

The idea that underpins large eddy simulation (LES) is that the behaviour of large-scale 

structures which occur in turbulent flows can be captured by spatially filtering the Navier-Stokes 

equations (Smagorinsky, 1963) and the dissipative structures modelled. .Mathematically, a 

spatial filtering operation using a kernel G is defined as: 

  ydyyxG


)()(   (5.3) 
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The result of this operation is a similar system of equations, but now unknown variables are 

filtered which have characteristics of averaging over the filter width size. 

 

𝜕�̅�𝑖

𝜕𝑥𝑖
= 0                                     (5.5) 

The advantage of this approach is that the system of equations is considerably reduced compared 

with the system required for DNS.   However, the LES system of equations is not closed as it 

contains an extra term. A second issue arises with averaging techniques in general; namely, there 

is a loss of information.  As a result, large eddies do not contain all the information that is 

required to compute the future of a given flow.  To resolve these issues several subgrid-scale 

models were introduced.  One of the earliest models was proposed by Smagorinsky (1963) that 

assumes the dissipation of energy is described by using a grid cell as a filter.  Alternative models 

have been proposed, each one trying to address some issues of existing models (You, 2007).  

This gives rise to the question of how they might be compared. If the ‘true’ flow field is known, 

then it can be used to develop an a priori test.  In our work, we are going to use the results of 

Direct Numerical Simulation (DNS) collected in the Johns Hopkins Turbulence Database 

(JHTDB). 

In this work, we present a simple-to-use platform that can be employed to compare the 

effectiveness of a wide range of LES models and compare them with DNS data.  To date, 

researchers have tended to deal with relatively simple data. They compare results of calculations 

with experimental results or compare them with obvious analytical solutions or some simplified 
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2-D graphs.  The situation dramatically changed when we needed to deal with the 4-D space of 

petabytes of data. 

This work is motivated by the view that LES is formulated as a system of n equations with n + 1 

unknowns. There are endless opportunities to supply the final equation. Considering the space 

that this equation describes is quite significant, and LES is a promising tool for the future,  our 

approach creates a considerable number of opportunities for researchers as well as for 

developers.  The software presented here will be in the public domain. 

5.4 DESIGN AND IMPLEMENTATION OF IDEAS 

The purpose of this research is to produce a highly efficient platform that is an easy and 

convenient tool for the scientific community to devise and test their sub-grid models against the 

results of DNS.  Schematically it is presented in Figure 5.1 below. 

 

Figure 5.1 The platform comprises two components.  A is known as the core, and B represents 

plug-ins that enable researchers to test the accuracy of their proposed LES models almost 

instantaneously 

The system we have developed comprises two components, namely:  

 The core A that can communicate with the Johns Hopkins Turbulent Database by web 

services and collect and store all relevant information on a local machine. It also includes 
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a range of numerical simulations, filtering operations and comparators that are not bound 

to any particular sub-grid model. 

 A plugin component B where all specific model relations are set by the user.   

 

A and B are two completely independent stand-alone modules. 

The idea is that A can be extended by object B without having to rebuild A. One can think of A 

as a repository of knowledge that can be accessed by the user.  The implementation of this idea 

provides a flexible platform that allows the scientific community to test and compare different 

sub-grid models without the necessity of writing extensive computer code. 

C++ has proven to be a u useful language language for scientific calculations, and even if C++ 

does not provide the language support for plugin implementation, it nonetheless provides a sound 

basis for it.  Firstly, we discuss the language capability that can be used to implement the 

platform we have designed.  C++ pure virtual functions, abstract base classes, and interface 

classes form the foundation of our design implementation. The interface class is abstract; 

therefore, the compiler does not require a particular implementation of the class. Hence our 

module A does not have any linkage issues.  The instantiation of the object class occurs during 

run time through the derived plugin classes. 

 

5.5    KEY COMPONENTS 

5.5.1 MEMORY MANAGEMENT. 

The platform we have developed must handle large amounts of data. For this reason, memory 

management is crucial and requires special attention.  Let us consider what and how the memory 

is used, and what options are available to the developer. The memory that an application uses is 

divided into four different areas: 

 The code area, where the compiled program resides; 

 The global variables area; 
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 The stack from which parameters and local variables are allocated; and 

 The heap in which dynamically allocated variables reside. 

The first two options are not very relevant because the code area is usually quite small and global 

variables are rarely used in the development of modern software.  The stack and the heap are 

where most memory is located. 

 

5.5.1.1 THE STACK 

The temporary variables created by each function stored in the memory segment are called the 

stack. The stack memory is managed and optimised by the CPU.  When we declare a new 

variable in the function or method, it is "pushed" onto the stack. When the function exits, all of 

the stack variables are freed, and that region of the memory becomes available for other stack 

variables. 

The stack memory is managed by the operating system, which makes it more attractive to use. 

This memory does not need to be allocated by hand or released once it is no longer required. The 

operating system deletes this memory when variables have gone out of scope. Stack memory is 

quite fast and usually organised very efficiently. However, the size of the stack memory is 

restricted by the operating system (Elke, 2004). 

5.5.1.2 THE HEAP 

The heap – also known as the “free store” – is a large pool of memory used for dynamic 

allocation. This memory is not managed automatically by the operating system.  It does not have 

a scope and requires manual creation.  This memory needs to be free when it is no longer needed.  

If this process is not synchronised, the system may exhibit memory leak. Because the precise 

location of the memory allocated is not known in advance, it has to be accessed indirectly using 

pointers. Compared with the stack, the heap does not have size restrictions on variable size, from 

those arising from the obvious physical limitations imposed by the hardware (Wilson et al., 

1995). 



104 

 

5.5.1.3 STACK VS HEAP 

DNS and LES require manipulation of large amounts of data; hence although we have to manage 

the heap memory, it is a promising option for our project. We will describe later how exactly the 

heap is used in our platform. 

5.6 DATABASE ENGINE 

Our design aims to separate the core (know-how system) and the ability to use plugins with 

different LES models to test.  

Our philosophy is based on the fact that the John Hopkins database is difficult to use for practical 

applications. Instead, we are going to implement our database, see Figure 5.1. 

This database will have a built-in the two-way communication process. The first one is 

communication with the John Hopkins database and collecting DNS solutions, Then our 

computational engine will build filtering solutions and them in local DB. The second one is a 

feather communication with plugins to test different LES models. This is how knowledge will be 

built inside our database. 

This dictates the unusual requirement for the database engine. Rather than be a stay alone server 

like MySql or SqlServer, which facilitate a lot of requests from clients, our database should be 

inbuilt into the process, and it has to be very light and fast. All of the above considerations led us 

to choose the SQLite engine (Haldar, 2015). 

 Compared to other database engines, SQLite is a server, not a client.  It is a fast, light and 

reliable open-source library. SQLite has an interface with C and C++ and is thread-safe, which 

opens the door for massively parallel transactions.  SQLite did not need a stand-alone server 

process and was embedded in a current working application. SQLite reads and writes directly to 

ordinary disk files.  It is extremely fast, and this is why it employed in applications of many well-

known users including Apple, Airbus, Sun Microsystems and Skype.  There are many other 

users, but they have not all been identified because of the open-source nature of the SQLite.  

However, its popularity, and therefore its implied reliability, have prompted us to use this 

database engine (Haldar, 2015). 
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5.7 DATABASE CLASS REFERENCE 

According to the philosophy of Object Oriented Principles, we designed our class as a separate 

entity with member functions which should make it atomic. 

 Here we present our design for our LES database class. 

5.7.1 PUBLIC MEMBER FUNCTIONS 

 Database (const char *filename) 

 ~Database () 

 bool open (const char *filename) 

 table query (char *query) 

 void close () 

 void begin () 

 void commit () 

 void end () 

5.7.2 PRIVATE ATTRIBUTES 

 sqlite3 * database 

5.7.3 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION 

Database::Database (const char * filename)  // this is the constructor code 

 

References database, and open(). 

5 { 

6         database = NULL; 

7         open(filename); 

8 } 

 

Below is the call graph for this function: 

 

In this graph, we see that open database requires constructor of a Database call, an object of the 

Database class instantiate. 

Database::~Database ()   

// This is the destructor code. We are not allowed to let the database object be automatically 

destroyed, 
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// so we leave the lines below empty. 

 

11 { 

12 } 

 

5.7.4 MEMBER FUNCTION  

The database state is changed by the logical instructions of operation called transactions. 

Here in our design begin() and end() methods to specify start and end of the transaction. 

 

void Database::begin () 

References database. 

Referenced by core::createLES_DB(). 

23 { 

24   sqlite3_exec(database, "BEGIN TRANSACTION;", NULL, NULL, NULL);  

25 } 

 

 

 

 

void Database::close () 

 

References database. 

Referenced by core::createLES_DB(), and main(). 

76 { 

77         sqlite3_close(database);    

78 } 

 

 

 

void Database::commit () 

 

References database. 

Referenced by core::createLES_DB(). 

32 { 

33   sqlite3_exec(database, "COMMIT", NULL, NULL, NULL); 

34 } 
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void Database::end () 

 

References database. 

Referenced by core::createLES_DB(). 

28 { 

29    sqlite3_exec(database, "END TRANSACTION;", NULL, NULL, NULL); 

30 } 

 

 

bool Database::open (const char * filename) 

 

References database. 

Referenced by Database(). 

15 { 

16         if(sqlite3_open(filename, &database) == SQLITE_OK) 

17                 return true; 

18                  

19         return false;    

20 } 

 

 

 

table Database:: query (char * query) 

 

References database. 

Referenced by core::createLES_DB(), core::getFilteredVelosity(), core::getFilterWidth(), and 

core::getModelSize(). 

 

39 { //the code below is a c++ wrapper to sql language for communicating with database  

40         sqlite3_stmt *statement;               //prepare statement object 

41         vector<vector<string> > results;  //declare matrix using stl containers 

42  

43         if(sqlite3_prepare_v2(database, query, -1, &statement, 0) == SQLITE_OK) 

44         { 

45                 int cols = sqlite3_column_count(statement); 

46                 int result = 0; 

47                 while(true) 

48                 { 
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49                         result = sqlite3_step(statement); //start building results 

50                          

51                         if(result == SQLITE_ROW) 

52                         { 

53                                 vector<string> values; 

54                                 for(int col = 0; col < cols; col++) 

55                                 { 

56                                         values.push_back((char*)sqlite3_column_text(statement, col)); 

57                                 } 

58                                 results.push_back(values); //populate stl container with results 

59                         } 

60                         else 

61                         { 

62                                 break;    

63                         } 

64                 } 

65             

66                 sqlite3_finalize(statement); //release memory use by prepared statement 

67         } 

68          

69         string error = sqlite3_errmsg(database); // prepare error message if found 

70         if(error != "not an error") cout << query << " " << error << endl; 

71          

72         return results;   

73 } 

 

Below is the caller graph for this function: 

 

 

In this graph, we see how the Database class correlated with the core class. 

Any calls from the core like createLES_DB, getFilterWidth or getModel Size end up in a call to 

Database::query. 

Member Data Documentation 

sqlite3* Database::database [private] 

 



109 

 

Referenced by begin(), close(), commit(), Database(), end(), open(), and query(). 

 

5.8 FAST FOURIER TRANSFORMATION 

Results of DNS and LES calculations form a 3-D field of N3 double-precision values in physical 

space where N is the domain size.   To compare such broad groupings, we have to develop a 

comparator operator. This operator is based on comparing spectra populated in Fourier with 

frequency domain space. Spectra calculation is computationally intensive and requires efficient 

algorithms to perform Fast Fourier Transformation. To achieve this, we have chosen the FFTW 

open-source library developed at MIT by Frigo and Johnson (Frigo et al., 1998). 

Our choice of FFTW was motivated by its performance which is superior to other available FFT 

software and is widely used in many scientific applications. 

In the next chapter, we will have discussed in detail how this was done using the Edward 

supercomputer. 
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6 EDWARD HIGH-PERFORMANCE 

COMPUTER 
 

6.1 INTRODUCTION 

The project has been built, developed, tested and run on the Edward High-Performance Cluster 

based at the University of Melbourne. It executes commands that are about three orders of 

magnitude higher than personal computers. It has about six orders more RAM than a personal 

computer. But its main advantage is that it is based on the GNU/Linux operation system which 

renders it compatible with any other types of Linux operation system (Strazdins,2012; Galassi, 

2009). 

6.2 THE CORE CLASS AND ITS MEMBERS 

 

CORE CLASS REFERENCE 
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Figure 6.1 Collaboration diagram for core class 

 

6.2.1 PUBLIC MEMBER FUNCTIONS 

Methods listed below will serve the role of interfaces to communicate with plugins and perform 

different LES simulations tasks: 

 core () 

 void load_plugin () 

 void use_plugin () 

 void unload_plugin () 

 std::string name () 

 int get_model_size () 

 double * get_filtered_u () 

 double * get_filtered_v () 

 double * get_filtered_w () 

 double dfdx (int ind, order_t o, double *u) 

 double dfdy (int ind, order_t o, double *u) 

 double dfdz (int ind, order_t o, double *u) 

 int get_filter_width () 

 void model_stress () 

 int get_index (size &pos) 

 size getPos () 

 void set_size (size &s) 

 double * allocate_3Darr (size &) 

 int getFilterWidth (Database *db) 

 int getModelSize (Database *db) 

 void createLES_DB (std::string source_dir, filter_base &f, std::string out_dir) 

 FilteredData getFilteredVelosity (point &p, Database *db) 

 void getFilteredVelosity (LIST_POINTS &pl, LIST_DATA &ld, Database *db) 
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6.2.2 PRIVATE MEMBER FUNCTIONS 

The private method of the class is not accessable from outside of the object and is intended to 

maintain internal object functionality: 

 int getdir (std::string dir, std::string ext, std::vector< std::string > &vfiles, const std::string 

&optional="") 

 int read_file (string &path, string &fname, size &sz, int iz, double *u, double *v, double *w) 

 int indx (size &sz, int x, int y, int z) 

 int periodic_indx (int size, int ind) 

 double filter (point &, size sz, filter_base &f, double *v) 

6.2.3 PRIVATE ATTRIBUTES 

 plugins::Plugin * m_plugin 

 void * m_handle 

 int m_model_size 

 size m_size 

 int m_fw 

 Database * m_db 

 

 

6.2.4 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION 

core::core () //default constructor , no data members set at this stage yet 

 

41            : m_size(0,0,0),m_handle (NULL),m_fw(0),m_db(0)  

42  { 

43  } 
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6.2.5 MEMBER FUNCTION  

6.2.5.1 double * core::alocate_3Darr (size & sz) 

 

References size::lenX, size::lenY, and size::lenZ. 

Referenced by createLES_DB(). 

395    {//dynamicly allocate space and build 3D array 

396         double *arr=0; 

397         arr = new double[sz.lenX * sz.lenY * sz.lenZ](); // dynamic memory allocation 

398         if(arr == NULL) cout << "Can't allocate memory" << endl; 

399         return arr;  

400    }  
 

Here is the caller graph for this function: 

 

 

void core::createLES_DB (std::string source_dir,   filter_base & f,   std::string out_dir) 

 

References alocate_3Darr(), Database::begin(), Database::close(), Database::commit(), 

Database::end(), filter(), filter_base::get_fw(), getdir(), indx(), Database::query(), read_file(), 

point::x, point::y, and point::z. 

176    { // this is where is actual LES database been populated 

177  

178      struct stat buffer;    

179      if( stat(out_dir.c_str(), &buffer) == 0)  

180      { 

181       cout << "out_dir " << out_dir << " exist. Override? (Y/N) " <<endl;  

182       string choice; 

183       getline(cin, choice); 

184       while (choice != "n" && choice != "N" && choice != "y" && choice != "Y") 

185       { 

186          printf ("\nPlease enter Y (Yes) or N (No)\n");  

187          getline(cin, choice); 

188       } 

189          if (choice == "Y" || choice == "y"){ remove(out_dir.c_str());} 

190          else return ; 

191      } 

192  

193       
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194       

195      std::vector<std::string> files; 

196      std::string ext="dat"; 

197      int nf = getdir(source_dir,ext,files); 

198      size DNS_sz(nf,nf,nf); 

199       

200      double* u = alocate_3Darr(DNS_sz); 

201      double* v = alocate_3Darr(DNS_sz); 

202      double* w = alocate_3Darr(DNS_sz); 

203  

204  

205      for(int z = 0; z < files.size();z++) 

206      { 

207         cout << "reading " << files[z] << endl; 

208         read_file(source_dir,files[z],DNS_sz,z,u,v,w); 

209      } 

210  

211  

212      int fw=f.get_fw(); 

213      int LES_len = nf/fw; 

214      int LES_cellNo = 0; 

215  

216      size LES_model_sz(LES_len,LES_len,LES_len); 

217      size LES_cell_sz(fw,fw,fw); 

218  

219      char* path = (char*)source_dir.c_str() ; 

220  

221      Database *db =  new Database(out_dir.c_str()); 

222  

223      db->query((char*)"CREATE TABLE source (filter_width INTEGER, LES_model_sz 

INTEGER, path TEXT);"); 

224      db->query((char*)"CREATE TABLE data   (ind INTEGER PRIMARY KEY, 

filtered_u REAL, filtered_v REAL , filtered_w REAL);"); 

225  

226      stringstream sfw; 

227      sfw<<fw; 

228      stringstream slen; 

229      slen<<LES_len; 

230      string ch=","; 

231      string en=" );"; 

232      string qvo="\""; 

233       

234  

235      string insert_source="INSERT INTO source VALUES("; 

236      insert_source += sfw.str(); 

237      insert_source += ch; 
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238      insert_source += slen.str(); 

239      insert_source += ch; 

240      insert_source += qvo; 

241      insert_source += source_dir; 

242      insert_source += qvo; 

243      insert_source += en; 

244  

245      //printf("insert_source=[%s\n",insert_source.c_str()); 

246      db->query((char*)insert_source.c_str()); 

247      //db->query((char*)"INSERT INTO source VALUES(5,LES_len,path );"); 

248  

249  

250    point orig(0,0,0); 

251    db->begin(); 

252      for(int zz=0; zz < LES_len; zz++) 

253      { 

254         orig.x = 0; 

255         for(int xx = 0; xx < LES_len;xx++) 

256         { 

257            orig.y=0; 

258            for(int yy=0; yy <LES_len;yy++) 

259            { 

260              int ind = indx(LES_model_sz,xx,yy,zz); 

261              double filtred_u = filter(orig,DNS_sz,f,u); 

262              double filtred_v = filter(orig,DNS_sz,f,v); 

263              double filtred_w = filter(orig,DNS_sz,f,w); 

264              LES_cellNo++; 

265  

266              orig.y += fw;  

267              stringstream sind; 

268              sind<<ind; 

269              stringstream sfiltred_u; 

270              sfiltred_u<<filtred_u; 

271              stringstream sfiltred_v; 

272              sfiltred_v<<filtred_v; 

273              stringstream sfiltred_w; 

274              sfiltred_w<<filtred_w; 

275  

276              insert_source="INSERT INTO data VALUES("; 

277              insert_source += sind.str(); 

278              insert_source += ch; 

279              insert_source += sfiltred_u.str(); 

280              insert_source += ch; 

281              insert_source += sfiltred_v.str(); 

282              insert_source += ch; 

283              insert_source += sfiltred_w.str(); 
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284              insert_source += en; 

285             db->query((char*)insert_source.c_str()); 

286            } 

287            db->commit(); 

288           orig.x+= fw; 

289         } 

290         orig.z += fw; 

291         printf(" done level %d \n",zz); 

292       } 

293  

294     db->end(); 

295  

296  

297  

298      delete[] u; 

299      delete[] v; 

300      delete[] w; 

301  

302  

303      db->close(); 

304      delete db; 

305  

306      cout << out_dir << " Has been successfully created" << endl; 

307   

308  

309    } 

 

Here is the call graph for this function: 
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double core::dfdx (int ind,   order_t o,   double * u) 

 

Referenced by plugins::Smagorinsky::stress(). 
 

 

Here is the caller graph for this function: 

 

 

double core::dfdy (int ind,   order_t o,   double * u) 

 

double core::dfdz (int ind,   order_t o,   double * u) 

 

 

double core::filter (point & pmin,   size sz,   filter_base & f,   double * v) [private] 

 

References filter_base::get_fw(), indx(), filter_base::weight(), point::x, point::y, and point::z. 
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Referenced by createLES_DB(). 

312 { 

313  

314       int fw=f.get_fw(); 

315       double sum=0; 

316  

317       point pmax=pmin; 

318       pmax.x+=fw; 

319       pmax.y+=fw; 

320       pmax.z+=fw;        

321  

322       for(int z =pmin.z; z < pmax.z; z++) 

323        for(int x = pmin.x; x < pmax.x; x++) 

324         for(int y = pmin.y; y < pmax.y; y++) 

325         { 

326           int ind = indx(sz,x,y,z); //sz here is DNS model size 

327           //position in gaussian weight quibe 

328           int xg = x-pmin.x; 

329           int yg = y-pmin.y; 

330           int zg = z-pmin.z; 

331           //printf("Filter ind=%d xg=%d yg=%d zg=%d\n",ind,xg,yg,zg); 

332           sum += v[ind]*f.weight(xg,yg,zg); 

333  

334         } 

335  

336      return sum; 

337 } 
 

Here is the call graph for this function: 

 

 

Here is the caller graph for this function: 

 

 

int core::get_filter_width () 

double * core::get_filtered_u () 
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Referenced by plugins::Smagorinsky::stress(). 

 

 

Here is the caller graph for this function: 

 

 

double * core::get_filtered_v () 

 

 

Here is the caller graph for this function: 

 

 

double * core::get_filtered_w () 

 

 

Here is the caller graph for this function: 

 

 

int core::get_index (size & pos) 

 

Here is the caller graph for this function: 

 

 

int core::get_model_size () [inline] 

 

References m_model_size. 

 

int core::getdir (std::string dir,   std::string ext,   std::vector< std::string > & vfiles,   const 

std::string & optional = "") [private] 

 

References compare(). 



121 

 

Referenced by createLES_DB(). 

408    { 

409        DIR *dp; 

410     struct dirent *dirp; 

411     if((dp  = opendir(dir.c_str())) == NULL) { 

412         cout << "Error(" << errno << ") opening " << dir << endl; 

413         return errno; 

414     } 

415  

416     list<string> lfiles; 

417     const string empty; 

418  

419     while ((dirp = readdir(dp)) != NULL) { 

420         string file = dirp->d_name; 

421  

422      //cout << "IG: file=" <<file << endl; 

423      int idx = file.rfind('.'); 

424         if(idx != string::npos) 

425         { 

426            if(optional == empty) 

427            { 

428                 if( file.substr(idx+1) == ext) lfiles.push_back(file); 

429            } 

430            else 

431            { 

432              int len = file.length(); 

433              int opt = optional.length(); 

434  

435  

436              if(len > opt) 

437              { 

438                string substr = file.substr(len-opt,opt); 

439                if(substr == optional)  lfiles.push_back(file); 

440              } 

441  

442            } 

443         } 

444     } 

445     lfiles.sort(compare); 

446     list<string>::iterator it; 

447     for(it=lfiles.begin();it != lfiles.end(); it++) 

448     { 

449       vfiles.push_back(*it); 

450     } 

451  

452     closedir(dp); 
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453     return vfiles.size(); 

454  

455    } 

 

Here is the call graph for this function: 

 

 

Here is the caller graph for this function: 

 

 

void core::getFilteredVelosity (LIST_POINTS & pl,   LIST_DATA & ld,   Database * db) 

 

References getFilteredVelosity(). 

117    { 

118       LIST_POINTS::iterator ip; 

119  

120        /* 

121        list<int> tl; 

122        list<int>::iterator it; 

123        tl.push_back(5); 

124        for(it = tl.begin() ; it != tl.end(); it++) 

125        { 

126        } 

127        */ 

128      

129       for(ip = pl.begin(); ip != pl.end(); ++ip) 

130       { 

131          point p=*ip; 

132          FilteredData fd =  getFilteredVelosity(p,db); 

133          dl.push_back(fd); 

134       } 

135    } 

 

Here is the call graph for this function: 
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FilteredData core::getFilteredVelosity (point & p,   Database * db) 

 

References getFilterWidth(), getModelSize(), indx(), m_db, m_fw, m_size, 

Database::query(), size::set(), point::x, point::y, and point::z. 

Referenced by getFilteredVelosity(), and main(). 

138    { 

139       if(m_db != db) 

140       { 

141         m_db = db; 

142         m_fw = getFilterWidth(db); 

143         int len = getModelSize(db); 

144         m_size.set(len,len,len); 

145       } 

146    

147       int ind = indx(m_size,p.x,p.y,p.z); 

148       stringstream sind; 

149       sind<<ind; 

150  

151       string query="SELECT * FROM data WHERE  ind="; 

152       query += sind.str(); 

153        

154       table res = db->query((char*)query.c_str()); 

155       table::iterator it; 

156       for(it = res.begin(); it < res.end(); ++it) 

157       { 

158         row  rw = *it; 

159         /* 

160         cout << "Values: (ind=" << rw.at(0) << 

161                               ", u=" << rw.at(1) << 

162                               ", v=" << rw.at(2) << 

163                               ", w=" << rw.at(3) << 

164                               ")" << endl; 
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165          */ 

166         double u  = atof(rw.at(1).c_str()); 

167         double v  = atof(rw.at(2).c_str()); 

168         double w  = atof(rw.at(3).c_str()); 

169         FilteredData pnt(u,v,w); 

170         return pnt; 

171    

172       } 

173    } 

 

Here is the call graph for this function: 

 

 

Here is the caller graph for this function: 

 

 

int core::getFilterWidth (Database * db) 

 

References Database::query(). 

Referenced by getFilteredVelosity(), and main(). 

104    { 

105         table res = db->query((char*)"SELECT filter_width FROM source;"); 

106         table::iterator it =  res.begin(); 

107         return atoi((*it).at(0).c_str()); 

108    } 
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Here is the call graph for this function: 

 

 

Here is the caller graph for this function: 

 

 

int core::getModelSize (Database * db) 

 

References Database::query(). 

Referenced by getFilteredVelosity(), and main(). 

110    { 

111         table res = db->query((char*)"SELECT LES_model_sz FROM source;"); 

112         table::iterator it =  res.begin(); 

113         return atoi((*it).at(0).c_str()); 

114    } 

 

Here is the call graph for this function: 

 

 

Here is the caller graph for this function: 

 

 

size core::getPos () 

 

Referenced by plugins::Smagorinsky::stress(). 

 

Here is the caller graph for this function: 

 



126 

 

 

int core::indx (size & sz,   int x,   int y,   int z) [private] 

 

References size::lenX, size::lenY, size::lenZ, and periodic_indx(). 

Referenced by createLES_DB(), filter(), getFilteredVelosity(), and read_file(). 

511 { 

512  

513   int xp = periodic_indx(sz.lenX,x); 

514   int yp = periodic_indx(sz.lenY,y); 

515   int zp = periodic_indx(sz.lenZ,z); 

516   int ind =  yp + sz.lenY*(xp + sz.lenX*zp); 

517   return ind; 

518 } 

 

 

 

 
 

Figure  6.2 The code above implements the idea of periodic boundary conditions, where we are 

simulating infinity by a finite number of cells. If a point crosses the boundary, another one comes 

inside from the other side. 

Here is the call graph for this function: 

 

 

Here is the caller graph for this function: 
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Figure 6.3 Diagram to show objects to references index class 

 

void core::load_plugin () 

 

References construct(), m_handle, and m_plugin. 

Referenced by model_stress(). 

46  {//this method dynamicly load plugin and granted access to core object 

47     

48      //void *handle = NULL; 

49      if(!(m_handle = dlopen("lib/libplugin.so", RTLD_LAZY))) 

50      { 

51        std::cerr << "Plugin: " << dlerror() << std::endl; 

52        return; 

53      } 

54      dlerror(); 

55  

56     pluginConstructor construct = (plugins::Plugin* (*)(void)) dlsym(m_handle, 

"construct"); 

57     char *error = NULL; 

58     if((error = dlerror())) 

59     { 

60       std::cerr << "Plugin: " << dlerror() << std::endl; 

61       dlclose(m_handle); 

62       return; 

63     } 

64  

65      //plugins::Plugin *plugin = construct(); 

66      //std::cout <<  plugin->toString() << std::endl; 

67      //delete plugin; 

68       m_plugin = construct(); 

69      //dlclose(handle); 

70  } 
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Here is the call graph for this function: 

 

 

Here is the caller graph for this function: 

 

 

void core::model_stress () 

 

References plugins::Plugin::load_core(), load_plugin(), m_plugin, plugins::Plugin::name(), 

plugins::Plugin::stress(), and unload_plugin(). 

340    { 

341       load_plugin(); 

342       m_plugin->load_core(this ); 

343  

344       std::cout << "simulating stress by " << m_plugin->name() << " model" << std::endl; 

345  

346       Matrix m(3,3); 

347       m_plugin->stress(m); 

348  

349       unload_plugin(); 

350         

351    } 
 

Here is the call graph for this function: 

 

 

std::string core::name () 



129 

 

 

Referenced by plugins::Smagorinsky::load_core(). 

86    { 

87       return std::string(" The  core"); 

88    }  
 

Here is the caller graph for this function: 

 

 

int core::periodic_indx (int size,   int ind) [private] 

 

Referenced by indx(). 

499 { 

500   int res; 

501   if ( ind < size  &&  ind >= 0) return ind; 

502   if ( ind >= size ) { res = ind +1 - size; return res; } 

503   if ( ind < 0 )  { res =  ind -1 + size; return res;} 

504  

505   // should not ever come to this point of return 

506   // return unchange indx; 

507    return ind; 

508 } 

 

Here is the caller graph for this function: 

 

 

int core::read_file (string & path,   string & fname,   size & sz,   int iz,   double * u,   double 

* v,   double * w) [private] 

 

References indx(), and size::lenX. 

Referenced by createLES_DB(). 

458 { 

459        string fullname=path+fname; 
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460        ifstream infile(fullname.c_str()); 

461        string line; 

462  

463  

464        int ix=0; 

465        int iy=0; 

466        int ind; 

467        while (getline(infile, line)) 

468        { 

469           //ind = ix + sz.x*(iy + sz.y*iz); 

470           //          //ind = iy + sz.y*(ix + sz.x*iz); 

471           // 

472            ind = indx(sz,ix,iy,iz); 

473  

474           istringstream iss(line); 

475           double v1,v2,v3; 

476           if (!(iss >> v1 >> v2 >> v3)) 

477           { 

478                break; 

479           } 

480  

481           u[ind] = v1; 

482           v[ind] = v2; 

483           w[ind] = v3; 

484  

485  

486           if(ix < sz.lenX) ix++; 

487           if(ix == sz.lenX) 

488           { 

489             ix = 0; 

490             iy += 1; 

491           } 

492  

493  

494         } 

495    infile.close(); 

496 } 

 

Here is the call graph for this function: 

 

 

Here is the caller graph for this function: 
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void core::set_size (size & s) [inline] 

 

References m_size. 

30 {m_size = s;} 

 

void core::unload_plugin () 

 

References m_handle, and m_plugin. 

Referenced by model_stress(). 

80    { 

81       delete m_plugin; 

82       dlclose(m_handle); 

83    } 

 

Here is the caller graph for this function: 

 

 

void core::use_plugin () 

 

References plugins::Plugin::load_core(), m_plugin, and plugins::Plugin::name(). 

73   { 

74      std::cout << "using plugin " <<std::endl; 

75      std::cout << m_plugin->name() << std::endl; 

76      m_plugin->load_core(this ); 

77   } 

 

Here is the call graph for this function: 
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The object of the core system can be created by the following call. 

6.2.6 MEMBER DATA  

Database* core::m_db [private] 

 

Referenced by getFilteredVelosity(). 

int core::m_fw [private] 

 

Referenced by getFilteredVelosity(). 

void* core::m_handle [private] 

 

Referenced by load_plugin(), and unload_plugin(). 

int core::m_model_size [private] 

 

Referenced by get_model_size(). 

plugins::Plugin* core::m_plugin [private] 

 

Referenced by load_plugin(), model_stress(), unload_plugin(), and use_plugin(). 

size core::m_size [private] 

core *a = new(core); 

 

The core class is a singleton, so only one instance of this object will be available.  After the 

object of the core has been instantiated the user can access its public members listed below: 
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Figure 6.4  The relationships between the core class and the database class is the call graph that 

demonstrates the hierarchy employed by the core to generate a LES database.  For example, the 

core applies filters of a given width and weight to those elements 
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Figure 6.5 The hierarchy of instructions issued by the core to generate an LES database and 

comparator. This method is referred in the Figure 6.4 

The core is aware of the periodicity of the data and compensates for this when reading beyond 

the file width.   It is capable of identifying the data to be manipulated, carrying out the requested 

filtering and comparing the LES and DNS models on a time scale of about 10-3 seconds. 

 

6.3 FILTERING OPERATIONS 

6.3.1 FILTER_BASE CLASS REFERENCE 

 

#include <filter.h> 
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Figure 6.6 Inheritance diagram for filter_base 

 

Public Member Functions 

 filter_base (int fr) 

 virtual double weight (int x, int y, int z)=0 

 int get_fw () 

Protected Attributes 

 int m_fr 

 int m_fw 

6.3.2 CONSTRUCTOR & DESTRUCTOR  

filter_base::filter_base (int fr) [inline] 

 

References m_fw. 

7 :m_fr(fr){m_fw = 2*fr+1;}; 

 

6.3.3 MEMBER FUNCTION DOCUMENTATION 

int filter_base::get_fw () [inline] 
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References m_fr. 

Referenced by core::createLES_DB(), and core::filter(). 

9 {return 2*m_fr+1;} 

 

Here is the caller graph for this function: 

 

 

virtual double filter_base::weight (int x,   int y,   int z) [pure virtual] 

 

Implemented in Gaussian. 

Referenced by core::filter(). 

Here is the caller graph for this function: 

 

 

6.3.4 MEMBER DATA  

6.3.4.1 int filter_base::m_fr [protected] 

Referenced by gaussian::gaussian(), and get_fw(). 

      int filter_base::m_fw [protected] 

 

Referenced by filter_base(), and gaussian::gaussian(). 

 

6.4 FILTEREDDATA CLASS REFERENCE 

 

#include <point.h> 
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6.4.1 PUBLIC MEMBER FUNCTIONS 

FilteredData () 

FilteredData (double u, double v, double w) 

FilteredData & operator= (const FilteredData &pp) 

FilteredData (const FilteredData &pp) 

6.4.2 PUBLIC ATTRIBUTES 

 POINT3D p 

6.4.3 CONSTRUCTOR & DESTRUCTOR  

FilteredData::FilteredData () [inline] 

 

11 {//Default constructor of Filterdata class}; 

 

FilteredData::FilteredData (double u,   double v,   double w) [inline] 

 

References p. 

13  { //Constructor of Filter Data class 

14    p[0] = u; 

15    p[1] = v; 

16    p[2] = w; 

17     

18  }; 

 

FilteredData::FilteredData (const FilteredData & pp) [inline] 

 

References p. 

29  { //Copy constructor of FilterData class 

30    p[0] = pp.p[0]; 

31    p[1] = pp.p[1]; 

32    p[2] = pp.p[2]; 

33  };  

 

6.4.4 MEMBER FUNCTION  

FilteredData& FilteredData::operator= (const FilteredData & pp) [inline] 
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References p. 

21  { // Method to define operator equal which is  going to be used in comparison operator 

22     p[0] = pp.p[0]; 

23     p[1] = pp.p[1]; 

24     p[2] = pp.p[2]; 

25  }; 

 

6.4.5 MEMBER DATA  

6.4.5.1 POINT3D FilteredData::p 

Referenced by FilteredData(), main(), and operator=(). 

6.5 GAUSSIAN CLASS REFERENCE 

 

#include <gaussian.h> 

 

Figure 6.7 Inheritance diagram for gaussian 

 

Collaboration diagram for Gaussian: 
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6.5.1 PUBLIC MEMBER FUNCTIONS 

 gaussian (int fr) 

 virtual double weight (int x, int y, int z) 

6.5.2 PRIVATE ATTRIBUTES 

 array3D m_weights 
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6.5.3 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION 

gaussian::gaussian (int fr) 

 

References filter_base::m_fr, filter_base::m_fw, and m_weights. 

6                         :filter_base(fr) 

7 { 

8    int sp = m_fw*m_fw; 

9    printf("m_fw=%d m_fr=%d\n",m_fw,m_fr); 

10  

11  

12    m_weights.resize(m_fw); 

13    double sum = 0; 

14    for(int z = -m_fr; z <= m_fr; z++) 

15    { 

16       m_weights[z+m_fr].resize(m_fw); 

17       for(int x = -m_fr; x <= m_fr; x++) 

18       { 

19         m_weights[z+m_fr][x+m_fr].resize(m_fw); 

20         for(int y = -m_fr; y <= m_fr; y++) 

21         { 

22           double w = exp(-6*(x*x + y*y + z*z)/sp); 

23           sum += w; 

24           m_weights[z+m_fr][x+m_fr][y+m_fr] =  w ; 

25         } 

26       } 

27    } 

28  

29  

30    for(int z = -m_fr; z <= m_fr; z++) 

31    { 

32       for(int x = -m_fr; x <= m_fr; x++) 

33       { 

34         for(int y = -m_fr; y <= m_fr; y++) 

35         { 

36           m_weights[z+m_fr][x+m_fr][y+m_fr] /= sum; 

37         } 

38       } 

39    } 

40  

41 // check weights 

42 /* 

43    sum = 0; 

44    for(int z = -m_fr; z <= m_fr; z++) 

45       for(int x = -m_fr; x <= m_fr; x++) 
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46         for(int y = -m_fr; y <= m_fr; y++) 

47           sum += m_weights[z+m_fr][x+m_fr][y+m_fr]; 

48   

49 printf("done gaussian sum = %f\n",sum); 

50 */ 

51    

52 } 

 

6.5.4 MEMBER FUNCTION  

double gaussian::weight (int x,   int y,   int z) [virtual] 

 

Implements filter_base. 

References m_weights. 

55 { 

56  return m_weights[z][x][y]; 

57 } 

 

6.5.5 MEMBER DATA  

array3D gaussian::m_weights [private] 

 

Referenced by gaussian(), and weight(). 
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7   SMAGORINSKY PLUGIN 
 

7.1 INTRODUCTION 

 

To begin using the platform and evaluate potential LES models, the user has to implement a 

small piece of code for the subgrid model.  Because it is based on a plugin architecture, the 

language that is used is not particularly important.  One of the first sub-grid-scale models was 

suggested in Smagorinsky’s classic work (Smagorinsky, 1963), and it can be summarised as: 

 

 

(7.1) 
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In (7.1), the eddy viscosity is modelled by 

𝜇𝑠𝑔𝑠  =  𝜌(𝐶𝑠  , ∆ )2  ∣ �̅� ∣ ,          ∆ =  (𝑣𝑜𝑙𝑢𝑚𝑒)
1
3,     𝐶𝑠  = 0.11 (7.3) 

 

Let us see what methods and data are required to implement a plugin to evaluate this relatively 

simple model.  First, it is necessary to access a filtered velocity, and then we require the ability to 

calculate its derivatives. Furthermore, the plugin will need to know the geometrical position to be 

interrogated and the size of the model. The core system will supply these data.  The plugin will 

return two variables – stress and eddy viscosity.  As we have mentioned above, this is a fully 

independent component and after compilation will reside in the plugin.so share library. 
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Figure 7.1 illustrates schematically how the user can implement a plugin to form a LES database 

from DNS data and evaluate the accuracy of, in this case, a Smagorinsky model.  However, it 

should be noted that the user is free to devise any LES model and check its efficacy. 
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Figure 7.2 The diagram shows the interaction between the plugin and the core. 

The core subsumes ‘know-how’ on locating the DNS data to be analysed, methods of filtering, 

creating a LES database and comparing DNS and LES data.  The operations of the core are 

invisible to the CFD developer. 
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Our platform has a built-in directory of examples that includes a subdirectory in which plugin 

examples are provided.  It includes a template which can be used to develop and test alternative 

LES models 

7.2 DETAILED PLUGIN DOCUMENTATION 

plugins:: Plugin Class Reference 

 

#include <plugin.hpp> 

 

Figure 7.3 Inheritance diagram for plugins::Plugin 
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Figure 7.4 Collaboration diagram for plugins::Plugin: 
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7.2.1 PUBLIC MEMBER FUNCTIONS 

 virtual std::string name ()=0 

 virtual void load_core (core *a)=0 

 virtual void stress (Matrix &m)=0 

7.2.2 PUBLIC ATTRIBUTES 

 core * m_core 

7.2.3 MEMBER FUNCTION DOCUMENTATION 

virtual void plugins::Plugin::load_core (core * a) [pure virtual] 

 

Implemented in plugins:: Smagorinsky. 

Referenced by core::model_stress(), and core::use_plugin(). 

Here is the caller graph for this function: 

 

 

virtual std::string plugins::Plugin::name () [pure virtual] 

 

Implemented in plugins:: Smagorinsky. 

Referenced by core::model_stress(), and core::use_plugin(). 

Here is the caller graph for this function: 

 

 

virtual void plugins::Plugin::stress (Matrix & m) [pure virtual] 

 

Implemented in plugins:: Smagorinsky. 

Referenced by core::model_stress(). 

Here is the caller graph for this function: 
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void plugins::Smagorinsky::stress (Matrix & s) [inline, virtual] 

 

Implements plugins:: Plugin. 

References core::dfdx(), FOUR, core::get_filtered_u(), core::get_filtered_v(), 

core::get_filtered_w(), core::get_index(), core::getPos(), and plugins::Plugin::m_core. 

24    { 

25      double *u = m_core->get_filtered_u(); 

26      double *v = m_core->get_filtered_v(); 

27      double *w = m_core->get_filtered_w(); 

28      size pos = m_core->getPos(); 

29      int ind = m_core->get_index(pos); 

30  

31      order_t order=FOUR; 

32  

33 /* 

34      double dudx = m_core->dfdx(ind,order,u); 

35      double dudy = m_core->dfdy(ind,order,u); 

36      double dudz = m_core->dfdz(ind,order,u); 

37      

38  

39      double dvdx = m_core->dfdx(ind,order,v); 

40      double dvdy = m_core->dfdy(ind,order,v); 

41      double dvdz = m_core->dfdz(ind,order,v); 

42  

43      double dwdx = m_core->dfdx(ind,order,w); 

44      double dwdy = m_core->dfdy(ind,order,w); 

45      double dwdz = m_core->dfdz(ind,order,w); 

46 */ 

47      double dudx = m_core->dfdx(ind,order,u); 

48      double dudy = 0; 

49      double dudz = 0; 

50      

51  

52      double dvdx = 0; 

53      double dvdy = 0; 

54      double dvdz = 0; 

55  

56      double dwdx = 0; 

57      double dwdy = 0; 

58      double dwdz = 0; 

59  

60  
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61       

62  

63      s(0,0) = -0.5*( dudx + dudx ); 

64      s(0,1) = -0.5*( dudy + dvdx ); 

65      s(0,2) = -0.5*( dudz + dwdx ); 

66      s(1,1) = -0.5*( dvdy + dvdy ); 

67      s(1,2) = -0.5*( dvdz + dwdx ); 

68      s(2,2) = -0.5*( dwdz + dwdz ); 

69  

70      s(1,0) = s(0,1); 

71      s(2,0) = s(0,2); 

72      s(2,1) = s(1,2); 

73       

74  

75    } 

 

Here is the call graph for this function: 

 

 

 

 

7.2.4 MEMBER DATA DOCUMENTATION 

core* plugins::Plugin::m_core 

 

Referenced by plugins::Smagorinsky::load_core(), and plugins::Smagorinsky::stress(). 
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7.3 POINT OBJECTS 

 

point Class Reference 

 

#include <point.h> 

7.3.1 PUBLIC MEMBER FUNCTIONS 

 point () 

 point (int init_x, int init_y, int init_z) 

 point (const point &s) 

 point & operator= (const point &s) 

 bool operator< (const point &rhs) const  

7.3.2 PUBLIC ATTRIBUTES 

 int x 

 int y 

 int z 

7.3.3 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION 

point::point () [inline] 

 

41 {}; 

 

point::point (int init_x,   int init_y,   int init_z) [inline] 

 

References x, y, and z. 

43    { 

44      x = init_x; 

45      y = init_y; 

46      z = init_z; 

47    } 

 

point::point (const point & s) [inline] 

 

49 : x(s.x),y(s.y),z(s.z){}; 
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7.3.4 MEMBER FUNCTION  

bool point::operator< (const point & rhs) const [inline] 

 

References x, y, and z. 

62     { 

63         if( (x*x + y*y + z*z) < (rhs.x*rhs.x + rhs.y*rhs.y + rhs.z*rhs.z) ) return true; 

64         else return false; 

65     } 

 

point& point::operator= (const point & s) [inline] 

 

References x, y, and z. 

52     { 

53         x = s.x; 

54         y = s.y; 

55         z = s.z; 

56         return *this; 

57     } 

 

7.3.5 MEMBER DATA  

 int point::x 

Referenced by core::createLES_DB(), core::filter(), core::getFilteredVelosity(), operator<(), 

operator=(), and point(). 

 int point::y 

Referenced by core::createLES_DB(), core::filter(), core::getFilteredVelosity(), operator<(), 

operator=(), and point(). 

 int point::z 

Referenced by core::createLES_DB(), core::filter(), core::getFilteredVelosity(), operator<(), 

operator=(), and point(). 
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7.4 OBJECTS OF TYPE SIZE 

 

7.4.1 SIZE CLASS REFERENCE 

 

#include <plugin.hpp> 

7.4.2 PUBLIC MEMBER FUNCTIONS 

 size () 

 size (int init_x, int init_y, int init_z) 

 void set (int init_x, int init_y, int init_z) 

 size (const size &s) 

 size & operator= (const size &s) 

7.4.3 PUBLIC ATTRIBUTES 

 int lenX 

 int lenY 

 int lenZ 

7.4.4 CONSTRUCTOR & DESTRUCTOR DOCUMENTATION 

size::size () [inline] 

 

20 {};  

 

size::size (int init_x,   int init_y,   int init_z) [inline] 

 

References lenX, lenY, and lenZ. 

22         { 

23                 lenX = init_x; 

24                 lenY = init_y; 

25                 lenZ = init_z; 

26         } 
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size::size (const size & s) [inline] 

 

34 : lenX(s.lenX),lenY(s.lenY),lenZ(s.lenZ){}; 

7.4.5 MEMBER FUNCTION  

size& size::operator= (const size & s) [inline] 

 

References lenX, lenY, and lenZ. 

37         { 

38                 lenX = s.lenX; 

39                 lenY = s.lenY; 

40                 lenZ = s.lenZ; 

41                 return *this; 

42   } 

 

void size::set (int init_x,   int init_y,   int init_z) [inline] 

 

References lenX, lenY, and lenZ. 

Referenced by core::getFilteredVelosity(). 

28         { 

29                 lenX = init_x; 

30                 lenY = init_y; 

31                 lenZ = init_z; 

32         } 

 

Here is the caller graph for this function: 

 

 

7.4.6 MEMBER DATA  

int size::lenX 

 

Referenced by core::alocate_3Darr(), core::indx(), operator=(), core::read_file(), set(), and 

size(). 
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int size::lenY 

 

Referenced by core::alocate_3Darr(), core::indx(), operator=(), set(), and size(). 

int size::lenZ 

 

Referenced by core::alocate_3Darr(), core::indx(), operator=(), set(), and size(). 

 

7.4.7 FULL PLATFORM  DETAILED PROJECT 

ORGANIZATION 

7.5 TASK STRUCT REFERENCE 

 

#include <task.h> 

Collaboration diagram for task: 
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7.5.1 PUBLIC ATTRIBUTES 

 int size 

 string source_dir 

 string output_dir 

 string name 

7.5.2 MEMBER DATA DOCUMENTATION 

 string task:: name 

 string task::output_dir 

 int task:: size 

 string task::source_dir 

7.5.3 FILE DOCUMENTATION 

7.6 CORE.H FILE REFERENCE 

#include "plugin.hpp" 

#include "filter.h" 

#include "point.h" 

#include <list> 

#include "database.h" 

Include dependency graph for core.h: 

 

 

This graph shows which files directly or indirectly include this file: 

 

 

7.6.1 CLASSES 

 class core 
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7.6.2 TYPEDEFS 

 typedef list< point > LIST_POINTS 

 typedef list< FilteredData > LIST_DATA 

7.6.3 TYPEDEF DOCUMENTATION 

 typedef list<FilteredData> LIST_DATA 

 typedef list<point> LIST_POINTS 

7.7 DATABASE.H FILE REFERENCE 

#include <string> 

#include <vector> 

#include <sqlite3.h> 

Include dependency graph for database.h: 

 

 

This graph shows which files directly or indirectly include this file: 

 

 

7.7.1 CLASSES 

 class Database 

7.7.2 TYPEDEFS 

 typedef std::vector< std::string > row 

 typedef std::vector< row > table 
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7.7.3 TYPEDEF DOCUMENTATION 

 typedef std::vector<std::string> row 

 typedef std::vector<row> table 



158 

 

7.8 FILTER.H FILE REFERENCE 

This graph shows which files directly or indirectly include this file: 

 

 

7.8.1 CLASSES 

 class filter_baseGAUSSIAN.H FILE REFERENCE 

#include "filter.h" 

#include <vector> 

Include dependency graph for gaussian.h: 

 

 

This graph shows which files directly or indirectly include this file: 

 

 

7.8.2 CLASSES 

 class gaussian 

7.8.3 TYPEDEFS 

 typedef std::vector< std::vector< std::vector< double > > > array3D 



159 

 

7.8.4 TYPEDEF DOCUMENTATION 

typedef std::vector<std::vector<std::vector<double> > > array3D 

7.9 MAINPAGE.DOX FILE REFERENCE 

 

7.10 PLUGIN.HPP FILE REFERENCE 

#include <boost/numeric/ublas/matrix.hpp> 

#include <boost/numeric/ublas/io.hpp> 

#include <boost/function.hpp> 

#include <string> 

Include dependency graph for plugin.hpp: 

 

 

This graph shows which files directly or indirectly include this file: 

 

 

7.10.1 CLASSES 

 class size 

 class plugins::Plugin 

7.10.2 NAMESPACES 

 namespace plugins 

7.10.3 TYPEDEFS 

 typedef matrix< double > Matrix 
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7.10.4 ENUMERATIONS 

 enum order_t { ONE = 1, FOUR = 4 } 

7.10.5 TYPEDEF DOCUMENTATION 

typedef matrix<double> Matrix 

7.10.6 ENUMERATION TYPE DOCUMENTATION 

enum order_t 

 

Enumerator:  

ONE   

FOUR   

 

16 { ONE=1,FOUR=4 } ; 

 

7.11 POINT.H FILE REFERENCE 

This graph shows which files directly or indirectly include this file: 

 

 

7.11.1 Classes 

 class FilteredData 

 class point 

7.11.2 Typedefs 

 typedef double POINT3D [3] 

7.11.3 TYPEDEF DOCUMENTATION 

typedef double POINT3D[3] 
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7.12 TASK.H FILE REFERENCE 

7.12.1 CLASSES 

 struct task 

7.13 CORE.CPP FILE REFERENCE 

#include <stdio.h> 

#include <iostream> 

#include <fstream> 

#include <sstream> 

#include <vector> 

#include <string> 

#include <list> 

#include <dlfcn.h> 

#include <sys/types.h> 

#include <dirent.h> 

#include <errno.h> 

#include <stdlib.h> 

#include "database.h" 

#include "plugin.hpp" 

#include "core.h" 

#include "filter.h" 

#include "point.h" 

#include <sys/stat.h> 

Include dependency graph for core.cpp: 

 

 

7.13.1 TYPEDEFS 

 typedef boost::function< plugins::Plugin *()> pluginConstructor 

7.13.2 FUNCTIONS 

 bool compare (const std::string &first, const std::string &second) 
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7.13.3 TYPEDEF DOCUMENTATION 

7.13.3.1 typedef boost::function<plugins::Plugin* ()> pluginConstructor 

7.13.4 FUNCTION DOCUMENTATION 

7.13.4.1 bool compare (const std::string & first,   const std::string & 

second) 

 

Referenced by core::getdir(). 

26 { 

27  

28         int pos1=first.find('_')+1; 

29         int pos2=second.find('_')+1; 

30         int one = atoi(first.substr(pos1,first.length()-8).c_str()); 

31         int two = atoi(second.substr(pos2,second.length()-8).c_str()); 

32  

33         if(one > two) return false; 

34         return true; 

35  

36 } 

 

Here is the caller graph for this function: 

 

 

7.14 DATABASE.CPP FILE REFERENCE 

#include "database.h" 

#include <iostream> 

Include dependency graph for database.cpp: 
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7.15 DNS_PLUGIN.CPP FILE REFERENCE 

#include "core.h" 

#include "database.h" 

#include <boost/function.hpp> 

#include "gaussian.h" 

#include <iostream> 

#include <stdlib.h> 

Include dependency graph for dns_plugin.cpp: 

 

 

7.15.1  FUNCTIONS 

 int main (int argc, char **argv) 

7.15.2   FUNCTION DOCUMENTATION 

7.15.2.1 int main (int argc,   char ** argv) 

 

References Database::close(), core::getFilteredVelosity(), core::getFilterWidth(), 

core::getModelSize(), and FilteredData::p. 

16 { 

17 /* 

18 ArgvParser cmd; 

19 // init 

20   cmd.setIntroductoryDescription("This is foo written by bar."); 

21 //define error codes 

22   cmd.addErrorCode(0, "Success"); 

23   cmd.addErrorCode(1, "Error");  

24   cmd.setHelpOption("h", "help", "Print this help page");  

25  

26  //  cmd.defineOption("version", ArgvParser::NoOptionAttribute, "Be verbose"); 

27   cmd.defineOption("version", "Be verbose", ArgvParser::NoOptionAttribute ); 
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28  

29  

30   cmd.defineOptionAlternative("verbose","v"); 

31  

32  // cmd.defineOption("foo", ArgvParser::OptionRequiresValue, "Fooishness. Default 

value: 0"); 

33   cmd.defineOption("foo",  "Fooishness. Default value: 

0",ArgvParser::OptionRequiresValue ); 

34  

35   cmd.defineOption("createDb" ); 

36   cmd.defineOption("sp", "", ArgvParser::OptionRequired); 

37     

38  

39  // finally parse and handle return codes (display help etc...) 

40    int result = cmd.parse(argc, argv); 

41  

42    if (result != ArgvParser::NoParserError) 

43    { 

44        cout << cmd.parseErrorDescription(result); 

45        exit(1); 

46    } 

47  

48    // now query the parsing results 

49    if (cmd.foundOption("foo")) 

50    { 

51     // string = cmd.optionValue("foo");  

52        cout << cmd.optionValue("foo") << endl; 

53    } 

54    if(cmd.foundOption("createDb")) 

55    { 

56        cout << cmd.optionValue("createDB") << endl; 

57    } 

58     

59  

60 return 0; 

61 */ 

62  

63 core *a = new(core); 

64  

65 string source_dir = string("/home/projects/pVict0004/512/DnsData/"); 

66 string out_dir = "/home/projects/pVict0004/512/LES/"; 

67  

68 /* 

69 out_dir += "LES_2_DB"; 

70 gaussian g(2); 

71 a->createLES_DB(source_dir, g,out_dir ); 
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72 */ 

73  

74 /* 

75 out_dir += "LES_4_DB"; 

76 gaussian g(4); 

77 a->createLES_DB(source_dir, g,out_dir ); 

78 */ 

79  

80 /* 

81 out_dir += "LES_6_DB"; 

82 gaussian g(6); 

83 a->createLES_DB(source_dir, g,out_dir ); 

84 */ 

85 /* 

86 out_dir += "LES_8_DB"; 

87 gaussian g(8); 

88 a->createLES_DB(source_dir, g,out_dir ); 

89 */ 

90  

91 /* 

92 out_dir += "LES_16_DB"; 

93 gaussian g(16); 

94 a->createLES_DB(source_dir, g,out_dir ); 

95 return 0; 

96 */ 

97  

98 Database *db; 

99 db = new Database((char*)"/home/projects/pVict0004/512/LES/LES_2_DB"); 

100  

101 cout << "fw=" << a->getFilterWidth(db) <<endl; 

102 cout << "sz=" << a->getModelSize(db) <<endl; 

103  

104 point p(12,24,32); 

105  

106 FilteredData  res = a->getFilteredVelosity(p,db); 

107  

108 cout << "u=" << res.p[0] << endl; 

109  

110 int y = 10; 

111 int z = 10; 

112 LIST_DATA ld; 

113 LIST_POINTS lp; 

114 LIST_DATA::iterator it; 

115 for(int x=0; x< 10; x++) 

116 { 

117 point p(x,y,z); 
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118 lp.push_back(p); 

119 } 

120 a->getFilteredVelosity(lp,ld,db); 

121  

122 for(it=ld.begin(); it != ld.end() ; ++it) 

123 { 

124  cout << "u=" << (*it).p[0] << endl; 

125 } 

126  

127  

128  

129  

130  

131 /* 

132 table res = db->query((char*)"SELECT * FROM data WHERE ind=2;"); 

133  

134 table::iterator it; 

135 for(it = res.begin(); it < res.end(); ++it) 

136 { 

137         row  rw = *it; 

138         cout << "Values: (ind=" << rw.at(0) <<  

139                               ", u=" << rw.at(1) <<  

140                               ", v=" << rw.at(2) <<  

141                               ", w=" << rw.at(3) <<  

142                               ")" << endl; 

143         //cout << "Values: (A=" << rw.at(0) << ", B=" << rw.at(1) << ")" << endl; 

144 } 

145 */ 

146 db->close(); 

147  

148 //a->load_plugin(); 

149 //a->use_plugin(); 

150 //a->unload_plugin(); 

151  

152 //a->model_stress(); 

153  

154  

155 /* 

156 Database *db; 

157 db = new Database((char*)"/home/vu-s3931905/DNS_plugins/src/Database.sqlite"); 

158  

159 db->query((char*)"CREATE TABLE a (a INTEGER, b INTEGER);"); 

160 db->query((char*)"INSERT INTO a VALUES(1, 2);"); 

161 db->query((char*)"INSERT INTO a VALUES(5, 4);"); 

162 table::iterator it; 

163  
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164  

165  

166 table res = db->query((char*)"SELECT a, b FROM a;"); 

167  

168 for(it = res.begin(); it < res.end(); ++it) 

169 { 

170         row  rw = *it; 

171         cout << "Values: (A=" << rw.at(0) << ", B=" << rw.at(1) << ")" << endl; 

172 } 

173  

174 db->close(); 

175 */ 

176  

177  

178  

179  

180 } 

 

Here is the call graph for this function: 

 

 

7.16 GAUSSIAN.CPP FILE REFERENCE 

#include "gaussian.h" 

#include <cmath> 

#include <iostream> 

#include <stdlib.h> 

Include dependency graph for gaussian.cpp:
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7.17 PLUGIN.CPP FILE REFERENCE 

#include "plugin.hpp" 

#include <iostream> 

#include "core.h" 

Include dependency graph for plugin.cpp: 

 

 

7.17.1   CLASSES 

 class plugins::Smagorinsky 

7.17.2  NAMESPACES 

 namespace plugins 

7.17.3  FUNCTIONS 

 plugins::Plugin * construct () 
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7.17.4 Function Documentation 

7.17.4.1 plugins::Plugin* construct () 

 

Referenced by core::load_plugin(). 

83      { 

84           return new plugins::Smagorinsky(); 

85      } 

 

Here is the caller graph for this function: 

 

 

7.17.5 COMPARATOR OPERATOR 

Engineers and fluid dynamicists must have access to a tool that enables the accuracy of 

alternative LES models.  In the existing version of our platform, we verify our results by plotting 

spectra on log-log coordinates.  However, this is a subjective approach, and we are implementing 

a quantitative method that will result in a simple index that will inform users of the accuracy of 

their models.   The idea is to quantify the similarity of patterns based on principal component 

analysis, and particularly by making use of the Pearson correlation coefficient [11]. 

The squared PSX correlation  coefficient 𝑟2 can be calculated by dividing covariance of 𝑠𝑠𝑎𝑏 of 

two spectra a and b by the product of their standard deviations 𝑠𝑠𝑎𝑎  and 𝑠𝑠𝑏𝑏 

 

𝒓𝟐 =  
𝑺𝑺𝒂𝒃

𝟐

𝑺𝑺𝒂𝒂𝑺𝑺𝒃𝒃
 

       (7.4) 

where 
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𝑠𝑠𝑎𝑎 =  ∑(𝑎𝑖 − 𝑎)2 

𝑛

𝑖=1

 
       (7.5) 

 

      

𝑠𝑠𝑏𝑏 =  ∑(𝑏𝑖 −  𝑏)2
 

𝑛

𝑖=1

 
       (7.6) 

 

             

𝑠𝑠𝑎𝑏 =  ∑(𝑎𝑖 −  𝑎)(𝑏𝑖 −  𝑏) 

𝑛

𝑖=1

 
       (7.7) 

 

The comparison process proceeds by calculating the distribution of a macroscopic property such 

as shear stress, the rate of energy dissipation and so on.  This gives rise to sz×sz×sz values where 

sz is the dimension of our domain.  The next step which will be invisible to the user is to create 

the FFT of the values that reduce the number of components to sz numbers.  The final step is to 

calculate the Pearson correlation coefficient that provides a single measure of the quality of the 

LES model. 

 

7.18 RESULTS AND PRACTICAL USAGE 

EXAMPLES 

 

To demonstrate the operability of our approach we compared the spectra generated by DNS and 

those arising from LES with a range of filter widths.  The example chosen makes use of data 
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accessible from the Johns Hopkins University database of DNS solutions [12], and we consider 

one that concerns forced isotropic turbulence.  The problem is described in [12] thus: 

Direct numerical simulation using 1,0243 nodes. 

The Navier-Stokes equations are solved using a pseudo-spectral method. 

Energy is injected by keeping constant the total energy in shells such that |k| is less or equal to 2. 

After the simulation has reached a statistically stationary state, 1,024 frames of data with three 

velocity components and pressure are stored in the database. Extra time frames at the beginning 

and at the end have been added to be used for temporal-interpolations. 

The Taylor-scale Reynolds number fluctuates around Reλ~ 433 

There is one dataset with 1024 time-steps available, for time t between 0 and 2.048 (the frames 

are stored at every 10 time-steps of the DNS). Intermediate times can be queried using temporal 

interpolation. 

In our problem, this requested the loading of a 512×512×512 domain and for all filter widths in 

the range 2 to 32 we calculated filtered spectra.   Figure  7.5 shows that the stress components 

calculated by DNS and arising from a LES solution with a filter width of four are in close 

agreement; hence a LES solution would be expected to provide accurate solutions in about two 

orders less time than a DNS solution. 
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Figure 7.5 A comparison of stress components obtained from DNS and those obtained with a 

Smagorinski filter of width 4 

 

 

Figure  7.6 demonstrates the transfer function of the velocity as a function of the filter width.  If 

the LES and DNS solutions were coincident, the transfer function would be unity; however, it 

can be seen that this ideal is approached as the filter width is reduced. 
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Figure 7.6 The transfer function calculated with filter widths of 2, 4, 6 and 8. 

7.19 CONCLUSIONS 

Databases of solutions of the Navier-Stokes equations generated by direct numerical simulation 

are necessarily broad.  They are nevertheless handy for developing new, more practical yet 

accurate approximations of the Navier-Stokes equations.  Motivation of this work is to develop 

an intellectual framework whereby CFD practitioners have an easy-to-use tool that enables them 

to evaluate their LES models. At the heart of the method database technology that harnesses the 

following ideas:: 

 Very large volumes of data are manipulated by storing variables in heap memory. 

 A readily available client-based database engine implemented 

 Fast-Fourier transforms algorithms are used to ensure that analyses are carried out 

efficiently. 

 

 

The principal idea behind the method is that a core is defined that contains the ‘know-how’ 

associated with accessing and manipulating data, and which operates independently of a plugin.  

This enables users to propose LES models and obtain results almost instantaneously.  As a result, 

users can operate on large sets of data and obtain results almost instantaneously. 
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8 CONCLUSIONS 
 

Modern engineering requires practical solutions of turbulent flows for models with complex 

geometries and boundary conditions. This entails dealing with large amounts of data and time-

consuming calculation. In this work, we demonstrate how both of these requirements can be 

satisfied. 

In the first part of the thesis, we develop paradigm and methodology for speeding up massive 

calculations by parallelisation of Navier Stokes equations. We discuss and demonstrate new 

phenomena which only appear in the parallel world and explain how they can be used in 

turbulent flow simulation. 

 Parallelisation can be defined as a process of discovery of independent parts of the task. 

There are several tasks which are naturally parallel.  For example, this is the case in the area of 

an image. An image is essentially an array of independent pixels with corresponding properties, 

and it can be argued that the parallelisation of the image is a trivial task. However, there are 

many tasks such as rendering in computer visualisation (Eilemann, 2019), brute force searches 

Loesch (1990) and so on. Moler (1986) coined the phrase “embarrassingly parallel” to describe 

problems that are parallel and easy to solve.  

In contrast, performing parallelisation of applications in the domain of computational fluid 

dynamics is relatively quite challenging (Simon, 1991),  Griebel & Zaspel, 2010 and Hauser 

& Williams, 1992).  This is because CFD simulations require solving several interdependent 

equations with many parameters that are also interdependent.  It is significant to note that a 

Google Scholar search for ‘Navier Stokes Parallelization’ limited to the years 2018-2019 returns 

more than 4000 articles.  This is just another prove that Navier Stokes Parallelization  is not as 

trivial  and so so many researchers still working on the problem 

The term ‘paradigm’ is defined in the Cambridge English Dictionary as – “a model of something, 

or an obvious and typical example of something”: 

What we have achieved in this thesis is to devise a paradigm such that several necessary steps 

are carried out in parallel, but the specific implementation of  
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 each step is left open.   Finally, we have demonstrated this paradigm in a specific sequential 

CFD application and demonstrated how this application was converted to parallel. 

Another point is the development of parallel applications leaves many ordinary developers in the 

dark.  They are entirely unfamiliar with the subtleties of parallelisation.  This was my motivation 

for writing Chapter 3, in which I discuss in detail several scenarios and terminologies that appear 

only in the parallel world of software development.  These include parallel overheads, dead-

locks, mutexes, threads and thread functions, thread safety, locks, synchronisations, and so on.  It 

is advanced software concepts such as these that are implemented in the thesis.  All of these 

phenomena exist only in the parallel world of software development. 

We developed a standalone thread pool class which we inject into a sequential channel flow 

solver to execute those regions of the code that are computationally intensive.  We have 

demonstrated that increasing the number of threads to two is speeding up of calculations more 

than double.  A significant contribution of this work is that we exploit the benefits of 

encapsulation which allow multiple users to work in the same space.  

Multithreading applications do not always run faster.  This is because of overheads in creating 

threads and communication between the threads and attempts to run the sequential algorithm in 

parallel which requires using many mutexes.  Difficulties in decomposing problems into a 

parallel form often require considerable intellectual effort to overcome. There are many pitfalls 

in the parallel world, and they have been discussed in great detail. The fact that our paradigm 

enables us to reduce calculation time for channel flow is evidence that the classes we have 

developed can be reused for other serial Large Eddy Simulation applications. 

We developed an application that simulates channel flow by performing calculations in a 

parallel, and I compared the results with an application that simulates channel flow by 

implementing a serial paradigm. 

Code validation is not to determine differences.  The aim is to show there are no differences in 

the results  (Foster, I.,  Olson. R.,  & Tuecke, S., 1992).   This was carefully done by comparing 

the outputs of each function and member classes. Once that is successfully achieved, there is no 

need to run the same code repeatedly for the different sizes of systems because system size does 

not influence calculation logic.   
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Also, encapsulation can be described as the protection of data elements and the provision of 

methods with which to access the data, thus “encapsulating” the state of an object with the 

actions that can be performed upon it. However, the benefits of this concept are much more 

comprehensive.  It not only allows one to carry out calculations in parallel, but it also allows one 

to perform  development in parallel  (Cantor, 1998), Culler, Singh, J. & Gupta, 1999) 

For example, a research team may have a mammoth task to develop new classes for the IT 

industry. Each member of the team works on developing one common object, but each member 

has access to the relevant private areas of the task.  The concept of encapsulation assures there 

will be no clashes. Even application testers can work in parallel and write their scripts without 

waiting until the developers complete their coding. Ultimately, new objects can be created, tested 

and validated by a small team, working in parallel, and the approach enables tasks to be 

completed in shorter times.  This is an underlying approach adopted in this thesis. 

 

In this work, the method of local parallelisation has been applied to channel flow.  However, the 

technique is quite general and powerful, and it can be used to a myriad of practical and research 

problems that involve turbulent flows. 

 

The direct numerical solutions of the Navier-Stokes equations are obtained using short time and 

length scales.  As a result, these solutions inevitably contain prodigious quantities of data.  In this 

work, we have developed an approach to rapidly and conveniently analyse the solutions. We 

demonstrate a developmental approach to deal with large sets of data.  We have created a 

highly efficient platform that is intended to be easy to use by the scientific community to devise 

and test their sub-grid LES models against the results of DNS, Johns Hopkins database of DNS 

solutions was used as for comparison. To help scientists and engineers to evaluate their LES 

models, we present a comprehensive comparator operator to quantify the accuracy of the models.  

Furthermore, the method releases the researcher from the need to write a comprehensive code 

because the LES models can be implemented as plugins. 

  

 This work has presented an intellectual framework whereby CFD practitioners can readily and 

quickly examine the accuracy of new models they might wish to propose.  The method is based 

on database technology and includes the following concepts: 
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 Use and manipulation of heap memory to handle vast volumes of data; 

 The implementation of a client-based database engine; and 

 The incorporation of efficient fast-Fourier transforms algorithms. 

The package is implemented on an HPC cluster.  An idea permeating the methodology is that a 

core is defined that contains the ‘know-how’ associated with accessing and manipulating data, 

and which operates independently of a plugin.  This enables users to propose LES models and 

obtain results almost instantaneously. 

Heap memory manipulation  presented in Chapter 6.2  shows there is core class and there is a 

class member   allocate_3Darray, this member returns a pointer to a chunk of heap memory. 

Passing this pointer as a parameter to a function allows the use as a statically defined three-

dimensional array.  This approach overcame stack data type memory limitations and manipulates 

extensive data arrays and work with them like a usual indexed array.  As to FFTW, Running FFT 

in parallel is another trigger that we use to speed up simulation processes.  FFTW (Frigo et al., 

1998) is an open-source implementation of FFT. At the moment, it is still considered the fastest 

implemented FFT algorithm.  FFTW has inbuilt multithreaded capabilities which make 

encapsulating it in DNS code relatively easy. Using parallel stand-alone libraries will probably 

be an increasingly popular way to speed up sequential processes. 

This concept was accepted and presented by me on First Thermal and Fluids Engineering 

Summer Conference, 9-12 August 2015, New York, NY, USA 

https://www.astfe.org/conferences/tfesc/TFESC_Conference_Technical_Program.pdf 

This was presented to JHTDB researchers and received with great interest, as it significantly 

speeds up using JHTB and delivers practical results to scientists almost immediately. 

 

 

 

 

 

 

https://www.astfe.org/conferences/tfesc/TFESC_Conference_Technical_Program.pdf
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u     Velocity, m/s 

x  Distance in x-direction, m 

y  Distance in the y-direction, m 

z  Distance in the z-direction, m 

N         Number of computational nodes 

L         Dimension of the computational domain 

 𝜀          Rate of kinetic energy dissipation, J/kg   

Re         Reynolds number 

Reλ        Taylor-scale Reynolds number 

Greek symbols 

Δ Width of filter,  Laplacian,  Change in the value of the variable, m 
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𝜇 Dynamic viscosity, kg/(ms)   
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 ρ Density, kg/m3 
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Subscripts 
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CPU       Central Processing Unit 

HPC       High-Performance Computer 
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OOA      Object–Oriented Analysis 
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