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Abstract 
Planning for future climate risk tends to incorporate assumptions of smoothly accelerating 

climate change, around which unchanged variability constitutes the risk boundaries. This 

constitutes hypothesis H1 – forced warming and natural variability evolve gradually and 

independently and the climate response is trend-like. Against this, there is evidence for H2 – 

forced warming interacts with natural variability and the climate response includes abrupt 

steps. Earlier than expected breaching of risk bounds follows from H2. 

New automation tools, and post-detection tests find and characterise step-like regime onsets 

in temperatures. 

With these tools I show that step-like temperature regime shifts are detectable at all spatial 

scales at the land and ocean surface, and in the vertical temperature structure of the ocean. 

Based on published climate models shifts respond to warming by becoming more intense, 

wider-spread and more frequent. Regimes are regional, differ qualitatively between land and 

ocean, align with natural variability coincident with known bio-physical shifts. Two, circa 1976 

and 1996, align with the Pacific Decadal Oscillation, involving rapid vertical ocean 

restructuring. One, 1968 in the Southern Hemisphere ocean does not, and 1986 in the 

Northern Hemisphere reflects atmospheric reorganisation. 

H2 is strongly supported by the findings. Step-like warming dominates trends, increasingly so 

at finer scale. 
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Chapter 1: Introduction 
 

“Human influence has been detected in warming of the atmosphere 

and the ocean, in changes in the global water cycle, in reductions 

in snow and ice, and in global mean sea-level rise; and it is 

extremely likely to have been the dominant cause of the observed 

warming since the mid-20th century. In recent decades, changes in 

cl imate have caused impacts on natural and human systems on all 

continents and across the oceans. Impacts are due to observed 

cl imate change, irrespective of its cause, indicating the sensitivity 

of natural and human systems to changing climate” (Pachauri and 

Meyer, 2014). 

Overview 

This thesis addresses an area of some controversy – the hypothesis that under greenhouse 

gas-induced radiative forcing, climate changes in a step-like manner. The controversy arises 

because it is almost universally accepted that the forced component of climate change, 

especially global mean surface temperature (GMST), is trend-like. For example, the IPCC has 

stated that, “On decadal to interdecadal timescales and under continually increasing effective 

radiative forcing (ERF), the forced component of the GMST trend responds to the ERF trend 

relatively rapidly and almost linearly (medium confidence).” (Stocker et al., 2013a, Box TS.3, 

p62). Juxtaposed to this there is an emerging view that climate change proceeds non-linearly. 

Jones and Ricketts (2017b) (JR2017), in addressing this controversy, proposes two main 

hypotheses concerning the relationship between external drives on climate, and internally 

produced natural variability of climate, as expressed at decadal time scales: (H1) forced 

warming and natural variability proceed gradually and independently, with the response to 

forced warming best represented as trend-like, and natural variability sometime obscuring the 

relationship; (H2) forced warming and natural variability interact.  

The hypothesis that warming is step-like has been fringe for many years. Step-like warming has 

been widely accepted for palaeoclimate but not under greenhouse gas-induced radiative 

forcing influencing current and future climate. This thesis builds on the work of Jones who 

used the Maronna-Yohai bivariate test (Maronna and Yohai, 1978) (henceforth MYBT) to 

detect inhomogeneities in observed data while building a high-quality data set for south-
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eastern Australia. He found the test was detecting climatically-driven shifts in climate data, 

principally rainfall (Jones, 1995, Jones et al., 2001). Further work tracing the impact of the 

millennium drought in south-eastern Australia began by investigating a shift in 1997 involving 

rainfall and temperature and whether it was a repeat of the previous shift in south-western 

Western Australia in the late 1960s and early 1970s. That was an instance where rain-bearing 

frontal systems bringing winter and spring rains to the region had shifted south, coincident 

with a shift to warmer conditions. A paper describing shifts in observed temperature within 

the region that also applied inverse linear methods to the detection of nonlinear 

anthropogenic warming was published based on this work (Jones, 2012) (J2012). Similar 

patterns of warming were found in regional simulations from climate models. This work was 

later expanded to detection of shifts at regional to global scales and the investigation of what 

that may mean economically (Jones et al., 2013). 

During this time, the MYBT was settled on as the most reliable, sensitive and flexible test 

available for detecting step changes in climate data, being on a par with the Alexanderssen 

test, but more flexible with its use of reference data. Rodionov’s STARS test, based on a 

modified t-test was also tested but found to be slightly less reliable with dates, and required 

some tuning, which the MYBT did not. The detection of multiple step changes in climate data 

was not automated, and involved a degree of researcher choice. 

During the thesis we (Jones and I) published a paper severely testing the alternative 

hypotheses of step-like and trend-like warming (JR2017), supported by short paper outlining a 

multi-step analysis method developed for the project (Ricketts, 2015a). The latter was 

accompanied by a paper on a novel comparative method (Ricketts, 2015b), and later, 

preliminary work that has become Chapter 4 was presented for discussion (Ricketts and Jones, 

2017). Finally, we have submitted a paper describing a self-regulating heat engine in the 

tropical Pacific that governs the process of step-like change in climate (Jones and Ricketts, 

2019) (JR2019). 

Terms and scope 
In this theses, unless otherwise stated, trends and trend analysis refers to ordinary least 

squares (OLS) linear trend analysis. Steps are abrupt change in the mean of a time series. Shifts 

are described as measured abrupt change at a particular time, taking into account the 

possibility of other phenomena in time series. 
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Within the literature trends within time-series may be more complex, but are generally 

smoothly varying, or at least without discontinuities. They may be estimated by a variety of 

methods other than OLS.  

In the literature “decadal variability” is generally treated as smoothly varying quasi oscillatory 

behaviour, albeit for many measures of variability the indices derived to describe them may be 

assigned discrete phases and times of phase change. For example the Pacific Decadal 

Oscillation (PDO) is a complex ocean system still being actively researched, but the PDO-index 

used to track it is derived as a time-series that tends to more or less smoothly alternate 

between runs of positive and negative numbers (positive and negative phase), (Overland et al., 

2008, section 2). 

When the IPCC uses the term “abrupt climate change” it is defined on geological time-scales 

thus, “Abrupt climate change is defined in this IPCC Fifth Assessment Report (AR5) as a large-

scale change in the climate system that takes place over a few decades or less, persists (or is 

anticipated to persist) for at least a few decades and causes substantial disruptions in human 

and natural systems.” (ibid. pp 70) .Such a definition is consistent with “tipping points” as 

discussed in the Literature Review. When they refer to “decadal variability” it is described 

purely in terms of changes of trend thus, “Despite the robust multi-decadal warming, there 

exists substantial interannual to decadal variability in the rate of warming, with several periods 

exhibiting weaker trends (including the warming hiatus since 1998)” (ibid. pp 36).   

Greenhouse gas (GHG) induced radiative forcing is often referred to as anthropogenic global 

warming (AGW), and a component of a more general phenomenon of human induced climate 

change.  

Major issues 

The problem of abrupt or non-linear climate change matters for a number of reasons. In 

JR2017, H1 and H2 represent very different relationships between forced warming and natural 

variability, including decadal variability. Under H1, for the purposes of understanding and 

projecting climate change, natural variability is treated as independent of forced warming, and 

for statistical parameterization, it is treated as noise or as a nuisance parameter. Under H2, 

natural variability is not separate from the rest of climate and interacts with forced warming; 

abrupt changes are expected in natural variability, they are not noise to be ignored or adjusted 

for. 
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1. If it is not noise then abrupt change is a signal of regime changes in natural variability, 

and hence detection of climate shifts is important to other science as well. 

2. It matters because the predominant driver of climate change, GHG, shows trending 

behaviour and so non-linear response to this implies heat buffering with periodic 

release which would be expected to lead to clustering of effects.  

3. Thus it matters to risk managers and planners because it changes the risk boundaries 

near term (Jones et al., 2013).   

Because GHG emissions are a principal factor in forced warming, and because they are rising 

nearly steadily and GMST is also rising nearly steadily, the predominant mode of analysis, 

especially in climate change risk analysis is projection of warming trends onto various risk 

factors. Methods such as pattern scaling (Mitchell et al., 1999, Mitchell, 2003), for example 

project future global GMST onto local historical records with strictly linear relationships to 

estimate future local conditions (Jones and Page, 2001, Ricketts and Page, 2007, Ricketts, 

2009, Ricketts et al., 2013).  

Carter (2006) published an op-ed which included the spurious claim that warming had ceased 

after 1998 (hence the term “warming hiatus” above). The Garnaut Report (Garnaut, 2008, Box 

401, p 79) for example specifically investigated whether a statistical break in the GMST trend 

occurred in the late 1990s, concluding no. This focus on trend at the expense of other metrics 

then discourages investigation of changes that occurred at the same time, for example sudden 

Siberian cooling with unexpected expansion of evergreens (He et al., 2017), or North American 

drought (Delworth et al., 2015).   

Despite a number of recent papers supporting the position of “no hiatus” (Cahill et al., 2015, 

Lewandowsky et al., 2015, Rajaratnam et al., 2015, Risbey et al., 2018), papers taking a 

contrary position that the climate changed around that time, abound (Sillmann et al., 2014, 

Trenberth et al., 2014, Lee et al., 2015, Zang et al., 2018). Much of the conflict revolves around 

the differing role statistics is assigned in these investigations. 

Analysis of discontinuities in climate records to delineate both climate and bio-physical 

regimes has a long history, often citing changes in many systems at once. For instance multiple 

changes associated with the PDO (Minobe, 1997, Newman et al., 2016), and very wide-spread 

changes in the later 1980s (Reid et al., 2015). Recently papers have been published which 

extract a stair-case like pattern of change (Bartsev et al., 2017, Belolipetsky, 2014, Belolipetsky 

et al., 2015, Saltykov et al., 2017). The levels of agreement on timing of change, across 
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disciplines, once non-linear change is explored, means that abrupt shifts simply cannot be 

dismissed as noise. 

Research question 

Due to the complex nature of the climate system, statistical inference is the major form of 

reasoning used when analysing and interpreting climate data. This has led to theoretical 

conclusions about the Earth system being made on the basis of statistical tests of time-series 

passing a given p-value, and this forms the basis of the climate in terms of trends (North et al., 

1995, Santer et al., 2011, Hasselmann, 2002, Rahmstorf et al., 2017). It was major motivation 

for the application of severe testing (Mayo and Spanos, 2006, Mayo and Spanos, 2011) to the 

climate analysis in JR2017. The philosophical basis behind severe testing is that tests providing 

statistical confirmation cannot be used as evidence to support a theory unless they also 

discount their rivals through methods that provide a high level of falsification. A great deal of 

climate science is confirmatory only, in that a hypothesis is confirmed as plausible within a 

specific experimental and/or conceptual framework. (RN Jones, Personal Communication). 

JR2017 outlines a synthesis of these ideas into a theoretical-mechanistic/statistical-inductive 

framework, in which amongst other things, confirmation on the basis of p-values first requires 

joint probative criteria in support and opposition to be adequately addressed. 

Additionally, reasoning with statistical tests requires that the tests and data be adequately 

matched (Mayo and Spanos, 2004), and that statistical model families be selected with care 

(Spanos, 2010). 

Although JR2017 provided a general conceptual framework, the questions about the nature of 

step-like changes, trigger mechanisms and sustaining processes, spatio-temporal extents, and 

regional distribution remained. 

Aims and objectives 

A major goal for this project was to construct an objective rule-based multi-step system to 

remove the potential for human bias from the results – now known as the “multi-step 

bivariate test” (MSBV). The resulting system is robust, flexible and fast enough to allow 

analysis of spatial global climate model data. The algorithm is progressive, and incorporates 

repeated testing and refinement of previous results. Breakpoint methods are not widely 

considered to provide reliable evidence for nonlinear change, and have been the subject of 
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criticism.  Extensive sensitivity testing of the method was performed to ensure that the test 

was suited to task and used within limits. 

A second major goal was to ensure that the MSBV change-point results had high probative 

value. Climate data is intrinsically complex, incorporating the effects of multiple feedbacks, as 

well as forced warming. Most statistical tests used in climatology, including tests of trends and 

the MYBT, are framed under simplified assumptions. A full chapter is devoted to post-

detection testing of the change-points and the data in which they are detected, inspired by 

misspecification testing (Mayo and Spanos, 2004). This ensures that the data are not random-

walks, the change-points are not false positives, and indications of false negatives are screened 

for.  

Another was to measure the contributions of trends and shifts to overall warming. If warming 

interacts with natural variability and that in turn is indicated by shifts then the relationship 

between warming and patterns of shifts can be explored. Are regimes global phenomena that 

act everywhere, or large scale phenomena that act over large regions – perhaps continents or 

ocean basins, or are they still more localised? If they are more localised, do the locations, 

durations, and intensities of these events change under forced warming or are they 

independent of it? These questions are at the heart of considerable contention. Much of 

Jones’s earlier work had concentrated on evidence for local to regional changes in climate. 

Jones et al. (2013) applied his methods to global data and found similar step-like changes. The 

PDO, now recognised by characteristic changes in the Northern Pacific Sea Surface 

Temperatures, was first detected as fluctuations in salmon production and found to correlate 

with abrupt changes in Northern climate (Mantua et al., 1997). Other researchers found similar 

abrupt changes in climate parameters, and at a variety of scales, but even so, little is available 

that applies the same methodology from global to fine scale to enable global scale phenomena 

to be mapped to local phenomena.  

Two chapters build on the prior chapters and augment analyses of data reported in JR2107. 

They present analyses, mostly of surface temperatures, from global, down to what is referred 

to as grid scale (similar to the scales at which global climate models work). They concentrate 

mostly on the so-called historical or industrial period (after 1850 or 1880 depending on the 

data source). Global climate models are used as the only source of information prior to 

industrialisation and into the future.  

To address the question of interaction being expressed as a relationship between warming and 

patterns of shifts under as wide a variety of warming conditions as possible climate model 
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surface temperature data was used in conjunction with observations. The thesis first 

concentrates on coarse scale averages of temperature with analysis of global averages and 

averages of the six major bands or zones of the Earth. The frequency of shifts in each zone was 

collated with the warming conditions from a hypothetical pre-industrial Earth (models only), 

through four stages of increased industrialisation (observations and models), to the end of the 

21st Century under mild and extreme warming (models only). It then concludes with a 

breakdown of the observed zones into 45 degree sectors, to compare the influence of data 

averaging on the measured contributions of step and trend. 

JR2017 had also found steps in tropospheric temperatures that mirrored those of the surface. 

The question naturally arises as to whether the vertical structure of the ocean changes 

concurrently. Since the previous results imply that shifts occur regionally, but the warming 

appears to either expand coherent regimes or create new ones, the thesis thus looks at 

observed data at finer grid scale, and extends the analysis to ocean temperatures at two 

depths of interest.  A single GCM with multiple realisations is chosen for comparison with 

observations, and to assess differing model evolutions given identical model and forcing.  

Because the same data are averaged at a variety of spatial scales it was clear that at finer 

scales steps predominated more over trends. This result can only be obtained if steps in fact 

exist and are not artefacts of detection, and the systems producing steps are regional rather 

than global. 

All results are consistent with land changes following ocean based ones.  

Research approach 

Thus the research is structured so as to further extend J2012, JR2017, and related work. 

1. Adapt the step-detection methods already established by Jones for the detection of 

single step changes in climate data, to multiple step changes. Following this, to add 

empirical sensitivity testing to allow for improved confidence limits, especially those 

parameters which do not seem to have been stressed in previous publications. 

2. Accepting that all statistical tests rest on sets of ruling assumptions about the data, so 

then to assemble a battery of statistical tests for the purpose of ensuring that the 

assumptions of the MSBV are accounted for and elements of the data not consistent 

with these assumptions are interpreted correctly.  

3. Apply the new statistical tests to key datasets reported upon in JR2017, so as to extend 

some of its key findings, and to thus ground the later research. Then, using 
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observations, and climate models under widely varying conditions, to examine the 

interaction of forced warming and regime changes represented as step-like shifts. 

4. Key events and features (well documented transitions in major modes of natural 

variability) are sought at finer scale in observations, and particular spatial signatures 

are shown to correspond to these.  These are then examined in a sample climate 

model. Patterns in the ocean vertical heat distributions are compared to those in the 

surface temperatures. 

5. Further evidence of the importance of shifts is also sought by comparing the 

contribution of shifts to total warming, deriving these contributions from analyses 

performed at varying spatial scales.  

Thesis structure 

Chapter 2 contains a literature review focussed on the following chapters, and a section which 

draws on the literature to summarise some more philosophical statistical theory and to draw 

together a synthesis. In particular the foundations of the theoretic-statistical/mechanistic-

inductive framework, are explained; as are the applicability of severe testing and 

misspecification (M-S) testing. 

Chapter 3 describes the MSBV, its algorithmic structure, sensitivity testing, and its validation 

against synthetic data. It demonstrates three different applications drawn from later work in 

the thesis.  

Chapter 4 presents a suite of tools, selected by consideration of M-S testing, and applied with 

additional supplemental information. As mentioned climate data is more complex than many 

statistical tests allow for. Thus a validation suite designed to assess the suitability of the data 

for analysis was produced. These supplement probative tests reported in JR2017. The 

individual tests are carefully combined with consideration of the assumptions of each test, to 

produce a classification scheme for data segments in which are detected single change-points. 

The latter proves useful in the following chapter. 

Chapter 5 extends the surface temperature analysis of JR2017, and applies the validation tools. 

Climate model analysis is extended from global to zonal data, and from combined land/ocean 

averages to separate land and ocean data. Observations are also extended to 30o by 45 o 

sectors inside each 30o by 360o zone. In these regimes appear to occur at roughly half ocean 

basin and continental scale. A wide-spread abrupt shift in global climate around the latter half 
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of the 2011-2020 decade would be consistent with the model consensus. Changes in the 

zonality, frequency and intensity of shifts can be attributed to warming. 

Chapter 6 examines gridded observed surface temperatures from the point of view of spatio-

temporal patterns of step-like changes. Events identified by regional attribution in the 

Southern Hemisphere, circa 1968, and three major events documented in the literature circa 

1976, 1986 and 1997 all correspond to regional patterns of step-like changes. The 1976 and 

1997 events correspond spatially and temporally to changes in ocean temperatures at 100m 

and 700m, and align with the PDO. An event in circa 1924, in the East of the North Atlantic 

corresponds a feature found circa 1994 and both align with the AMO. In all cases the findings 

are consistent with the literature. One example GCM with multiple realisations and some 

similarity to observations during the 20th Century is chosen for examination but whilst similar 

features to various observed patterns are found they appear to have coordination to each 

other or to observations. 

Chapter 7 is a summary discussion.   
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Chapter 2: Survey of literature 
Introduction 

As stated in the introductory chapter, two main hypotheses exist concerning the relationship 

between external drives on climate, and internally produced natural variability of, climate as 

expressed at decadal time scales. Jones and Ricketts (2017b) (JR2017) focusses on 

anthropogenic warming due to greenhouse gases, primarily CO2 mediated by other emissions 

as the external driver of interest. JR2017 proposes: (H1) forced warming and natural variability 

proceed gradually and independently, with the response to forced warming best represented 

as trend-like, and natural variability sometime obscuring the relationship; (H2) forced warming 

and natural variability interact. When analysed under the assumptions of H1, variation in 

trends may also be analysed using non-discontinuous segmented statistical models (Cahill et 

al., 2015).  

JR2017 identifies two possibilities for H2. Patterns of response may project onto modes of 

climate variability as proposed by Corti et al. (1999), who found that the (then) recent 

Northern Hemispheric warming could be interpreted as projections of forced warming onto 

natural patterns of atmospheric variability, stipulating the findings were not evidence against 

anthropogenic forcing, thus hypothesising a principally one way interaction. Alternatively the 

relationship may be two-way as reported by Branstator and Selten (2009) who finds a small 

degree of feedback from these patterns to their response, which thus dynamically modifies 

those structures.  

This review is based on the accepted science of climate change as the science pertains to the 

last century and half, through to the end of the current century. In particular this thesis 

accepts that anthropogenic causes, particularly greenhouse gas emissions, are responsible for 

most of the observed changes in mean global surface temperatures (GMST). The 

Intergovernmental Panel on Climate Change (IPCC), Summary for Policy Makers, Synthesis 

Report (Pachauri and Meyer, 2014, SPM 1.1) commences with the following words “Warming 

of the climate system is unequivocal, and since the 1950s, many of the observed changes are 

unprecedented over decades to millennia. The atmosphere and ocean have warmed, the 

amounts of snow and ice have diminished, and sea level has risen”. It continues almost 

immediately, “Anthropogenic greenhouse gas emissions have increased since the pre-industrial 

era, driven largely by economic and population growth, and are now higher than ever. This has 

led to atmospheric concentrations of carbon dioxide, methane and nitrous oxide that are 
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unprecedented in at least the last 800,000 years. Their effects, together with those of other 

anthropogenic drivers, have been detected throughout the climate system and are extremely 

likely to have been the dominant cause of the observed warming since the mid-20th 

century.” (ibid., SPM 1.2, Emphasis in original). 

However whilst the primary cause of current and projected climate change is not disputed 

here, open questions about how climate changes remain.  

This thesis lays a much greater emphasis than most works on aspects of the statistical methods 

and reasoning involved. This comes about because the issue of abrupt changes in surface 

temperature seems difficult for some to accept, despite being at the heart of the identification 

of significant decadal variability modes. 

Abrupt decadal climate regime changes are then examined in more detail. 

I include a very brief summary of the foundations of the science greenhouse warming which 

indicates the early physical sciences roots of interest in climate, culminating in the formation 

of the Intergovernmental Panel on Climate Change (IPCC). See also Houghton (2009, p.17). This 

delineates the area of generally accepted science from the more controversial details of how 

climate changes. 

Milestones on the development of the science. 

The science of the greenhouse effect is built on foundations first laid in 1824 by Jean Baptiste 

Joseph Fourier who discussed the role of the atmosphere as a moderating influence on the 

temperature of the Earth (Fleming, 1999). Tyndall (1861) suggested a mechanism for this 

moderation; water vapour and CO2. Arrhenius (1896) first calculated the sensitivity of the 

global air temperature to a doubling of CO2 with water vapour feedback, obtaining a value of 

3-4oC. Building on the further work of Callendar (1938), Plass’s estimate of 3.6 °C obtained 60 

years later remained similar (Plass, 1956). Observing the relationship between CO2 levels and 

ices ages, he concluded there was “no possible stable state for the climate.”  

Following publication of results of climate models run by Goddard Institute for Space Studies 

(GISS) (Hansen et al., 1988), and at the urging of the World Meteorological Organisation 

(WMO), the IPCC was founded in 1988 (see https://www.ipcc.ch/about/history/) and has since 

released five reports summarising the state of the knowledge of climate science as it was in 

1990 (Houghton, 1990), 1995 (Houghton, 1996), 2001 (Griggs and Noguer, 2002), 2007 

(Solomon, 2007), and currently 2013/14 (Stocker et al., 2013c).  The physical science basis of 

global climate change is well documented in these. 
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Initially the science incorporated heat-balance or radiative-convective conceptual models 

where temperatures were measured above the ground (e.g. Arrhenius), and this convention 

applied as models evolved from simple, through highly parameterised multi-layer models 

(Manabe and Strickler, 1964) to today’s highly complex systems which are “are almost as 

complex as nature itself, making it hard to picture the connections between the most essential 

processes” (Benestad, 2016). The radiative-convective model remains core theory. In JR2017 

we say “Radiative transfer theory constitutes core greenhouse theory. However, the 

subsequent process of heat diffusion through the climate system is less well understood, 

although the understanding that if greenhouse gases are increased, the atmosphere will warm 

until the radiative balance at the top of the atmosphere is achieved also constitutes core 

theory. Our conclusion that the atmosphere does not warm in situ will challenge many who 

consider that to be a basic part of the greenhouse effect.” 

Following JR2017, this thesis agrees with the conventional model of most heat being trapped 

near the surface by greenhouse gases and reflected downwards, but departs from the 

conventional explanation of gradual warming in how that heat is dissipated. It also agrees with 

the conventional model with respect to long-term global mean warming being linearly 

proportional with the amount of forcing as a first approximation. The contentious issues within 

the science are therefore largely confined to how observations and model output should be 

interpreted, the detection and attribution of change on decadal timescales and the 

mechanisms underlying such changes.  

Whilst the conclusion that human activity is responsible for ongoing climate change, and that 

this is due to greenhouse gas emissions is accepted, the degree of risk this poses is socially and 

politically contentious.  

Abrupt decadal scale climate variability and change 

This thesis considers climate change at decadal time scale, as it is expressed at global to 

regional scales.  

Plass’s conclusion of no stable state for climate implies little about how the climate changes, 

and probably applies better to the current interglacial period. Mills et al. (2017) suggest that 

CO2 outgassing had a role in stabilising the early Earth climate, and recent work shows that life 

itself can stabilise climate (Dyke and Weaver, 2013). Short term stability is a theme in this 

thesis.  
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Defining abrupt decadal change 

Decadal scale variability generally refers to climate variability of the order of several decades, 

but often informal definitions are used. The IPCC refers to “Decadal prediction” as “a new 

endeavour in climate science” (Kirtman et al., 2013) with a context that suggests that decadal 

averages are the unit of measure, and implying that decadal variability is variability over small 

numbers of decades. Drijfhout (2018) discusses the relationship between GMST, and ocean 

heat uptake and related measures, considering the cause of apparent hiatuses (persistent 

reductions of trend in GMST) in global climate models. The concept of a well delineated and 

persistent climate state that switches abruptly, and potentially reversibly, is central.  

“Abrupt climate change” is defined by the IPCC WG1 as  “A large-scale change in the climate 

system that takes place over a few decades or less, persists (or is anticipated to persist) for at 

least a few decades and causes substantial disruptions in human and natural systems.” 

(Stocker et al., 2013b, Glossary). Alley et al. (2003) seem to use the term in reference to 

various threshold crossing and tipping points, but also uses the term in reference to the quasi-

oscillatory ocean systems and ecological changes. Repeatability distinguishes abrupt regime 

change of the sort discussed in this thesis from singular tipping point behaviour involving 

threshold crossing. 

Contrasting Regime shifts and Tipping Points 

Lenton et al. (2008) defined “tipping elements” in the climate as, “large-scale components of 

the Earth system that may pass a tipping point”. The tipping point (see their Table 1) is a 

threshold and the discussion pertains to elements with at least sub-continental scale that can 

switch rapidly given minor perturbations (implicitly, across the tipping point). They then 

discuss policy relevance.  

Drijfhout et al. (2015) extend this work with an exhaustive catalogue of tipping elements giving 

four categories of abrupt changes (see their Table 1). Their categories are (i) unforced 

switching (e.g. Southern Ocean sea-ice bimodality), (ii) climate change related forced transition 

to switch, (iii) rapid change to new state (e.g. winter sea-ice collapse, abrupt decrease or 

increase in sea-ice, local convective collapse), (iv) gradual change to new state, (e.g. boreal 

forest expansion or forest diebacks). Their first category is not really commensurate with 

climate variability, it refers quite specifically to sea-ice regimes of long residence times and 

feedbacks on water column stability. The second refers to similar phenomena which appear 

only after the climate has passed certain thresholds. JR2017 contrasts decadal abrupt changes 

with tipping elements as follows, “Note that these step changes are quite different to those 
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catalogued by Drijfhout et al. (2015), who used a different method to screen the CMIP5 model 

ensemble for abrupt shifts that could be considered as singularities, locating 37 ocean, sea ice, 

snow cover, permafrost and terrestrial biosphere changes”.  

Sgubin et al. (2017) consider one contribution to the AMOC collapse tipping point, the North 

Atlantic Subpolar Gyre. During their analysis of modelled SST trends they showed that the 

warming signal is spatially non-uniform.  

Regime shifts 

By contrast, in this thesis, climate regime shifts do not involve essentially irreversible changes 

or extensive reconfigurations. 

The term “regime” itself is not consistently defined in the literature. The first usage of the 

word regime in a climate context is suggested by Overland et al. (2008) quoting Isaacs (1976) 

to be ‘‘the assumption is that there are some normal statistics to all kinds of (ocean) 

conditions. Rather, there are probably a great number of possible regimes and abrupt 

discontinuities connecting them.” 

Minobe (1997) defined a “climatic regime shift” as “a transition from one climatic state to 

another within a period substantially shorter than the lengths of the individual epochs of each 

climate states (sic)”. This use is more consistent with analyses of Hare and Mantua (2000), 

Vives and Jones (2005), Hope et al. (2006), Swanson and Tsonis (2009) and Jones (2012), where 

changes have been identified as taking place over one or two years. Several papers have 

proposed methods for measuring the start to finish time of regime transitions, yielding 

estimates of one to two years with (Yan et al., 2015, Yan et al., 2016). 

Overland et al. (2008) summarise various usages of regimes as: (1) displacement or shifts in 

time-series, (2) underlying mechanisms, and (3) the distinction between external forcing and 

internal reorganization of ecosystems. By adhering to their first definition they find regimes 

changes in the Pacific Decadal Oscillation index (PDO) in 1976, 1989 and 1998. But they cannot 

eliminate red-noise as being the source of regimes, suggesting that current (at 2008) 

understanding is unable to attribute a deterministic origin or a single definition to a climate 

regime. Before this paper Rodionov (2004) had concluded that the PDO is not simply red-noise, 

given the amount of autocorrelation required to produce the appearance of the 1976 change. 

Mantua et al. (1997) implicitly uses the third definition of a regime, reorganised ecosystems, in 

reporting regime changes the PDO correlating with changes in fish-stocks in 1925, 1947 and 

1977, remarking that Minobe (1997) found regime changes in a variety of measures in 1925, 

1945 and 1977. 



15 
 

The attribution in the literature of regimes to red-noise is a motivation for Chapter 4 of this 

work.  

The initial approach to regimes in this thesis is in line with the displacement definition. I assess 

shifts in temperature at the surface and in the oceans, in order to inform an improved 

understanding of underlying mechanisms.  

Being able to distinguish between external forcing and internal reorganization of climate are 

secondary and tertiary goals.  

The results can also potentially contribute to an improved definition of climate regimes. 

For the duration of this thesis, a regime, unless otherwise indicated, is a period of near-

stationary behaviour in a variable (or set of variables) delineated by a brief period (within a 

year or two) of non-stationarity which are detected as shifts. An abrupt decadal climate 

change is a regime change of climate variables, where the near-stationary period endures for a 

small number of decades.  

The detection method used in this thesis, the MYBT, treats shifts as being step-like within a 

single sample interval (for annual data, a single year). The following sections describe (1) the 

current understanding of climate regimes including their detection and attribution and (2) 

statistical methods for detection that focus on the bivariate test, while taking account of both 

false positives and negatives. 

Temperature changes and recovery associated with volcanic aerosols 

There is a potential for the well observed temperature reductions and subsequent recoveries 

following major volcanic events to be identified as regime shifts. The four events of interest 

are Krakatoa 1883, Mt Agung 1963, El Chichón 1982, and Pinatubo 1991. Soden et al. (2002) 

discuss water vapour feedback post Pinatubo in producing the observed cooling. Schmidt et al. 

(2014) cautions that overestimated optical depth of aerosols from Pinatubo, ENSOs out of 

phase with observations, and incorrectly estimated solar forcing, all combine to bias model 

estimates of the effect of Pinatubo by about one third. 

JR2017 considers volcanoes as part of attribution studies to equilibrium climate sensitivity 

(ECS) based on a 107 member ensemble of CMIP5 model runs. The Krakatoa eruption is 

associated with a downward step of global temperatures in the 1867-85 decade in a significant 

number of runs, and the Agung eruption with a downward step in 1956-65. El Chichón is not 

mentioned and Mt Pinatubo is considered as a potential cause of low ECS correlation due to 

rebound and as having contributed to the timing of the subsequent shift. El Chichón is 
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considered by Reid et al. (2015), with rebound hypothesised to have combined with rapid 

warming so as to contribute to a regime shift in the mid-1980s. They estimate a cooling of 0.2-

0.3°C which recovered by the mid to late 1980s and thus the net warming for the period of 

recovery was proposed as a trigger for a regime shift. They then consider why the larger and 

later Pinatubo eruption did not trigger a regime shift.   

Timmreck (2011) uses GCMs to analyse the effects of super volcanoes (>1000 times the 

emissions of Mt Pinatubo with a frequency averaging 1.4 events per million years), finding that 

peak deficits in temperature of up to 6°C in the global record can occur one year later (-12°C in 

the NH), but are compensated by warm air advection. In an earlier study Jones et al. (2005), by 

scaling the Pinatubo aerosols to super-volcanic scale showed significant but short lived climatic 

impacts including reductions of GMST for up to a decade and doubling of the AMOC flow. In 

these and other cases summer cooling and winter warming are observed.  

The imprints of Mt Agung, El Chichon and Pinatubo are visible in selected regional records but 

where present have the typical morphology of a transient response with exponential recovery 

(Tsay, 1988, see the discussion of transitent change (TC) outliers) reverting to the previous 

climate within five years at most.  The MYBT is not expected to detect these transient events 

as it is intended to detect abrupt shifts and maintained changes, however the Agung transient 

may have been detected in zonal analysis (Chapter 5). 

Understanding decadal climate variability 

JR2017 identifies the interaction of forced warming and decadal climate variability as a key 

discriminant between H1 and H2. 

Abrupt regime shifts may be part of “natural variability” as is implied by their detection in 

paleo-records and as part of long term climate processes (Minobe, 1997, Kirby et al., 2010, 

Yasunaka and Hanawa, 2002), or they may indicate moderation of natural variability by 

exogenous processes (Trenberth, 1990, Vincent, 1998, McFarlane et al., 2000). The latter 

would imply that analysis of regime shifts may be used to assess sensitivity of parts of the 

Earth system to climate change. For a summary of these and related issues see Stott et al. 

(2010), as well as the reports of the IPCC Working Group II (IPCC, 2014a, IPCC, 2014b). 

It is also the case that data, previously analysed as smoothly varying, may reveal itself to have 

abrupt shifts once they are looked for. For instance north Pacific sea surface temperatures 

(SSTs), assumed to have followed a smooth cooling trajectory from the 1940s to the mid-
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1970s, were shown to include abrupt downward shifts round 1970 when analysed for these 

(Thompson et al., 2010), although in JR2017 and in this thesis the dates are circa 1976. 

A number of global climate components have been identified which exist at regional scale 

(continental or ocean basin) but affect the global climate. Many of these are quasi-oscillatory 

and occur with varying periods from sub-decadal, through decadal and centennial scales, to 

multi-millennial. Hurrell et al. (2010) list a number of influential systems.  

 The El Niño-Southern Oscillation (ENSO) is an important player operating irregularly over 

two to seven years (Henley, 2017). 

  The PDO, which is defined in the North Pacific interacts with ENSO, although the nature of 

the relationship is still an open question. A similar phenomenon occurs across the entire 

Pacific Basin, known as the Inter-decadal Pacific Oscillation (IPO) and may constitute a 

single complex system (ibid.).  Shen et al. (2006) describe the system as having irregular 

cycles of 75-115 years prior to 1850 and 50-70 after. 

 The Atlantic Multi-decadal Oscillation (AMO) may be related to a global heat carrying 

system, the Atlantic Meridional Overturning Circulation (AMOC) although climate model 

evidence is not strong (Trenary and DelSole, 2016, Moore et al., 2017). It is described a 

variation in North Atlantic sea surface temperatures, having 60-90 year variability 

(Knudsen et al., 2011). 

 A roughly decadal quasi-periodic redistribution of air mass between the Arctic and the 

North Atlantic is known as the North Atlantic Oscillation (NAO). It was described by C.T. 

Walter and G.W.Bliss in 1932 (Hurrell, 1995) although mechanisms are not well 

understood see also Hurrell and Deser (2010). Deser and Blackmon (1993), describe the 

dipole nature of the NAO, and report fluctuations of approximately 9 years prior to 1945, 

and 12 years after. 

 Another system known as the Arctic Oscillation is highly correlated with NAO, and is also 

primarily a phenomenon of surface winds (Ambaum et al., 2001).  

Of these the PDO/IPO and AMO are most prominently aligned with shifts in this thesis. They 

also figure prominently in the literature on both climate regimes and related eco-system 

regimes, 

Detection of decadal climate variability, approaches and methods 

The presence of climate variability at decadal time scales is not itself controversial. Multiple 

approaches and methods have been used in the research. Research often approaches the 

identification by combinations of detection of shifts in time-series, and associated eco-system 
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changes in line with Overland’s first and third regime types, but also makes use of spatial 

patterns of variation to focus on regions of interest. 

 

Figure Ch2.1: Time-series of mean North Pacific sea-level pressures averaged over 27.5°N to 75°N , 147.5°E to 
122.5°W for the months November-March. Means for 1946-76 and 1977-87 are indicated. Source: Trenberth 
(1990).   

The identification of the PDO relied in part on identification of correlated and quite rapid 

changes of climatic variables and biological data (e.g. sardine catch rates, as well as salmon 

and hake especially in 1976/7 (McFarlane et al., 2000)).  Trenberth (1990) shows an abrupt 

downward shift in North Pacific sea-level pressures after 1976, without specifying the break-

point identification method used (see Figure Ch2.1). He draws attention to teleconnections 

between local sea-level changes and global phenomena. Variation in the linkage of these 

decadal shifts to variation in intensity and frequency of ENSO was hypothesised by Trenberth 

and Hurrell (1994).  Mantua et al. (1997) regressed the PDO index against spatial records of 

sea-level pressure (SLP) and sea-surface temperatures (SST) to obtain diagnostic patterns, 

while Minobe (1997) applied empirical orthogonal function (EOF) analysis to the 

dendrochronology of North America and spectral analysis of sea-surface temperatures to infer 

the association of shifts dated around 1890 and in the 1920s with “the 50-70 year variability” 

over those areas, and previously known shifts in the 1940s and 1970s (Figure Ch2.2).  As stated 

above, both derived almost identical change-point dates. Strongly negative PDO values were 

noted in 1989-1991 (Hare and Mantua, 2000, Mantua, 2004). Changes associated with 1998 

were postulated as early as 2000 from principal component analysis (PCA) of the Aleutian Low, 

and changes in fish-stocks (McFarlane et al., 2000).  

Hare and Mantua (2000) also found that the 1989 shift was not as pervasive as 1976, nor a 

return to 1976 conditions, and suggested that the North Pacific and Bering Sea ecosystems 

may allow for earlier detection of climate regime changes than climate data alone. In studies 
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of the North Atlantic bio-physical systems, (Reid et al., 2015) detected changes in climate and 

eco-systems around 1986, using a combination of principal components analysis, a tool called 

Change-point Analyzer (Taylor, 1997) which appears to perform CUSUM analysis, and a 

development STARS for multiple steps. 

 

Figure Ch2.2: Coherent step changes in sea surface temperatures and sea level pressure. Source: Minobe (1997). 

The AMO was described by (Folland et al., 1984) who used a detrended maximum power 

spectral analysis to find a dominant peak period of 83 years in GMST and night near surface 

marine temperatures. Schlesinger and Ramankutty (1994), also discovered an oscillation in 

GMST records and corresponding detrended North Atlantic ocean temperature records using 

singular spectrum analysis (SSA).  An 8,000 year proxy study relates much of the AMO variation 

in that time to insolation (Knudsen et al., 2011). Moore et al. (2017) based on proxies (e.g. 

Labrador Sea algal data), suggests that the onset of industrial warming in 1850 amplified the 

AMO. (Mann et al., 2014) reviews the methods and finds that, possibly due to data length 

limitations, the detrended residuals method tend to produce biased estimates of phase, 

finding that the AMO “appears likely to have been in a cooling phase in recent decades, 

offsetting some of the anthropogenic warming”. 
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Regional Changes 

Nicholls et al. (2004) report links between rapid temperature changes and rainfall changes in 

New South Wales. They separated temperature changes into rainfall associated, and non-

associated changes, and concluded that changes in the IPO might be responsible for changes in 

the relationships. They suggested that forced climate change may play a part.  

Jones has shown localised regime shifts over Australia in a number of studies. Jones first 

selected the MYBT in his PhD thesis for examination of hydrological data in studies of S.E. 

Australian closed lakes. Jones et al. (1999) warns that non-linear rapid climate change in the 

area of Jabiluka is possible.  Jones et al. (2001) reports on evidence from three lakes of an 

apparent abrupt regime shift round 1840 and before 1863, which preceded large scale changes 

in land use. Vives and Jones (2005) (VJ2005) documents abrupt changes in Australian rainfall 

between 1890 and 1989, along with the detection methods used – LePage test (Yonetani 

(1993),and MYBT –  and shows Australia wide patterns of rainfall shifts corresponding to 

roughly 1895, (possibly 1922/3), 1945, and 1967-73. Jones (2010) shows an abrupt shift in the 

relationship between maximum temperatures and rainfall in Victoria post 1995 using the 

MYBT. This paper must rank amongst the earliest to quantify the contribution of sudden shifts 

in apparent warming rates (for example, concerning the Melbourne region pp 151, “The rate of 

change in this analysis is closer to 1.2°C per century but the bivariate analysis suggests that 

about two-thirds of that trend can be attributed to the rapid shift in T max of 0.9°C …”).  

Jones (2012) published a comprehensive analysis of regime shifts over SE Australia, again using 

the MYBT and the STARS test. The narrative had become more general, and the extension from 

regional regimes to global phenomena was further expanded by (Jones et al., 2013).  

Jones carefully selected the MYBT for use in the detection of hydrological regime changes, 

homogenisation of data sets and after VJ2005, detection of temperature regime shifts. There 

are a number of alternative approaches. 

Step detection 

Observed regional regimes, approaches and detection methods 

Regional shifts in climate and ecological regimes have been associated with the NAO post 

1987, in the North, and Behring Seas (Beaugrand, 2004, Alheit et al., 2005). Beaugrand (2004) 

reports a complex web of changes involving changes in the North Sea, relating to a phase shift 

of the NAO post 1987, and a subsequent warming. Deser and Blackmon (1993), also used EOF 

to identify the dominant modes of variability in the North Atlantic SST and air temperatures  
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and explore the dipole nature of the NAO. No comment was made as to whether the change 

from 9 year variability to 12 years after 1945 might relate to the contemporaneous PDO shift. 

Hurrell and Van Loon (1997) also show by a frequency analysis changes in the power spectrum 

and reddening of the NAO signal in recent decades and an association between the North 

Pacific index (NP) and the Southern Oscillation (SO).  

Franks (1999) used a Mann Whitney U test (Mann and Whitney, 1947) to assess the 

assumptions applied to empirical flood frequency analysis using 40 stream gauges in NSW, 

concluding that there is evidence of an abrupt change in flood frequency distributions post 

1945. 

The AO, has been found as a second mode of variation in Northern Hemisphere Sea Surface 

Temperature (SST) data. For instance Yasunaka and Hanawa (2002), used EOF analysis of SST 

and state that “six regime shifts are detected in the study period from the 1910s to the 1990s: 

1925/26, 1945/46, 1957/58, 1970/71, 1976/77 and 1988/89”. 

Hope et al. (2006) trialled self-organising maps (SOM), empirical orthogonal functions (EOF), 

and cluster analysis (CA), to investigate winter rainfall in South-West Western Australia, 

(SWWA) and settled on SOM. A step change in rainfall in 1975/6 was shown. This has been 

attributed to induced modification of storm tracks, as has a step change between 1995 and 

1997. 

Jones (2012) has used a bivariate test, the MYBT (in parallel with STARS), and in developing 

MYBT also trialled the Lepage test (Vives and Jones, 2005, Lepage, 1971). Others (Cai and 

Jones, 2005, Frederiksen and Frederiksen, 2007, Hope et al., 2006, Schneider, 2004) have used 

methods for detecting abrupt shifts from a number of disciplines such as homogeneity testing, 

signal processing, or ecosystem regime shifts (Andersen et al., 2009, Ducré-Robitaille et al., 

2003, Harper, 2014, Tsay, 1988), and shown that abrupt regional climate shifts seem to occur.  

Methods and approaches used for detection of changes attributed to variability modes involve 

many methods. Their application to detection of step-like changes is considered further down. 

There is a substantial body of literature which has been published, tested and accepted and 

which includes methods for many statistical models, for single changes and multiple changes. 

Most but not all multi-change methods use information criteria for model selection, MSBV 

does not.  
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Two things are important in respect to the use of a statistical step-detection test. The test 

must reliably detect steps, and it must be possible to test whether or not they are 

deterministic.  

Detection methods have been variously validated using simulated data, observations plus 

meta-data, observations and post-hoc examination, case studies and homogenised data with 

artificial perturbations (Peterson and Easterling, 1994, Easterling and Peterson, 1995).  

Almost all of the detection tests used to date assume that the trends and shifts in the data are 

deterministic, and the non-deterministic components of the data are adequately modelled as 

normally distributed random noise with or without autocorrelation. However a number of 

papers attribute regime shifts to the effects of non-determinism in the data, or cannot reject 

it.  

After this, the literature that addresses red-noise in climate is briefly reviewed. 

Deterministic and non-deterministic steps in climate data  

Whilst smoothly varying processes in climate have mostly been treated in the climate 

literature as deterministic, the nature of step-like changes is not as widely accepted. Non-

determinism in the form of red-noise has been suggested as an alternative to shifts. Red-noise, 

or integrated white noise, treats a signal as a sequence of random changes added to the 

previous values and thus the signal is non-deterministic – all variation is random.  

Red noise may (a) deceive a step-change method into identifying a shift in a pure red-noise 

sequence, or (b) inflating the statistical significance of detected shifts. 

When regime shifts, signalled as abrupt changes in level, are specifically considered, Rudnick 

and Davis (2003) show that the composite method (ASD) used by Hare and Mantua (2000) may 

yield shifts in pure red-noise. Therefore detection alone is not sufficient evidence of a regime 

change. This is a theme of this thesis.  

Percival et al. (2001) applies fractionally differenced (FD) and lag 1 auto-regression (AR(1)) 

models to the NP index, concluding that regime like progressions cannot be eliminated whilst 

leaving open the possibility of long memory processes with multiple lags. Furthermore a 

similar issue exists with area averaging of data, as is also shown in Chapter 4 of this thesis. 

The problem of red-noise and regime shifts was also considered by Rodionov who proposed 

prewhitening,(estimation of and adjustment for autocorrelation) but also found that this 
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decreased the sensitivity of his STARS method (Rodionov, 2006b, Rodionov, 2006a, Rodionov, 

2005, Rodionov, 2004). 

GMST curves do not merely follow red-noise/random-walks. General red-noise progression 

was used as a null hypothesis by Trenberth and Hurrell (1994) in determining central estimates 

of the frequency of decadal oscillations. Such a test neither proves constant frequency, nor 

addresses step-like changes, but it is evidence against purely red-noise/random-walk signals. 

See also Boiseau et al. (1999) for a similar analysis of coral reef proxies, and Cai and Whetton 

(2001) for a similar treatment of Nino 3.4 SST anomalies.  

Pierce (2001) examines the North Pacific over the top 50-100m. He is sometimes cited as 

attributing regimes to red noise, but whilst he states that much PDO variability can be 

explained as noise, there are some deterministic features present explained by atmosphere-

ocean coupling. 

Newman et al. (2016) suggest that the PDO, rather than being red-noise like, follows a long 

memory model. They also suggest the PDO itself is a composite process and hence that 

different regime changes may result from different processes. Beaulieu and Killick (2018) 

however find the PDO to follow a short memory (AR1) model in contrast to forced mean shifts. 

They start by attempting to address the so-called hiatus as a significant slowdown in warming 

[emphasis mine]. They find the so-called hiatus to be unlikely and the PDO to be best 

represented as an AR(1) process without shifts.   

One should note that short and long memory processes imply very different underlying 

physical models. 

Kaufmann et al. (2006) addressed the detection in red-noise data with the Augmented Dickey 

Fuller (ADF) test (Elliott et al., 1992, Dickey and Fuller, 1981), concluding that structural-breaks 

(change-points) exist in time-series of GMST, CO2 and CH4. Finally this thesis proposes the use 

of the Zivot-Andrews test (ZA) (Zivot and Andrews, 2002) to address the specific possibility of a 

false determination of a change-point in pure red noise data (Chapter 4). 

Reviews of step-change detection methods 

The method of choice in this thesis is the MYBT as a single step detection test and the MSBV 

developed from it. The test itself has been used over some decades. In the meantime other 

methods have been proposed. Here I survey reviews of methods reported in various climate 

studies. 
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Tayanҫ et al. (1998), as part of a study of homogeneity in Turkish temperature observations, 

compared a number of homogeneity tests for temperature data, separating those which use 

observing station meta-data from those which do not. Whilst they preferred the Kruskal–

Wallis homogeneity tests or the Wald–Wolfowitz runs test, supported by Monte Carlo testing, 

they concluded that meta-data was required to assess inhomogeneities. They made little 

distinction between non-meta-data based tests including the MYBT test, so the relevance of 

their work to this thesis is limited to their use of meta-data in validation of their choice of 

method. 

Ducré-Robitaille et al. (2003) compared techniques for detection of discontinuities in 

temperature series with homogeneity methods using synthetic data. Of eight methods they 

assessed, three performed reliably, the standard normal homogeneity test (SNHT) of 

(Alexandersson, 1986), multiple linear regression (MLR) (Vincent, 1998), and Bayesian with 

reference (Perreault et al., 2000). They also noted that SNHT and Bayesian with reference 

performed better at detecting smaller discontinuities and that methods developed to (also) 

detect trends are disadvantaged when a small discontinuity exists towards the middle of the 

series.  

Wijngaard et al. (2003) reviewed four methods, the SNHT, the Buishand Range test (Buishand, 

1982), and the Pettit test (Pettitt, 1979) all of which are tests for a single change in level, and 

the Von Neumann ratio test for homogeneity of variance (Von Neumann, 1941). They referred 

to the first three as absolute tests. Sahin and Cigizoglu (2010) contrasts MYBT with the three 

absolute tests, since the bivariate reference series may add power. However in introducing the 

SNHT for rainfall data Alexandersson (1986), makes it clear the test uses references from 

nearby stations as does Alexandersson and Moberg (1997). 

Mantua (2004), briefly reviews five methods from the point of view of detection of regime 

shifts in fisheries. These methods are PCA, average standard deviates (ASD), Intervention 

analysis (IA) and autoregressive moving average models (ARMA), vector autoregressive models 

(VAR(1)), and Fisher Information (FI). Most of these methods had a short history at the time of 

writing. This review is based on re-examination of sub-sets of data previously considered (Hare 

and Mantua, 2000), and concentrates on the issue of autocorrelation, which had been raised 

as a confounding issue in the use of ASD, IA and VAR(1) methods “… provide[s] objective means 

for identifying and assessing statistical significance of regime shift years …”.  

Rodionov (2005), lists a large number of methods for detection of (a) a level change in data 

with brief summaries of each. This work also tabulates method for detection of, (b) shifts in 
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variance, (c) shifts in frequency structure, and (d) shifts in the system. Note that four methods 

reviewed by other reviewers as change-point methods, are classified in the last category. 

These are PCA, ASD, Fisher Information, and VAR(1). Again the MYBT test is not mentioned by 

name or as the Potter test. 

Reeves et al. (2007) performed a review of methods concentrating on change-points in time-

series of climate data, including the SNHT and a non-parametric version, the two-phase 

regression (TPR) (Solow, 1987), without a common trend, and with (XLW), before introducing 

their own new generalised algorithm (GNL). They tested against five error models with 

combinations of trend and step – from no tend and no step, to change of trend and a step – 

and concluded that no single method was preferred if the underlying error model was 

unknown. They did not review the MYBT method, although they do consider the role of a 

reference series in change-point detection. In reference to multiple change-points, they say 

“Many practitioners merely search for the most obvious change-point, correct for that (if one 

is found), and then reapply the method to the corrected series. This can lead to erroneous 

adjustments, because the effects of the first change-point are heavily biased when other 

unaccounted change-points are present… all possible change-point times should be identified 

jointly before their mean shift magnitudes are estimated”. This issue is also addressed in 

Chapter 3 where the joint identification is given considerable attention. 

Beaulieu et al. (2008), reviewed and tested a number of homogenisation methods which 

allowed neighbour comparisons or reference series to be included. Their selection included 

SNHT, MLR, TPR, MYBT, Sequential Student Test (STUS) (Gullett et al., 1990), modified in line 

with recommendations in Ducré-Robitaille et al. (2003), Jaruskova’s method (JARU) (Jarušková, 

1997, Jarušková, 1996), and a Bayesian method (BAYE). They found high levels of false 

detection for BAYE, lower rate of 5% for STUS, with MLR and JARU in the range of 1-5%. 

Detection problems were near the extremes, an issue addressed by Jarušková (1997)1. When a 

single shift was present most methods except STUS and TPR were deemed satisfactory, when 

two shifts were present the MYBT performed best and when three were present BAYE 

performed better with MYBT second. They do not specify a segmentation method, and given 

the findings of Jarušková (1997) this finding may not mean a great deal.   

Andersen et al. (2009) reviewed methods and approaches for detecting threshold and regime 

shifts in ecological data. They include both single dimension and spatial methods. They make 

                                                             
1 And addressed in this thesis. I was unable to find much work documenting this issue, but Chapter 3 
includes sensitivity testing showing that MYBT is vulnerable to a central bias towards the data extrema. 
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the point that “… although most ecological regime shifts are inferred from changes over time, 

time itself is never the actual driver … Identification of a change-point in time is therefore the 

natural first step towards identifying a potential driver …”. By “approach” they refer to either 

exploratory or inferential statistical approaches, and by “method” they refer to algorithmic 

bases. Included in this review are three methods which can be used for homogeneity analysis, 

STARS  (Rodionov, 2004), Structural Change  (Zeileis et al., 2001) and a commercial 

CUSUM/bootstrap product, Change-point analyser (Taylor, 1997). The MYBT was not included. 

Whilst no direct recommendation was made, they surveyed uni-variate and multi-variate 

relations and distinguished between inferential and exploratory methods. 

Rao et al. (2009), in work drawn from the image processing community, analyse methods for 

anomaly detection in dynamical systems, comparing them with symbolic dynamic filtering 

(SDF). They include a number of neural network approaches, although SOM is not amongst 

them. They include, as feature extraction techniques principle component analysis (PCA), of 

which EOF is a variant used in climatology, and kernel regression analysis (KRA). This review is 

mainly of interest for the reason that it is framed in terms of pattern analysis and feature 

detection. 

Beaulieu et al. (2008) compared eight homogeneity tests, concentrating on precipitation data 

in southern and central Quebec. Their data had potentially multiple change-points. Whilst they 

state that they dealt with this segmenting the data, this is further explained in a second paper 

(Beaulieu et al., 2009). Other authors (e.g. Vives and Jones (2005)) have also used researcher 

choice in segmenting the data. This issue is central to chapter 3. 

Beaulieu et al. (2012), introducing their informational approach, based on use of the Schwarz 

information criterion (SIC) and the use of two decision rules, review a number of other classes 

of methods. The refer to change-point analysis for detection of changes in variance (Killick et 

al., 2010), various linear regression techniques, multiple shifts (Rodionov, 2004, Gérard-

Marchant et al., 2008, Seidou and Ouarda, 2007) although they include a piece-wise method 

(Tomé and Miranda, 2004) which is method for fitting without discontinuities, as is the MCMC 

based approach of Cahill et al. (2015). They also reviewed non-normality and autocorrelation 

effects, including Seidel and Lanzante (2004). 

Domonkos et al. (2012) provide a short history of statistical homogenisation and homogeneity 

testing tracing back to the identification of a need identified for temperatures of Milan (Italy) 

between 1763 and 1834 (referenced as (Kreil, 1848)). They credit Conrad (1925) as providing 

the first documented method for detecting an inhomogeneity, based on splitting annual 
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precipitation data into two segments and examining the most significant difference. They 

briefly mention the Craddock test (referenced as (Craddock, 1979)), and many of the tests 

previously mentioned. Two points of interest are; (a) combination tests to detect shift-like and 

trend-like inhomogeneities (MLR or newer versions of SNHT) were consistently shown to be 

less efficient for homogenisation than the best of other methods, (b) likelihood ratio tests 

(including MYBT) are more sensitive than other approaches. However they seem to include 

Solow (1987), who restrains a TPR to perform as a broken-stick regression, as well as the MYBT 

test which is quite different. (See below)  

Yozgatligil and Yazici (2015) also used simulated data to assess eight homogeneity tests, 

considering but not testing the MYBT test, detection tests but elected to consider the SNHT, 

TPR and the Buishand Range test.  They also include KPSS (Kwiatkowski et al., 1992) and ADF  

tests (see further on these tests below) as they are sensitive to inhomogeneities and the 

Structural Change (SC) methods (Zeileis, 2005, Zeileis et al., 2001). 

Points made by several reviewers are that change detection is intrinsically more reliable for 

changes located at the centres of data, and that information from reference series increases 

sensitivity. Also, that correct location of combined step and trend-change is an open problem. 

Few authors considered methods for segmentation of the data. 

The literature surrounding detection of changes in time-series summary statistics, i.e. change-

point analysis, is thus quite extensive.  

The MSBV is a multiple change-point extension of the MYBT method utilising a reference series 

for power. 

Utilising a reference series 

As above, reference series have been found to increase the power of testing. In general 

reference series are intended to represent the statistical properties of the data in an 

unperturbed state. In homogeneity tests of rainfall for example, the average of surrounding 

rain gauges may be used. 

Young (1993) used the MYBT for the adjustment of multiple discontinuities in 160 mean sea-

level pressure (MSLP) times series focussing especially on Darwin, basing his choice on the 

review of Easterling and Peterson (1992). He used a variety of interpolation methods to 

generate reference series and found that the skill of the interpolation was key in the sensitivity 

of the MYBT, also finding the sensitivity of the test depended on how close the discontinuity 
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was to the end of the data and the length of the series (a general domain problem since 

commented on by a number of people in reference to many methods).   

Easterling and Peterson (1995) is one of the earlier review of homogeneity methods 

distinguished by concentration on methods for generation of suitable synthetic time-series. 

They review the MYBT test as published by (Potter, 1981), and the Alexandersson method 

(SNHT) (Alexandersson, 1986), along with CUSUM (Page, 1954, Brown et al., 1975) and double-

mass methods (Chang and Lee, 1974), (referenced by Domonkos et al. (2012) to Köhler (1949)) 

and conclude that their method is more robust than others tested. However later reviewers, 

for example Andersen et al. (2009), seem to differ in this assessment.  

As seen in the review by Easterling and Peterson (1995), number of change-point detection 

methods use a reference series, and this adds sensitivity to the testing (Jarušková, 1997). The 

MYBT, and the Alexandersson test a.k.a. SNHT, both conceived for precipitation time-series do. 

CUSUM and double mass (Köhler, 1949) generally construct reference series from 

neighbouring data, two phase regression ((TPR) Liu et al., 1997) and other regression 

techniques can also incorporate reference series. Note: MYBT marginally outperforms SNHT in 

this study. Peterson and Easterling (1994) concentrate on the construction of homogenised 

reference series, with the expectation that the reference series estimates the “true” signal, as 

is appropriate for homogeneity testing. The problem of testing for homogeneity is being 

increasingly addressed with sometimes mixed results (Domonkos et al., 2012), a later version 

of SNHT which allow for trend changes for example is reported as less sensitive.  

Andrews and Fair (1988), and Andrews (1993) review structural change in non-linear models. 

They cover estimators including maximum likelihood and M-estimators and the Wald (W) test, 

Lagrange multiplier-like (LM) tests, and a likelihood ratio-like test. For classic regression 

models, the Chow test is commonly used (Chow, 1960). The Chow test is the basis of popular 

structural-change (SC) methods. SC methods test whether a (statistical) model parameter is 

stable over time. Thus the null hypothesis is that a given parameter is stable over time, tested 

against the alternative that it is not, which means that in the general case selection of an 

optimal statistic is hard (Zeileis et al., 2010). In this latter work, model selection (essentially the 

optimum number of change-points) is based on a modified Schwarz information criterion 

(LWZ) (Liu et al., 1997). 

Domonkos et al. (2012) finds that for homogeneity testing maximum likelihood (including 

MYBT) tests are in general the best performing approach. 



29 
 

Use of Maronna-Yohai test 

Following the publication of the MYBT, the test was illustrated by Potter (1981) using 

precipitation data. Potter extended the published table of critical values, recommending it as a 

very valuable tool, and in fact the test is often referred to as the Potter test. Bücher and 

Dessens (1991) used a reformulated version of the test for detection of homogeneity breaks in 

Pyrenees temperature data (the derivation was not published but I have derived it, see 

Appendix 3.1). Jones (1995) selected it as a tool for homogenisation of temperature and 

hydrological data, noting that Bücher and Dessens (1991) accepted that provided the data and 

reference time-series were relatively homogenous (i.e. their regression relationship was 

maintained except for a single change) the criteria of the test were fulfilled.  

Gan (1998) used the test to examine the relationship between maximum temperature and 

precipitation in the Canadian Prairies with temperature as the reference variable.  Similarly 

Jones (2012), used the MYBT to assess changes in relationship between temperature and 

rainfall variables, applying relationships published by Nicholls et al. (2004).   

Vives and Jones (2005) also published the MYBT with repeat testing with random data as the 

reference series, this converts the test from a relative one to an absolute one in the terms 

defined by (Wijngaard et al., 2003). At the same time it introduces elements of stochastic 

resonance where injection of noise assists in extraction of climate signals (McDonnell and 

Abbott, 2009, Moss and Wiesenfeld, 1995, Benzi et al., 1982). 

Beaulieu et al. (2008) found that the MYBT, SNHT, JARU all performed similarly whether data 

had single or multiple shifts although two Bayesian methods were later found to give greater 

precision (Beaulieu et al., 2009). 

A paper by Boucharel et al. (2011) is of special interest because they used the MYBT to 

delineate regime changes in ENSO Studies, finding evidence of state dependent ENSO statistics 

and a see-saw like variability in the tropical Pacific. A later paper, combining sea surface 

heights and temperatures in the East and West tropical Pacific also shows a surface see-saw 

signal associated with El Niño (Peyser et al., 2016). This may be an independent finding since 

the prior paper is not cited in the later one. In very recent work Jones and Ricketts (2019) use 

the MSBV and a tracking model to show evidence for a state dependent heat pump operating 

across the tropical Pacific. 

The MYBT has been used since its publication, found to be fit for purpose and amongst the 

better methods when judged by criteria such as sensitivity, precision, and resistance to use 
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outside its ruling assumptions.  Issues such as loss of sensitivity towards end points are domain 

limits. 

Many recent papers use MYBT as one of a suite of detection methods for detection of 

inhomogeneities (Mahmood and Jia, 2017, Hoy et al., 2018). Delvaux et al. (2019) however, 

cite the non-provability of the reliability of the reference series, and the single change-point 

detection of such tests as mitigating against their use, preferring their own software called 

HOMER. 

Extending change-point detection to multiple change-points 

Methods which specifically deal with multiple change points come from both the econometric 

and the climate literature.  

A number of authors have used univariate and multivariate SC methods based on a package 

coded in R (Zeileis et al., 2001), for analysis of paleo-climate (Martínez et al., 2015), fishery 

stocks and cascading regime shifts in the Irish Sea during the 1980s (Lynam et al., 2011), 

grapevine phenology, showing shifts in 1990-91 in the Veneto region of Italy (Tomasi et al., 

2011) and attribution to climate change (Di Lena et al., 2010), Baltic Sea temperature trends, 

and trend change with step in Arctic sea-ice extent  (Stips and Lilover, 2012). The method was 

used for the detection of climate regime change in temperature and rainfall studies of Italy by 

Giavante et al. (2009) who proposed a flat-steps model of climate change in that area. This was 

the method of choice in a paper on arXiv which proposed that evidence for step changes was 

evidence against anthropogenic climate change (Stockwell and Cox, 2009). 

There are two rather different approaches with the same name, “changepoint” or “change-

point”. Cahill et al. (2015) and (Foster and Abraham, 2015) adapted a method due to Carlin et 

al. (1992) who produced a method for the detection of multiple trend changes and named it 

“CP-regression”. The later work uses the names “change-point” and “changepoint” for their 

approach to statistical model of non-discontinuous segmentation, a “broken-stick”, or 

“segmented” regression.  However there is a growing body of literature that considers all 

aspects of generalised multiple change-point methods (Fearnhead, 2006, Killick et al., 2010, 

Eckley et al., 2011, Killick and Eckley, 2011, Killick, 2012, Killick et al., 2012, Killick and Eckley, 

2014), and a web-site (http://www.changepoint.info/). The package, coded in R (Killick and 

Eckley, 2014) provides methods for detection in level, trend and variance allowing for multiple 

search methods. They do not cover changes in regression (combined intercept and trend) as 

such, nor change in autocorrelation for which they recommend AutoPARM (Davis et al., 2006). 
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The method was used as part of a comprehensive examination of monthly precipitation in 

south-eastern United States (Wang et al., 2014). 

The next sections consider how various detection methods were validated, and what further 

validation would serve this thesis. 

Validation of change-point methods for climate 

When developing a new test or adapting one to a new use, there is a need to ensure that the 

method performs acceptably, given the characteristics of the data and expectations of the use. 

None of the methods papers I encountered or the reviews of methods ignore this issue, but it 

would seem that each researcher developed data and methods independently. All used some 

synthetic data, but not all used real data.  

The use of meta-data was proposed at least once. In general, where validation was reported, 

synthetic data for testing detection of shifts consisted of random data, sometimes with a 

degree of autocorrelation, and defined shifts and defined trends and trend changes. However 

climate data is more structured than this. Occasionally authors reported using homogenised 

climate data to which known perturbations were added, assuming or testing that the 

homogenised data did not then contain occult confounding change-points. This would have 

the advantage of testing a method against more structured data than usual synthetic data.  

Validation when multiple change points are possible requires not just an assessment of the 

sensitivity of the detection method to noise but to end effects. Validation of detection of 

change-points in multi-variate relationships is still more complex; as seen in methods 

developed for streamflow work (Seidou and Ouarda, 2007). 
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Table Ch2.1: Validation methods used for establishment of various change-point methods. This summarises the 
means by which selected methods were validated to ensure fitness for purpose. Does the paper indicate the 
method was tested against synthetic data? Was it tested against data containing only mean changes? Was it 
tested in the presence of trends? If real data was tested was any meta-data used to inform interpretation of the 
test?  Was it tested against real data with previous or known results? If real data are homogenised and then 
shifts are added are they detected? Were case studies published? 
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(Peterson and 

Easterling, 1994, 

Easterling and 

Peterson, 1995) 

Method Yes Yes Yes Yes No Yes Yes Yes Yes 

(Jarušková, 1996) Method Yes* Yes Yes No No No Yes No Yes 

Seidel and 

Lanzante (2004) 

Theory/ 

method 

No No No Yes Yes Yes Yes No Yes 

(Rodionov, 2004) Method No Yes Yes No No No Yes No Yes 

(Fearnhead, 2006) Method No No No Yes No No No No Yes 

(Seidou and 

Ouarda, 2007) 

Method Yes Yes Yes Yes No Yes  No No Yes 

(Beaulieu et al., 

2008) 

Method Yes Yes Yes Yes No Yes No No No 

(Gérard-Marchant 

et al., 2008) 

Review Yes Yes Yes No No No Yes No Yes 

*For derivation of critical values. 

In Table Ch2.1 above, the validation methods as gleaned from a range of papers is tabulated. 

Case studies are not considered as validation. Papers which are silent on validation are not 

listed. Econometric papers are not considered here since the thesis domain is climate.  
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Columns indicate the following  

 Does the paper indicate the method was tested against synthetic data? Although 

presumably developers of method do so during development, an indication of what 

data was used is helpful. 

 Was it tested against data containing only mean changes?  

 Was it tested in the presence of trends? Trends are an important nuisance parameter 

in testing changes of mean.  

 If real data was tested was any meta-data used to inform interpretation of the test? 

This applies especially to homogeneity tests and validation of homogeneity tests as 

there are multiple sources of inhomogeneity.  

 Was it tested against real data with previous or known results? Does it behave as 

expected, improve or shed light on a previous method? 

 If real data are homogenised and then shifts are added are they detected? This is a 

method for testing performance in data as close as possible to the target domain but 

the homogenisation should be conducted with care.  

 Were case studies published? 

From this table the works of Peterson and Easterling (1994) and Easterling and Peterson (1995) 

would seem to have covered the validation of methods in more detail than most. 

One author in particular (Jarušková, 1996) highlights the technical difficulties associated with 

testing for multiple trend changes, and with detecting changes at the data extrema.   

Criticism of an earlier paper submission not only suggested that further sensitivity testing of 

the MYBT was warranted (now addressed in Chapter 3), but raised the entire issue of statistical 

induction. This is addressed in JR2017. In that paper severe testing (Mayo and Spanos, 2006) is 

used to unite the hypothetical part of the work and the findings, and a philosophical proposal, 

the Theoretical-Mechanistic/Statistical-Inductive (TMSI) is introduced.  

This thesis also borrows inspiration from an approach to misspecification testing (Mayo and 

Spanos, 2004), and as a result Chapter 4 is dedicated to post detection analysis of the data in 

which change-points are detected.    
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Post detection tests  

A ruling issue in this thesis is that detection of abrupt shifts by any method is based on 

assumptions about how physical systems ought to operate, how that relates to data collected 

about them, and what alternative hypotheses should be considered. Similarly use of the tests 

documented here does not ignore the assumptions about the data that frame the tests, rather, 

these ruling assumptions are incorporated into the interpretations of the tests. 

Post detection testing serves two purposes. The first and most immediate is the detection of 

possible false positives. The second is to do with identifying non-determinism.  

The need for the detection of false positives in this thesis is due to the potential for 

misspecification between climate data and the ruling assumptions of the step-detection 

method, and so a less sensitive, presumably better specified test is performed post detection. 

The appearance of non-determinism can come about either because false negatives or sub-

detectable events exist, or because the underlying process is in fact dominated by red-noise. 

The impact of non-determinism is a difficult issue because there are trade-offs between the 

ruling assumptions of the tests and their power. As seen in Chapter 4, the thesis follows an 

error-statistical, misspecification approach in discriminating the statistical results (Mayo and 

Spanos, 2004).  

Once a multiple change-point method has selected change-points, it may be that portions of 

the data are affected by data quality issues that make individual change-points suspect. 

The MYBT assumes statistical stationarity (with no more than one exception at one point in 

time). Other detection methods are similar in assuming limited stationarity. Hence the 

detection and classification of non-stationarities in the data is important.   

There is a small but important body of literature which focusses on the validity of the statistical 

methods. There has been something of a tension in the literature about multiple testing. For 

instance recent papers that specifically claim change-point methods are subject to the fallacy 

of multiple testing (Rahmstorf et al., 2017, Cahill et al., 2015), but this was anticipated and 

previously rebutted (Mayo and Spanos, 2004). There is also a growing body of literature which 

attempts to refine or ameliorate the uncontrolled use of null hypothesis testing. For instance 

Haig (2016) argues that NHST should not be used in science, preferring what he calls neo-

Fisherian (the role of experiment is to solely attempt to disprove the null hypothesis on the 

basis of the data, without selection of an alternate, and without the concept of type 1 error) or 

error-statistical approaches, owing to Mayo (1996) (of which the severe test (below) is a 
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component). It is often assumed that autocorrelation in climate data should be compensated 

for on the basis that it can inflate regression significances , but this has been disputed (Mizon, 

1995), and if anything continuing autocorrelation should narrow the confidence bounds on the 

timing of an abrupt change. 

Whilst a number of papers have used regression methods to detect and remove natural 

variation in order to characterise trends (Rahmstorf et al., 2012, Foster and Rahmstorf, 2011), 

up until now few use econometric unit root analysis to investigate climate data.  Socio-

economic modelling of climate risks has used these methods (Liddle and Messinis, 2015). 

Probative Tests 

Once a sequence of change-points are found, and the chosen statistical model signal is applied 

(segmented, dis-joint, or curvilinear), the residual series should be featureless if all 

assumptions hold. Systematic variation, may be detectable by White’s test (White, 1980), as 

used in JR2017, or equivalently the studentized Breusch-Pagan test (Breusch and Pagan, 1979) 

used in this thesis. This might be taken as a signal of an unaccounted for variable or parameter, 

or a model misspecification.  

In this thesis, the detection method assumes change-points marked by step-like shifts, but the 

analysis allows for trend like changes. Error probabilities from the detection are inappropriate. 

Equally, error probabilities based on a misspecification are invalid.   

Analysis of variance (ANOVA) can be used to test the specific hypothesis that either a change 

of offset, or a change of trend exists as was the case in Rahmstorf et al. (2017), but interaction 

between the two parameters must be taken into account (Walpole et al., 1993). ANCOVA 

(Tabachnick and Fidell, 2007) can be used to assess the impact of the assignment of specific 

change-point relative to no change, essentially replicating the Chow test (Chow, 1960) within a 

more general framework.  

Unit root tests 

Unit root testing was stimulated in the econometric literature as part of the consideration of 

an economic assumption, “The Unit-Root Hypothesis”, that macroeconomic series follow a 

unit root (e.g. a random walk) process with random economic shocks being persistent (Nelson 

and Plosser, 1982). Investigation of this claim, led to the development of a number of 

statistical tests, each with its own assumptions and uses. 

Unit root behaviour applies to data which has autocorrelation plus random noise, and which 

converges at least transiently on a fully integrated, maximally auto-correlated, white noise 
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process (Stock, 1994, Glynn et al., 2007, Kaufmann et al., 2006).  Perhaps more simply (Stern 

and Kaufmann, 1997) put it thus, “Time-series can be characterized in many ways. … There are 

two types of trends - deterministic trends and stochastic trends. A stochastic trend is a random 

walk process that may or may not contain deterministic or stochastic drift. A time-series that 

contains a random walk process is termed a unit root process” [emphasis added]. This can lead 

to the identification of a chance period of rapid unidirectional random change as a step change 

in the mean, and a drift like behaviour as a change in trend. It is also possible that the 

temperature series may be dominated either transiently or in total by unit root behaviour. 

Stock (1994) identifies two categories of unit roots, moving average (MA) and autoregressive 

(AR) and identifies them as integrated lag zero or I(0), and integrated lag one or I(1) 

respectively. Data can only be taken to be stationary if the roots of their characteristic 

equation (which includes autoregressive components) are all less than one. Mathematically, a 

unit root process is one where at least one root of the characteristic equation is unity.  

Transient unit root behaviour could indicate some sort of regime change as part of the system 

behaved as if it was decoupled from normal forcings, I(0) behaviour; or as if it were forced by 

lagged change as I(1) behaviour, or more coupled to other sub-systems (Tsonis et al., 2007). 

Importantly in this work, it would indicate a potential deception if a time-series contained both 

a unit root (an endogenous feature) and an exogenous change.  

There is now a growing literature (Estrada and Perron, 2014, Estrada et al., 2013) concerned 

with applying econometric methods to climate data. Unit root tests have been used to analyse 

HadCRUT3 global and hemispheric data for structural change (Coggin, 2012). They have been 

used to analyse for structural breaks in the greenhouse gas and GMT time-series, concluding 

that climate change has affected the mean of the series but not the variability, but 

differentiating between trend changes in the Northern and Southern hemispheres (Stern and 

Kaufmann, 1997).  

Here I introduce three methods sourced from the econometric literature to assess the 

evidence for various manifestations of unit root behaviour. The outcomes of the tests are 

reinterpreted in the light of the ruling assumptions about each test, as evidence for non-

stationarity.  

The ADF tests a null hypothesis of unit root against an alternative of stationarity after 

compensation for auto-correlation (Elliott et al., 1992, Dickey and Fuller, 1981). It has been 

used to assess stationarity in climate series, in remote sensing of vegetation indices (Goetz et 
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al., 2005), and a study of Granger causality and comparative hemispheric response (Kaufmann 

and Stern, 1997). 

The KPSS test is a test for either trend stationarity or level stationarity against an alternative of 

unit root. The sense of the test is inverted compared to the ADF test since the null hypothesis 

of each is the contrast hypothesis of the other. 

The Zivot-Andrews test (ZA) tests for the presence of unit root against an alternative of 

exogenous change. Gay-Garcia et al. (2009) included it in a survey of the statistical properties 

of climate models. They showed it to be susceptible to the rejection of the null of a unit root in 

the presence of a structural break, an expected result, and they preferred to use a Perron-Yabu 

test (Perron and Yabu, 2009). However this work uses complementary tests, testing both step 

and trends, whilst the independent estimate of time provided via the ZA is of interest. Perron 

(1989) argued against the “The Unit-Root Hypothesis” (above) and proposed a test for the 

presence of structural breaks (i.e. exogenous changes) at a prescribed time in the presence of 

possible unit root, concluding in part that macroeconomic time-series identified earlier as 

following a stochastic path with persistent shocks were more deterministic with persistent 

structural breaks and transient stochastic ones. Zivot and Andrews (1992) revisited the test, 

internally computing a break-time. Thus it is a transformation of Perron’s UR test which is 

conditional on structural change at a known point, into one which first must select a candidate 

change-point. 

Step-like changes in a time-series are by definition non-stationary, hence would not be 

expected to pass tests for level stationarity. The contrast hypothesis of KPSS tests is formally 

unit root behaviour, but the ruling assumption ignores exogenous changes such as steps and 

trend changes; similarly the contrast hypothesis of the ADF. Thus the unit root result needs to 

be interpreted, and also requires further confirmation. The ZA provides further discrimination 

in this case, but it too requires careful interpretation. 

Interpreting unit-root tests given presumptive steps. 

These tests are all framed as null hypothesis statistical tests (NHST) with unit-root as one 

alternative. I reinterpret them as evidence of stationarity or non-stationarity and secondarily 

attempt to classify non-stationarity as more likely due to deterministic (e.g. undetected or 

ignored changes), or non-deterministic (e.g. random walk).  

1. Such tests have the following components 
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a. Ruling assumptions – the specific statistical behaviour that is shared between null 

and alternate hypotheses, the nature of error terms etc. For example in this work, 

significance testing of a trend will include the assumption “The data contains a 

signal and noise, the noise is i.i.d., this signal can be represented as y=a+bx.” The 

ruling assumptions include the presence of a limited number of alternates (usually 

one). 

b. A statistical function and associated probability, the value of which is compared to 

a “significance” and used to decide between alternative hypotheses. The 

probability is mapped to the statistical function, and it is this mapping which 

depends on ruling assumptions. 

c. The null hypothesis and a single alternate, a threshold probability or significance 

often treated as a behavioural rule (the researcher will accept or reject H0 in 

favour of H1 based on the probability value).  

2. Most tests in use attempt to accumulate evidence against the null, treating it as evidence 

for the alternate, and the probability represents the likelihood that the null case holds 

given the evidence against it. Short data sets tend to reduce the opportunity to 

accumulate evidence. 

3. Climate signals can almost never be completely described as a single signal and noise. 

4. If the ruling assumptions are violated, as in the real world they mostly are, the effect on 

the decision process depends on the nature of the violation, the data etc. The statistical 

function changes its relationship with the probabilities, and this should be accounted for. 

For instance the KPSS test for trend stationarity, a unit root test, has 

I. Ruling assumptions that include the absence of deterministic steps, which is important 

in this work, but also absence of other features. It also assumes that the signal can be 

decomposed into a linear combination of deterministic trend and a random walk (the 

sign of a unit root) and i.i.d. error. 

II. A null hypothesis of stationarity, and an alternative of unit root.  

If a shift is present then the method will effectively treat this as non-trend stationarity, 

hence as a unit root. I reinterpret the test as (H0: Data are trend stationary, H1: data are 

not trend stationary). Given the issue of small data sets, H0 has a rider, “or insufficient 

evidence exists to reject non-stationarity”. 
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The ADF test assumes unit root, and rejects it in favour of trend stationarity plus an 

autocorrelation structure and i.i.d. noise. 

I. The ruling assumption still includes absence of steps or trend changes and other 

features. 

II. The null is unit root, after accounting for autocorrelation, against the alternative of 

trend stationarity plus autocorrelation.   

Also note 

a) The values given to trend and the autocorrelation lags are all affected if a shift is 

present hence it may be less likely to class a shift and non-stationarity.  

b) Computing the autocorrelation reduces the sensitivity of the test and it is more 

applicable to longer sequences. 

The test is reinterpreted as H0: Data are not trend stationary (and this is not due to 

autocorrelation). H1: data are trend stationary (with or without autocorrelation). H0’s 

rider is “or insufficient data exists to account for autocorrelation and trends” 

The Zivot-Andrews is actually the test that is most applicable since a provisional change-point 

is present. However the ruling assumptions must be noted. 

I. The ruling assumption is that there is at most one deterministic change-point. If there 

is then the underlying process must be stationary. Note: the test first removes its own 

estimated change-point and then operates much as the ADF would on the residual 

series. Also note its internal change-point may also be a trend-change or a strong 

transient. 

II. H0 is unit root with drift (interpreted as endogenous change). H1 is a single 

deterministic change point with stationarity  (interpreted as an exogenous change) 

Violations of the ruling assumptions may give false findings either way.  

III. The presence of more than one deterministic change-point in the absence of unit root 

can register as a unit-root. 

IV. The presence of a deterministic change in the presence of unit root can register as 

stationarity. 

V. In the absence of any obvious shift, the test operates as a simple unit root test similar 

to the ADF.  
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VI. Because the test is being applied where there is a presumptive step already identified, 

I reinterpret the test.  

a. If it returns stationarity it may still be non-stationary data with a deterministic 

change. If it returns non-stationarity, then either the step-change is a 

misidentification (in which case the residuals after the step is removed will still 

be non-stationary), or at least one more change-point exists (in which case 

there are three possibilities for the residuals (see 8)) 

b. If there are possibly two or more change-points then the residuals will still 

contain at least one change-point, and the underlying residuals are either 

stationary or non-stationary.  

Application of the tests to residuals 

In Chapter 4, I also apply the same tests to the residual after the internal trend and shifts are 

accounted for. The same interpretations apply as above For example, if the ZA test initially was 

interpreted as evidence of non-stationarity but the residuals are stationary the most consistent 

explanation is a single undetected change-point was present in the data in addition to the one 

found by MSBV.  

The Theoretical-Mechanistic/Statistical-Inductive approach 

This thesis utilises a framework outlined in JR2017, the theoretical-mechanistic/statistical-

inductive approach, which requires a carefully reasoned matching between scientific 

hypotheses about the physical world with statistical hypotheses. There is good reason to do 

this. As Haig (2016) notes regarding psychology, “tests of statistical significance (ToSS) … have 

been widely popular in psychology for more than 50 years and in statistics for more than 80 

years”, before going on to detail practitioner discomfort with ToSS and in particular with a 

specific framing of ToSS, null hypothesis significance testing (NHST). He makes ten 

recommendations the first of which is that NHST should not be used in research, the second 

favouring “defensible forms of ToSS” including error-statistical approaches (Mayo, 1996, 

Mayo, 2004). 

Somewhat earlier than Haig, an often unrecognised limitation of reasoning was  addressed by 

Mayo and Cox (2006) who say, ‘The defining feature of an inductive inference is that the 

premises (evidence statements) can be true while the conclusion inferred may be false without 

a logical contradiction: the conclusion is "evidence transcending.”’, going on to delineate two 

traditions of using probability citing (Pearson, 1955): " For one school, the degree of 
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confidence in a proposition, a quantity varying with the nature and extent of the evidence, 

provides the basic notion to which the numerical scale should be adjusted." The other school … 

suggests that "it is through its link with relative frequency that probability has the most direct 

meaning for the human mind" (ibid)’ [emphasis added].  

Under the degree of confirmation approach, probability is used to provide a post-data 

assignment of degree of probability, confirmation, or belief in a hypothesis, while in the 

second, probability is used to assess the reliability of a test procedure to assess and control the 

frequency of errors in some (actual or hypothetical) series of applications (error probabilities or 

error-statistics). The first is also called degree of confirmation (DC), the second, error-statistical 

(ES) (Mayo and Spanos, 2006). 

The TMSI approach builds a hierarchy of models between theory and data following Haig 

(2016), and employs the concept of severe testing (Mayo and Spanos, 2006).  It is explained in 

detail in Section 2 of JR2017. 

Severe testing 

Mayo and Spanos (2006) propose a severity criterion which supplies a meta-statistical principle 

for evaluating statistical inferences, where the severity of testing is not assigned to hypothesis 

H, but to the testing procedure. Severe testing is based on the intuition that “Data x0 in test T 

provide good evidence for inferring H (just) to the extent that H passes severely with x0, i.e., to 

the extent that H would (very probably) not have survived the test so well were H false.” (Mayo 

and Spanos, 2006).   

As stated in the Introduction, JR2017 proposes two physical hypotheses, H1 and H2, describing 

the interaction of externally driven warming interacts with internally driven natural decadal 

variability with H1 holding the two are independent and H2, they interact. JR2017 proposes six 

tests in order to differentiate the two by severe testing. These are quoted in the Introduction 

under the heading “A probative framework”. 

Severe testing is beginning to be picked up, for example Katzav (2011) suggests assessment of 

climate model projections have not been severely tested and could be, for example to address 

issues of model tuning in such projections (Katzav et al., 2012). It was applied to an analysis of 

optimal fingerprint methods in climatology (Katzav, 2013).  Severe testing forms a core 

component of JR2017 and a conference paper (Ricketts and Jones, 2017 henceforth RJ2017). 

JR2017 lays out six tests that together formed a regime of severe testing for distinguishing H1 

and H2. (In JR2017 “steps” are the values returned by the MYBT, approximating the difference 
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in the means before and after a change; “trends” are computed by OLS for the data before and 

after the change and “shifts” are the dislocation at the time of change.)  

Test 1 Patterns of step changes in observations and alignment with known events: Major 

regime changes in observed surface temperature data were reported in JR2017, globally in 

data from five different sources and in two differing zonally averaged data sets. The dates are 

commensurate with other findings (Bartsev et al., 2017, Yan et al., 2016, Yan et al., 2015, Reid 

et al., 2015), and these are expanded upon below. These likely originate in decadal and 

regional processes (Rodionov and Overland, 2005, Overland et al., 2008, Reid et al., 2015, 

McCarthy et al., 2015, Alheit et al., 2005, Freitas et al., 2015, Trenberth, 2015, Trenberth and 

Fasullo, 2013). When the effect of shifts was separated from trends, shifts predominated, 

more so in mid-latitudes and SST. Satellite temperature records showed changes that aligned 

with surface temperatures. 

Test 2 Reproduction of observed patterns of step changes in GMST by models forced by 

historical emissions: A high level of correlation in dates was found between observations and 

an ensemble of Global Climate Model (GCM) analyses. 58 of 107 GCMs forced by an 

intermediate warming scenario, RCP4.5, showed shifts within one year of the observed change 

after 1996. 

Test 3 What is the relationship between different components of change and equilibrium 

climate sensitivity (ECS) in GCMs: For the period 1861 – 2005, correlations (r2) between 

warming and steps, shifts and trends was 0.87, 0.43, and 0.13 respectively, but with there was 

no correlation with ECS. For the period 2004-2095, r2 values were 0.96, 0.54 and 0.49 with ECS 

values being 0.65, 0.52 and 0.18 respectively, so that trend was dominated by steps and shifts 

Test 4 Can step-like change be identified using attribution methods: Regional attributions 

showed that warming commenced abruptly rather than smoothly in SE Australia, the UK and 

US and at times aligned to changes in the appropriate hemisphere. 

Test 5 Do other climate variables also undergo step changes: Similar timing has been shown in 

tide gauges records, rainfall, ocean heat content, forest fire danger indices (Hennessy et al., 

2005) and other climate variables and impact variables (Jones et al., 2013)  

Test 6 Are temperature time-series more step-like or trend-like: By multiple metrics 

temperature time-series are more step-like than trend-like (see JR2017, Table 6 for a 

comprehensive set of metrics). 
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JR2017 satisfies this programme of testing, and this thesis address Tests 1, 2, 5 and 6. It is also 

important in the TMSI to ensure that counter-theories are addressed and that counter 

proposals can be discriminated. 

In considering the role of error statistics (Mayo and Spanos, 2011) highlight the behavioural 

aspects of conducting ToSS and NHST testing. A decision must be made, based on some 

sampling, for example a batch of bolts produced in a factory (to use their example), is to be to 

accepted or rejected based on a sample from the batch. This is a behavioural decision and 

involves (or should involve) consideration of the consequences of the decision, and the 

properties of the test. When NHST is used in climate, the framing is generally “There exists a 

null hypothesis (usually that some dataset is randomly constructed), and an alternative that 

some specific feature exists. A statistical test is selected that provides a probability of the 

alternative as opposed to the null. (I will) reject the alternative in favour of the null case unless 

the probability falls below some threshold”. The acceptance or not is a researcher choice – not 

forced one by mathematics.   

Applying Theoretical-Mechanistic/Statistical-Inductive approach to decadal climate 

Climate time-series data are inevitably highly complex, and contains imprints of many features. 

H1 and H2 are often either silent, or in agreement, on many of these. For example both agree 

that anthropogenic warming entails inbound solar radiation (predominantly short-wave), to 

which the atmosphere is transparent, being absorbed and re-radiated back from the surface at 

infrared wave-lengths to which the atmosphere is not-transparent. A back of envelope 

calculation suggests one inbound higher energy photon has the same order of energy as 20 

outbound ones. Both agree that absorption of the outbound radiation occurs in the 

atmosphere resulting in warming but differ sharply on what happens next. The difference in 

inbound and outbound radiation at the top of atmosphere has been measured at between 0.5 

and 1.0 W/m2 (Abraham et al., 2013). Both are consistent with estimated absorption into the 

oceans of about 70% of this radiative deficit. Both would stipulate that this involves transition 

through the atmosphere/ocean interface, i.e. the sea surface. Where they differ is that under 

H2 such absorbed radiation (at least a portion of it) interacts with systems responsible for 

what we measure as climate variability and such systems respond to this extra heat. Under H1, 

either the systems that control variability modes do not interact at all with the surface heat 

flux, or they equilibrate to it without it affecting their variability, and/or they dispose of it 

rapidly in some occult fashion.   
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Statistical model fitting 

Statistical model fitting is used widely in climatology. Seidel and Lanzante (2004) analysed 

three alternatives to simple trends – segmented trends (which they called “piece-wise linear”, 

a.k.a “broken-stick”), steps (“flat steps”), and step and trend models (“sloped-steps”, which I 

tend to refer to as “disjoint segmented”), finding that no single model stood out on the basis 

of p-values. They concluded that detection and attribution studies should consider abrupt 

changes. If alternative statistical models cannot distinguish between H1 and H2 on the basis of 

p-values, then many of the standard tests are not severe enough. JR2017 lays out six tests 

which together form the basis of a severe test of H2 against H1. This thesis shows that the 

testing is adequate given the data, and that statistical and spatial features uncovered are 

consistent with prior observations, and with plausible mechanisms. 

Detection and attribution 

Following Jones, and as expanded in JR2017, the signal within the trajectory of change is 

apportioned statistically to a combination of trend-like changes and shift-like changes. These 

are taken to be reflective of two different hypothetical types of physical processes, one of 

which may give rise to abrupt shifts and the other not. Some terms are ambiguously used. 

“Jump”, “step”, and “shift” are all used to refer to the y-axis displacement between two trend-

lines in a disjoint time-series. For the duration of this thesis, consistently with JR2017, a “step” 

is the difference in the mean between two zero-trend segments, and is the value estimated by 

the MYBT. In some literature this is also called a “level-shift”. An “internal shift” or simply 

“shift” is the difference between two regression lines at the time of dislocation. The word 

“jump” will be used with respect to climate state as the system jumps from one state to 

another. “Internal trends” are the individual trends of the disjoint regression. 

Detection and attribution are defined by the IPCC in the IPCC guidance paper, as follows; 

“Detection of change is defined as ‘the process of demonstrating that climate or a system 

affected by climate has changed in some defined statistical sense without providing a reason 

for that change. An identified change is detected in observations if its likelihood of occurrence 

by chance due to internal variability alone is determined to be small’…” and “Attribution is 

defined as ‘the process of evaluating the relative contributions of multiple causal factors to a 

change or event with an assignment of statistical confidence’ (Hegerl et al., 2010)”.  The IPCC 

Fifth Assessment report goes on to explain, “In general, a component of an observed change is 

attributed to a specific causal factor if the observations can be shown to be consistent with 

results from a process-based model that includes the causal factor in question, and inconsistent 

with an alternate, otherwise identical, model that excludes this factor” (Bindoff et al., 2013).  
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Under H1, attribution of temperature increases to anthropogenic causes involves 

apportionment of response between anthropogenic trends and “natural” trends with other 

components, including shifts, being treated as noise or as nuisance parameters (Kaufmann and 

Stern, 1997, Stern and Kaufmann, 1997, Hegerl et al., 2010). Under H2, shifts and their timings 

become primary components of a complex signal, and attribution between natural 

anthropogenic causes involves shifts and their timing, and residual trends.  Jones (2012) 

employs an inverse linear method involving maximum and minimum temperatures and rainfall 

to detect, and then attribute changes in linear relationships amongst these variables to climate 

regimes. JR2017 also separates model temperature time-series into shifts and trends, 

correlating these with ECS. After 2006, shifts explain 2.9 times more of the variation in ECS. 

JR2019 also a similar attribution scheme to show a differential contribution between the 

Eastern and Western Tropical Pacific to ECS in climate models. In the same paper, observed 

ECS is estimated as 3.2±0.6°C, in line with but with narrower uncertainty limits than given in an 

analysis of models by Andrews et al. (2015). 

Model misspecification  

This thesis’s use of misspecification testing (M-S) concentrates on determining that the model 

is adequate for purpose. Within the M-S approach, hypotheses of interest are “H0: the 

assumption(s) of statistical model M hold for data z … against not- H0.where not- H0. Would 

consist of all the ways M‘s assumptions could fail” (Mayo and Spanos, 2004). In practice one 

must consider specific departures from H0.  

The MSBV operates by using the MYBT as a detection mechanism, and the MSBV selects 

specific solutions from the family of solutions using a variation on what Mayo and Spanos call a 

“causal structure search”. M-S tests that the assumptions of the statistical model hold for the 

data. This is different from the often used approach of estimation, and removal of extraneous 

signals, using regression methods, often against derived indices such as the IPO index. Doing 

the latter makes an implicit assumption that the confounding signals are in constant fixed 

phase with their indices – essentially an assumption of H1. Autocorrelation is either dealt with 

similarly or by binning, and in general changes of autocorrelation are not considered as signals. 

In this thesis the approach is to bin to annual averages as a means of minimising 

autocorrelation, and to examine a segment of data within which a change point is found, and 

determine if the signal itself, and the residual after removal of internal shifts and trends, show 

signs of deceptive non-causal drifting behaviour. Detection is based on level changes, post 

detection assessment is based on a less constrained model, so that the issue of cannibalisation 

is addressed. 
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Given the dependence on the pairing of physical and statistical models, misspecification 

testing (M-S) was proposed as an approach to determining whether the assumptions needed 

to reliably model statistical variables are met (Mayo and Spanos, 2004), for example whether 

an assumption of independent trials holds. The authors differentiate between model 

specification and model selection. They say, “Far from increasing error rates, multiple tests, if 

appropriate, may serve to cross-validate and fortify other tests, so that the model inferred as 

statistically adequate has passed a reliable test.” Despite this, a recent paper suggests quite 

the opposite, that multiple tests of multiple hypotheses are dangerous, and they include serial 

model selection in this, suggesting Bonferroni adjustments (Rahmstorf et al., 2017). However 

Bonferroni adjustments are useful only in restricted circumstance, specifically when multiple 

independent causes are postulated (Perneger, 1998). 

Serial feature detection in any time-series is a form of model selection from a family of related 

models, reliant on model-specification. The model selected can be coded as a set of time-

points, and the model selection utilizes some metric of the time-series deducible from the 

specification. The coded model varies in complexity as features are added or deleted during 

model composition. Here, selection of individual features requires a DF approach whereas 

their admission into a statistical model is generally an ES problem.  Emergence of model 

selection algorithms piles up significance test results (Mayo and Spanos, 2004). Practitioners 

have not resolved roles of error probabilities and therefore model selection methods not 

aligned to ES (ibid). This can lead to pre-data (ES) probabilities being applied to post-data 

degree of confirmation, ES design used for a DF problem, which require priors. For instance, 

use of the Akaike Information Criterion (AIC) and similar for model selection by ranking has 

been criticized as giving rise to unreliable inferences (Spanos 2010). However such information 

criteria control model selection in several popular systems for multiple change-point detection 

(Killick and Eckley, 2011, Zeileis et al., 2001). 

Regime changes discussed in other recent publications 
This section briefly surveys recent publications which demonstrate the uptake of the concept 

of regime shifts in climate, some definitional issues encountered as the concept is taken up 

across different domains.  

deYoung et al. (2004) develop what they call a pragmatic definition of an ecosystem regime 

shift as an abrupt shift from a quantifiable ecosystem state”. They state “While conceptually 

straight forward, understanding and identifying a regime shift concept has proven difficult. If 

we can define an ecosystem state, then it seems clear that a change in state, in the dynamical 
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sense, should be measurable and that some such changes in state can be substantial, abrupt 

and persistent …”, also noting that “the concept is more easily defined and accepted in the 

physical modelling community”.  Amongst their findings are regional scale climatically induced 

shifts in the NE Atlantic and North Sea due to upper ocean warming and advection, and very 

large scale physical changes related to top to bottom food web changes. When they looked at 

sub-millennial time scales they were unable to distinguish climatic regime changes from red-

noise (Rudnick and Davis, 2003). Chapter 4 of this thesis is thus of special importance, as it 

feeds into later work which suggests that decadal variability is very likely to be deterministic. 

Alheit et al. (2005) present evidence of an ecological regime shift when levels of copepod and 

other species changed abruptly in the North Sea and Central Baltic, coincident with NAO 

changes from negative to positive (1987-1989). The effects on copepods were attributed to 

the effects of temperature changes on water stratification, and severely affected other fish 

stocks. 

Reid et al. (2015), in a comprehensive paper, find wide-ranging changes in and around 1987 

involving most ocean basins and continents, multiple fish-stocks, and flowering dates. They 

also comment on an Eastward movement of the time of onset from 1985 in the Pacific to 1988 

in Asia. They define regime shifts as “Regime shifts are abrupt, substantial and persistent 

changes in the state of natural systems.” 

Belolipetsky et al. (2015) finds a staircase like signal in post 1950 HADCRUT4 global climate 

data after removing the estimated influence of ENSO. The adjustment for ENSO was conducted 

at the grid level which has the intended effect of removing regional biases. They find changes 

after 1987, 1988 and 1998. They did not find a change corresponding to 1976/77, although it is 

widely documented, this is discussed. I suggest that the adjustment method has differentially 

removed a signal present in the Pacific cold tongue (see their Fig. 3 (c)). Bartsev et al. (2017) 

follow similar methodology and speculate on the mechanisms of the three big shifts (excluding 

1976), firstly considering four cases. These are (a) an unknown multi-stable parameter of the 

climate system, (b) multiple bi-stable systems, (c) transitions between attractors in a chaotic 

system, (d) interconnected oscillators forming a super-system and shifts are the transitions 

between states. 

Varotsos et al. (2014) found evidence of two steplike changes in SST in the zone 30N-60N 

1925/1926 and 1987/1988, using STARS. Varotsos et al. (2019) find abrupt shifts in the lower 

troposphere 1986, 1994 and 2014 by the same method. These results are commensurate with 

results published in JR2017 except that the data used did not allow 2014 to be tested. 
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Zonal analyses 

This thesis extends the analysis used in JR2017 and RJ2017 to the remaining zonal records of 

observed climate.  

It also extends JR2017 to zonal analyses of a large subset of the temperature records from the 

atmosphere ocean global models (AOGMs) submitted for the IPCC fifth climate assessment 

report (AR5) (IPCC, 2013).  

Major regime changes in observed surface temperature data were reported in JR2017, globally 

in data from five different sources and in two differing zonally averaged data sets. The dates 

are commensurate with other findings (Bartsev et al., 2017, Yan et al., 2016, Yan et al., 2015, 

Reid et al., 2015). These likely originate in decadal and regional processes (Rodionov and 

Overland, 2005, Overland et al., 2008, Reid et al., 2015, McCarthy et al., 2015, Alheit et al., 

2005, Freitas et al., 2015, Trenberth, 2015, Trenberth and Fasullo, 2013).  

Zonal data were analysed in JR2017 as a means of assessing spatial coherence and prevalence, 

and shedding some light on specific claims. As stated above, Maher et al. (2014) associate 

Pacific tropical cooling with a negative phase of IPO in climate models, and Thompson et al. 

(2010) find a widespread, cooling over the Northern Hemisphere and North Pacific at the start 

of the 1970s. However in JR2017 and this thesis a regime shift comes after the mid-1970s in 

the Northern and Southern Tropics, and is preceded by a shift just before 1970 in the Southern 

mid-latitudes.  

Zonal analyses are less frequently reported in the literature, and when they are it is often as 

part of a study of meridional influences of atmospheric warming over time (e.g. Lu et al., 2008, 

Gu et al., 2016). And, as in these papers, at much finer zonal scale than the datasets reported 

in JR2017. The difference between equatorial and polar warming rates was analysed using GISS 

zonally averaged temperatures to make the point that surface warming was not uniform 

(Belcu et al., 2015). As noted above the analysis of Varotsos et al. (2014) was conducted 

zonally and although a different detection method was used, their results are similar to 

JR2017. The zonal analysis reported in Chapter 5 and following from JR2017 serves very much 

as a tractable intermediate, but in fact indicate that climate regimes are not purely global 

phenomena. This was explored using global climate models. 

Spatial analyses 

Spatial methods such as EOF are often used as part of a regimes analysis but of themselves do 

not detect abrupt changes.   
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Two recent papers simply assume the presence of regime shifts and analyse gridded spatial 

data for the duration of local change processes (Yan et al., 2016, Yan et al., 2015). Following He 

et al. (2012), they assume that state changes take a measurable time and exploit a four 

parameter logistic curve for detection of magnitude and duration of a change with the 

production of gridded maps showing coherent structures. However apart from these it is 

difficult to find work which attempts to locate loci of changes spatially. 

Using altimetric data of the South Pacific, and combining it with ocean salinity and 

temperature data a derived from ARGO floats, a spin-up of the Southern sub-tropical gyre 

between 1993 and 2004 is shown (Roemmich et al., 2007). This gives a 12cm increase in sea- 

surface height, and changes extending down past 1800m at the gyre centre. The paper 

suggests that this is linked to annular wind circulation and consequently all gyres and ocean 

circulation systems would show similar effects.  
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Chapter 3: The Multistep Bivariate Test 
Introduction  

The principal change-point detection method used in the rest of this thesis is based on the 

method first introduced as an homogeneity test by Maronna and Yohai (1978) (the paper 

henceforth will be referred to as MY78). The Maronna-Yohai bivariate test (henceforth MYBV) 

is a likelihood ratio test that uses a reference variable, and a single test variable. An adaptation 

of the test was published by Vives and Jones (2005) (henceforth VJ2005), and was designed for 

detection of step-like shifts in climate records. I have  extended it to deal with multiple step-

like changes, as suggested by Jones (2012). It will be referred to as the Multi-step Bivariate test 

(MSBV).  

A preliminary version of the MSBV was published under the name “Probabilistic Bivariate” 

(PBV) (Ricketts, 2015a) , and formed the basis of analysis reported by Jones and Ricketts 

(2017b). Since the publications of the PBV and JR2017, the algorithm has been slightly 

simplified, an optional alternative rapid termination procedure suited to analysis of large data 

sets has been included, and all three originally described variants of the MYBV have been 

implemented in the MSBV.  

The rest of this chapter is structured as follows. 

The MSBV test is introduced, commencing with the relationship between the variates in the 

MYBV test and the three variants published in MY78.  

The main features of the test are summarised, followed by a reiteration of the central 

equations of the MYBV test (see Box Ch3.1). The extension to multiple steps is then described, 

as are the algorithm and the decision rules incorporated. Various empirical tests of the method 

are described. This is followed by a brief comparison to two other multiple change-point 

methods which have been used in climate studies, although neither is designed specifically for 

multiple steps, but instead for combined steps and trend-changes.  

Three case studies, taken from later in the thesis, and which demonstrate the use of different 

aspects of the MSBV. These are: (1) a comparison step-like shifts in the global mean annual 

temperature and annual mean of the northern mid-latitudes, to demonstrate the general 

method for analysis of single time series. (2) The method is demonstrated at finer scale with 

spatial analysis and illustrated with some additional detail for one year of step-like change. 

This also shows that the phenomena have inherent spatial coherence. (3) A variant method 
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suggested in MY78, when two correlated variables each of which may have a change-point are 

to be analysed, is demonstrated using global mean ocean temperature data at two different 

depths.    Discussion, and consideration of future directions follows. 

The bivariate test 

MY78 assumes both the test and reference variable to be independent and both to be 

independent and identically distributed (i.i.d.) series, save for no more than one step-like 

change in the test variable. The role of the reference variable in the MYBV test is to adequately 

represent the characteristics of the test variable under a null hypothesis of no discontinuity 

between the reference and test variables. The exact null is a domain specific issue. In 

applications of the test, the null hypothesis, and thus an appropriate reference series is a 

domain specific consideration. For most applications of the MSBV the null hypothesis is strict 

stationarity and the reference series is a flat random time-series. 

MY78 identifies two related statistical models. When the reference series is correlated with 

the test series, this is known in MY78 as Model I, and is the principal focus of that paper. This is 

the most analysed case, e.g. Potter (1981). When it is uncorrelated, it is known as Model II, and 

has different critical values. MY78 also deals with the case of two correlated reference series, 

either of which may contain a single shift independent of the other series. MY78 stipulates 

that the change-point for the pair be the most likely change-point when either is used as a 

reference for the other. Thus three uses of reference series can be identified.  

a. The one way homogeneity test based on MY78 Model I. The reference series represents the 

expected trajectory of a time series without a step change. For example a comparison of 

weather recorded at an observing station compared to averages of surrounding observations. 

Potter (1981), for example, derives reference series for rainfall collecting station data from 

composites of neighbouring collecting stations. In effect the composites are assumed to 

represent an estimate of an independent variable, and the individual station data are a 

dependent variable. The MYBV is one of a number of tests available (Buishand, 1982, 

Alexandersson and Moberg, 1997, Moberg and Alexandersson, 1997, Yozgatligil and Yazici, 

2015). A correlated series from a separate independent variable may be used as the reference 

series. For example, as part of a regional attribution analysis of continental mid-latitude areas 

it had previously been established that “… annual average minimum temperature (Tmin) is 

correlated with maximum temperature (Tmax) … and Tmax is correlated with total annual 

rainfall”. In these cases, Tmin is treated as the dependent variable and Tmax as the 
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independent reference variable, whilst separately, Tmax was treated as dependent with total 

rainfall as an independent reference (Jones and Ricketts, 2017b Section 3.3).   

b. The two way homogeneity test based on Model I with two correlated variables either of 

which may contain a change-point. This would apply when there is a potential co-dependency 

between two variables or if dependency is undetermined. This is also useful when the two 

series are responsive to the same driver(s).  

c. The step-change test is the case on which this work has largely to date concentrated, Model 

II with a flat random reference where this is an adequate representation of the statistical null 

hypothesis of no change. The statistical null hypothesis, in turn represents the expected 

behaviour of a steady state regime. Development followed the reasoning of VJ2005 with the 

test of a time-series being reiterated multiple times against a resampled flat random reference 

series.  

Main features of the Multi-step Bivariate test 

The system extends the MYBV test for a single step change to multiple step changes. 

The system is written in the Python language (v 2.7.1), with the core bivariate test module 

nested in a rules base framework.  

The system consists of two components, (a) a rules based algorithmic framework which takes 

test and reference time series, and given an evaluation routine such as the MYBV test, 

produces a sequence of change-points; plus (b) a core of bivariate evaluation routines based 

on the MYBV test with options that support all three modes of operation.  

For a given time series, and a threshold probability, the MSBV returns a stochastic-statistical 

model in the form of a list of break points, each of which meets a nominated threshold p-value 

for a step-change, each element comprising the time of change, the step size, the test statistic, 

and the p-value of the level change.   

By contrast with other methods for multiple change-point detection the MSBV does not use an 

information metric for statistical model selection. Rather, provisional change-points are added 

between existing change-points on the basis of their p-value and all subsequent change-points 

are reassessed; and the entire analysis is reiterated until a stable consensus is reached. Also, 

when running with random reference series it uses multiple evaluations throughout, 

resampling the reference variable and selecting the most common (the modal) time of change. 
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Although work using this framework published to date has used flat random reference series 

and multiple iterations to detect steps as per VJ2005, provision has been made for the two 

way detection of shifts in paired time-series where neither is necessarily an independent 

reference, or one way detection of inhomogeneities given a presumptive errorless reference. 

The previously published versions of the test (the PBV) ran as a step detection test with flat 

random reference series only. 

When searching a single time series with a random reference, multiple trials are performed to 

locate change-points. This means that we do not use a continuous probability distribution to 

compute a central tendency, but return the most common change-year found, the mode. This 

is an important feature. If the segment under examination has two frequently detected points, 

one will represent the most likely and the second the next most-likely but their average would 

be meaningless. The same strategy was adopted by Beaulieu et al. (2008) in inter-comparisons 

of homogenisation techniques for rainfall data. 

Methods, governing equations and algorithm. 

This section briefly describes the algorithmic framework, its genesis and current form. The 

equations initially presented in MY78, were published with minor typographic differences by 

Potter (1981). JR2017 and this work use the form of the bivariate test published in Bücher and 

Dessens (1991) and reiterated in later work (Jones, 2012, Ricketts, 2015a). For convenience the 

equations are repeated here (Box Ch3.1,below), and a derivation that links the form in  Potter 

(1981) to that in Bücher and Dessens (1991) is provided in Appendix 3.1 (equations A8-A15). 

Flowcharts are provided for the main parts of the MSBV.  

Extending to multiple steps. 

The MSBV can be run in the three modes of use defined above, and extends the MYBV test in 

two main ways. It (a) extends the test to detect multiple shift points via an algorithmic 

framework, and (b) utilises a resampling strategy to explore alternatives when a random 

reference series is used. It will be shown that this greatly increases the precision of the test. 

Extending any test for a single change in a time series into a test for multiple changes involves 

multiple iterations, each of which can either establish or modify the time of change-points, the 

computation of a revised model and the evaluation of a halting criterion to terminate the 

process. The MSBV test like others, for example structural change methods, examines change-

points in the times bounded by the immediate prior and posterior changes. But rather than an 

exhaustive search, it revises sets in a causal order by traversing them from earlier to later 

times. Limiting each change-point evaluation to data bounded by provisional, earlier  
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Assuming that (𝑥 , 𝑦) are i.i.d. random vectors of length n, let xi be a stationary reference 

time series and yi be a test time-series which is assumed to correlate to xi except for a single 

shift at some time i0. 

 Step 1. Standardize series. 
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Step 2. Compute test statistics. 
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Let 𝑖
∗  be the value of 𝑖 for which 𝑇 = 𝑇, the time after which a change occurred. Its 

successor is the first time of the new regime. 𝐷
∗ is defined as the maximum likelihood 

estimator of a shift at 𝑖
∗. 𝑇

∗  is the test statistic that tested against some constant, 

discriminates with a specified probability, a null hypothesis H0 of no shift against H1 that a 

shift exists (Maronna and Yohai, 1978). A mean shift can be computed as ∆𝑦ത = 𝐷∙
∗ 𝑆ሖ௬. For 

the null trend case, analyzed in Maronna and Yohai (1978), critical values of Ti are given for 

probabilities of (0.25, 0.1, 0.05, and 0.01) for the null hypothesis of no change, given time 

series lengths n of 10, 15, 20, 30, 40 and 70. Potter (1981) provides these for n=100.  

Box Ch3.1 : The Maronna-Yohai test equations, from (Ricketts, 2015a) and following MY78. See Appendix 3.1 for 
an extended derivation from the forms published in MY78 which did not include a standardisation step. 
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established change-points, imposes censorship on the decision process since a change-point 

determination does not simultaneously consider the statistics of other, presumably related, 

segments. 

 

Flowchart Ch3.1: Bivariate test. A step of the size returned is accepted in a segment of length N, if Prob Ti0 < t(crit, 
N). 

When running with a deterministic reference as an homogeneity test, the bivariate test is run 

once for each determination of a potential change-point. When operating as a two way 

homogeneity test the bivariate test (Flowchart 3.1) is run twice on each segment, 

interchanging the test and control variable, with the returned time of change being the overall 

most likely time of change (I call this “bisampling”), (see Flowchart 3.2).  

 

 

 

When operating as a step-change test as described in VJ2005, the system is less deterministic 

and takes on some aspects stochastic resonance (Benzi et al., 1982) where injected noise 
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Flowchart Ch3.2: Bisample. Does not return modal values, it simply performs the bivariate test twice, 
interchanging variables, and returns the time of the greatest departure.  
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improves accuracy of feature detection (see Flowchart 3.3). In this test, noise is injected into 

the reference series, not the test data. 

 

Flowchart Ch3.3: Resample procedure. The control data is randomised on every iteration. This is the default 
behaviour described in VJ2005 and J2012. 

A single time series analysis by MSBV consists of two passes; a screening pass which produces 

an approximate list based on a recursive analysis, and a convergent pass (Flowchart 3.6) which 

refines the list by adjusting breaks in time order until a stable solution is attained. Together 

these form a single iteration (see Flowchart 3.4). The recursive procedure (Flowchart 3.5) is 

used in both passes, and is similar to binary-segmentation (Killick, 2012).  
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Flowchart Ch3.4: A single iteration of the Multistep Bivariate Test 
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Halting Criterion 

Generate New SolutionSet=[ ] 

TrialSolution=Recursive Pass 

Return Preferred Solution from SolutionSet 

Sort TrialSolution 

Refine TrialSolution with Convergent Pass 

Add TrialSolution to SolutionSet 
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Flowchart Ch3.5: Recursive procedure returns an unsorted list of possible breakpoints. The green diamond 
labelled mode selects three alternative modes of use hence three variations on the bivariate test. For step-
detection resample mode is used (Flowchart 3.3), for two variates, bisampling (Flowchart 3.2), homogeneity 
testing – a single bivariate test. 
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Flowchart Ch3.6: Convergent pass, annotated with example dates. 

Convergent Pass 

Repeat 

Until ProvisionalSolution in SolutionsList 

Generate New SolutionsList=Sorted([InitialSolution]) 

Generate New ProvisionalSolution=[1880 ] 
Generate New SegmentEndPoints=[1978,1996,2014] 

Repeat 

Until SegmentEndPoints=(e.g. [2014 ])  

Step 1 Re-examine intervals 
Examine data between last entry in  
ProvisionalSolution and first SegmentEndPoint  
Candidates=Recursive Pass e.g. Data[1880..1978]  
(Candidates is a list zero or more entries) 
 
Step 2 Apply selection rules to the new intervals  
If no breaks found (e.g. 1910 no longer applies), 
adjust SegmentEdPoints (e.g. [1996, 2014]) 
Repeat (e.g. Data[1880..1996] ) 
 
If only one found (e.g. 1925),  
add to ProvisonalSolution (e.g. [1880, 1925], 
adjust SegmentEndPoints (e.g. [1996, 2014] 
Repeat Repeat (e.g. Data[1924..1996] ) 
 
If more than one found (e.g. 1895, 1976), 
Test possibilities (see Notes) e.g. 
adjust ProvisionalSolution (e.g. [1880, 1895]) 
adjust SegmentEndPoints (e.g. [1976, 1996, 2014] 

Return ProvisionalSolution 

InitialSolution 

Mode 
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Algorithms 

Outer loop. A single iteration of the test consists of a screening pass then convergent pass (see 

below). It returns a list of break-years that segment a time series such that each shift is 

statistically likely at a selectable level (default is p=0.01) based on 𝑇
௧. Whilst most often, 

all iterations return identical lists, analysis of some time series will several variations – mostly 

as individual shift dates move by a year or so. Within this loop, all breaks are determined by 

applying a resampling test (below).  

Halting criterion. Normally the outer loop is iterated 100 times, and from this a small set of 

step-series is returned (most commonly just one), and the modal set is retained.  

Optionally, if speed is required, I attempt to choose  

(a) If the first seven iterations yield identical sets then that is returned since this has a p-value 

< 0.01. If not, then the test continues until  

(b) More than 9 iterations and either (i) exactly two distinct sets have been found and the p-

value returned by a Yates Chi-squared test <0.05, or (ii) the likelihood ratio of the modal set to 

the next most frequent set >20:1.  

(c) More than 50 iterations have occurred and a distinct modal value is apparent. 

This will be referred to as the Rapid Assessment Stopping criterion, and the MSBV run using 

this may be called the Rapid MSVB (RMSBV). 

Resampling test. This operates on provisional data segments. For the PBV, the bivariate test is 

repeated 100 times using different random sequences and the i0 values and means of the 

associated Ti0, and shifts are collated. For the RMSBV, when speed is needed, the same metric 

is used as for the halting criteria. On the screening pass only modal values are examined.  On 

the convergent pass the modal and the second modal values (if present) are returned. The first 

modal value (i.e. most frequent) is returned as i0 for those runs, the second is logged. The 

mean 𝑇  of modal i0 values, denoted 𝑇ധ  and the mean shift for those values associated with i0 is 

also returned. A segment contains a breakpoint in position i0 if 𝑇ധ ≥ 𝑇
௧. 

Binary segmentation. This is a recursive segmentation technique, (Killick, 2012). The entire 

time series is analysed for a single break-point using the resampling test. If 𝑇ധ ≥ 𝑇
௧ , then 

the segment up to and including i0 is analysed for an earlier break, and the segment after i0 is 

analysed for a later break. This process is repeated for the sub-segments so formed until no 

breaks are found with p-values below the selected threshold. The result is a series of break-
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points which are then refined on the convergent pass. It should be noted that as break-points 

found on this pass are returned on the basis of a recursive process, end point effects may 

perturb the results, including probabilities. 

Screening pass.  This pass produces a provisional list of break-points using binary 

segmentation, which serves as a starting point for the convergent pass (below). 

 

Figure Ch3.3: Schematic of one iteration of the convergent pass. Each shift-point (red circle) is revised by 
combining the sub-segments each side and testing the result to locate all shift-points within. For the rest of this 
example assume that no more than one are found. The earliest such point becomes the revised location within 
the combined sub-segments. The newly revised point becomes the left hand bound for the next iteration. In this 
case an initially misplaced point is modified and a false positive is eliminated. The convergent pass continues until 
a solution is discovered for the second time, and that is returned as the result.  

Convergent pass. The list of n break-points breaks the original time series into s=n+1 

segments. The algorithm then works its way from earliest to latest segments combining 

consecutive segments into one, and then searching within that segment using binary 

segmentation to produce new estimated break-points (usually but not necessarily no more 

than one) (see Figure Ch3.3). These estimates are processed by the decision rules below. There 

are two special cases, segments 1 and s which are analysed individually at either end of this 



62 
 

process to cover the impact of end point adjustments. This pass iterates until a break-point list 

is found for the second time, and this is returned as the result. 

A small set of decision rules are used during processing (see Box Ch3.2). These depend in part 

on the use of the recursive routine during the convergent pass. The rule set has been slightly 

refined since the PBV was published. The application of the rules is illustrated with a worked 

example (Box Ch3.3). 

Decision rules. 

Tunable prohibition. There are three principal reasons for imposing a prohibition period. The 

first is that the dominant sub-decadal variability mode is due to ENSO, generally assigned a 

mean periodicity of 3 to 4 years, but varying up to 7 years. The second is that the principal sub 

functions of the test involve summing of either exclusively random numbers (𝑋) or partially 

Decision Rules 

1. Prohibition: A tunable prohibition period defaulting to seven years is applied after a 

break-point before another point will be accepted, to minimize false positives associated 

with sub-decadal variation or transience. Break-points are disallowed within the same 

prohibition period at the end of the data. 

2. Mode: If resampling of random reference variables is used, the change-point time (Ti0) 

returned is the most common – the modal value – of those detected over all iterations, 

subject to the next rule. 

3. Well defined mode: If resampling is used and the modal value returned by resampling 

is >= 90% of those detected or the modal value is >50% and the second modal value > 

20% then the modal year is accepted, else it is dropped on the basis that it is possibly 

artefact. 

4. Prefer later findings: If a segment contains a single break-point that break-point replaces 

any previous one. 

5. Mergers: If a segment no longer contains a break-point then the segment and the next 

are merged and treated as a single segment on the next iteration. 

6. Multiple possible change-points: Within the convergent pass when a segment if a 

segment contains more than one point the earliest two are retained and the rest 

discarded. The two points are then trialed using a resampling test to determine if the 

interval up to the later of the two still contains the earlier break, and if this is still present, 

it is retained, otherwise the other is retained. 

Box Ch3.2: Summary of rules applied during the convergent pass processing of the MSBV. 
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random numbers (𝑌), and any resulting random steps will be unlikely to persist after seven 

samples. The intent of the MSBV is to detect persistent step changes – but to ignore transients 

lasting for a small number of years. Consequences of this rule are seen towards the later end 

of a data set, and this may be confusing when earlier and later collections are compared. For 

example an earlier collection of zonal ocean temperatures 60S-30S with complete data only up 

to 2014, had a change-point at 1996. The same collection with complete data to 2016, drops 

the 1996 date and shows a shift in 2008. This is a consequence of the seven year prohibition 

with 2008 becoming a permissible change point so that the 1996 change-point, previously 

considered probable between 1979 and 2014, is not as probable within the interval 1979 to 

2008. This could be ameliorated by reducing the prohibition for the last segment. However this 

was not performed in this thesis.  

1. Use of mode rather than mean. This is a critical point. The data may contain two separated 

years which are very nearly equally likely. During resampling as per VJ2005, both of these 

may occur, but the mean of the two would then represent a year which never occurs, and 

in fact may maximally unlikely. If the modal year is chosen subsequent processing of the 

resulting sub-segment may uncover the other year, or it may prove insignificant.  

2. Well defined mode. This eliminates stochastic drift. If the modes are neighbours then they 

represent a single shift, if they are well separated then the less strong one may be examined 

on the next iteration (see previous rule).  

The following rules deal with the consequences of the convergent pass where on examination 

of a data segment using the recursive search, zero, one or more potential breaks may be 

found.  

3. Retention of a later determined single break. This simply a consequence of the segment 

bounds being potentially revised.  

4. Merge of an empty segment with the next. This will occur primarily due to a change early 

bound. The newly merged segment is tested again immediately. This may itself return the 

change-year that had just been dropped, in which case the next sub-segment to be 

examined will have that as the lower bound and processing continues normally. 

5. Multiple possible change-points. In practice this occurs within long data sets responding 

to strong forcing, when the screening pass may miss a number of possible years. It is a 

consequence of the recursion finding break-years in order of 𝑇  value. The rationale for 

this rule is to trial both of these possible shifts as possible segment end points, since they 

will be treated that way on a subsequent pass.   
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1. In this example, the screening pass has produced 3 points in the range from 1850 to 

2014. This gives a list of years and the order in which they were found as follows, 

[1850,1900(2),1970(3),1987(1),2014].  This came about because, first 1987 was 

detected between 1850 and 2014; then 1900 was discovered between 1850 and 

1987; then 1970 was discovered between 1900 and 1987. However until the interval 

from 1850 to 1970 is re-examined, 1900 may not be the year that best fits. Hence the 

list is revised on the convergent pass. 

2. The convergent commences with the provisional list found above. It first takes the 

interval 1850 to 1970 and attempts to find all possible shift points within. Let us 

suppose it adjusts 1900 to 1902, and finds nothing else.  

3. The provisional list is then [1850, 1902].  

4. The next iteration tests for all possible years in the interval 1902 to 1987, another 

interval which has not yet been tested, but within which 1970 is assumed. Let us 

suppose that this time the test returns two years, [1919 and 1970]. As it happens 

1919 was first found within the interval 1902-1987, and then 1970 was found within 

1919-1987. Rule 6 is applied to test that if 1970 is real, 1919 is still found in the 

interval 1902 to 1970. Let us suppose it is not. The provisional list is then [1850, 1902, 

1970].  

5. The last iteration on this pass tests the interval 1970 to 2014, again an interval not 

yet tested. Let us suppose that 1987 is all that is found. At this stage the break list is 

[1850, 1902, 1970, 1987, 2014].  

6. Another convergent pass is required because a year has been amended.  

Box Ch3.3: Worked example in which rule 6 is used. See also Figure Ch3.3. 

Assessments of the MYBV 

The NCDC zonal data version v3.5.4.201504, see [APPENDIX-DATA]. 

Although the MYBV test has been amply reviewed and assessed it was considered useful to 

survey its behaviour when shifts are small and/or when the underlying physical model and its 

representative statistical model does not completely conform to the assumptions of the 

detection test. 

Appendix 3.1, equations A16 to A18 define the limit behaviour of the MYBV test with multiply 

resampled random reference variables. The reason for the precision of the MYBV test can be 

understood as the product of two elementary functions, the limit of a cumulating function of 

the residuals, in the terminology of MY78, 𝑌
ଶ, for all 𝑖 < 𝑛, and the limit of a hyperbolic 
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function that weights for distance, 
(ିଵ)

(ି)
, for all 𝑖 < 𝑛. The product is a spire shaped function 

with a discontinuity in the derivative at the break-point. Hence the test statistic is maximal 

both in its value and in its derivatives at the point of change, and from this follows a very high 

degree of precision in the presence of noise. 

 

Figure Ch3.4: Illustrative relation between running mean normalised observations (Yi2), the distance weighting 
(blue), and their product, the Ti* function.  

Figure Ch3.4 illustrates this with the example of a sample of n=100 points, a standard deviation 

of σ, and a shift of 2σ at the mid-point. Figure Ch3.5, bottom pane illustrates that even when 

the step change is a sixth of the total change the location of the step-change is still precisely 

measured, however by contrast in a more extreme case (step of 1/16th total change) deceives 

the test. 

Further consideration of equation A18 shows that if the data contains only a uniform trend 

then the Ti  function will be an inverse parabola and data with a trend change or combined 

step and trend will show some combination of hyperbolic and parabolic curves. Data without a 

step change but with a small trend change is potentially deceptive. See the top pane of Figure 

Ch3.5, where the Ti  function is plotted for four data sets which have the same total change 

end to end, but follow four different trajectories including the above cases.  All the Ti0 values 

would be considered significant. However empirical testing shows that the timing (Ti0 values) 

returned by the MYBV is resistant to moderate trends, and J2012 and RJ2017 give two 

methods that were applied to climate data to establish that the data was not deceptive for the 

MYBV – the shuffle test, and the window test. 
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Figure Ch3.5, Top pane: Ti functions computed for illustrative cases. Blue: A step change in an otherwise flat time-
series. Orange: a uniform trend. Grey: a trend change without a step. Yellow: a step and a trend change together. 
Bottom pane: Illustrative Ti functions given combine step and trend change. Time change as defined as time of 
maximum corresponds time of inflection until the variation due to trend strongly dominates. The step change in 
both cases is at index 25. 

This last possibility does not seem affect current observations since the trends and the trend 

changes have not been severe to date. As an illustration, a diagnostic plot from testing of the 

MSBV is shown (Figure Ch3.6). Data is the GISTEMP3 Northern mid-latitude mean zonal land 

and ocean temperature data supplied by NCDC (30-60°N), taken from analysis published by 

Jones and Ricketts (2017b).  It compares the supplied data to a hypothetical step and trend 

model with the same variance, shift and trends as deduced from the data. Variability of the Ti 

function is illustrated by the blue and red blurs. Each point in the blurs is the Ti value at that 
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year for one of 1000 iterations. The range of variability of the Ti function of the supplied data is 

shown in blue, simulation of randomised data with the same trends either side of the same 

internal shift in red. Solid lines indicate the mean of the blurs, blue for the supplied data, red 

for the hypothetical case and also in green the mean response for the pure linear trend 

computed for all data. This diagnostic matches the post 1996 land and ocean shift shown in 

the bottom panel of Figure Ch3.11 further down. Of particular note, if there was no change-

point in the data the Ti function would follow the green curve and maximise circa 2003. Clearly 

the selection of max(Ti) is not perturbed by trend and 1996 is a close estimate of the time of 

change, although the year after may have been a candidate.  

 

Figure Ch3.6: The Ti function for sample data, showing both the Ti function computed for sample data and the 
effect of the a random control variate. The test was repeated three different ways. The blue dots represent the 
variation of the Ti function for 100 iterations, the blue line is the mean of them. Black dots with yellow circles are 
the Ti0 function selected by the MSBV for the first 100 iterations. In this case, the same change-time throughout. 
The red circles the Ti function 1000 Monte-Carlo iteration, and the red line is the mean. For this internal trends 
and shifts either side of the change-point were subtracted from the initial data to yield a residual, normally 
distributed noise with the same variance as the residual was added back to the same internal trend and shifts, 
and the Ti function was plotted. Lastly a single trend was computed from the whole of the initial data, the same 
normally distributed noise was added in and another Ti function computed. This is shown in green. 

Testing of the method 

This section proceeds by first testing the sensitivity of MYBV test itself to the location and size 

of a shift, and size of the data segment. It then tests the performance of the MSBV against 

synthetic climate data.  

Sensitivity testing uncertainties of timing. 

Confidence limits on timing: In the literature on homogeneity testing for which the MYBV test 

was proposed, the emphasis is mostly on the detection of an inhomogeneity in a data 

segment, with associated p-values determined by the size of the inhomogeneity.  The best 

estimate of the time of change is also required, but the theoretical uncertainty bounds on the 

timing are generally not discussed. Rather, for example, bounds of ±2 years are stipulated as 
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“well-located” (Beaulieu et al., 2009). The MYBV test has been analysed several times either 

singly or in reviews of similar methods (Beaulieu et al., 2009, Beaulieu et al., 2008, Ducré-

Robitaille et al., 2003, Tayanҫ et al., 1998, Alexandersson and Moberg, 1997, Easterling and 

Peterson, 1995, Bücher and Dessens, 1991, Buishand, 1984, Potter, 1981, Killick et al., 2010). 

Computation of confidence intervals on change-points is complex and Hušková and Kirch 

(2008) shows that bootstrapped confidence intervals fall within the limits of asymptotic 

intervals as given by for example Bai (1997 see equation 17) in discussions of general change-

point models.  

Monte-Carlo simulation was used to survey the impact of segment length and step size on Ti0 

(timing) confidence intervals. Normally distributed data with standard deviation of σ was used 

to generate segments of length 20 to 100 in increments of 10. Step-changes of 0.5σ to 3.0σ in 

increments of 0.5σ were added at the mid-point.  

To assess only the precision of the estimate of location of the change-point, the MYBV was run 

10,000 times with new simulated data each time, for all defined segment lengths and step 

sizes. The construction of this test allows a sample standard deviation on the timing to be 

extracted. 

 

Figure Ch3.7: Confidence intervals for the detection of a step-change at the mid-point of data of various lengths. 
Once the step-size exceeds 2σ the 95% bounds shown as bars are less than two years. 

As is illustrated in Figure Ch3.7, confidence bounds are inversely related to step size, and at the 

design threshold of the MSBV (reliable detection of 2σ steps), the 5% confidence limits are 
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close to ±2 years. This does not include the effect of position or trend on the precision, and if 

there is a central bias, the error bounds may be optimistic.  

Therefore, separately, I assessed the effect on precision of change-point location by Monte 

Carlo testing of 10,000 runs with shifts at 20% and 80% of the length. I then assessed the 

smallest step-size that needs to be present for the precision to be ±2 years whilst independent 

of its position in the data. There is still a dependency on segment length and for most segment 

lengths the necessary shift size is ≥2.5σ. However if MYBV is repeated as it would be when 

resampling in the MSBV the step-size required to give 100% accuracy is much smaller, ≥1.5σ 

for segments of length 30 or less, and 1σ for longer ones (see Table Ch3.2).  

Table Ch3.2: Non-central shift points. Top row, the size of a shift that can be detected by a single run of the MYBV 
with 95th percentile spanning ±2 years, independently of the time of shift. Bottom row, the corresponding size of 
shift if the median value of a series of runs is used. 

N 20 30 40 50 60 70 80 90 100 
Shift size in σ that yields  
precision of ±2 years at least 
95% of the time 

3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Shift size in σ that yields the 
correct value as a median of 
multiple repetitions 

1.5 1.5 1 1 1 1 1 1 1 

 

Testing for central bias in the absence of trend: The Ti function, by its construction is non-

linear, greater in the middle of the data (see Figure Ch3.5). The published critical values are 

independent of Ti0 and therefore there is potential for a bias to the middle to occur. This 

would express itself as either a tendency for Ti0 values to bias to the middle. This effect has 

already been seen in the prior section. Hence it is important to know the sensitivity to shift-

size of any such bias in time of change. I tested the MYBV by Monte Carlo, using random data 

(standard deviation denoted σ) of lengths 10 to 90 at intervals of 10. Each data segment had a 

single step of size σ times a random value between 0 and 5, at a location randomly selected 

between 0.2 and 0.8 of the length. I recorded the medians of deviation from expected 

location, the median Ti0 and p-values. Shifts with p-values less than 0.01 centred on their 

expected location and with satisfactory accuracy. The method shows a bias to the mid-point 

when shifts have p-values > 0.05. Steps of 2σ or greater were accurately located with p-values 

<= 0.01, independent of segment length or location of shift (see Figure Ch3.8 for an example of 

a change-point at the centre in a time-series of length 100). In general steps must be 2σ or 

greater in order to be accurately located by the MYBV in data that conforms to the 

assumptions of the test (i.i.d., no trend). 
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The effect of trend and the effect of the resampling strategy as used the MSBV were tested. 

 

Figure Ch3.8: Illustrative examples of how the bivariate test behaves with shifts of different sizes. This plots the 
defined time of change on the X-axis against the mean error of 10000 determinations on the Y-axis. The 0.5 
standard deviation shifts did not reach statistical significance at P=0.01 and the 1.0 standard deviation shifts at 
index 10 and 90 were significant at P=0.05 but not at P=0.01. Shifts of 2 standard deviation are detected without 
a displacement error. 

Testing for the effect of trend on bias and precision: The MYBV test assumes zero trend, as 

indeed do other tests (Rodionov, 2005, DeGaetano, 2006), and the form of the Ti function is 

sensitive to trend (Figure Ch3.5). Therefore it is important to assess the sensitivity to trend of 

the MYBV and the MSBV. 

Using segments of length 100, I tested the Ti and Ti0 statistics returned by MYBV with 

uniformly trended data of that rose 4σ over the segment, to which had been systematically 

added a step of between 0.5σ and 4σ in 0.5 σ increments at the mid-point. I also tested data 

with the same steps and initial trends of zero, but where the trend changed at the same time 

as the shift. Imposition of uniform trend strongly modifies the Ti values leading to under-

estimation of p-values and inflated significance.  

When the step is small there is a bias towards the centre of the data in the estimation of Ti0, 

increasing with trend. As above for small trends and steps greater than 2σ the bias is 

negligible. However there is a relation between the degree of trend and the smallest shift that 

can be located without bias. If the increase due to trend over a period is Τ, the size of the shift 

required for zero bias Τ increases by nearly Τσ/2. The major effect of a trend change is that the 

errors are skewed towards the side of the greater trend, whereas for uniform trend they are 

symmetric and centrally biased (See Figure Ch3.9). 

Secondly, to assess the sensitivity of bias and precision of the MYBV impacted by trend, 

another Monte Carlo test was performed. For each set of parameters 10,000 iterations of all 
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combinations of the parameters were tested by MYBV. Parameters were segment length, 

location, shift and trend. Data segments of lengths 30, 60 and 90 were generated. Locations of 

0.2, 0.5 and 0.8 of the length were selected for a step-shift.  Step sizes of 0σ to 5σ in 

increments of 0.5σ were added. Then uniform trends of 0 to 8σ in increments of one were 

applied. The error of the Ti0 values were collated for each combination of parameters and the 

2.5th percentile, median and 95th percentile were tabulated. Again the median indicates the 

performance of the MSBV and the percentiles provide the spread for the MYBV against 

random references. 

Table Ch3.3: Sensitivity of the relationship between imposed trend and minimum shift of a shift than can be 
accurately located by median of multiple trials e.g. MSBV (first set) or the MYBV run singly. 

 
Size of trend (σ/Century) 
that can be located within ±2 
years by taking a median for 
increasingly large steps. 

Size of trend (σ/Century) 
that can be located within a 
symmetric 95% confidence 
limit of ±2 years for 
increasingly large steps. 

Shift (σ) 30 
Years 

60 
Years 

90 
Years 

30 
Years 

60 
Years 

90 
Years 

0.5 
      

1 5 2 1 
   

1.5 8 5 3 
   

2 ≥8 8 5 
   

2.5 ≥8 ≥8 7 0 0 1 
3 ≥8 ≥8 8 8 6 4 

3.5 ≥8 ≥8 ≥8 ≥8 7 5 
4 ≥8 ≥8 ≥8 ≥8 8 7 

4.5 ≥8 ≥8 ≥8 ≥8 ≥8 8 
5 ≥8 ≥8 ≥8 ≥8 ≥8 ≥8 

 

Table Ch3.3 summarises the pertinent points. The main aim is to identify shift sizes which are 

always accurately detectable regardless of various imposed trends (“resistable trends”). For 

each combination of length, location, and shift the trend nominated as “resistable” was the 

greatest one for which the median error was ≤2 years, with all smaller trends also the same 

(these are the first group in the Table. Similarly the 95% span, shown as the second group.  

From the above results, the MSBV (with resampling) would be expected to accurately locate 

shifts of 1σ with trends of up to 5σ/Century in a time series of thirty years, but individual MYBV 

tests would not be deemed reliable with any trend until the step-size is ≥ 2.5σ. One should 

note the seemingly counter intuitive result that longer time-series are apparently more 

sensitive to trend. This is because more trend accumulates in longer series while the change-

points are placed proportionately to the length. 
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A.  

B.  

C.  

Figure Ch3.9: The effect of a uniform trend and of a trend change on the central estimates, and the spread of 
results, for shifts at random locations is shown here. In (A) shifts of 1.5 standard deviation are acceptably located 
by the bivariate test. In (B) a uniform trend of 4 standard deviations over the time series means that steps of 3.5 
standard deviations are the smallest that can be reliably located, and the spread is symmetric. In (C) the same 
trend change is introduced with the step change. In this case the spread is asymmetric. 

To assist, Figure Ch3.10 below illustrates the type of spread of MYBV results when small and 

large shifts are affected by moderate and greater trends. 

In this illustration the top pane shows the sorts of spread that can occur with a smallish shift of 

1.5σ. The red crosses indicate the location of the shift (0.2, 0.5 and 0.8 of the length) in the 

data, the solid lines a trend of 4σ/Century, the dotted lines are trends of 8σ/Century. The 

lower pane shows a substantial shift of 3.5σ. In the case of the smaller shift, central bias 

occurs, and increases with trend, and, as the median is displaced, the MSBV may be affected. 

In the other case the shift is sufficient that no bias occurs and both the MSBV and the MYBV 

would locate the change-point acceptably. 
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Figure Ch3.10: Illustration of the effect of trend in the MYBV in a sequence of 90 years shown as empirically 
derived probability distributions. Six cases are illustrated on each pane. Shifts located at 0.2, 0.5 and 0.8 of the 
length, in the presence of either 4σ (solid lines) or 8σ (dotted lines) trends. Top pane: shifts of 1.5σ, bottom pane: 
shifts of 3.5σ. Red crosses denote time of shift. Maxima in each curve correspond to medians and if p-values and 
processing rules permitted would be returned by the MSBV. Each curve represents the 95th percentile span. 
Central bias is shown in both panes but in the bottom pane the higher step size is sufficient avoid bias in the 
median.  

Sensitivity testing of the MYBV shows that (a) small shifts may be reported closer to the mid-

point of the data, but not shifts exceeding the design threshold; further, a shift of 1.5σ in a 

non-trending dataset should be located with adequate precision. (b) In the presence of 

uniform trend the shifts must be progressively larger for central bias not to occur. (c) Where 

trend is involved it is the cumulated trend – the actual rise or fall within the data – as a 

function of standard deviation that determines the minimum size of shift that can be 

accurately located. 

Testing the MSBV for multiple steps in climate-like data  

In order to assess the performance of the MSBV test with climate-like data containing multiple 

shifts including those below the expected thresholds, five families of artificial data sets (“A” to 

“E”) representing a 200 year random sequence with autocorrelation (lag 1 25%, lag 2 10%) 

0 10 20 30 40 50 60 70 80 90

Bias of small (1.5σ) shifts in presence of trend

Step 1.5, Trend 4 Step 1.5, Trend 8 Correct

0 10 20 30 40 50 60 70 80 90

No bias of large (3.5σ) shifts in presence of trend

Step 3.5, Trend 4 Step 3.5, Trend 8 Correct
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were tested and analysed with the validation 

methods. Each family consisted of four 

combinations of data, steps, and quadratic 

trend with the third series (A3 to E3) having 

steps and the fourth (A4 to E4) also having 

quadratic trend. The average size of shift 

amounts to 1.5 standard deviation, (which is 

less than the bivariate test would be expected 

to reliably detect in the presence of trend). 

This analysis also forms part of the case study 

reported in Chapter 4, see Table Ch4.8 for 

specification, Table Ch4.11 for results, Figure 

Ch4.4 and discussion therein. To summarise, 

the test detected shifts as expected. Of 40 

shifts imposed on a quadratic trend, 11 were 

of less than 1σ, 21 between 1σ and 2σ, eight 

were greater than 2σ. A step in set B4 was 

detected in 1944 prior to the first imposed 

shift in the series, but is identified by ANCOVA  

(see Box Ch3.4) as having p-values greater 

than 0.05, and diagnosed by the CP-Index as a 

continuation of trend. Series B3 and B4 had 

shifts in successive years (1974, 1975) and this 

was identified, as expected, as a shift in 1974. 

The last two shifts in series E3 and E4 at 2071 

and 2080 were both small (<1σ) and a shift was identified between them after 2074 with p-

values < 0.05 by ANCOVA. This would count as a misplaced point. Change-points within seven 

years of a prior point or the end of data were not detected (as expected). Shifts of between 1σ 

and 2σ were more often detected than not – again an expected result. All data segments bar 

one (D4 at 2084) were diagnosed as stationary. So false negatives and misplaced points are 

presumptively attributable to small shifts combining with trend. 

MSBV compared with other methods  

For comparative purposes the same data were also tested using the default breakpoints 

function from strucchange.R with its default Aikake Information Criterion (AIC) (Ludden et al., 

Validation methods (Chapter 4). 

Of the validation methods outlined in the 

next chapter, two are briefly summarised. 

ANCOVA is a method for comparing two 

regression lines. If the regression lines 

fitted to data before and after are 

compared, ANCOVA can assess whether 

they are likely to be different. If they are 

not, then the change-point is suspect. 

However in the absence of trend ANCOVA 

is less sensitive than the MYBV. 

The CP-index categorises shifts on the 

basis of ANCOVA and the surrounding 

trend. 

Stationarity tests are can be used in 

combination to classify the data as 

stationary with a single change-point, or 

possibly as non-stationary in which case 

the change-point might be an artefact of 

red-noise or another one missed.  

 
Box Ch3.4: Validation tests fully documented in the 
next chapter but mentioned here. 
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1994, Akaike, 1974) as a penalty (henceforth SC) and the cpt.meaanvar from changepoint.R 

with its default of Modified Bayesian Information Criterion (MBIC) (Zhang and Siegmund, 2007) 

as a penalty function (henceforth CP). SC also reports the 95% confidence ranges for the 

estimated year of change, (see Appendix 3.2, Table A3.2.26). SC is demonstrably prone to false 

positives in the absence of an expected change. As expected the MYBV is also prone to false 

positives in the presence of trend. Yet in the combined presence of trend and shifts neither 

method would be preferred. CP is the most conservative in the configuration I used and most 

prone to false negatives. Use of the AIC for model selection has previously been criticised as 

giving unreliable inferences, ignoring relevant error probabilities, and tending to overfit 

(Spanos, 2010). The MBIC is less widely used, being initially developed for use in genomic 

hybridization (Zhang and Siegmund, 2007), and I have not located a critique outside the 

general criticism of model selection methodology.  

Case studies 
Publications to date, based on this framework, have been concentrated on detecting regime 

changes in global and zonal temperature records, and the MSBV has been used with 

resampling of random controls.  

Here I illustrate the MSBV as it used in published material, firstly with random reference 

variates, illustrated with the global and a zonal temperature record, then secondly, the related 

spatial versions which uses a truncated stopping criterion. I then illustrate the use of all modes 

of analysis using global ocean temperatures at 100m and 700m since 1955. 

Global and Zonal Surface Temperatures 

Here I show a sample analysis of zonal and global records brought forward from Chapter 5 

which also incorporates the post-detection validation tests of Chapter 4. This is based on an 

analysis of NCDC zonal data version v3.5.4.201504 (for brevity NCDC). A full analysis is 

available in Chapter 5. Earlier results were published in Ricketts (2015a) and Ricketts (2015b), 

and an extensive analysis in Jones and Ricketts (2017b). 

Here are shown in Figure Ch3.11 the graphs derived from the MSBV analysis of global 

(90S.90N) land, ocean and combined land-ocean data; and one zonal data set, the Northern 

mid-latitudes, 30 to 60 degrees North (30N.60N). 

Points of interest include … 
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 In general land temperatures rise faster than ocean temperature, and such changes are 

dominated by upward steps. The overall differential is predicted by global climate 

models and seen in other analyses of observed data. 

 Globally, land temperatures rose by 1.42oC of which 0.78oC is attributed to internal 

trends mainly after 1978, and 0.63oC occurred in three distinct shifts of 0.18oC, 0.20oC 

and 0.25oC. Global ocean temperatures rose by 0.53oC comprising 0.43oC in five upward 

and downward shifts, and 0.11oC due to a mix of cooling and warming trends. This is 

consistent with a state dependent heat buffering mechanism. 

 In the northern mid-latitudes (a.k.a. NML, 30N-60N), land temperatures rose by 1.71oC, 

of which 0.46oC can be attributed to trends and 1.26oC to four shifts, the last of which 

in 1996/7 was of 0.54oC. Ocean temperatures changed more often with a both trends 

and shifts showing a mixture of mix of upward and downward values. Temperatures 

rose by 0.73oC (trend 0.29oC, shifts 0.44oC), with the last two shifts in 1988/9 and 

1997/8 totaling 0.49oC.  The combined land-ocean temperatures show only three 

change-points, with a 1.09oC total change (trend -0.05oC, shifts of 1.14oC). 

 The inset in the top pane of Figure Ch3.11 shows the detail of the step change in Ocean 

temperatures circa 1986/7. When tested by ANOVA, separately the change of trend has 

a p-value > 0.7 but the change of mean (the step) has p=0.028. When tested together 

using ANCOVA to test the disjoint model against a simple trend the presence of a regime 

change at this time is not strongly supported (p=0.075). However there is stronger 

support for this year in the Northern latitude mid latitude data shown below it.  

 The great Pacific reorganization. The result of the global analysis support the notion 

that a trend change occurred together with a shift in ocean temperatures 1976/7 with 

consequential shifts over land a little later, but this does not show in the NML.  

 The so-called hiatus. Both datasets support substantial shifts in 1996/7 or soon after. 

The global oceans show a shift in 1986/7 and another 1996/7. The NML ocean shows 

shifts in 1988/9 and 1997/8. The mid 1980s event has attracted less attention than the 

other events but has recently been analysed (Reid et al., 2015, Reid, 2016). The 1990s 

event is somewhat complex and analysed in Chapter 6. A sample year is shown in the 

next section below. 
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Figure Ch3.11: Top. Globally averaged temperature anomalies together with Land and Ocean splits, analysed by 
the MSBV.  Land shows nearly twice the warming of the oceans. Bottom: The corresponding analysis of the 
Norther mid-latitudes.  

Spatial analysis of observed temperatures. 

When analysing gridded data and where it is deemed acceptable to trade precision for time, 

the MYBV is run with modified rapid halting criteria (RMSBV). This illustration is detail taken 

from preliminary work more extensively reported in Chapter 6. The application of the MSBV to 

gridded data enables one to undertake more detailed analysis of events. Figure Ch3.12 

illustrates the patterns of change after the year 1997. The zonal evolution of the Northern mid-

latitudes after 1996, which appears to be very step like (Figure Ch3.11, bottom pane) can be 

seen to be more complex. Zonal and spatial views are analysed in the two subsequent 

chapters. 
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Figure Ch3.12: Here I illustrate the patterns of change associated with 1997/8 (that is, with 1998 as the first 
changed year). Top left (Steps) plots the steps as computed by the MSBV test – approximately the difference in 
means between the segment before and after the change. Bottom left (instantaneous Shifts) plots the 
temperature difference between the prior and the posterior segments for the year of change. Top right shows the 
trends associated with the locations which show a step change prior to change, and bottom left shows trends 
after. 

Firstly I show the overall pattern of steps returned by the MSBV in the top left pane, and lower 

left the internal shifts. One should note that only change-points are plotted. Trends are shown 

on the right, before (top right) and after (lower right). Analysed this way one reason for the 

controversy surrounding the so-called hiatus become clearer. There was an abrupt 

rearrangement of the global heat map, following the change of phase of the PDO. This affected 

mainly areas which had not until then been contributing greatly to the global progression (see 

top right). Of the areas which showed an upward step, there is a slight preponderance of 

reduced trend, with some areas showing increased trends. The event proceeded over several 

years, from circa 1995/6 to 1998/9, and was preceded by an event around 1994 in the Eastern 

North Atlantic that quite likely corresponds to a phase change of the AMO. 

Regimes in Ocean temperature relationships at 100, and 700m depth. 

In Chapter6, Section 2: Vertical ocean structure, use is made of the MSBV, running as a two 

way test, see Figure Ch6.47 to Figure Ch6.49 in that section. The work goes on to show that, 

for example, during the surface shifts associated with the event of circa 1997, corresponding 
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shifts in the 100m and 700m ocean temperatures also occurred, at the very least suggesting 

that a restructuring of the oceans was also involved. 

This illustrates the results of a two way bivariate test of globally averaged annual temperatures 

at 100m and 700m depths (Figure Ch3.13). Data produced by NODC was sourced from KNMI, 

and consisted of anomalies (1981-2010) of monthly temperatures between 1955 and 

November 2015. Here annual averages were derived and the MSBV running as a two way test 

was used to locate change-points.  

  

Figure Ch3.13: Change-points in global annual average ocean temperatures for depths of 100m and 700m. 
Change points are determined by MSBV with each variable acting as a reference for the other. Left pane. The time 
series and change-points. The changes in1976/7 has p-values <0.01 for both variables but the one in 2001/2 has a 
p-value < 0.01 only for the 700m temperatures. Right pane. The relationship between the two variables before 
and after the two changes. The relationship between the two changes after 1976 but not after 2001. 

Two change-points are identified, 1976/7 and 2001/2. ANCOVA was then used to test whether 

the regression relationship between the two variables changes at the same times. By ANCOVA, 

the first change-point also reflects a change of regression between the two variables (p<0.01) 

but the second does not (p=0.7).  After 1976 there is a step-like change in both temperature 

time-series (p<<0.01), and after 2001 there is another in the 700m temperatures (p<<0.01), 

but for 100m temperatures ANCOVA yields p=0.09. Hence round 1976 the regression 

relationship between the two variables changes with trend changes in both and a shift in 100m 

temperatures. Around 2001, 700m temperatures shift up again (p<<0.01) but 100m 

temperatures do not shift sufficiently to register as a step-like change, neither is there 

evidence that their regression relationship is changed (Figure Ch3.13 right pane). This may 

simply reflect the variability of the 100m temperatures, in which case further accumulation of 

data may clarify this. 

Since it would be unphysical for the temperature changes at any depth to be due to step-like 

changes in total ocean heat, these must relate to heat distribution. This is entirely in keeping 

with the widely reported great Pacific reorganisation of 1976/7 which is observed in marine 

and terrestrial eco-systems, atmospheric circulation changes, tidal gauges and surface 

temperature records. The 2001 event is of interest since the 700m temperatures clearly shift, 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.1

-0.05

0

0.05

0.1

0.15

0.2

19
50

19
60

19
70

19
80

19
90

20
00

20
10

20
20

10
0m

 Te
m

pe
ra

tu
re

 A
no

m
al

ie
s

70
0m

 Te
m

pe
ra

tu
re

 a
no

m
al

ie
s

Year

Step-like Shifts in Globally Averaged Ocean Temperatures

700m 100m

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.1 -0.05 0 0.05 0.1 0.15 0.2

Te
m

p 
An

om
al

y 
10

0m
Temp Anomaly 700m

Regime Shifts in the Oceans

1955-1976

1977-2001

2002-2014



80 
 

but how and if it relates to surface temperature regimes cannot be determined from this 

analysis. However Chapter 6 Figure Ch6.49, a spatial version of the same test shows that quite 

extensive reorganisation in the oceans took place contemporaneously with surface 

temperatures as seen in Figure Ch3.12 above. 

In this case the constancy of the relative warming trend between layers of 1.5○C/○C for 

100m/700m temperatures across two regime shifts suggests that the overall relationship 

between layers is unchanged globally and that the shifts most likely represent changes of 

vertical ocean configuration, possibly related to surface regimes. When analysed by MSBV in 

the same way as global temperatures were, as a step-change test, a shift after 1986 is detected 

in the 100m in addition to those after 1976 and 2001. The 700m time series, tested the same 

way has an additional shift after 1990. 

Discussion and conclusion 

Advances 

This chapter has detailed the extension and automation of the Maronna-Yohai bivariate test 

for detection of multiple abrupt changes in a time series. Although the main published work 

utilising this has been with various climatic temperature series, observed and modelled, the 

framework extends easily to bivariate series and to gridded data. Both the MSBV and the rapid 

MSBV can be performed using either a random control variate as per MYBV Model II or with a 

correlated control variate as per MYBV Model I. One can also perform the latter with two 

perturbed variates.  

The automation of the Maronna-Yohai bivariate test has solved a problem of researcher 

choice/bias and also enabled users to explore the nature of decadal scale progression of 

Earth’s temperature records in some detail. In this and related work we have been able to 

compare and publish analyses of various estimates of the mean annual global temperature, 

mean annual zonal temperatures and comparisons of land and ocean splits (JR2017). We have 

been able to explore and publish the mean annual global temperature records from CMIP5 

global temperature records (ibid). Because of the probabilistic nature of the test running with 

random control data, the framework can be used to discover alternate plausible break-sets. 

To the best of my knowledge this is the only step-change detection software that can run over 

gridded data at informative scales and handle both univariate and bivariate relations. A recent 

paper has used a method based on a ramp model to analyse abrupt changes in sea surface 
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temperature time-series, reporting on duration of change events (Yan et al., 2016), however 

the computational costs and limits are not reported.  

MY78 analyses two statistical models and also briefly extends the method to two potentially 

perturbed but presumptively correlated series. This latter case does not appear to have been 

reported in the literature.  

Sensitivity testing has been performed and more detail shed on the mathematical 

underpinning, especially as it pertains to the use of random reference series. As a result the 

limits of the method are better understood and previous published work substantiated.   

It may seem counter intuitive to use a step-only detection method when analysing for a regime 

change where a trend change is not impossible. This has been tackled from both theoretical 

and experimental angles. In this work, the precision of determination of timing of an event is a 

major concern. The reason that a step method is preferred is shown by examining the error 

behaviour of the detection of a level change. It can be shown the error bounds on time of 

change are a function of standard deviation of the time series, whereas determination of 

trend-changes are a function of the standard deviation of difference series, which converges 

on double that of the time-series. The papers introducing Jaruskova’s method (Jarušková, 

1997, Jarušková, 1996), make the related point that if a time series may contain multiple level 

shifts then each can be identified, but if it has no level shift or if this is ignored and there is 

more than one trend change, there is no proper way to isolate the time of any of the trend 

changes; detection of both steps and trend changes in a time series is hard (Jones, 2012, 

McDowall, 1980).  Sensitivity testing shows that the multiple resampling strategy adapted from 

VJ2005 increases the precision of determination Ti0, and given data that conforms to the 

assumptions, error bounds of ±2 years suggested by Beaulieu et al. (2009) are achieved with 

even quite small shifts (1.5 standard deviations). It also shows that if data contain trends then 

the step-changes need to be bigger to avoid bias.  

The case studies 

Both the zonal and the spatial analyses highlight the importance of using modal values and 

resampling. The Great Pacific Reorganisation, reported as occurring after 1976 most likely 

occurred over oceans around 1976, but not until after 1978 are persistent step-like changes 

seen principally over land. Analysis of a composite of land and ocean signals sometimes shows 

a bimodal response with both years represented.  
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Very approximately, the data reported previously (JR2017), in which for the most part internal 

trends are negligible, has a standard deviation of 0.12 to 0.16. So shifts of 0.2°C or greater 

should be regarded as adequately located.  

The example of the abrupt changes in relationship between maximum temperatures and 

rainfall in RJ2012, demonstrates that to be useful a control variate does not have to be, as in 

homogeneity testing, the same type of variable. Rather, the analysis takes advantage of a one 

way dependency, based on prior research. 

The example of the 100m and 700m ocean temperatures with two determinate time series 

both where there may be a two-way dependency, shows that the choice of whether a random 

variate or a deterministic one is treated as a reference makes a subtle difference due to the 

relative insensitivity of the test to variation in the reference variable. 

The shift-dates found correspond remarkably to those found in surface temperature records. 

1976/7 for both depths corresponds to the great Pacific reorganisation 1986/7. The shifts after 

1986 for 100m and after 1990 at 700m, not found in the two-way test, none the less may 

relate to the 1986-1988 surface temperature event. The change after 2001 may be at the tail 

end of more complex events associated with the so-called hiatus. 

Conclusions 

For present day temperatures and other variables, the MSBV is fit for purpose in that it will 

locate step-like change-points with satisfactory precision. However it is limited once trend 

begins to dominate the signal. Thus secondary testing of the change-point and of data is 

required, and this is addressed in the next chapter. 
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Chapter 4: Characterising and 
validating discontinuous change points 
in climate time series. 
Introduction 

This thesis utilises a statistical model of disjoint segmented linear regressions separated by 

step-like change-points. Change-points are detected by the multistep bivariate test (Chapter 3) 

based on the Maronna-Yohai test (Maronna and Yohai, 1978) (MYBT). 

In this chapter I extend the characterisation of individual change-points in climate data, first 

published by Jones and Ricketts (2017b) (hereafter JR2017), by supplementing the resampling 

and window tests documented therein, and considering potential deceptions such as extreme 

trend, and extreme autocorrelation. This also gives a basis for attribution of changes between 

internal shifts and internal trend changes, and probes the assembled multiple change points 

for evidence of undiagnosed features. It addresses the gap between the assumptions made for 

the purposes of change-point detection and subsequent reasoning about those change-points. 

Change-points are statistical entities, detected under an error statistical (ES) approach, and as 

such the statistical model used makes simplifying assumptions about the data. This is a general 

issue that affects analysis of any climate data, and is true of any detection method applied to 

them. Reasoning about the physical world also requires a probative, degree of confirmation 

(DC) approach where multiple lines of evidence may be considered (see the discussion of the 

Theoretical Mechanistic/Statistical Inductive (TMSI) framework in Chapter 2).  

Model specification delineates families of statistical models. For example, in this work the 

family of segmented linear regression models is used. The choice of specific parameters from 

within a specified family is termed model selection, and would in this case include the 

selection of specific change-points. For physical problems, the family would be misspecified if 

the available parameters do not properly reflect the physical processes. 

In their paper on misspecification (M-S) testing, Mayo and Spanos (2004) use an example of a 

linear regression model to move from an ES approach to a DC one, and address the problem of 

validation in regression models.  Three general forms of M-S are recognised: 
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1. Functional form misspecification in which a statistical model includes the correct 

parameters but inside an incorrect function. For example, as 𝑥ଶ instead of 𝑥ଷ or 

sin(𝑥). 

2. Missing parameter misspecification in which a variable is omitted 

3. Irrelevant parameter misspecification in which unnecessary parameters are 

introduced. 

The immediate goal in this thesis is to examine the meaningfulness of two proposed functional 

forms in temperature data, linear trend (identified with H1), and step-like change (identified 

with H2). Thus the work of  Mayo and Spanos (2004) is of interest, and strongly influential, but 

since their exemplar misspecification is of a different class (an irrelevant variable, whereas we 

are primarily interested in functional forms and missing variables), it is not used prescriptively. 

I propose that, since the full functional form underlying the data is unknown and complex, it is 

infeasible to exhaustively test differing aspects of the data. Instead I take advantage of much 

previous work which has bounded the domain, and concentrate on tests which examine 

possible aspects of the data that may cause step-like change-points to be falsely identified or 

temporally misplaced. Likewise, the parameters representing step-like shifts and trends should 

not be biased since H2 (interaction of warming and natural variability) is differentiated from 

H1 (non-interaction) by their relationship. A suite of tests is proposed to determine whether 

the assumptions needed to reliably model step-like changes are met. 

The suite of chosen test are all framed differently and in combination give a basis for nuanced 

reasoning about the meaning of the test results. So one does not simply reject a change-point 

on the basis of a single ancillary test, but rather searches for reasons as to why a change-point 

detected by a test known to be reliable in its domain, is discounted by another test based on 

different assumptions.   

The tests can be automated, and good progress has been make towards automating the 

reasoning further. This involves consideration of the ruling assumptions of each test and their 

behaviour when presented with a variety of features outside those assumptions. I have found 

no guide as to how to best do this, but each of the tests was individually trialled by interested 

users after it became available. Their reviews and observations were incorporated and cross 

checked.  

With a view to automated reasoning two indices were produced. One addresses the issue of 

the second last paragraph. The MSBV is sensitive to strong trend, and furthermore trends can 

change, and so an index composed from three tests is used to provide a coarse, graded 
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assessment of aspects of trend. This then suggests further lines of examination. A second index 

has proved very useful. Data segments can be classified as to whether there is residual non-

stationarity when the change-point is accounted for, and whether there is evidence other 

deterministic changes. A key finding from later in the thesis is that at progressively smaller 

scale data, data segments in which steps have been identified, become increasingly likely to be 

classed as having stationary residuals without other changes. This in turn bears directly on the 

scientific question posed at the start, as this is consistent with H2, and not consistent with H1 

Confounding deterministic factors 

In the literature a number of confounding climatic processes have been identified. By this I 

mean that any and all of the processes may be present, and must be accounted for. These 

include quasi-periodic sub-decadal processes such as El Nino/Southern Oscillation (ENSO), and 

decadal scale processes including Pacific Decadal Oscillation (PDO) (Trenberth, 1990, Minobe, 

1997, Bjerknes, 1969, Trenberth and Hurrell, 1994), Atlantic Multi-decadal Oscillation (AMO) 

(McCarthy et al., 2015), North Atlantic Oscillation (NAO) (Schlesinger and Ramankutty, 1994), 

Arctic Oscillation (AO) (Thompson and Wallace, 1998). Additionally there may be influence due 

to volcanic and anthropogenic aerosols. Other influences, more often described by their 

statistical impact than their physical origin, include particularly auto-correlation and moving 

average behaviours, which can potentially vary in turn leading to transient episodes of red-

noise like behaviour. Lastly, changes of seasonality can reduce the effectiveness of simple 

seasonal anomaly removal. The most common strategy for dealing with the last is to use 

annual averages, and that is what is done here.  

Initial assumptions used in data preparation can influence the outcome of tests. One method 

for isolating the trend component of data is to identify likely factors, model them as 

independent additive influences, and remove their influence using multiple regression, and 

often using an index as a proxy for a phenomenon, e.g. Foster and Rahmstorf (2011). This 

however cannot be guaranteed to not interfere with a step analysis, especially if the steps are 

aligned with one or more of the quasi-periodic elements removed. This would happen if, for 

example, the ENSO influence was removed by a regression method against an ENSO index, and 

the PDO’s temperature influence (for example) was expressed as phase-dependent biases in 

the ENSO index (Verdon and Franks, 2006). Trend and cyclic and quasi-cyclic behaviour is 

certainly expected in a climate system and likely to have physical explanations. However since 

the climate system is neither fully deterministic, nor as fully characterised as possible it is likely 

that an analysis focussed on specific features will treat some deterministic components of the 
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signal as random noise. Periods that look to be integrated noise may still be mainly 

deterministic when appropriately tested – a missing variable misspecification. 

The rest of this chapter proceeds as follows. 

(a) Three classes of testing undertaken are briefly described. 

(b) A brief glossary to introduce the terminology used in this section.  

(c) The suite of methods is introduced. The MSBV used for detection provides a time and 

probability of change, on the assumption that the effect of trend on the timing of 

detection of a change-point in the data is negligible. This assumption is assessed by testing 

that the identified change-point has explanatory power in the presence of trend and 

trend-change.  

(d) A misspecification due to model selection, shown by heteroscedasticity, is tested for. Four 

tests of the assumptions of stationarity in the data are then documented.  

(e) Lastly I present an analysis of the type of simple time-wise averaging that is often used in 

climatology to produce, for example, mean global temperature records from multiple 

observed spatially distinct time series. I introduce the term “compositional 

misspecification” to cover the impact of averaging spatial time series when there are 

either multiple distinct processes or propagating change present.  

Types of tests 

In what follows, three classes of testing useful during analysis of step-like change-points have 

been identified. 

Tests of probability of individual change-points.  

The detection test used in this work, the MYBT on which the MSBV is built, assumes zero 

trend, but trend changes may occur and in fact must be properly attributed. Analysis of 

covariance (ANCOVA) is used post-detection of a change-point by MSBV (a constrained 

statistical model) to ensure that the presence of the change-point provides explanatory power 

in an unconstrained disjoint linear statistical model. It does not attempt to locate an 

alternative change-point under a less constrained model – a completely different manoeuvre. 

As used this is exactly equivalent to a Chow test. 

If the data conforms to the assumptions of the MSBV then MSBV is a more powerful test than 

ANCOVA. An index (CP-index) that combines the significance of the trends either side of a 

change-point and ANCOVA was devised to assist with automated reasoning about changes in 

the presence of trend and changes in trend.  
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Tests of probabilities associated with sets of detected change-points.  

The full set of change-points in an entire sequence is tested here by the studentized Breusch-

Pagan test (hereafter SBP test) for homoscedasticity of the residuals of the disjoint multi-

segment model (JR2017 utilised the equivalent White’s test (White, 1980)). An adequate 

model explanation of a time series, under the assumption of i.i.d. error, should have a 

featureless residual. Since we know that the i.i.d. assumption is an approximation at best, this 

test has a null of homoscedasticity, rejected in favour of heteroscedasticity at low 

probabilities.  

Tests of stationarity 

In these tests the segment containing a provisional change-point is tested for features 

(particularly non-deterministic ones) that may deceive tests for shifts and trends. The MYBT, 

ANCOVA, and where used, ANOVA tests have ruling assumptions of serial independence. The 

MSBV, and other multiple break tests assume some form of censorship between provisional 

data segments (determination of change-points within provisional bounds includes only the 

data within the bounds); but tests of the overall model assume homogeneity of error, thus of 

variance (e.g. the Akaike Information Criterion or AIC). The SBP also assumes this. All of these 

above tests are formalised as null hypothesis statistical tests (NHST) and as such they each are 

subject to their own ruling assumptions. The ruling assumptions are incorporated in the 

interpretation of the tests. 

Autocorrelation is variously treated; some propose its estimation and removal (Rodionov, 

2006b), some warn against this idea (Mizon, 1995). Some treat it as a short term process and a 

cause of deception in change-point analyses (Beaulieu and Killick, 2018), others have treated it 

as a persistent signal (Percival et al., 2001). In climate signals, autocorrelation often appears to 

be time varying. Therefore in this thesis I apply the MSBV without adjustment for 

autocorrelation and perform post-detection analysis to determine whether the detection test 

is likely to have been interfered with. Almost all autocorrelation tests, including the unit-root 

tests mentioned below, assume absence of step-like changes.  

In this work, both the raw data, and the residuals after removal of internal steps and trends, 

are tested. The rationale for testing both derives from the formulation of the tests themselves, 

since in these tests, the deterministic and non-deterministic components are separately 

parameterised. Climate data is known to contain complex lag and correlation structures – and 

detection tests can be sensitive to these due to the governing assumptions of the tests 

themselves. The set of tests chosen are from the econometric literature, and each is framed as 
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a null hypothesis significance test (NHST) with its own specific assumptions. Each test poses 

either H0 or H1 as presence of an assumed non-deterministic unit root progression (see 

Chapter 2) in data, and the alternatives are chosen from a small range of deterministic 

features. Crucially, each must be interpreted in the light of its own ruling assumptions.  

The full process applied to a single time-series is then …  

(a) the MSBV is applied to delineate provisional change-points. The resulting statistical 

model would be accepted as the best estimate (i.e. further testing of change-points 

not warranted) if the time-series of the residuals was known to be i.i.d., and underlying 

physical processes were fully deterministic, and fully reflected in the time series. 

However this should not be simply assumed.  

(b) The segment containing each provisional change-point is tested to ensure that to a 

feasible extent, physically plausible types of deception are not present, and that 

change-points are deterministic, not stochastic quirks. 

(c) The set of detected change-points is treated as a disjoint segmented model and the 

residuals examined for evidence of a misfit of model to data.  

The program of tests thus sharpens the error-statistical reasoning component of the TMSI 

framework introduced in JR2017 and discussed in Chapter 2, in line with the severe testing 

requirement.   

Terminology 

This work borrows from econometric (e.g. Parker, 2018), and signal processing (e.g. Granger 

and Morris, 1976, Smith, 1997), approaches to time-series analysis. It applies them to 

climatological signals. The differing approaches are grounded in their own distinct literature, 

resulting in a variety of similar terms for various phenomena. Papers grounded in economic or 

physical systems also vary in terminology from those grounded in corresponding 

theoretic/statistical analyses. The following are some explanatory notes. 

Deterministic and non-deterministic trends in time-series.  “Trend”, in a general sense is the 

tendency of the values to cluster about some smoothly differentiable function.  In the 

deterministic case this is usually a function of time or other variables indexed by time. Often a 

linear trend is referred to. The residual – that not explained by the trend – is often referred to 

as the error. If there is no deterministic trend then any tendency of the signal to vary over time 

is stochastic trend due to the error terms. The simplest and most mathematically tractable 

type of error is white (serially non-correlated and usually Gaussian) noise. A white noise time 
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series is described by two parameters, its mean, and variance, with successive values being 

independent. A process is also statistically stationary if its mean, and the noise parameters are 

unchanging. If it has a constant trend it is trend stationary. If it has zero trend it is level-

stationary.  

Integration order: Complete independence of successive errors leads to the description of 

“integrated order zero”, or I(0) noise.  (Also referred to as “independent and identically 

distributed” or i.i.d.). More generally, the integration order defines the number of times a 

difference must be applied for a signal to become stationary (which is a technical requirement 

of ordinary least squares (OLS) regression).  If the error accumulates over time it is red-noise, 

or integrated order one, I(1) noise. The literature also refers to difference-stationarity, where a 

signal is not stationary but the difference series is; and trend-stationarity, where the residuals 

about the trend are stationary. The first case would be non-deterministic, the second, 

deterministic.  

Systems may contain both deterministic and stochastic components. A signal in which there is 

a deterministic component and a stochastic component describes a situation where the 

random error series accumulates separately from the deterministic part.  

Unit Root: The term itself comes from the signal processing literature, and the representation 

of the characteristic equation of a process on the complex plane. An equation has a unit root if 

the random component of a signal from one time is fully carried forward into the next time. 

See the discussion of  on Page 96. Unit roots are characterised statistically as being non-

stationary, and in particular having a variance that expands over time. A signal with a 

components of I(0) noise may be referred to as having an I(0) or moving average (MA) unit 

root. If the unit root is I(1) this may sometimes be called an auto-regressive (AR) unit root.   

Exogenous and endogenous change. These are econometric concepts. In short, an 

endogenous change is one that follows naturally from the system without external influences 

and an exogenous change is one that has been imposed externally. If a characteristic equation 

of process has both a unit root and deterministic trend, a one-off injection of noise (a shock) 

will cause an apparent persistent change since it is carried forward thenceforth. This 

(endogenous change) may superficially resemble a change of deterministic parameters of the 

process (exogenous change).  Many tests for stationarity assume no exogenous change and 

will diagnose non-stationarity. The cases are differentiated by attempting to remove the 

influence of a deterministic change, and so a test that diagnoses a change as exogenous has 

stationary residuals, and a diagnosis of endogenous change corresponds to non-stationarity. 
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Complex deterministic signals may be found to be non-stationary in some cases due to 

violation of the ruling assumptions of the tests used. Their change-points would be exogenous, 

and segments between change-points would be stationary. I refer to this as deterministic non-

stationarity. By contrast stochastic non-stationarity is due to endogenous changes and 

segments between change-points would remain non-stationary. 

Validation suite methods 

Statistical significance of change-point 

 

Figure Ch4.14: The ANCOVA test is a post-detection test that probes whether a change-point improves the 
goodness of fit, is it required at all? The dotted line represents the OLS regression line for the data as a whole, the 
dashed lines represent the OLS regression lines of data taking into account a single change-point. The double 
headed arrow is the internal shift. Note that the step computed by MYBT would be approximately the difference 
in the means of the two segments.   

For my purposes, the segment of data which contains a change-point is internally partitioned 

into two sub-segments – with one internal shift and two internal trends. An internal trend is 

the ordinary least squares linear trend of a sub-segment, and the internal shift is the 

dislocation or step between them at the change-point. The MSBV – the detection method – 

assumes an internal shift only. Its statistical model has three degrees of freedom, an initial 

mean (or intercept), a time of change, and shift or change of mean. ANCOVA assumes both an 

internal shift and change of internal trend, and has one more degree of freedom, initial 

intercept and trend, post-change intercept and trend, but time of change is stipulated by the 

MSBV.  
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 #the following call sets up ANOVA to assign significance to trend 

#changes and shifts  

#(see http://r-eco-evo.blogspot.com/2011/08/comparing-two-

#regression-slopes-by.html  

 

lm(formula = Anom ~ Class * Year, data = data) 

 

#aov() calls the linear models routine lm() 

#compute residuals for a two segment model using Class to split them  

mod1<-aov(Anom~Year*Class,data=data) 

#and a single segmented model 

mod2<-aov(Anom~Year,data=data) 

#compare the residuals from both models with ANOVA 

anova(mod1,mod2) 

 

Which yields for example 

 

Analysis of Variance Table 

Model 1: Anom ~ Year * Class 

Model 2: Anom ~ Year 

  Res.Df     RSS Df Sum of Sq      F  Pr(>F)     

1     62 0.54913                                 

2     64 0.77291 -2  -0.22378 12.633 2.5e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Box Ch4.5: The core R code. Year2 is the Year expressed as an offset from the year to be tested, Class is 
categorical, ‘Pre’ or ‘Post’, Anom is the mean annual temperature expressed as an anomaly as defined by the 
data providers.  

Figure Ch4.14 demonstrates this. ANCOVA is used to test that the two segment linear model, 

formed about the change-point, and shown as the dashed lines, is preferable to a single linear 

regression shown as the dotted line. The null hypothesis is that the change-point makes no 

difference – for our purposes, that the change-point is a possible false positive. 

Here, the R statistical language is used. ANCOVA is implemented via a pair of ANOVA tests, one 

based on a model with data partitioned into pre or post change, the other with no change (see 

snippet of R code in Box Ch4.5). The R code takes a temperature anomaly (“Anom”), the year 

relative to the change year (“Year”) and a classifier (“Class”) comprising (“Pre” and “Post”). 

Formally, ANCOVA takes the null hypothesis H0: a single OLS regression explains the variation 
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in the data as well as would two disjoint regressions, one either side of the break. Rejecting H0 

at a given p-value is evidence that the change-point partitions the data into differing 

regressions with a corresponding likelihood. When the change-point is established via the 

MSBV (p <0.01 in this thesis) and not supported by ANCOVA, it is evidence that the change-

point does not correspond to a combination of shift and trend-change. In the presence of 

underlying trend, the apparent change of mean found by the detection method might be 

attributed to ongoing trend. However, note that changes of trend are hard to prove in short 

data segments, and the ANCOVA itself may reject genuine change-points on this basis. For that 

reason, a more complex and informative measure (the CP-index, next section) is proposed. 

ANCOVA and the MSBV, both being based on an assumption of i.i.d. data, means that 

stochastic trend or drift must also be checked for.  

During the analysis separate ANOVA tests are applied as consistency checks, to assign 

probabilities to shifts, and to trend changes, assuming independence. And these are shown for 

interest in the various tables in Appendix 5.1. 

Reasoning about change-points from different lines of evidence: CP-index 

The MYBT, if its assumptions are met, returns lower probabilities (higher significance) than 

ANCOVA, even though it first selects a change-point. However data may meet the assumptions 

of ANCOVA but not those of the MSBV. In this thesis a sufficient number of change-points are 

examined in the analysis of some problems that a compact, automatable summary statistic 

was useful. I define a CP-index as follows. If the trend prior to the change-point is different 

from zero with p<=0.05, that counts as 1; if the post change trend is different from zero with 

p<=0.05, that counts as 2; if the p-value from the ANCOVA <= 0.05 that counts as 4. This gives a 

range of values from zero to seven. Zero represents an MSBV <= 0.01 and an ANCOVA of >0.05, 

something that can occur in shorter data sets. Values of one or two indicate that one segment 

of the two has a trend. I take a value of three (ANCOVA p>0.05 but both trends p<=0.05) as 

indicating the trend is such that the MYBT value may be deceptive. Four would indicate that 

the shift is big enough that it meets the assumptions of the MYBT and ANCOVA. Five, six and 

seven all indicate that trend is present but the shift can be accepted. 

Heteroscedasticity Testing 

In JR2017, Whites’s test was applied to entire records, and to 40-year windows as part of a 

statistical inter-model comparison showing that step changes in general have more 

explanatory power than trend-only models. These tests were conducted separately with 

extensive researcher effort. Here I use the equivalent studenized Breusch-Pagan test (SBP) 
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from the R ‘lmtest’ package (Hothorn et al., 2015), with no auxiliary variables specified. It is 

applied, as in JR2017, to the entire record. The test estimates the residuals from a fitted model 

and has a null hypothesis of homoscedasticity in the residuals with an alternative of 

heteroscedasticity. Three stochastic models are applied for comparative purposes.  A linear 

model is fitted to determine whether by this test, a linear model is sufficient, where a 

determination of homoscedasticity would be unexpected if any exogenous change exists in the 

entire time series. Similarly a quadratic curve is fitted to test whether the data record 

conforms to an accelerating trend, as this is a condition that can interfere with change-point 

testing. The derived disjoint regression model deduced from the MSBV is then fitted to 

determine whether there is evidence for unaccounted processes. These tests are applied to 

the entire time-series after a change-point model has been obtained. When an underlying 

trend is smooth, any linear segmented model, disjoint or not, applied to it is a misspecification, 

with potential to be deceptive.  This is because there is no available procedure for identifying a 

preferred starting point (Jarušková, 1997, Jarušková, 1996). Any piecewise model assumes 

discrete change-points as is assumed by this suite. This means that similarity across 

comparisons under differing approaches to change-point detection (e.g. structural change 

analysis, CP regression) do not serve as assurance the change points are valid. For instance 

structural change tests assigned more change-points when tested on curve only series than did 

the bivariate test, consistent with (Jarušková, 1996). Formally stated the SBP test has a null 

hypothesis of homoscedasticity, rejected in favour of an alternative of heteroscedasticity. 

The sample code run in Box Ch4.6 shows, in this case, clear indications that the data is 

consistent with a disjoint step and trend statistical model as illustrated by Figure Ch4.15. The 

example data is taken from one member (D4) of the artificial dataset DS2 discussed further on. 

In this case, the residuals of a step and trend model obtained by running the MSBV show no 

detectable heteroscedasticity whilst the single linear trend most certainly does. Figure Ch4.15 

omits the quad-model for brevity. The residuals from the single linear regression show a clear 

structure, whereas those from the step and trend model do not. 
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#specify three models using lm 

breakmodel<-lm(Anom~Year*Class,data=data) 

linearmodel<-lm(Anom~Year,data=data) 

quadmodel<-lm(Anom~Year+I(Year^2),data=data) 

#test the models without auxiliary variables 

bptest(breakmodel,data=data) 

bptest(linearmodel,data=data) 

bptest(quadmodel, data=data) 

 

#which given accelerating trends and nothing else might yield … 

studentized Breusch-Pagan test 

data:  breakmodel 

BP = 10.028, df = 5, p-value = 0.9567 

data:  linearmodel 

BP = 4.9908, df = 1, p-value = 0.0018 

data: quadmodel 

BP = 1.351, df = 2, p-value = 0.0021 

 

Box Ch4.6: Sample R code and result given an analysis of quadratic trend embedded in noise. The change-point 
method has returned three change-points. The break model shows homoscedastic residuals, neither linear nor the 
quad model do so. 

 

Figure Ch4.15: Heteroscedasticity and homoscedasticity in the residuals of a single segment regression and the 
step and trend model deduced from the MSBV. Top pane; data and the OLS trend –line. Middle pane; the same 
data showing the change-points from the MSBV. Bottom pane; in blue the residuals corresponding to the top 
pane, and in red, those corresponding to the middle pane. The studentized Breusch-Pagan test indicates that the 
residuals of the linear fit (blue) are not homoscedastic (p=0.0018), but those of the step and trend model most 
probably are (p=0.96)  
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Deceptive features detectable with unit root tests 

The application of deterministic tests such as OLS to non-deterministic data progression is a 

misspecification; the results may be deceptive and one should not infer a causal structure. Unit 

root tests probe the data for features that can imitate deterministic structural changes due to 

stochastic behaviour of an unrecognised red or near red progression. As will be shown later 

however, unit-root tests may also be used to detect non-stationary sequences. Because 

multiple tests are performed, and because they each have differing ruling assumptions, the 

tests are interpreted in terms of evidence for and against stationarity in the underlying 

processes. 

Unit roots, non-stationarity, and climate 

Whilst Foster and Abraham (2015) assert that autocorrelation can be ignored in annual data, it 

may give inflated trend significance. Transient unit root behaviour, if it occurred, could indicate 

some sort of regime change, temporarily decoupled from normal forcings. If, in addition, 

measured noise was not persistent this would show I(0) behaviour; or, if it were fully 

persistent, as I(1) behaviour. In regional signals in which this occurs, the region may also have 

become coupled to other sub-systems (Tsonis et al., 2007). This could indicate that the 

underlying physical model is incomplete and that a missing variable misspecification has 

resulted.  On the other hand, persistent unit root behaviour means that a deterministic 

change-point analysis is suspect. For example it has been shown by Monte Carlo methods that 

a test for deterministic trends will find deterministic trends in about 85% of realizations that 

contain only a stochastic (unit root) trend (Chang et al., 2016).  

The Earth system is constrained so that the temperature cannot solely follow a pure random 

walk – at worst it would follow a Brownian bridge (i.e. sequences where the end-points are 

meaningful and accepted as deterministic but the path is apparently a random walk, (e.g. 

Fischer et al., 2013)). However the composition of summary deterministic signals, such as the 

GMST, involves manipulations that can produce data that existing unit root tests will identify 

as containing unit roots, and furthermore deceive deterministic tests in much the same way as 

random walk data. This issue was extensively examined and is addressed later.  

Detecting unit root presence 

The previous discussion has shown that random walk/unit root progression may be present in 

climate data because of transient physical conditions, or because the data is unrelated to the 

physical processes assumed (M-S due to irrelevant variables). Additionally there may be 

features in the data that do not correspond to any of a shift, a trend change, or unit root 
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behaviour (M-S due to missing variables), and UR tests are potentially sensitive to this. This 

source of deception must also be dealt with. Other features may be present in the data but not 

detected. For instance, a step-like shift well above a detectability threshold may be present 

together with a number of small, deterministic shifts below detectability, and this latter may 

be taken to be evidence of stochastic drift by a test. 

The unit root based tests used here all inherit in one form or another the Dickey Fuller (DF) 

model (Dickey and Fuller, 1981) which describes a time series with autocorrelation in terms of 

its previous values as . 

 𝑌௧ = 𝜇 + 𝛽𝑡 + 𝜌𝑌௧ିଵ + 𝑒௧  (1) 

… where 𝜌 represents the portion of the signal (𝑌௧ିଵ) carried forward by autocorrelation, 𝛽 

represents the (deterministic) linear trend, 𝜇 represents the intercept, and 𝑒௧  is the i.i.d. error 

with zero mean and a constant variance 𝜎ଶ.  

In Equation 1, if 𝜌 = 0 then this describes a deterministic trend with no autocorrelation, if 0 >

𝜌 < 1 there is a deterministic trend with a degree of autocorrelation, and if 𝜌 = 1, regardless 

of other parameters it contains a unit root. If all other parameters are zero and 𝜌 equals one, 

then there is no deterministic trend, no offset, and 𝑌  is a random walk. This formulation is 

modified and sometimes rearranged in different ways by the three tests used here.  

It is important to note that time-series of successive differences of a step-change in an 

otherwise stationary time series will contain only one difference that would be expected to be 

unusual. So the DF model is intrinsically insensitive to deterministic step changes. Another 

important property of a unit root process is that the variance of the process increases over 

time, whereas the variance of a stationary process is constant. This gives a second strategy for 

determining unit root like behaviour – testing for diverging variance. The Kwiatkowski-Phillips-

Schmidt-Shin test (KPSS), (Kwiatkowski et al., 1992) examines the properties of the variance 

rather than the fitted parameters, and it primarily focussed on determination of stationarity. 

As a result it is more sensitive to exogenous changes. 

Proposed tests and strategies 

The unit root methods used are all coded in R and are, (a) a development of the DF test, the 

Augmented Dickey-Fuller test (ADF), which takes H0 of a I(1) unit root against an alternative H1 

of  a presumption of no unit root (in this implementation trend and multiply lagged 

autocorrelation is allowed for), (b) two variants of the KPSS, which takes a H0 of stationarity (or 

trend-stationarity) rejecting it in favour of an alternative H1 of a presumption of unit root,  and 
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(c) the Zivot-Andrews test (ZA) (Zivot and Andrews, 1992), which takes a H0 of I(1) unit root 

behaviour with a possible endogenous drift against an alternative H1 of trend-stationarity with 

exogenous structural change. A trend change or a step change would constitute an exogenous 

structural change. 

Use of a combination of UR tests is not new. The combination of ADF and of KPSS testing (see 

below) has been used before in order to add precision to an analysis of monthly inflation 

expectations (e.g. Fukac, 2005 Appendix B). 

Since the tests are being applied to data in which deterministic, exogenous, step-like changes 

are detected and thus assumed to have occurred, but no such change is allowed for (except in 

the ZA test) the presumption of unit-root in H0 or H1 of the above tests is reinterpreted as 

evidence of non-stationarity. Evidence of unit-root like behaviour is then sought by 

examination of the residuals after the removal of the deterministic internal trends and shifts 

detected in the data.  

In general, where evidence of a unit-root is detected, it may be due to undetected 

deterministic features, and hence will be initially treated as evidence of either deterministic 

non-stationarity or stochastic non-stationarity (see “Terminology”, Page 88). 

ADF 

The ADF test is a variation of the DF test for trend stationarity in the possible presence of unit 

root. It has a null hypothesis of unit root against an alternative of stationarity after 

compensation for auto-correlation (Elliott et al., 1992, Dickey and Fuller, 1981) (see Chapter 2). 

The ADF test has relatively low power, and in this type of application a finding of a UR may be 

because of a single deterministic permanent change (Byrne and Perman, 2006).  

Equation 1 is expanded to allow for multiple lags in the case of the Augmented Dickey Fuller 

(ADF) test, taking advantage of the recursive nature of the formula. This is more explicit below 

where 𝑘 multiple lags are included as ∑ 𝜌∆
ୀଶ 𝑦௧ିାଵ.  The difference series is then … 

 
∆𝑌 = 𝑏 + 𝑏ଵ𝑡 + (𝜌ଵ − 1)𝑌ିଵ +  𝜌∆



ୀଶ

𝑦௧ିାଵ + 𝑒௧  (2) 

… and a unit root exists if 𝜌ଵ = 1. The equation components are coloured as follows. Green in 

equation 2 denotes the trend, red denotes the lag autocorrelation that determines unit root, 

tan denotes the higher order lags, blue denotes the stochastic component. The number of lags 

can be specified by the user or, as here, selected by using an information criterion. 
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The ADF test implementation used is programmed in R, available in the package ‘urca’ (Pfaff et 

al., 2016), and removes auto-correlation followed by a Dickey-Fuller (DF) test. Three variants 

are available, which test for a unit root, a unit root with drift, and a unit root with drift and a 

deterministic time trend – which corresponds to the model of Equation 2 (above). I use the 

latter variant and choose to allow the routine to select suitable autocorrelation lags on the 

basis of an information criterion, using the call “ur.df(ys, type="trend", lags=7, 

selectlags="AIC")” following Hacker (2010). These choices are dictated in part by the 

requirement to automate testing, and because the resulting possible reduction in power in the 

test (inability to distinguish unit root from near unit root) is compensated by other tests in the 

suite. The test assumes no exogenous change, and H0 may be accepted in the presence of one 

(Kočenda and Černý, 2015 page 76).  

KPSS 

There are two variant of the KPSS test used here to test for level and trend stationarity. These 

tests invert the sense of the testing with respect to the ADF test, rejecting an H0 of stationarity 

in favour of H1, a presumption of a unit root. In this case a regime shift may well appear as H1, 

with a step change being non level stationary and a trend change being non trend stationary. I 

use the R package ‘tseries’ (Trapletti et al., 2017) and invoke the two tests as kpss.test(ys), to 

test for level stationarity (henceforth KPSS-L) and kpss.test(ys,null="Trend") to test for trend 

stationarity (henceforth KPSS-T).  Step-like changes in a time series are by definition non-

stationary changes, hence would not be expected to pass tests for level stationarity, but step-

like changes in the absence of a trend change will be expected to pass the test for trend-

stationarity. 

KPSS tests are designed to give weight to stationarity. Assuming that the time-series can be 

decomposed into the sum of a deterministic trend, a random walk and a stationary error, the 

model of Equation 1 (above) is re-parameterised as follows with  𝑟௧ representing the random 

walk 

 𝑌௧ = 𝑟௧ + 𝛽𝑡 + 𝑢ଵ௧ 

𝑟௧ = 𝑟௧ିଵ + 𝑢ଶ௧  
(3) 

Where 𝑢ଵ௧  is a stationary process, and 𝑢ଶ௧ is an i.i.d. process with mean 0 and a variance 𝜎ଶ.  

If 𝜎ଶ = 0 then 𝑟௧ is constant and the stationary process  𝑢ଵ௧ dominates. If not, then a unit root 

enters via 𝑢ଶ௧  and 𝑟௧ is a random walk. Under a random walk, variance increases with time. 

Therefore this expectation is tested by estimating the variance using the Newey-West 

estimator (Newey and West, 1994) 𝑠ଶ. To test for trend stationarity, a residual series ({𝑒ଵ. . 𝑒}) 
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is given by residuals of an OLS linear regression ({𝑒ଵ. . 𝑒}). ). To test for level stationarity the 

residual series is replaced by 𝑒௧ = 𝑦௧ − 𝑦ത.  Then for both cases, partial sums of residuals are 

defined as 𝑆௧ = ∑ 𝑒

ୀଵ  and for 𝑇 samples, the test statistic is given as  

 
𝐿𝑀 =

∑ 𝑆
ଶ்

ୀଵ

𝑠ଶ𝑇ଶ
 (4) 

Both the ADF test and the ZA test below, perform by estimating an auto-regression parameter 

by OLS, whereas the KPSS tests examine the properties of the variance of the time series 

(KPSS-L) or the difference series (KPSS-T).  

Zivot-Andrews test 

A drift due to unit root could appear as a trend change, or less likely a step change, either of 

which would be classified as a deterministic/exogenous change by a shift detection method.  

The Zivot-Andrews test (ZA) (Zivot and Andrews, 1992) tests for the presence of a unit root 

(with possible drift) against an alternative of stationarity with at most one exogenous change. 

An advantage is that the test also returns a time of possible exogenous change (Glynn et al., 

2007) – but note that an exogenous change can be any of step, transient or trend change. The 

code is in the R package “urca”, called as “ur.za(ys, model="both")”, which allows for changes 

in trend or steps. H0 is UR without exogenous change. H1 is trend-stationary with a possible 

exogenous change at an unknown time. The ruling assumption is that there is at most one 

exogenous structural change, and thus is not often used when more than one such may be 

present. Also, in a multivariable model, that only one exhibits unit root. In either of these cases 

other tests are preferred (Liddle and Messinis, 2015). Here, I am testing a single variable with 

intervals bounded by breaks within which we have already detected exactly one break, whilst 

others may be below a detectability threshold. It has also been shown that rejection of the null 

of a unit root could be due to a structural break even in the presence of unit root (Gay-Garcia 

et al., 2009), whilst the presence of more than one break in the absence of a unit root may 

lead to the acceptance of the H0 of UR (Lumsdaine and Papell, 1997). 

Acceptance of H0 does not imply merely UR, but rather, UR without a single break, (Byrne and 

Perman, 2006), and thus H1 means not UR or not a single break. Given we know there is a 

break (detected by MSBV, confirmed by ANCOVA), H1 means not UR, or more than one break.  

The model used here is that documented by Zivot and Andrews (1992) as Model (C). The 

model follows the ADF approach and its equation contains more complex parameters for: 

intercept and change of intercept (a step-like change), �̂� + 𝜃𝐷𝑈௧൫𝜆መ൯; and trend and change of 
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trend, 𝛽መ𝑡 + 𝛾ො𝐷𝑇௧
∗൫𝜆መ൯. The remaining parameters are similar to the ADF; autocorrelation with 

lags, 𝛼ො𝑦௧ିଵ + ∑ �̂�∆
ୀଵ 𝑦௧ି  and the presumed i.i.d. error … 

 
𝑦௧ = �̂� + 𝜃𝐷𝑈௧൫𝜆መ൯ + 𝛽መ𝑡+𝛾ො𝐷𝑇௧

∗൫𝜆መ൯ + 𝛼ො𝑦௧ିଵ +  �̂�∆



ୀଵ

𝑦௧ି + 𝑒௧  (5) 

Circumflexes above represent estimates of parameters. 𝜆መ is a value that is minimised during 

the search for the most likely time of a break,  𝐷𝑈௧൫𝜆መ൯ = 1 if 𝑡 > 𝑇𝜆, the time of change, 0 

otherwise , and 𝐷𝑇௧
∗൫𝜆መ൯ = 𝑡 − 𝑇𝜆 if 𝑡 > 𝑇𝜆, 0 otherwise. Parameters estimated include the 

time of change and each of the parameters of the above model. 𝜆መ is estimated so as to 

minimise the one side t-statistic for  𝛼 = 1, which in turn leads to rejection of the null. One 

should note that in the absence of any deterministic change-point the test functioned as a 

stationarity test when empirically assessed (next section).   

Controlling for false positive and false negatives. 

For all of the above tests, the R implementation takes published critical values of the test 

statistic at the 0.01, 0.05, and 0.1 levels. The KPSS implementation interpolates the test 

statistic against these values to give probabilities between 0.01 and 0.1, the ADF and ZA 

implementations simply give the critical values and the test statistic.  

None of the tests above consider unit root presence or absence when possible structural 

breaks (such as shifts or trend changes) exist under both the null and alternate hypotheses. 

The problem is under active consideration (Kejriwal and Perron, 2010, Harvey et al., 2013, 

Liddle and Messinis, 2015).  

Empirical quantification of false determination rates 

All of these tests are posed as null hypothesis tests. As such they only reject the null 

hypothesis at a particular level once sufficient evidence is found against it, and when the data 

size is limited, the power (the probability of correctly rejecting the null hypothesis) is similarly 

reduced. Therefore, the four tests were each tested separately for their false positive and false 

negative rates using a Monte Carlo method and data segments from length 20 to 100. 1000 

iterations were performed at each segment length. On each iteration a random data segment 

representing deterministic stationarity, and a pure red segment (100% autocorrelation), 

representing unit-root, were analysed by all four tests, and p-values were collated as Dataset 1 

(DS1). These values are used during interpretation, so that for each every test may be 

interpreted (e.g. a 5% level of significance) as one of three results, H0 supported, H1 
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supported, N/A; this last meaning that the particular interpretation that would have been 

given (whether H0 or H1) would only be meaningful given more data.   

Further interpretation 

The KPSS tests take trend or level stationarity as the null hypothesis and a false positive is the 

incorrect determination of non-stationarity. This is determined from the stationary data 

segments. Similarly, false negative rates – the incorrect determinations of stationarity, are 

calculated from non-stationary segments. The ADF test has a null hypothesis of unit root, so 

false positives are false determinations of stationarity, estimated from non-stationary data, 

and false negative rates (false non-stationarity) are estimated from stationary data segments. 

The ZA test has a null hypothesis of non-stationarity (with possible drift) against an alternative 

of deterministic stationarity with a single possible change-point. The false positive and false 

negative rates are tested the same way as the ADF.  

Based on further analysis of the findings reported in Ricketts and Jones (2017), at most 30% of 

change-points may show evidence of unit-root like behaviour, (59 of 218 ZA tests conducted 

on segments containing a change-point would have been initially classed as showing unit-root 

with drift (p >= 0.05)). This can be taken into account along with the empirically determined 

false positive and false negative rates by application of conditional probabilities, since the 

relevant probabilities depend on the data length. Thus for any particular test it is possible to 

determine the minimum segment length for which a false positive rate is less than 5%, and 

separately a length for which a false negative rate is less than 5%. Given an a-priori mix of the 

prevalence of stationary and non-stationary data, one can then determine whether a given 

result on a given segment is likely to be adequate. Note especially that a finding of stationarity 

may be accepted as sufficiently accurate whilst a finding of non-stationarity may be deemed 

unreliable, or vice-versa depending on the test. See Figure Ch4.16 and Table Ch4.4. 

For example, consider a segment of length 45 if we assume a 50% a-priori likelihood of 

stationarity. KPSS test findings of stationarity would be accepted at a 5% level of significance, 

an ADF result would be deemed unreliable and the ZA test would be deemed reliable. On the 

other hand if the tests all returned non-stationarity/unit root, only the ZA test could be 

considered reliable.  
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Figure Ch4.16: DS1: False stationarity and false non-stationarity rates (5th percentile) per 1000 shown as a 
function of segment length for each test. Solid lines represent false non-stationarity rates, referenced to the left 
axis, and dotted lines represent false stationarity rates referenced to the right axis (inverted). 

Table Ch4.4: DS1: Minimum segment lengths to achieve false determination rates of less than 5%. Top, given 
equal a-priori likelihood of data being unit-root/difference stationary or deterministically stationary. Bottom, 
Given an assumed 70% a-priori rate of stationarity.  

Given equal expectations of 
stationarity 
 
Test 

Segment length to achieve 
less than 5% false 
determination of 
Unit Root/non- stationarity 

Segment length to achieve 
less than 5% false 
determination of 
deterministic stationarity 

KPSS-L 60 20 
KPSS-T 60 20 
ADF 50 50 
ZA 30 30 

 
Given prior expectation of 
70% stationarity 
 
Test 

Segment length to achieve 
less than 5% false 
determination of 
Unit Root/non- stationarity 

Segment length to achieve 
less than 5% false 
determination of 
deterministic stationarity 

KPSS-L 40 20 
KPSS-T 50 20 
ADF 40 60 
ZA 20 30 

 

The two KPSS tests show high rates of false non-stationarity, whereas the ADF shows high 

rates of false stationarity. As can be seen, based on this analysis, give equally likelihood of non-

stationary or stationary data, the ZA test can be separate stationary and unit-root data with a 

5% false determination rate with segment sizes of 30, which is highly desirable in this work. 

Applying these UR tests 

These tests are all applied to the segments of data within which a single change-point has 

already been provisionally identified. The change-point itself is not otherwise considered. 
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However, since the climate data being tested provisionally contains a deterministic change and 

only the ZA test is formulated with this as a ruling assumption, findings of non-stationarity may 

be caused by the presence of additional deterministic but undetected change-points. 

The context here is that (a) an objective change-point method has been used subject to certain 

assumptions, and (b) a segment of data is delineated between two objectively determined 

change-points determined similarly. Do the assumptions of the detection method hold for the 

segment of data and to what extent? Additionally, the tests are only utilised when there is 

sufficient data to give a desirable level of confidence in their results.  

Level stationarity is not just a zero trend. Data with a zero trend as determined by a regression 

analysis may be either deterministically or stochastically level. In the first case there may be a 

combination of zero or more change points that can be reliably detected, and the “noise” 

surrounding the signal is i.i.d. In the second case, a deterministic change-point detection 

method may return indeterminate change-points and the noise surrounding any extracted 

signal will not be i.i.d. but retain a UR characteristic. Similarly trend changes: Removal of the 

trend from continuous, trend stationary data yields level stationary data, as does removal of a 

shift and trend from discontinuous trend stationary data. 

A segment of data with a valid shift point should not be level stationary, it should not be in a 

segment with unit root behaviour, and if it shows trending behaviour this should not be due to 

a drifting unit root. It should also have a significant result by ANCOVA. Table Ch4.5 summarises 

the use of these tests.  

How data conditions relate to tests 

Level stationarity. Data provisionally containing a step-like change is expected to not be level 

stationary. Non-stationarity is a property of deterministic trend, and/or deterministic step-

change but also of unit root behaviour. The KPSS-L test is used here with an expectation that 

segments in which a change-point occurs contain a step-like shift but may also contain a 

change of trend. Hence it is used as a cross check, as the expectation is that no data segment 

within which a change-point exists will be found to be level stationary. Further, once the 

deterministic internal shift and trend components are removed the residual should be level 

and trend stationary.  Level non-stationarity in the segment and level stationarity in the 

residuals supports the existence of a change-point.  

Trend stationarity. Data with a provisional change of trend is expected to be non-trend-

stationary. Data with constant trend and a step-like change may show as trend stationary 
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depending on the assumptions of the specific test. The KPSS-T test and the ADF test as 

formulated here may return different results in the presence of a step-like shift and no trend 

change, with the ADF test showing trend stationarity and the KPSS possibly showing non-

stationarity.  

Unit root/non-stationarity in the absence of any deterministic change. The presence of a unit 

root may cause the data to mimic either a step-like change or a change of trend that in either 

case the MSBV can return as a step-like change. All four unit-root tests are expected to detect 

this, with the ADF being less powerful, partly due to a potential to overfit autocorrelation lags. 

Since the detection method has provisionally detected a change-point, tests on the residuals 

would likely all show non-stationarity, and similarly testing of the segment itself. The ZA test 

would likely be the most powerful.  

Unit root/non-stationarity in the presence of deterministic change. This is a complex issue. 

The combination of UR and deterministic trend is potentially explosive (Hacker, 2010). On the 

other hand the climate system is physically bounded and so at worst the combination may 

appear as step-like. Data in which the tests support unit root in both the segment data and its 

residuals indicate either a genuine unit root presence or multiple deterministic changes; whilst 

data with apparent support for a unit root that disappears in the residuals, is consistent with a 

single deterministic change. However data with multiple change points is misspecified for all 

tests.  

Evidence of misspecification due to data composition methods. Climate data is not 

homogenous. Data that represents the sum or average of multiple processes such as the GMST 

may have features which are detectable in individual processes but that remain below 

detectability thresholds when averaged. For step-like changes occurring at different times in 

different components, the steps are reduced in size by averaging. Further, if the changes differ 

slightly in time over a number of components then the deterministic shift-like changes may be 

confused with either stochastic or deterministic trend.  Similarly trend changes: If the step-like 

or trend change happens simultaneously across all processes then the i.i.d. stochastic noise of 

each process will partially cancel out, but the signals will reinforce, thus enhancing the signal 

to noise ratio.  A method that imposes or presumes smoothing may identify this as a trend. If 

autocorrelation is present as part of the signal in the component’s data together with trend, 

the situation is still more complex.  
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Table Ch4.5: Unit root tests used and their main assumptions. Possibilities not formally considered may deceive 
these tests by supporting either the null or contrast hypotheses – this is noted in the later rows of the table. 

Properties of Test ADF  
(trend and drift) 

KPSS  
(level stationarity) 

KPSS 
(trend 
stationarity) 

ZA  
 

Ruling 
assumptions 

No exogenous 
change. 

No exogenous 
change. 

No exogenous 
change. 

Not combined 
exogenous change 
and unit root. 
At most one 
exogenous change 
(shift or trend 
change). 

Null hypothesis, 
H0 

I(1) Unit Root after 
allowing for 
autocorrelation 
and trend. 

Stationarity Trend stationarity I(1) Unit Root with 
drift and no 
exogenous change 

Contrast 
hypothesis, H1 

Presumption of 
trend stationarity 

I(0) Unit Root I(1) Unit Root Deterministic with 
possible exogenous 
change at a date 

When at most a single exogenous change is present 
If exogenous 
change and UR 
present 

Accept H0, i.e. UR Prefer H1, i.e. UR Prefer H1, i.e. UR May prefer H1, i.e. 
exogenous change 

If exogenous 
change but UR not 
present 

May accept H0, i.e. 
UR 

If constant trend 
and step-change 
then will accept 
H0, stationarity. 
Otherwise prefer 
H1, i.e. UR 

If step-change only 
then will accept 
H0, trend 
stationarity. 
A strong trend 
change will prefer 
H1, i.e. UR 

Prefer H1, i.e. 
exogenous change 

Unit root but no 
exogenous change 

Accept H0, i.e. UR Prefer H1, i.e. UR Prefer H1, i.e. UR Accept H0, i.e. UR 

When multiple exogenous changes are present 
Plus Unit Root Accept H0, i.e. UR Prefer H1, i.e. UR Prefer H1, i.e. UR Accept H0, i.e. UR 
No Unit Root May accept H0, i.e. 

UR 
Prefer H1, i.e. UR May prefer H1, i.e. 

UR if exogenous 
trend changes 
present 

May accept H0, i.e. 
UR 

After removal of all exogenous change 
If Unit Root  
 

Accept H0, i.e. UR Prefer H1, i.e. UR Prefer H1, i.e. UR Accept H0, i.e. UR 

No Unit Root  Prefer H1, trend 
stationarity  

Accept H0,  
stationarity (unless 
residual trend 
remains) 

Accept H0,  trend 
stationarity (unless 
residual trend 
remains) 

Prefer H1, 
exogenous change 
(even if there is 
none) 

After removal of main exogenous change but with exogenous change still present 
If Unit Root  
 

Accept H0, i.e. UR Prefer H1, i.e. UR Prefer H1, i.e. UR May prefer H1 if 
exactly one 
exogenous change 
remains. H0 of 
more than one. 

No Unit Root  Prefer H1, trend 
stationarity (even if 
residual trend 
remains) 

Accept H0, level 
stationarity 

May prefer H1  Prefer H1, 
exogenous change  
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Therefore the finding of unit-root like behaviour in climate records must be interpreted with 

care, as it may also be evidence of misspecification of data composition. The only valid method 

of disambiguating the situation is to analyse the component data. This also follows from 

consideration of the properties of moving average and autoregressive time-series. 

The “order” of an AR process is the number of lags, and also the polynomial order required to 

fit the error terms. The Dickey-Fuller equation (Equation 1) describes an autoregressive single 

lag, i.e. an AR(1) process. The sum of two AR(1) processes does not conform to an AR(1) 

process. In general it is most compactly represented as an autoregressive-moving average 

(ARMA) process of greater order, ARMA(2,1) (Granger and Morris, 1976).   

If 𝑝 and 𝑞 are the lag order of processes, then two AR processes combine into an ARMA 

process, where the first parameter of the ARMA is the order of the AR part, and the second is 

the order of the moving average (MA) part.   

 𝐴𝑅(𝑝) + 𝐴𝑅(𝑞) = 𝐴𝑅𝑀𝐴(𝑝 + 𝑞, max(𝑝, 𝑞)) (6) 

Note that the for the sum of two AR(1) processes, the most compact representation requires 

three parameters, two different lags for the AR part and one for the MA part.  

Treating the result of 𝐴𝑅(1) + 𝐴𝑅(1) = 𝐴𝑅𝑀𝐴(2,1) as an AR(1) process may be deceptive. 

And yet in many analyses, the issue of the composition of the data is at best brushed off, and 

autocorrelation is in general approximated as AR(1). In this thesis, for example, I show that 

apparent unit root-like behaviour in some zonal data sets resolves to deterministic shifts at 

different times in sub-sectors of those zones, and that this affects the determination of 

change-points. 

Interpreting combinations of tests in the light of ruling assumptions 

The UR tests are composed, like all statistical tests, with certain ruling assumptions that bound 

their applicability. In this work, the impact of specific departures from those assumptions has 

been considered (see Table Ch4.5), and included in inferences made about the data. KPSS and 

ADF tests are often framed as NHST tests that select between either implicitly deterministic 

stationarity of the data segment or purely stochastic (unit root) drift, the latter perhaps 

mimicking either a trend change or a step-like shift as far as detection methods are concerned. 

Importantly, the ruling assumptions of these tests include an assumption that no step-like or 

trend change exists, and the non-stationarity attributable to these features may be taken as 

presumptive evidence of UR. That is, an exogenous change (a change in structure) in the 

underlying physical system may result in a deterministic step or trend change in the time 
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series, which may be misinterpreted as non-stationarity. In turn, the presence of these two 

statistical features, due to the presumption of their absence in the formulation of the tests in 

question, may be mistaken as evidence of a stochastic drift, rather than a deterministic 

change. This in turn may be taken as evidence against an exogenous or structural change in 

the system and evidence for an endogenous one (with the inference that the physical system is 

unchanged).  

This is dealt with by (a) taking into account that a step-change has already been provisionally 

found, (b) testing the residual of the signal with the internal shift and trends removed, (c) 

interpreting all of the tests together. The various possibilities are summarised in Table Ch4.7. 

These tests are tests of the properties of the data, whereas the ZA test is framed around the 

change in the data and so the presence of a change-point does not conflict with the 

assumptions of the test. 

The ZA test is intended to classify change-points as either endogenous or exogenous in origin. 

The test assumes a provisional change-point, due to either a unit root process with a stochastic 

drift (an endogenous change) or a single deterministic (exogenous) change. It removes the 

effect of this, and performs an ADF-like test on the residual. It is documented to return a 

finding of endogenous change if there are multiple exogenous change-points, and a finding of 

exogenous change if there is one exogenous change-point, even in the presence of unit root. 

Hence if it returns non-stationarity initially, but stationarity in the data, that is evidence of two 

change-points. 

If a change-point is not supported by ANCOVA then this is evidence of components other than 

pure step-like processes, most notably ongoing deterministic or stochastic trend. However the 

test introduces extra degrees of freedom, and is less sensitive than the MYBT test in the 

absence of trend. 

If the detection method returns a valid deterministic change-point and the resulting internal 

shifts and trends are removed, and the residual is tested by the same tests, the expected 

findings are as follows … 

a. If the initial signal conforms to the assumptions of the MSBV or is otherwise stationary 

apart from step-like changes and/or trend changes: 

 In the presence of a single change-point (i.e. no other than the detected point exists), 

the KPSS tests and the ADF test will all return stationarity and the ZA will reject a UR, 

nominally favouring a deterministic change-point. 
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b. In the presence of a single additional, but undetected change-point, the KPSS and the ADF 

tests may or may not indicate stationarity, depending on the trend changes, but the ZA 

may be influenced by the second change-point as discussed above; and in the presence of 

more than one additional undetected change-point, the ZA detects non-stationarity, i.e. 

endogenous change in the residuals. 

 The ZA will detect changes of trend without an accompanying step change, thus the 

implication of additional but undetected change-points does not mean that step-

changes have been missed.  

c. If the signal contains a possible unit root, findings of UR in the residuals by all tests are 

signs that the data and the change-point detection are mismatched. However the 

following should be considered. 

 In the presence of a single step-like change imposed on a unit root sequence, the ZA 

on the initial data may show exogenous change with endogenous change (UR) in the 

residuals with other tests simply returning non-stationarity. 

 In the presence of two exogenous changes imposed on a UR progression, the ZA may 

show endogenous (UR) change with exogenous change in the residual and all other 

tests are likely to show non-stationarity. In this work, this would simply be considered 

unclassifiable. The detected change-point would be regarded as weakly supported. 

Thus, it is possible to examine the data segment and its residual and to determine whether the 

apparent change-point is likely to be deterministic or if it is provisionally stochastic/non-

stationarity. If it is provisionally stochastic then there may be undetected change-points or the 

data may contain a unit-root sequence. In either of the latter cases the detection may be 

suspect. It is also possible, for each of the diagnostic tests, to determine the power of the test, 

and thus whether the testing has adequately characterised the data (Figure Ch4.16). 

By combining these results I produced an automatable classification scheme for the detected 

change-points, with five broad categories (Table Ch4.9). The scheme reflects possible 

misspecifications of the data and the detection of change-points characterised by abrupt 

shifts. 
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Table Ch4.6: Expected outcomes of the Zivot Andrews test, given data with a presumptive step-like change plus a 
variety of additional conditions. The first and second columns define results of the tests on the initial data 
segment and the residual with internal step and trend removed. The last column lists interpretations of the pairs 
of results. *These possibilities are discriminated on the basis of CP-Index 

Initial data with a 
presumptive step change 

Residual with internal step 
and trends removed 

Interpretations 

H0 rejected, accept as 
Exogenous/Stationary 

H0 rejected, accept as 
Exogenous/Stationary 

There is a deterministic 
change with stationary 
residual. 

H0 not rejected, accept as 
Endogenous/Non stationary 

There is a deterministic 
change with non-stationary 
residual 

H0 not rejected, accept as 
Endogenous/Non stationary 
 

H0 rejected, accept as 
Exogenous/Stationary 

Residual is non-stationary 
with  two deterministic 
changes  
Residual is stationary with  
two deterministic changes 

H0 not rejected, accept as 
Endogenous/Non stationary 

Residual is non-stationary 
with zero exogenous 
changes: step-change is 
false positive* 
Residual is stationary apart 
from two or more 
undetected change-points 
Residual is non-stationary 
with more than two 
deterministic change-points 

Table Ch4.7: Expected outcomes of the KPSS-T and ADF tests, given data with a presumptive step-like change plus 
a variety of different conditions.as per Table Ch4.6 

Initial data with a 
presumptive step change 

Residual with internal step 
and trends removed 

Interpretations 

KPSS-T H0 not rejected 
accept as Stationary. 
ADF H0 rejected accept as 
Stationary. 

KPSS-T H0 not rejected 
accept as Stationary. 
ADF H0 rejected accept as 
Stationary. 

Residual is stationary, the 
single change-point did not 
have a trend change 

KPSS-T H0 rejected accept as 
Non stationary. 
ADF H0 not rejected accept 
as Non stationary. 

Location of a single change-
point misidentified so that 
the trend is also 
miscalculated 

KPSS-T H0 rejected accept as 
Non stationary. 
ADF H0 not rejected accept 
as Non stationary. 

KPSS-T H0 not rejected 
accept as Stationary. 
ADF H0 rejected accept as 
Stationary. 

Residual is stationary and 
change-point included a 
trend change 

KPSS-T H0 rejected accept as 
Non stationary. 
ADF H0 not rejected accept 
as Non stationary. 

The data segment is non-
stationary and the 
provisional change-point 
may be a false positive.* 
Residual is non-stationary. 
The initial segment contained 
a step and/or trend change. 
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Classification of data segments 

Classification is directed toward assessing reliability of the determination of change-point at a 

particular time by testing for the presence of undetected deterministic features, and/or non-

deterministic behaviour. What is desired is a small set of classes that separately reflect the 

presence of these sources of confusion. A compact set of five classes, covering these 

requirements, is shown in Table Ch4.9. Classification takes place in two phases.    

Firstly, the validation tests are treated as NHST tests at the 0.05 level. Based on the prior 

analysis of data segment length requirements (see Figure Ch4.16 and Table Ch4.4), results for 

which sufficient data exists are assigned values of “Stationary” or “Non-stationary”, and other 

results are assigned “N/A”, for not applicable. This means that for each test three results are 

possible. A classification index is produced as an intermediate step in the further 

categorisation of data segments. It is intended to compactly combine the KPSS-T, ADF and ZA 

results with the data length adequacy results. The index consists of a prefix representing the 

class of the data segment and a suffix representing the class of the residual. For example 

“26.26”, would mean that the data segment was assigned an index of 26 and so was the 

residual. The values of the prefix and suffix are computed by summing values drawn from 

Table Ch4.8 for the three chosen tests in each case. They can then be written as a pair. For this 

example, the tests on the data segment were that KPSS-T, ADF and ZA tests all returned results 

of “stationary”, similarly the residual. Then the index is computed using values from the 

bottom row; 2+6+18=26 and 2+6 +18=26 to give 26.26. The utility of this intermediate step is 

mainly that it simplifies further analysis. 

Table Ch4.8: Values for the computation of a unique classification index of a segment containing a presumptive 
step-like change. The same scheme is applied to the initial data segment and to the residual once internal shifts 
and trends are removed. For each of KPSS-T, ADF and ZA tests, if there are sufficient data for the specific outcome 
of each test, the Pr value is interpreted as supporting either stationarity or not. Looking up the relevant 
interpretation (row) and test (column) yields a number for each test. The values are summed.  When repeated for 
the results of the initial data and the residuals, this yields a binomial index number.   

Interpretation of test KPSS-T ADF ZA 
N/A, Not adequate data 0 0 0 

Non-stationary 1 3 9 
Stationary 2 6 18 

 

Secondly, remembering that the detection method has already provisionally determined a 

change-point, a small set of five classes was defined which reflect whether the data segment 

most likely contains a single change-point, or is accompanied by other points below 

detectability thresholds or perhaps does not really contain a change-point; and whether, once 
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the change-point is accounted for, the residual data is stationary (which implies higher 

reliability, and supporting an inference of the presence of a physical regime change) or non-

stationary, implying lower reliability (see Table Ch4.9).   

There are two major groups of data segments identified here. Those in which the residuals are 

trend stationary, and those in which residuals are either non-stationary or not demonstrated 

to be stationary.  The ZA test forms the principal basis for classifying these two groups, with 

the KPSS-T and ADF tests adding nuance where available. 

Table Ch4.9: Classifications of data segments. Table A4.1.29, in the Appendix 4.1 gives the translation between 
index values and segment classifications.  

Classification Reasoning and interpretation 
Single shift, stationary  
residuals 

The ZA test detects the single shift in the data segment. When 
the residuals contain no change-point or unit root behaviour, 
the ZA test will also register a change point. Both KPSS tests for 
residuals are stationary. 

Single shift, non-stationary  
residuals 

The ZA test rejects the step in the data segment because of the 
presence of behaviour interpreted as unit-root. Removing the 
step in both the data segment and residuals results in a second 
rejection because of residual non-stationarity. The KPSS-T test 
is trend-stationary in both tests and with residuals, KPSS-L is 
stationary. This is consistent with a step surrounded by internal 
trends. 

Single shift, N/A The step-change detected by the MSBV is accepted without a 
valid ZA result because there is insufficient data to probe 
further (i.e., the segment is too short to provide a reliable 
result). The KPSS-T tests registers trends stationary in both 
trials and KPSS-L is stationary with residuals. This is consistent 
with a short segment of single-shift non-stationary data. 

Multiple, stationary There may be a pair of steps in the data. The ZA detects unit-
root behaviour in the data segment, then a step in residuals. 
Both KPSS tests are stationary in residuals. This indicates the 
potential presence of a single additional undetected change-
point. 

Non-stationary The ZA test detects unit-root behaviour in both the data 
segment and residuals. Short segments too brief for other tests 
prevent further insights. Multiple change-points on top of a 
non-stationary background is too complex a situation to detect 
with these tests.  

 

Table Ch4.6 and Table Ch4.7 provide a reasoning framework for the use of KPSS-T, ADF, and ZA 

tests that takes into account that the tests were conducted on the data segment before and 

after accounting for the provisional change-point, and that the various tests differ in their false 

determination rates of stationarity and non-stationarity. A careful examination of the cases 
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has been performed and a mapping between the index values above and the classes shown in 

Table Ch4.9 produced (also see Table A4.1.29 in Appendix 4.1).   

Following the discussion on compositional misspecification (above), the two major groups can 

each be further subdivided into those that are best explained by a single change-point, those 

taht most likely have additional undetected change-points, ones for which non-stationarity so 

dominates that the change-point is cast in doubt, and ones from which no further results are 

available due to data length.  

Four examples are expanded in here and summarised in Table Ch4.10. 

A. For example, suppose testing of a segment of length 60 returns probabilities as follows.  

Pr(ANCOVA)=0.01, Pr(KPSS-T)=0.1, Pr(ADF)=0.01, PR(ZA)=0.01, and testing of the residuals 

returns the same values. The KPSS-T tests have not rejected the null hypothesis of 

stationarity, ADF tests have rejected the null hypothesis of UR in favour of stationarity, and 

the ZA test on the segment rejects the null hypothesis of UR in favour of a presumption of 

exogenous change (supporting the MSBV test). The ZA test on the residuals also rejects a 

UR, but because an exogenous change has been removed, and because testing has shown 

that the ZA test selects an exogenous change in the absence of UR, this indicates 

stationarity in the residuals. So the tests are interpreted thus: KPSS-T and ADF indicate 

stationarity and ZA indicates stationarity. This yields an index of 26.26 and compactly 

reflects a chain of reasoning as follows. The detection test (MSBV) has presumptively 

identified a step-change. KPSS-T and ADF on the segment show that it is trend stationary, 

and the ZA confirms that the change is exogenous. Tests on the residuals show 

stationarity. It would be assigned the class “Single,stationary”.  Also ANCOVA supports that 

it is a change-point of some sort, and not likely to be simply a mid-point in a continued 

trend. 

B. If the data segment length was 40, the ADF tests would have the same Pr values but would 

be ignored and treated as “N/A”. The index would be 20.20, but the class would still be 

assigned  “Single,stationary”.  

C. In another case, suppose the segment of length 60 returned Pr(ANCOVA)=0.01, Pr(KPSS-

T)=0.01, Pr(ADF)=0.1, PR(ZA)=0.1, and testing of the residuals returns the same values. This 

time the KPSS-T tests have rejected stationarity in favour of a presumptive unit root, ADF 

has not rejected a UR in favour of stationarity, and the ZA prefers non-stationarity 

(formally, UR with possible drift). The index value would be 13.13. The chain of reasoning 

is that MSBV has detected a change of mean, ANCOVA indicates a presumptive change-  
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Table Ch4.10. Sample processing sequences for classifying a data segment. Test probabilities are converted into 
presumptive interpretations, the test result and length of data are used to decide from Table Ch4.4 whether the 
final result is adequate or should be replaced by “N/A”. Index values are then selected from Table Ch4.8. The four 
sample cases (‘A’ to ‘D’) talked about above are summarised here. The two major groups of columns are the 
Initial data and the residuals and the tests applied to them are shown in the second row. The third row shows the 
Pr value returned by the test, the fourth shows the meaning of that result. The fifth, “Final Result” shows the 
consideration of data length being applied so that in B or example the ADF, although returning a finding of 
stationarity, it is ignored since the test would require a data length of 50 to minimise the false positive rate. The 
index components are the numerical value assigned to each test, drawn from Table Ch4.8. The bottom row shows 
the index value and the general class of the change-point (see Table A4.1.29).  

A.  
Length 60 

Initial data Residuals 

 ANCOVA KPSS-T ADF ZA KPSS-T ADF ZA 
Pr 0.01 0.10 0.01 0.01 0.10 0.01 0.01 
Tests returns  Stat Stat Stat Stat Stat Stat 
Final Result  Stat Stat Stat Stat Stat Stat 
Index 
Components 

 2 6 18 2 6 18 

Index and 
Classification 

26.26 Single, Stationary 

 
B. 
Length 40 

Initial data Residuals 

 ANCOVA KPSS-T ADF ZA KPSS-T ADF ZA 
Pr 0.01 0.10 0.01 0.01 0.10 0.01 0.01 
Stationarity  Stat Stat Stat Stat Stat Stat 
Final Result  Stat N/A Stat Stat N/A Stat 
Index 
Components 

 2 0 18 2 0 18 

Index and 
Classification 

20.20 Single, Stationary 

 
C. 
Length 60 

Initial data Residuals 

 ANCOVA KPSS-T ADF ZA KPSS-T ADF ZA 
Pr 0.01 0.01 0.10 0.10 0.01 0.10 0.10 
Stationarity  Non-Stat Non-Stat Non-Stat Non-Stat Non-Stat Non-Stat 
Final Result  Non-Stat Non-Stat Non-Stat Non-Stat Non-Stat Non-Stat 
Index 
Components 

 1 3 9 1 3 9 

Index and 
Classification 

13.13 Non-stationary 

 
D. 
Length 28 

Initial data Residuals 

 ANCOVA KPSS-T ADF ZA KPSS-T ADF ZA 
Pr 0.02 0.10 0.10 0.01 0.10 0.10 0.10 
Stationarity  Stat Stat Stat Stat Stat Non-Stat 
Final Result  Stat N/A N/A Stat N/A Non-Stat 
Index 
Components 

 2 0 0 2 0 9 

Index and 
Classification 

 Single, non-stationary 
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point – but both tests are based on a presumption of stationarity. The KPSS-T and ADF 

tests on the segment might indicate a trend change or unit root, but if it were a trend 

change, the tests on the residuals would show stationarity and the ZA test would likely 

show an exogenous change. The result is consistent with red-drift or multiple processes, 

and the change-point would be classed as “Non-stationary”. 

D. Shorter segments are less easy to analyse with diagnostics tests, and with decreasing data, 

more tests may be classed as “N/A”. Consider a segment of length 28, and data for which 

there is a-priori belief that 70% of all data has stationary residuals. The data segment 

returns the following test results. Pr(ANCOVA)=0.02 (and no evidence of a change of 

trend), Pr(KPSS-T)=0.10, Pr(ADF)=0.1, PR(ZA)=0.01. Testing of the residuals yields Pr(KPSS-

T)=0.10, Pr(ADF)=0.1, PR(ZA)=0.1. However once the data length is taken into account we 

get: for the data segment, KPSS-T supporting stationarity but ADF and ZA being “N/A”. In 

the residuals, the only test that differs is the ZA which supports an endogenous drift. The 

latter ZA result supports non-stationarity in the residuals and a step-like shift in the data 

segment. The ZA test returned in the data was initially exogenous change but this was 

flagged as a possible false determination. The index is 2.11. There are several possibilities, 

but due to the short data length this could be classed as “Single, non-stationary”. 

Synthetic data experiments 

Specific data was used to assess and calibrate each of the tests as now described. The data, 

DS2, was constructed to test the effect of accelerating trends in combination with step 

changes of varying size, on average about 50% of these being below the nominal detection 

threshold. There is no UR behaviour in this second set. 

Synthetic climate-like data (DS2) 

A standard suite of artificial multi-step time series was constructed in order to assess the 

performance of the MSBV test with climate like data (hereafter DS2). Each consisted of four 

transforms. The first element of each of the five data sets (the ‘1’ series) was an artificial 200 

year annual temperature set consisting of random data with lag 1 autocorrelation of 25%, lag 7 

autocorrelation of 10% and a standard deviation of 0.44; centred about zero. A quadratic trend 

curve for each set is produced that rises to values between 2.1 and 3.6 degrees.  For each of 

these there is a set of eight shift times and for each shift time, a random shift level. The 

average size of shift amounts to 1.5 standard deviations, (which is less than the bivariate test 

would be expected to reliably detect). The second element (the ‘2’ series) consisted of the ‘1’ 

series plus the associated trend changes, the third (‘3’ series) consisted of the initial data plus 
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the associated shifts and the fourth (‘4’ series) consisted of the combination of initial data plus 

both shifts and trend changes, (see Table Ch4.11 which enumerates the construction, and 

Figure Ch4.17). The data sets are labelled “A” to “E.”.  

Table Ch4.11 Synthetic Data Timing and extent of Shifts. Total Rise is shown both as anomaly and as standard 
deviations. Shifts of < 0.5 are not guaranteed to be found by MSBV and are bolded. Note that the years are shown 
as first year shifted but during analysis we return the year prior. 

A B C D E 

Year Shifts Year Shifts Year Shifts Year Shifts Year Shifts 

1955 0.57 1974 0.96 1970 0.80 1951 0.42 1955 0.40 

1983 0.34 1975 0.97 1987 0.80 1980 0.83 1981 0.59 

1999 0.72 2010 0.46 1996 0.68 2010 0.99 2001 0.80 

2030 0.85 2027 0.79 2028 0.41 2018 0.77 2029 0.38 

2036 1.00 2032 0.43 2036 0.57 2047 0.60 2039 0.59 

2055 0.61 2055 1.00 2050 0.94 2058 0.60 2057 0.84 

2071 0.94 2074 0.93 2076 0.54 2068 0.87 2071 0.40 

2097 0.31 2085 0.39 2095 0.54 2085 0.42 2080 0.42 
 

Total 

Rise 

(as K) 

5.34 
 

5.93 
 

5.28 
 

5.5 
 

4.42 

 

 

These data are constructed so as to provide a higher degree of difficulty than observational 

data sets, since shifts of less than 2 standard deviations are not easy to locate with precision 

especially at the ends of the data, there is autocorrelation and a quadratic deterministic trend. 

A number of points of potential deception are present by design in this data. The last point in 

set A and C violate the seven year window rule in the MSBV. Bolded values represent shifts 

below the theoretical limit of reliable detection. The first two shifts in the ‘B’ set are a year 

apart which can certainly happen but cannot be separated. Shifts separated by ten years are 

detectable but analysis of the MSBV shows that such shifts may still be hard until they are 

close to three standard deviations (this issue is a domain limit to do with step-changes in 

general and not the MSBV alone). 

It will be noted that this data contains many shifts that are below the nominal detection 

capability of the bivariate test.  
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Figure Ch4.17: Synthetic dataset DS2, curvilinear trends and shifts. The top pane shows the sum of the 
corresponding series in the two lower ones, plus white noise.  

Studentized Breusch-Pagan Test for Heteroscedasticity in DS2. 

The data set DS2 was constructed with underlying curvilinear trends plus steps plus 

autocorrelation. The SBP test can be specified with any statistical model, and as explained, I 

used a linear trend, a quadratic and the disjoint set found by the MSBV test. It is intrinsic to the 

nature of the test that even formulated thus, it should not be used to discriminate these 

stochastic models. 

Proposed interpretations of SBP tests given this data are: (a) if no change-points are present 

then any non-linearity must have a quadratic component shown by the quad model 

approaching homoscedasticity; and (b) if no nonlinearity is present, the linear model ought to 

approach homoscedasticity. (c)If the break model shows homoscedasticity then the break list 
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is at least plausible, and if neither the quad nor the linear models are homoscedastic then the 

break model is more supported. If, however, the quad or linear models are homoscedastic 

then it remains possible that the variability due to change-points cannot be distinguished from 

random variation. One reason for this would be a large number of such change-points. In other 

words, the detection process has under-fitted the data. 

In the below results (see Table A4.1.28) the ‘2’ series (A2, B2 etc.) is consistent with the 

composition of random data plus curvature that does not contribute greatly to the variance.  

The ‘3’ series is composed of collections of steps that will impose a non-normality on the 

variances and weaken the SBP test, and the’4’ series contain curvature in addition to the 

expected steps. The results essentially support the use of a change-point model, although the 

possibility that ‘C’ data might also be simply a quadratic progression cannot be eliminated. 

With this in mind, the more detailed examination of data using the tests in Table A4.1.27 can 

proceed on the assumption that change-point analysis was appropriate, but noting that 

dataset ‘C’ may also have an unconsidered auxiliary factor. 

Results of summary analysis of DS2 

Overall 78 change-points were nominally present in the combination of the ‘3’ and ‘4’ sets (the 

first two defined steps in the ‘B’ series are consecutive, and are treated as one). Of these: 8 

change-points were potentially detectable but not detected by the MSBV test; 3 of those 

detected were misplaced or intermediate between closely spaced change-points; and 21 were 

smaller than the design threshold or within the prohibition period of another shift. These latter 

points are a potential source of confusion since they are present but not detected and add to 

noise (hence variance of error) in data segments.  

The MSBV detected 50 change-points in total. Of these, one was classified as being 

“Single,non-stationary”, three as “Single,N/A” and the rest as “Single, stationary”.  

Looking at the change in individual tests from the data segments to the residuals shown in 

Table Ch4.12, only two of 21 KPSS-T results that were initially non-stationary or N/A did not 

revert to stationary in residuals.  ADF tests also reverted from non-stationarity to stationarity 

but not vise-versa, but the test has a higher data length for reliability of detection of either 

stationarity or non-stationarity than the KPSS-T test. ZA tests did not revert from stationarity 

(see also the segment classifications in Figure Ch4.18).   
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Figure Ch4.18: Data segment classification of change-points detected by MSBV in DS2, Non-saturated colours 
represent the points which were possible false positives (ANCOVA p>0.05) 

These results are consistent with the initial data composition of the data sets, and the 

interpretations of the testing proposed. The data contain autocorrelation but do not contain 

unit roots, and the autocorrelation structure is simple. I do not find evidence of compositional 

misspecification in the data in the form of segments classed as “Multiple” or “Non-stationary”. 

However the MSBV has found two shift-points that ANCOVA does not support, B4:1944 and 

B3:2081. The first was not defined and is a false positive. The latter is probably an 

intermediate location due to the presence of a sub-detectable shift in 2085 and classified as 

“Single,N/A”. A corresponding point, B4:2084 is only weakly supported by ANCOVA (Pr = 0.04), 

is similarly classified, and considered a correct detection by MSBV. B4:1944, however is 

classified as “Single,Stationary”. 

The increased support by ANCOVA from B3:2081 to B4:2084 is consistent with a consequential 

trend change due to the additional quadratic trend in the ‘4’ series.  

Table Ch4.12: Classification of segments as stationary or not according to each of the tests. In all cases where a 
change from the initial data to the residual is seen it is stationary. 

 Initial Data Residuals 
Finding KPSS-T ADF ZA KPSS-T ADF ZA 
Stationary 13 10 46 48 29 46 
Non-Stationary 21 24 1 2 5 1 
N/A 16 16 3 0 16 3 

 

The degree of auto-correlation defined in these datasets does not cause a finding of non-

stationarity in the residuals of change-points. This is as expected. 
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Illustrative tests of individual change-points detected in DS2 

Three illustrative cases are now briefly discussed. In the following, a reference such as 

“B4:2073” refers to the first two columns of Table A4.1.27– data-set: change-time. 

A3:2030 (Figure Ch4.19 top pane), is a defined change-point, correctly located by MSBV. 

However a false-positive change-point forms the early time-bound and three undetected step-

changes are present. For interest a runs test and a Kolmogorov-Smirnov test were both 

performed to assess normality of residuals and both suggest non-normality. The ZA test 

suggests exogenous change in the data and in the residual and the KPSS-T and ADF revert from 

non-trend-stationarity in the data segment, to stationarity of the residuals. The ZA test is 

consistent with that interpretation recorded in the bottom row of Table Ch4.5. The change-

point would be classified as “Single, stationary”. The difference between stationarity testing 

and normality testing is to be noted – normality is not required for stationarity (Walpole et al., 

1993). 

B4:1944 (Figure Ch4.19 centre pane), is an MSBV false positive. Whilst it superficially appears 

as a level change and as a trend change, KPSS-T and ADF show trend stationarity in the data 

segment and residuals. It would be classified as “Single, stationary” using the scheme above 

but, ANCOVA does not support a change-point. 

D4:2084 (Figure Ch4.19 bottom pane), is an expected date of small shift, and ANCOVA 

supports this as a change-point. The segment length is 34 which is less than would allow a 

conclusion for ADF tests (at this length the false stationarity and false non-stationary rates 

both exceed 5%), However the KPSS tests show trend stationarity in both the data and 

residuals while the ZA test shows endogenous change in both. This is in keeping with the 

presence of multiple undetected step-like changes. In this case a runs test did not support non-

normality but a Kolmogorov-Smirnov test did. Its index 11,11 corresponds to a class “Single, 

non-stationary”.  

The ANOVA/ANCOVA tests are used here predicated on the assumption that the identified 

change-point is the most likely by some objective criterion and hence data on either side best 

represents the prior and posterior states of the climate had the climate shifted. Thus they have 

a role in the attribution of step and trend change. ANCOVA is a conservative means of 

assessing whether a change-point based on different criteria stands and hence rejection by 

this test must be considered with care.  
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These results suggest that the suite of tests characterises the change-point processes plausibly. 

The degree of autocorrelation applied is consistent with the findings of (Allen and Smith, 

1994), and did not result in the incorrect classification of the data as non-stationary.  
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Figure Ch4.19: Illustrative analyse for dataset SD2. Blue dots represent expected change points. Top: A3:2029, 
illustrating data confounding the detection method. Middle: B4:1944. A false positive with ANCOVA rejecting the 
change-point. Bottom: D4:2084. A short sequence with a significant shift, correctly detected by MSBV but with 
apparent unit root behaviour as well. 
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The interaction of data composition and autocorrelation. 

This section provides a basis for a major finding in Chapter 5, to wit that apparent non-

stationarity in some zonal records is resolved by analysis at finer scale. 

The role of autocorrelation in shaping climate signals was investigated by Allen and Smith 

(1994), and has recently been raised again (Beaulieu and Killick, 2018). When dealing with 

auto-correlated data Beaulieu and Killick (2018) applied pre-whitening (Rodionov, 2006b) but 

used more complex methods for computing ρ (the autocorrelation coefficient), whilst retaining 

an AR(1) structure. Importantly, they noted that autocorrelation is overestimated if there is an 

un-treated shift in the mean. In fact any deterministic structural break will have this effect. 

Since climate data is often obtained by some form of spatial composition, and autocorrelation 

is often assumed to be adequately represented as AR(1), there is a potential to misattribute to 

autocorrelation some of the signal which is due to either shifts or trend-changes. 

Consequently, attempts to remove such autocorrelation, based on a simple AR(1) model, may 

remove components of interest in the signal.  As seen, the stationarity tests I have outlined are 

themselves not proof against these misattributions and, unless this is accounted for, may 

potentially register non-stationarity when in fact the signal has a deterministic shift. This is the 

key to my reasoning about the southern mid-latitudes in particular, seen towards the end of 

Chapter 5, and a prime motivator for the classification scheme.  

In Ricketts and Jones (2017) we showed that zonal averages include more regional regimes, 

and that these cause segments containing change-points in the zonal averages to be taken as 

non-stationary. The following analysis relates the degree of autocorrelation actually injected 

into a signal to the degree of autocorrelation found after trend and shifts are added in and 

after the data is composited in a similar manner to that used in climatology, and then analysed 

for change-points  

Composite signals were produced by averaging component signals where sometimes shifts 

occur as clusters at different times. Each component signal represents the signal from a 

particular location, and shifts are delayed by a series of two year intervals and then by an extra 

ten year interval. The components were averaged to simulate the production of a mean 

climate, and then the MSBV was run on the composite signal to test the limits of the MSBV 

under varying combinations of autocorrelation, shift and trend change (see Box Ch4.7, below). 

The validation suite was run over each component, over the composite, and the segments 

found by the MSBV. Empirical autocorrelation was assessed by linear regression of the signal 

and its lag. All combinations of: a step of 0 or 1.5 degrees; autocorrelation factors of 0, 0.33, 
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0.66, and 1.0; change of trend of 0, 1, 2,3, and 4 nominal degrees/century; were used to create 

composites. It would be expected that the MSBV would locate up three deterministic change-

points in the composite signal due to shifts in the components. The sequence of five shifts in 

components at two year intervals after year 30 was expected to simulate a slow developing 

large shift. The shifts at 50 and 70 years of 1.5 standard deviations, each in one component of 

seven, was expected to be difficult for the MSBV as it is below the design thresholds.  

 

Figure Ch4.20. Autocorrelation in a composite signal and its components are compared. There are 4 levels of 
autocorrelation applied to components, indicated by the grey shading. There are five levels of trend-change 
indicated by the numbers on the x-axis (in nominal degrees/century). Dark colours indicate that a step change of 
1.5 nominal degrees occurs in addition to a trend change lighter colours indicate trend change only. The numbers 
of change-points detected by MSBV in the composites is shown for the case of composites without shifts (solid 
line) and with added shifts (dotted line). 

How apparent autocorrelation relates to composition, trends and shifts.  

This part of the testing examines how the internally defined autocorrelation relates to each 

component of the composite signal. Since the composite is obtained by averaging, this is 

expected to reduce the variance attributable to random noise, and also to reduce the 

detectability of shifts since each shift occurs in only one component. Since the simple test for 

autocorrelation does not compensate for trend or shifts (in line with methods often used in 
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climatology), it is expected that both trend and shifts may affect the empirical autocorrelation 

parameters. Figure Ch4.20 summarises the findings with respect to composition. 

There are four sets of five clusters. The first five clusters of bars represent composites with no 

intrinsic autocorrelation but five levels of trend change. Then follow similar data with 

autocorrelations of 0.33, 0.66 and 1.0. The last is explicitly composed of random walks with 

and without an added shift, and the added shift seems to fully dominate the behaviour.  

Examination of the first five groups of bars (all composed without intrinsic autocorrelation) 

shows that the degree of imputed autocorrelation in composites (without shift light green; 

with a shift, olive green) rises with the amount of trend change, but much less so in the 

absence of a shift. Comparison with the components (no shift, yellow; with shift, orange) 

shows that this is the case for the components as well, but since the composites show much 

Pseudocode for data generation and testing 
def genBreak(length=100, pos=30, shift=1.0,autocorrelation=0., trend1=0.0,   
trend2=0.0): 
# 
#Generate sample data with specified shift, trends and autocorrelation 
# 
  data= np.random.rand(length) #random data 
  if autocorrelation != 0.: #carry forward specified portion of signal 
      for i in range(len(data)-1): 
        data[i+1] += data[i] * autocorrelation 
  std=np.std(data) 
  data[pos:] += shift*std  
  if trend1 != 0.: 
    add in trend1 up to pos 
  if trend2 != 0.: 
    add in trend 2 after pos 
return data 
 
def generateTestData(length=100, pos, offsets, shift, autocorrelation, trend1, 
trend2): 
# 
#Generate a bunch of components and average them 
#Returns both the components and their average 
# 
  for offset in offsets[:]: 
    data2,_=genBreak(length, pos+off, shift, autocorrelation,trend1, trend2) 
  result.append(np.array(data2)) 
return data/len(offsets), Years, np.array(result) 
 
 
firstBreak=30 
for autocorrelation in [0., 0.33,0.66,1.]: 
  for offsets in [[0, 2, 4, 6, 8, 20, 40] or other test cases]: 
    for trend2 in [trend1, 1., 2., 3., 4]: 
      generateTestData giving composites and components 
      perform UR and autocorrelation tests on composite and components 
      perform MSBV on composite 
      for each break detected perform UR and autocorrelation tests on segment 
 

Box Ch4.7: Pseudocode for the simulation of climate-like data averaging in the presence of multiple processes. 
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greater imputed auto-correlation, the composition has itself had an effect. When the MSBV is 

used to break the signals into segments (no-shift, light blue, with shift, dark blue), the mean 

autocorrelation of the segments is intermediate, showing that the detection and removal of 

deterministic changes also affects imputed autocorrelation. As the intrinsic autocorrelation of 

the components increases the effect of shifts and trend changes is still present but less clear. 

Finally the solid and dotted lines indicate that not until the signals are highly dominated by 

red-noise is the number of change-points affected. 

The main findings of this part are: 

(a) Composite data sets with a shift register as having high autocorrelation even when the 

components do not (olive green bars in Figure Ch4.20).  

(b) When no autocorrelation is present in component signals, it is still observed in composites 

(Figure Ch4.20, light and olive green) especially if there are shifts. This can be attributed to 

the lagged timing of changes. 

(c) Increased autocorrelation in components leads to increased detected autocorrelation in 

the composite and in the segments delineated by the MSBV. In all cases adding shifts in 

increases the autocorrelation detected.  

(d) Applying the MSBV produces segments that in general have more apparent 

autocorrelation than the components but less than the composite. This is consistent with 

the composite signal having sequences of steps that the MSBV cannot separate.  

Case study, analysis of previously published data 

Five mean annual surface temperature datasets were analysed for date and extent of internal 

shift, and trend at global, hemispheric and zonal scale, and the results published by Jones and 

Ricketts (2017b), and will be referred to as Obs2017. These change-points have now been 

further characterised by the tests proposed in this chapter. All datasets provided estimates of 

global averaged annual temperatures. Three sets (NCDC, HadCRUT4, and GISSTEMP3), 

provided estimates of hemispheric averaged annual temperatures. Two sets, (NCDC, and 

GISSTEMP3) included estimates of annual zonal average temperatures, although these used 

different latitude bounds. Both also include estimates of Tropics and composites that overlap 

zones. Two datasets, (Cowtan and Way, a.k.a. Had4-Kriged, and Berkeley) contained only 

estimates of global annually averaged temperatures. HadCRUT4 also provides estimates for 

the zone 30S-30N which overlaps the tropics. The NCDC dataset also included separate 

estimates of mean land and mean ocean temperatures.  
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Figure Ch4.21: Classification of the land-ocean data-points published by Jones and Ricketts (2017b) from five 
separately sourced estimates of mean annual temperatures at global and sub-global scale. Unsaturated colours 
represent change-points which may be false positives on the basis of a CP-index. 

This gave 218 change-points detected by MSBV of which all but 9 would be accepted on the 

basis of a CP-index (28 meeting the assumptions of the MSBV but ANCOVA p>0.05).  

A major point of interest is that clearly, the composition of the data has an impact on the class 

that change-points are assigned to. Tropical change-points are always “Single-stationary”, 

global change-points are mostly “Single-stationary”; whereas zonal, composite and 

hemispheric change-points may include indicators of compositional misspecification: evidence 

of undetected change-points and non-stationary residuals.   

Summary and conclusions 

I have outlined a program of assessing presumptive shift dates in climate data. In doing so I 

have attempted specify testing that fits within a formal framework of severe testing (Mayo and 

Spanos, 2006). I have also strongly leaned on the idea of model misspecification (Mayo and 

Spanos, 2004). It is telling that the MSBV, based on maximized likelihood of step changes 

rather than minimised residual in a segmented model, none the less compares favourably to 

other methods such as structural-change. The tests outlined here assist a probative analysis, 

firstly by adding nuance to the findings, and secondly by providing the basis of a change-point 

classification, they assist strong reasoning. They have been selected because they are 

individually automatable and complementary, and the utility of this has been indicated in the 

case study. The chain of reasoning involved in the use of multiple tests is complex but the final 

classification scheme is compact and as seen, informative. 

The tests for heteroscedasticity are conventional. Homoscedasticity of residuals is, however, 

generally considered insufficient evidence for the adequacy of a statistical model. It is, none 

the less, an assumption of OLS regression. Hence it is possible that if variance changes as part 
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of a regime change (see Killick et al., 2010), heteroscedasticity would be expected. The use of 

three separate statistical models over the whole of a time-series allows one to determine 

whether the data suggest that a step-and trend model is adequate. Homoscedasticity around a 

linear trend would suggest a higher order model over fitted. Around a quadratic trend, it 

suggests that the results of a change-point analysis be considered carefully since fitting a 

piecewise linear model to trend dominated data is fraught (and especially when the trend is 

continuously varying) due to there being no preferred starting change point (Jarušková, 1997, 

Jarušková, 1996). This is part of a model misspecification test. Applying the same test to the 

derived disjoint segmented model deduced by change-point analysis is a sensible cross-check. 

It is not a test for optimal parameterisation, and in fact this is likely to be harder to determine 

in climate data than generally recognised.  

Using unit root/stationarity tests to locate an important potentially confounding condition in 

the data – transient or predominating unit root – likewise assists with building a more 

complete picture of events. The meaning of transient unit roots in climate data is an open 

question, the more so since the methodologies are econometric and the economic use is very 

different. Here, I use the methods to firstly identify violations in the data of basic assumptions 

made in model selection and regression. Transience is a form of non-stationarity against which 

very few analytic methods in climatology have much defence, and yet it is of substantial 

interest. The MSBV has shown itself robust to transient temperature fluctuations (e.g. the El 

Chichón eruption). Transience of this sort may have either a deterministic or a stochastic 

origin, it may be signal or noise.  

Beaulieu and Killick (2018) address some of these issues from the point of view of 

autocorrelation (or system memory), but their paper was published too late for a proper 

incorporation into this thesis. The paper proceeds by producing eight statistical models with 

combinations of autocorrelation (or not) and the presence or absence of either shifts or trend 

changes, and performing statistical model selection based on information criteria to select 

preferred statistical models – however they do not include one with both shifts and trend 

changes, despite having cited authors who do (Seidel and Lanzante, 2004), and argue against 

the circa 1996 change, the so-called hiatus. This chapter demonstrates that autocorrelation 

can be introduced into climate data by virtue of the data preparation. Later chapters use this 

to assist with finding a “natural scale” for regional regimes.  

However even more importantly, it is the combination of these tests and their various contrast 

hypotheses that enables one to be sure that where a step-like change-point is provisionally 
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detected at a particular time, it (a) provides a better explanation of the linear underlying 

processes than its absence (ANCOVA), (b) the underlying stationarity assumptions are not 

violated (ADF and KPSS), and (c) is unlikely to be due to random drift, fast or slow, (ZA). The 

window and shuffle tests in JR2017 address similar issues to the ZA.    

The ANCOVA approach is quite conventional and serves  in attribution of change to two types 

of change, step-like (or level change) and trend-change (or innovation as it is sometimes called 

(Tsay, 1988)). One should note that rejection of a change-point by the test is a conservative 

result given that some detection method has presumably established it to a high confidence. 

The CP-index allows a researcher to apply less conservative, but by no means less stringent 

rules to testing false positives. Accepting points that are ANCOVA p>0.05 but which meet the 

ruling assumptions of the MYBT – no underlying trend (i.e. CP-index of zero) is acceptable, the 

more so after non-stationarity is eliminated. 

The various test all differ in their propensity to produce false positive or false negative results 

and this has been addressed, initially by sensitivity testing for false positives and false 

negatives separately and then because the KPSS and ADF tests invert the null hypotheses with 

respect to each other, synthesising these into stationarity/non-stationarity determination 

rates given resumed prior rates of stationarity. This might seem over complex, but it minimises 

unsupported presumption, in order to get maximum value from small data sets. The end result 

is that a taxonomy or typology of data segments/change-points is available that can be used to 

separate change-points into groups reflecting the presence of a previously unconsidered 

source of deception, red-noise or unit-root behaviour. 

A basis has been established for potentially detecting signatures of a data composition mis-

specification whereby features emerge or submerge in composited data due to averaging 

signals (especially ones moving in time and space). The signature is a reduction in evidence of 

non-stationarity when signals are decomposed or segmented using the MSBV. 

This typology has been demonstrated in sample data (DS2), and has shown that data 

composition is a source of variability in type and a source of apparent autocorrelation. It has 

demonstrated that the MSBV is fit for use, although with the caveat that post hoc testing 

should be performed. The case study supports previous work published using these data, but 

also underlines the complexity of the subject. The typology is used in Chapter 5 to 

demonstrate that land and ocean respond differently to regime changes, and function at 

different spatial scales. 
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Chapter 5: Abrupt decadal shifts in 
observed and modelled mean annual 
zonal land and ocean temperature 
records. 
Introduction 

Recent work has shown that abrupt regime changes in Earth’s climate either follow or include 

step-like pathways (Jones and Ricketts, 2017b, Bartsev et al., 2017, Yan et al., 2016, Yan et al., 

2015, Reid et al., 2015). And that while these step-like changes can be detected in global 

averages signals they likely originate in decadal and regional processes (Rodionov and 

Overland, 2005, Overland et al., 2008, Reid et al., 2015, McCarthy et al., 2015, Alheit et al., 

2005, Freitas et al., 2015, Trenberth, 2015, Trenberth and Fasullo, 2013). 

Two findings in JR2017 were that three major events post World War 2 have affected both the 

global temperature progressions and the biosphere simultaneously, these being circa 1976, 

1986 and 1997. In each case a major ocean basin has been involved.   

We have also published a conference paper (Ricketts and Jones, 2017) (henceforth RJ2017) 

which examines in detail the step-like structure in ocean temperature records in the zone 60S-

30S. Three findings in the paper are of note. (1) The Southern mid-latitude zone is very far 

from homogeneous. (2) But a sector scale of 45 degrees by 30 degrees approximates a natural 

scale of self-organisation in this region. (3) Compositing of temperature records at greater 

scale creates much of the reported redness, and obscures the detail of decadal scale 

processes. 

This chapter utilises the multistep bivariate test (MSBV) and the validation suite from the 

previous two chapters. It extends aspects of the analysis of observed global and zonal annual 

temperature records, and the model based projected global annual temperature records 

published previously (JR2017). Included in RJ2017 was an examination in detail of the step-like 

structure in ocean temperature records in the zone 60S-30S, the Southern mid-latitudes. A 

chain of reasoning based on the validation suite showed that sub-dividing the zone into 45 

degree sectors and comparing the results with the zonal record itself gave evidence that the 

temperature response structure of the zone is very far from homogeneous – with the area 
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south of the Indian Ocean showing more shifts than the south of the South Pacific. Separate 

sectors had differing change-point records from each other and the zonal average. Accounting 

for these increased the homogeneity if residuals for sectors compared to the mean zonal 

record. This is evidence of a form of misspecification where an assumption made during 

aggregation of data creates deceptive features or hides actual features – a “data composition 

misspecification” (see Chapter 4).  

This paper extends the analysis used in RJ2017 to the remaining zonal records of observed 

climate; and also extends JR2017 to zonal analyses of a large subset of the temperature 

records from the global climate models submitted for the IPCC fifth climate assessment report 

(AR5), as part of the Climate Model Inter-comparison Project Five (CMIP5). The validation suite 

is used to provide more nuanced analysis than has hitherto been possible. Equally this chapter 

also serves to allow a more detailed introduction to the validation methods themselves.  

Three major questions are addressed below. 

1. Does the composition of area averaged climate data bias results? RJ2017 suggests that 

abrupt decadal scale variability is a function, at least in part, of persistent but regional 

structures with state-like transitions. Further, as also shown in Chapter 4, it is the data 

composition misspecification by simple area averaging that leads to artefacts such as 

excessive autocorrelation or variation of autocorrelation, failure of homogeneity tests 

and even identification of data as showing a unit-root (red-noise) behaviour. If this is 

so, then a decomposition to regions smaller than the regional structures would be 

expected to give data in which the various artefacts were reduced. This is in fact what 

is seen, suggesting that amongst other things few conclusions about climate regimes 

can be drawn from global temperatures alone, due to averaging of the effects of large 

scale regionalised regimes. 

2. Does the analysis of climate models at zonal scale support the presence of regime 

shifts? As seen below, yes it does.  JR2017, and to a lesser extent RJ2017 had also 

shown that three well documented post WWII bio-physical regime shifts circa 1976, 

1986 and 1997 were signalled as step-like regime shifts in temperature records at 

various spatial scales e.g. Jones and Ricketts (2017b, Figure 2). JR2017 had also shown 

that analysis of the ensembles of global climate models, covering the observed period, 

analysed by MSBV had clustering of step-change data that aligned with those obtained 

from observations. It had also shown broad clustering in the annual averaged CMIP5 

projection runs (Jones and Ricketts, 2017b, Figure 7). If the conclusion implied in 
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RJ2017 of data composition misspecification stands (reduction of non-stationarity with 

reduction of scale), it can be expected, and is in fact shown, that the broad clustering 

will be “sharpened” by finer scale aggregation, and that this will also show in the 

validation tests.  

3. What can global climate models tell us about the hypothesis H2 of JR2017 – of 

interaction between climate variability and forced warming? Climate models are the 

only tool by which the relationship of these step-like changes and forced warming can 

be explored into the pre-industrial/pre-instrumental past or into the future. Since H2 

suggests interaction between natural variability and warming, a detection and 

attribution study can be performed.  Three aspects of regimes can be tested: zonality, 

duration of regimes, and intensity of shifts. Increases in intensity above a detectability 

threshold will show as an emergence of an apparently novel sequence of events. If this 

latter condition occurs then it may well appear as a change of zonality in this type of 

analysis. H2 is supported by changes in duration, or zonality of regimes, and most likely 

both the size of shifts and of the associated trend changes.   

As an example of the possible uses to which this approach may be put, special attention is paid 

to the first clustering after the end of the model switches from historical to model forcing, 

which suggests that the recent (at the time of writing) heat release event marks a new regime 

of higher temperatures and possibly faster warming. 

The rest of this chapter is structured as follows. Data sources are provided. Following this the 

general methods and three analyses are described. These are (a) an extension of the 

previously published zonal analyses, based on supplied GISTEMP3 zonal land/ocean averages 

(JR2017, RJ2017), to separate land, ocean and land/ocean averages reconstructed from 

GISSTEPM3 gridded data. This is compared to the supplied NCDC land, ocean and land/ocean 

analysed in the case example of Chapter 4 (Validation). This establishes a baseline for the 

further use of this gridded dataset. (b) The extension of the sectoring approach foreshadowed 

in RJ2017, to the above data, again using the validation suite to further probe compositional 

misspecification with the validation tests. (c) A zonal analysis of a selection of global climate 

models forced by the lowest and highest responding future greenhouse gas emissions 

scenarios (RCP2.6 and RCP8.5). Finally the results are summarised and discussed. Most tables 

are moved to an appendix to the chapter, Appendix 5.1. 

Data sources 

The following data was used in this chapter, as detailed in Appendix 1.1. 
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 NCDC zonal data version v3.5.4.201504.  Anomalies are based on a 1971-2000 mean. 

Combined land and ocean area averaged times series were provided for 60S.30S, 

30S.00N, 00N.30N, 30N.60N, 60N.90N, 90S.00N (S hemisphere), 00N.90N (N 

hemisphere), 90S.90N (global), 20S.20N, 90S.20S, 20N.90N, 60S.60N. The zone 90S.60S 

was deemed not adequate for use.  

 GISTEMP3 gridded land-ocean anomaly data Anomalies are based on a1951-1980 

mean on a 2°x2° grid. 

 Global climate model data. Gridded monthly surface temperature data from a 

selection of global climate models was analysed similarly to GISTEMP3 by combining 

matched historical (1850-2005) and RCP2.6 and RCP8.5 runs to (2006-2100). Data were 

used at the supplied resolution and area averaged to produce representations of the 

same zones as GISTEMP3. They were also further subdivided into land and ocean using 

the model land/ocean masks supplied by each modelling group. Not all models had 

data for all of the pre-industrial controls, RCP2.6 and RCP8.5, but all available 

realisations with the RIP code “r1i1p1” for each were used (see Table Ch5.13). The 

meaning of the term “RIP code” is explained in section “Global Climate Models.on 

p224. 

 Land Ocean Masks The supplied WOA09 1°x1° data was regridded to 2°x2° to match 

the GISTEMP3 data using CDO operators. 

 Models are treated here as independent samplings of possible climates, and four 

atmospheric prescriptions are applied within each model. Models are complex and 

initialisation requires a period of “spin-up” (running against a stable atmosphere) 

before data collection commences. The set of runs chosen here are related within each 

model as follows. Following spin-up, the model is run with a prescribed pre-industrial 

atmosphere representing a hypothetical stable atmosphere unperturbed by human 

activity – the piControl. The model is then seamlessly switched to run with a 

prescribed atmosphere that varies with time representing the observed atmosphere 

between 1850 and the end of 2005 – the historical run. Then the model is seamlessly 

switched to one of a series of hypothetical future atmospheres and run out to at least 

2100.  Here I have selected two extreme prescriptions, RCP2.6 and RCP8.5. The first 

represents a world in which greenhouse warming is controlled to the point that 

warming ceases by 2050, with a net increase of 2.6 W/m2; the second represents a 

world where greenhouse warming follows a business as usual trajectory so that at 

2100 the net increase in warming is 8.5W/m2. Thus with piControls, historical, and 
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RCP2.6 and RCP8.5 runs there are estimates of a purely hypothetical stable past with 

no greenhouse forcing, a representation of how the model evolves given observed 

atmosphere and two hypothetical futures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results 

Data preparation 

In order to provide continuity of data under different compositions, the GISTEMP3 gridded 

data and global climate model data were averaged out zonally by area weighted averaging 

using the same zones as were used for NCDC zonal data. For climate model data, land/ocean 

masks supplied with climate models were used, and a land/ocean mask derived from the 

WOA09 ocean map was used in conjunction with GISTEMP3 data.  

Table Ch5.13: CMIP5 Global Climate Models 
selected for analysis 

CMIP5  
Model 

Pre-
Industrial  
Controls 

RCP2.6 RCP8.5 

ACCESS1-0 X  X 
ACCESS1-3 X  X 
bcc-csm1-1 X X X 
bcc-csm1-1-m  X X 
BNU-ESM X X X 
CanESM2 X X X 
CCSM4  X X 
CESM1-CAM5   X 
CNRM-CM5 X X X 
CSIRO-Mk3-6-0  X X 
EC-EARTH   X 
FGOALS-g2 X X X 
FGOALS-s2 X X X 
GFDL-CM3 X X X 
GFDL-ESM2G X X X 
GFDL-ESM2M  X  
GISS-E2-H X X X 
GISS-E2-R X X X 
HadGEM2-ES X X X 
IPSL-CM5A-LR X X X 
IPSL-CM5A-MR X X X 
IPSL-CM5B-LR X  X 
MIROC5 X X X 
MIROC-ESM X X  
MIROC-ESM-
CHEM 

X X X 

MPI-ESM-LR X X X 
MPI-ESM-MR X X X 
MRI-CGCM3  X X 
NorESM1-M X X X 
NorESM1-ME X X X 
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A trial run of the MSBV was used to produce change-point dates for these zones, and the 

results were cross checked against the results for the NCDC zonal data previously analysed in 

JR2017 to ensure consistency.  

Data for a sectorial analysis matching the above was performed by utilising the GISTEMP3 

2°x2° gridded data, matching the NCDC zones and extracting area weighted sectors where 

each sector covered 45 degrees of longitude within the zones. The grid is chosen is shown in 

Figure Ch5.22 and matches the sectors used to analyses the Southern mid-latitudes (SML) in 

(Ricketts and Jones, 2017). It was chosen to select as many ocean only sectors as possible in 

the SML zone). 

 

Figure Ch5.22: Grid used for sector analysis.  

Autocorrelation 

The Dickey-Fuller equation shown in Chapter 4 as 

 𝑌௧ = 𝜇 + 𝛽𝑡 + 𝜌𝑌௧ିଵ + 𝑒௧  (1) 

was adapted to assess separate the contribution of trend and stochastic autocorrelation in 

segments containing a change-point, and the residuals once internal trend and shifts are 

removed. 𝑏 represents the trend and 𝑐 is the AR(1) autocorrelation coefficient. 

 𝑌௧ = 𝑎 + 𝑏𝑡 + 𝑐(𝑌௧ − 𝑌௧ିଵ) (2) 

Section 1: Zones in observational data 

The primary purpose of this analysis is to extend, and add diagnostics to, the previous results 

included in JR2017, and lay a comparative basis for the analysis by sector in the next section. 

Previously published results for zonally averaged data obtained from NCDC are compared to 
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the same zonal averages for the GISTEMP3 data. Since the zones provided for GISTEMP3 differ, 

the GISTEMP3 gridded dataset was processed to provide identical zones. It was area averaged 

over the same zones as the NCDC data reported in JR2017 (henceforth NCDC-z) using the 2°x2° 

Land Ocean Mask to provide land, ocean and combined land-ocean splits, a total of 36 time 

series with the Zone 90S.60S omitted (GISS-g). The same dataset was regridded to 5°x5°, and 

zonally averaged as before (GISS-g*). The dates for GISS-g* were compared to those of GISS-g.  

Where comparable, the GISTEMP land/ocean data reported in JR2017 (henceforth GISS-z) are 

also compared with the other datasets. All were analysed using the MSBV to find change-

points and then the validation suite applied to the results. Differences between diagnostics for 

land and ocean changes are noted. There are five 30 degree zones (90S.60S omitted as 

previously noted) and seven zones which are various overlapped composites including global 

and hemispheric averages.  

Detection of events 

Data from different providers is pre-processed by the provider preferred methods of choice. 

This includes infilling of missing data, homogenisation of observations where instrumental 

effects are suspected, issues arising from the conventions that air temperatures are sampled 

at 2m above ground, but ocean temperatures are samples at the surface.  

The effect of data preparation can be explored to a limited extent by inter-comparison of the 

datasets. Dates as well as the change-point types, and the multi-test index can be sensitive to 

smoothing and homogenisation of data.  

If composition is a significant source of deception this can be judged by comparison of the 

zonal data with composites, and with sectors. Compositional misspecification will show as a 

greater tendency in the composites of apparent non-stationarity once change-points are 

accounted for. Similarly the composite of land-ocean may have an admixture of the 

characteristics and timings of step-like changes relating to land or to ocean. Similarly sub-zonal 

sectors are expected to be simpler and more stationary. 

Change-point dates for the globe, hemisphere and five zones, aggregated by decade are shown 

below in Table Ch5.14. The detailed analysis using the validation suite (unit root and ANCOVA 

tests etc.) is provided in Table A5.1.32 in Appendix 5.1 with the most pertinent findings 

summarised in Figure Ch5.23,below. 
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Table Ch5.14: Change dates computed from NCDC zonal data as per JR2017 (labelled NCDC-z) are compared to 
GISTEMP3 gridded data re-aggregated into zones (GISS-g), and where comparable, GISTEMP3 zonally averaged 
data as provided (GISS-z). Year of change is shown (add one for first year of regime) for global, hemispheric and 
the five analysed zones. Land is shown in orange, combined land/ocean in green and ocean in blue. GISS-g and 
GISS-z can only be compared for global and hemispheric land/ocean data. Superscripts of 1,2, or 3 mean that for 
that analysis the ANCOVA test does not reach statistical significance. 1 means that the slope of the segment prior 
to the change is significant at 5% and the posterior part is not. 2 is vise-versa. 3 means that the trends are both 
statistically significant, which combined with ANCOVA is evidence of a false positive. Values of 1 or 2 indicate 
weak support for a change-point. GISS-g* is shown only where the year differs from GISS-g 

Dataset Zone 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 
 Global 

GISS-g 90S.90N 1920     1979  19972  
NCDC-z  1924     1979  1996  
GISS-g 90S.90N  1936    1978  19963  
GISS-z  (1919) 1936    1979  1996  
NCDC-z  1929     1978  1996  
GISS-g 90S.90N (1913) 1936    1976  19963  
NCDC-z  1929     1976 1986 1996  

 Northern Hemisphere 
GISS-g 00N.90N 1920      1986 1997  
NCDC-z  1921     1979  1996  
GISS-g 00N.90N 1924      1986 19962  
GISS-z  1923      1986 1996  
NCDC-z  1924      1986 1996  
GISS-g 
GISS-g* 

00N.90N 1925 
*1920 

 
*1935 

    1986 
*1986 

 20002 
20002 

NCDC-z  1925      1986 1996  
 Northern Hemisphere Zones 

GISS-g 
GISS-g* 

60N.90N 1919 
*1922 

      1994 
*1994 

 

NCDC-z  1919      1987   
GISS-g 60N.90N 1919       1994 2004 
NCDC-z  1919      1987  2001 
GISS-g 60N.90N 1919       1994 2004 
NCDC-z  1926        2000 
GISS-g 30N.60N 1920      1985 1996  
NCDC-z  1920     1980  1996  
GISS-g 30N.60N 1920      1987 1997  
NCDC-z  1920      1987 1997  
GISS-g 30N.60N (1914) 1931      1997  
NCDC-z  1929    1963  1988 1997  
GISS-g 00N.30N 1923     1978  1997  
NCDC-z  1925     1978  1997  
GISS-g 00N.30N  1935    1978  1996  
NCDC-z  1925     1978  1996  
GISS-g 00N.30N  1935    1978   2000 
NCDC-z  1925      1986   
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 Southern Hemisphere 
GISS-g 90S.00N  1939    1979   2001 

NCDC-z   1936  1956  1978   20011 

GISS-g 90S.00N  1938    1976  19952  
GISS-z   1936   1968 1978  1995  
NCDC-z   1936   1968 19782  1996  
GISS-g 
GISS-g* 

90S.00N  1938 
*1938 

   1976 
*1976 

 19952 
*19953 

 

NCDC-z   1936   1968 19782  1996  
 Southern Hemisphere Zones 

GISS-g 30S.00N  1939    1976  19941  
NCDC-z   1936  1956  1978   20011 

GISS-g 30S.00N  1939    1978  1996  
NCDC-z   1936    1978  1996  
GISS-g 30S.00N  1939    1978  1996  
NCDC-z   1936    1978  1996  
GISS-g 
GISS-g* 

60S.30S  1931 
*1936 

   1976 
*1976 

  

*1996 
2002 

NCDC-z   1937    1976   2002 
GISS-g 
GISS-g* 

60S.30S  1936 
*1936 

  1968 
*1968 

1976 
*1976 

  
*19952 

 

NCDC-z   1936   1967 1976  1995  
GISS-g 60S.30S  1936   1986 1976    
NCDC-z   1936   1968 1976  1995  

 

Several things are demonstrated by the analysis in Table Ch5.14. 

1. There is strong similarity between the datasets where they can be compared.  

2. GISS-z (used in JR2017) and GISS-g (to be used in this work) are very similar especially 

later in the record. GIZZ-z and NCDC-z support a change after 1968 in the SH land-

ocean data and GISS-g does not. This could be due to minor variation in composition 

because GISS-g and NCDC-z both return this date in the Southern mid-latitudes (SML).   

3. Three post war shifts, all previously reported in the literature, circa 1976, 1986, and 

1996, all show in multiple zones over land and ocean. 1968 shows as a presumably 

ocean based shift in the SML. 

4. Superscripted dates indicating either only weak evidence of a change (1 or 2) or that a 

continuing trend has possibly led to a false determination of a step (3), are mostly 

associated with the time of the so-called hiatus, circa 1996. For most zonal analyses 

where this date shows, there is no reason at all to reject the date. 

5. Differences in the post WW1 dates are of some interest. In the Northern Hemisphere 

(NH), NCDC-z shows changes in early to mid 1920s, whereas GISS sets all show changes 

in the mid 1930s. However the SH shows a strong consensus of changes in the 1930s.  
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The specific conclusion from this comparison is that the GISS-g data provide similar dates to 

the NCDC-z and GISS-z data, both at the resolution provided (2°x2°) and the resolution to be 

used for a spatial analysis (5°x5°). 

Looking at GISS-g (see Figure Ch5.23 below, details in Table A5.1.32), both Land and Ocean 

points appear to be marginally more likely to be in segments classified as Single,Stationary (i.e. 

a single deterministic change within otherwise stationary data) than Land-Ocean points. This is 

consistent with composition of data by across land and ocean leading to more complexity in 

the resulting signal, a cause of compositional misspecification. Additionally, as illustrated in the 

bottom pane of Figure Ch5.23, analysis at zonal scale increases the number of points classified 

as Single,Stationary, and in the case of zonal land data, all change-points are so classified.  

 

Figure Ch5.23: Change-point classes, GISS-g. Top pane shows the percentage of Land-Ocean, Land, and Ocean 
change points of each diagnostic class, with unsaturated colours representing points that are deemed false-
positives on the basis of a likely continuing trend and rejection by ANCOVA. Bottom pane shows the same classes 
but this time saturated colours represent the same percentages as the top pane including false positives, and the 
unsaturated colours represent the percentages when only zonal change-points are selected. Land points are 
always stationary, and if zonal, always unambiguously single shift-like change-points. 

Table A5.1.32 derived from GISS-g, is separated into three parts, land, combined land-ocean 

and ocean, and lists each year of change detected with diagnostics. Of the three well 
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documented post-WW2 bio-physical events, circa 1976/8, 1986/8 and 1996/8, the first is seen 

more strongly in the SH, the second mainly on the Northern mid-latitudes and the third is very 

wide spread (See also Table Ch5.14). In addition an event identified in the late 1960s in the SH 

(Vives and Jones, 2005, Jones, 2012, Hope et al., 2010) is indicated in the Southern mid-

latitudes. Table A5.1.36, an analysis of NCDC-z with matching zones is also provided for 

interest. The change-points for both datasets are plotted with the data in Figure Ch5.24 below. 

There is a clear interhemispheric difference shown here in Table Ch5.14, Table A5.1.32, and 

Figure Ch5.24. But the great Pacific reorganisation, circa 1976, has been attributed as a NH 

event (Trenberth and Hurrell, 1994, Mantua et al., 1997, Minobe, 1997), and thus the non-

detection in the Northern mid-latitude zonal records, especially given detection in the 

Southern zones is of some interest. It is possible this is simply methodological and a shift was 

masked by the circa 1986 event which was confined to the NH (Reid et al., 2015). 

The results of the SBP test, applied to both NCDC-z and GISS-g datasets and all 36 time-series 

from each are tabulated in the Appendix 5.1, Table A5.1.31. Heteroscedasticity tests indicate 

that the step-and-trend model derived from MSBV analysis, when considered overall, is viable. 

However the difference in the ocean analysis between NCDC-z and GISS-g is striking, especially 

with the composite zones. It is notable that the GISS-g versions of the ocean based change-

points show more heteroscedasticity that their NCDC-z counterparts. This may well be due to 

differences in part of the record. When GISS-g global ocean data (90S.90N) was tested by SBP 

against the change-points derived from the equivalent NCDC-z data (1889, 1929, 1976, 1986, 

1996), the result is more probable (Pr=0.047) than the Pr=0.003 returned when using those 

derived by MSBV and GISS-g data (1901, 1938, 1976, 1995), and commensurate with Pr=0.069 

given NCDC-z data and change-points. GISS-g has a larger excursion in sea surface 

temperatures in the early 1940s than other data sets. The analysis by sector (next section) 

suggests that this anomaly is relatively localised since it is strongest in the sector centred on 

the middle Indian Ocean (see Figure Ch5.25). 

This aside, these results show that for land zones, the break-points residuals would be 

accepted as homoscedastic but the composite 90S.20S would not (NCDC-z: 0.01<p<0.05, GISS-

g: p < 0.01). For the most part regime shifts over land are well explained by the shifts detected. 

Land-ocean in both data sets are also homoscedastic (p <=0.1). Whereas the ocean shows 

differences between the datasets. For NCDC-z, 60N.90N (the Arctic) as well as 60S.30S may 

have had (0.01<p<0.05) but for GISS-g, 30N.60N, 20N.90N, 90S.00N (the SH) and 90S.90N 
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(globe) all register as having residual heteroscedasticity, indicating that undetected features 

may be present.  

The presence of heteroscedasticity in the residual time-series after removal of the break 

model may indicate (a) the presence of other types of variation than linear trends or abrupt 

shifts – including artefacts, or (b) an undetected abrupt shift.  

The great Pacific reorganisation  

There are 24 separate change-point determinations between 1976 and 1981, which 

correspond to the well documented biophysical changes and a change of the PDO to posisitive 

phase. For eight land based change-points, the ANCOVA results support a change-point, but 

only the global land change after 1979 has good support for a trend change by ANOVA2 

(0.01<p<0.05) (and the change-point preferred by the ZA is 1963, the year of the Mt Agung 

volcano (Labitzke and Naujokat, 1984)). Six of the eight are classed as Flat (trends not present 

and shift confirmed by ANCOVA) by the CP-index. All are classed as Single,Stationary.  

However, for ocean points the situation is a little more complicated. ANCOVA gives highly 

supportive p-values, the 90S.20S composite is in a segment classed as Non-stationary but 

without significant trend while the 90S.00N (the SH) is classed as Single-stationary. This is a 

mild anomaly, but noting that 30S.00N has a large internal shift ascribed to 1978 in a Single-

stationary segment, and that 90S.60S is generally not suited to processing the 90S.20N result 

may reflect poor data quality.  

                                                             
2 The change after 1976 in 30S.00N has a statistically significant trend and is the only of these eight 
detections to have so. Oddly it does not have a significant change, and the prior trend is not statistically 
significant. In fact the issue to significance of trend changes is more vexed that one might assume from 
the literature. 
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Figure Ch5.24: Left: NCDC v 3.5.4 (April 2015). Zonal change-points computed by MSBC for five of six zones, plus a global average, broken down by land and/or ocean extent, corresponding to the detailed analysis in Table A5.1.32. Right: GISS-g: The bottom pane of each is the 
global mean annual average for comparison. Of interest: land temperatures rise over a greater extent than ocean or land & ocean ones, the so-called hiatus, circa 1996-8 is present in all zones and  all except land in the Arctic and ocean in the Northern tropical oceans. 
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Step-like change-points detected and reported in JR2017 are further substantiated.  

Different versions of the same data produced by two different agencies give the same overall story 

post 1950, but differ somewhat – mostly in the northern tropical oceans – prior to that.  

There is a little evidence that the composition of the data by averaging induces artefacts of the sort 

that any detection method will be sensitive to: lowering of events below detection thresholds; and 

apparent increases in autocorrelation and non-stationary progression. 

Therefore given that the zonal data samples multiple ocean basins and that these potentially change 

independently, the tests were repeated for eight sectors of 45 degrees longitude in each zone, 

applying the reasoning in RJ2017.  

Section 2: Sectors of zones in the observational data  

The primary aim of this section is to explore the relationship between shifts in zonal records and in 

sub-zonal to regional records from which the zones are constructed. If regimes are more regional 

and at least partially independent within zones, averaging multiple regions before analysis is a 

compositional misspecification which is anticipated to cause the effects listed at the end of the prior 

section (also see discussion in Chapter 4 (Validation)). Consequently sectors should show simpler 

structure than the zones from which they are drawn. 

Sectors consisted of the same six 30° NCDC-z zones sectored into 30°x45° blocks, with the Western 

extent of Drake’s Passage (75°W-65°W) as an origin so that if forms the Western side of the first 

sector in zone 60S-30S. Sectors in zone 90S.60S, were omitted from further analysis as previously, 

but shown for illustrative completeness. They are then masked to produce ocean, land, and 

combined land-ocean area weighted averages; the same scheme as published in RJ2017. The MYBV 

was run for each resulting time series (see Figure Ch5.25 below), and the validation suite applied to 

the results as per Section 1. This gives 280 change-points. The resulting temperature change 

trajectories show quite a deal of variation. Change-points and analysis are tabulated in Appendix 5.1,  
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Table A5.1.33, and summarised in Figure Ch5.26 and Figure Ch5.27, below. The data segments 

containing change-points are less complex and the proportion of Single,Stationary segments 

increases when sectored data is used (Figure Ch5.26, top pane), and the number of probable false 

positives as shown by the CP-index (Figure Ch5.26, bottom pane) decreases. That is, the data are 

better specified for the MSBV. Additionally the proportion of change attributable to shifts increases 

at finer scale, and autocorrelation reduces (Figure Ch5.26).  
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Figure Ch5.25: Zonal/sub-sector, combined atmosphere-ocean area weighted annual mean temperatures. Change-points identified by MSBV are used to delineate a disjointed segment 
statistical model, and shown within the grids. The background is warming from the 1950-1981 average anomalies as estimated by the 2007-2016 mean. Of interest the Eastern and 
Western sides of the Pacific show differentiation, and the Northern Atlantic shows features in the mid-20th Century that are suggestive of a slow rise and fall. Dates shown are the first 
changed-year, the start of a new regime. 
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Figure Ch5.26: The two different assessment schemes for change-points both support the contention that data becomes 
less complex and less misspecified for the MSBV at finer scale. Top pane (extending Figure Ch5.23): in all three splits of 
the data, the change-point class of change-points in sectors of zones are more likely to be classified as stationary than 
from the zones themselves. Bottom pane: shows the change-index results for the same splits. Again, unsaturated colours 
represent sectors. Of particular note, none of the sector change-points had an index of 3 (corresponding to a continued 
trend), and the proportion of index values 1 or 2 reduce to less than 5%. Index values of 0 (MSBV assumptions not 
violated and thus may be preferred to ANCOVA) increases. Over land, the number indicating an indisputable shift plus a 
degree of trend increases.  

 

Figure Ch5.27: Left pane: Attribution of temperature change between shifts, and trend-like progression, shows that 
overall most of the change is attributable to shifts, the more so at finer scale. Ocean records are much more step-like 
(see Table Ch5.17 below). Right pane: Auto-correlation coefficients after attribution of autocorrelation between trend 
and non-trend processes (see Table Ch5.16). Analysis of data segments containing change-points shown in saturated 
colours; residuals unsaturated and indicated with an asterisk; Blue is zonal, orange is sectors.  
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Analysis with the SBP test , however shows that some of the sectors remain more complex and less 

well specified to the MSBV. The SBP was run for each sector of the combined land-ocean data and 

compared to the same test for zonal data (Table Ch5.15 below). In fact, only the northern mid-

latitudes (30N.60N) show no heteroscedasticity, whilst the sectors 30S.00N/150E.120W (mid-South 

Pacific) and 60S.30S/30W.15E (southern Indian) show strong signs that there are other processes at 

play and this is apparent in Figure Ch5.25. 

Table Ch5.15: Land-Ocean data: Studentized Breusch-Pagan tests of the implicit step and trend model of the full zone 
and the sectors or those zones. P-values less than 0.01 are shown in red, otherwise those less than 0.05, are shown in 
green. Only the Northern mid-latitude zone shows no evidence of heteroscedasticity even at sector scale. Visual 
comparison with Figure Ch5.25 suggest that in some cases a slow oscillation may be present.  
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60N.90N 0.678 0.043 0.019 0.382 0.490 0.324 0.548 0.619 0.245 

30N.60N 0.126 0.908 0.352 0.074 0.210 0.894 0.115 0.070 0.553 

00N.30N 0.563 0.874 0.723 0.476 0.928 0.258 0.021 0.830 0.395 

30S.00N 0.302 0.097 0.711 0.671 0.300 0.277 <0.01 0.039 0.343 

60S.30S 0.035 0.482 <0.01 0.283 0.647 0.154 0.252 0.023 0.052 

 

Table Ch5.16: Tracing sources of apparent autocorrelation Average of coefficients of equation (2) for each of combined 
Land-Ocean, Land, and Ocean splits when data are aggregated into Zones, and Sectors of Zones. Trends don’t vary 
between Zones and Sectors, but the autocorrelation coefficient always reduces in residuals compared to initial data, and 
reduces from zone to sector over land-ocean and ocean splits.  

 Initial segments Residuals 
 autocorrelation Trend (°C/yr) autocorrelation Trend (°C/yr) 
Zones 
Land-Ocean 0.394 0.00620 0.249 0.000141 
Land 0.187 0.00807 0.046 0.000136 
Ocean 0.432 0.00537 0.275 0.000114 
Sectors 
Land-Ocean 0.281 0.00582 0.155 0.0000571 
Land 0.211 0.00741 0.0786 0.000054 
Ocean 0.329 0.00526 0.191 0.0000926 

 

Table Ch5.17: Ratios of change attributable to shifts to sum of shifts and change attributable to trends. Shown are the 
results when global averaged data are analysed, zonally averaged data are analysed, and when data is analysed at 
sector scale. (See also Figure Ch5.27 above) 

Shift/Total Ratio Land-Ocean Land Ocean 
Global 0.59 0.46 0.74 
Zonal 0.79 0.66 0.83 
Sector 0.86 0.77 0.83 
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The reduction in the mean segment autocorrelation from initial data segments to residuals is 

consistent with deterministic change-points being removed, and in fact the virtual disappearance of 

it for land based analyses is highly suggestive of autocorrelation not being a factor at all over land. 

This would be consistent in turn with regimes over land Reductions moving from zonal to sector 

averaging are consistent with additional autocorrelation induced (not reduced) by averaging of the 

data. 

The move to sub-zonal scale also shows that the major regime-like shifts post WW2 are more 

complex in their distribution than hitherto recognised. Analysis of the GMST record shows three 

major events in data up to 2014 and there is agreement within a year on the timing of these. 

However the sectorial analysis tends to suggest a mix of localised and more generalised events 

clustering around the major dates. Figure Ch5.28 gives two views of the same data – the years of 

change in land, ocean and combined land-ocean sectors. Post WW2, the mid-latitude North Atlantic 

shows a shift circa 1961/2, corresponding to the change of phase of the AMO from warm to cool, 

and the South Pacific shows a more extensive shift in 1968. It is only later that three wide spread, 

more recognised events occur. The spread might potentially be due to data quality or processing 

issues, methodological artefacts, or have a physical basis. Chapter 6 (Spatial patterns) suggests there 

is a real physical basis with multiple ocean and atmospheric systems involved.   

After the two post WW2 ocean events (the second of which is visible in land-ocean data), a slightly 

complex series of events, constituting the Great Pacific reorganisation circa 1976/8, shows with 

shifts predominant in the SH oceans and with land shifts occurring in two distinct events two years 

apart. The circa 1986 Atlantic event shows mainly as land based changes. The so-called hiatus circa 

1996 also resolves into a North Atlantic regime change around 1994 and an extensive coordinated 

event commencing two years later.  

Interhemispheric contrasts were highlighted by concentrating on those events which occurred in 

more than one sector. A simple partitioning of the change-dates into NH and SH, selecting only the 

more extensive events, is illustrated in Figure Ch5.29, and shows clustering at nearly decadal 

intervals. The circa 1968 event occurs in eight SH sectors of the sixteen available and is this quite 

extensive, the circa 1976 event is again seen to be more widespread in the SH, the circa 1986 event 

shows over NH and the circa 1996 event is more widespread. 
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Figure Ch5.28: Change-years detected by MSBV in forty sectors, covering all of the globe except for 90S.60S: Top-pane 
shows the years, spread vertically by random jitter. Bottom pane shows the number of sectors at each year (dashed 
lines) and seven year running means (solid lines). Post WW2 shows increasing numbers of changes commencing in the 
1950s, with observable clustering and culminating with a step-like shift involving 25% of sectors circa 1996. The SH ocean 
regime change circa 1968 is quite wide spread in the hemisphere oceans, the circa 1976 great Pacific reorganization 
shows with a distinct double peak over land, the circa 1986 event which affected the NH shows here mostly in the land 
record, and the so-called hiatus circa 1996 shows as the most extensive event, but preceded by discernible changes 
round 1994. 
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Figure Ch5.29: Numbers of occurrences of specified years of change for NH and SH, land, ocean and combined laand-
ocean sectors, showing only those years which occur in two or more sectors. 

To summarise this section. There is further evidence that the area averaging of climate data 

produces artefacts of the sort that obscure real signals in the record. Moving from zonal to sector 

scale decreases metrics of both non-stationary progression and autocorrelation, whilst also 
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essentially eliminating suspicion of false positives in the MSBV due to continued trend being 

identified as a step-like change.  

The analysis also supports the somewhat unexpected results seen in Table Ch5.14, whereby the 

step-like changes seen in the global record and corresponding to the great Pacific reorganisation of 

1976/7 are seen more strongly in the Southern Hemisphere (SH) than the Northern (NH) despite 

being documented first in the NH.  

The so-called hiatus is shown to be a complex of events. The 1994 events correspond to Northern 

Atlantic changes and align with a change of AMO from cool to warm phase in the same general areas 

as the corresponding 1961 change of AMO phase from warm to cool (Veres and Hu, 2013). Following 

this is an extensive set of shifts with dates that align with the PDO change of phase from warm to 

cool.  

Section 3: Changes in zonality as evidence for H2 (interaction) 

Global climate models are run under a variety of assumptions so as to probe differing aspects of 

climate. In this study, there are two principal sources of variation: (a) the selection of model and (b) 

the model atmospheric chemistry prescriptions. 

The detection part of the study is performed using the MSBV. The change-point index metric is used 

to determine whether a change-point is supported in the presence of trend (CP-index values 0 or 4-

7), ambiguous (index values 1 or 2) or not-supported (index 3).  

The mean temperature records (a.k.a. “tas”, temperature at surface) for the global climate models 

and runs listed in Table Ch5.13 were selected. For each model the same zones as supplied for NCSD 

were produced by area weighted averaging, using the supplied land/ocean masks to yield land, 

ocean, and combined land ocean runs.  

The final analysis consisted of more than 35,000 rows in a table representing all change-points 

detected for 29 climate models, pre-industrial controls, and two principal future climate trajectories. 

The tests from the validation suite were run for all change-points as described in Chapter 4. 

The purpose in analysing the zonal data from models was to address the following questions, raised 

in JR2017 and also above. 

1. Do GCMs reveal patterns of zonality consistent with observations?  

2. Do patterns of zonality change with warming? Such a relationship has not been established 

in the literature although much work identifies state based organisation of the oceans. How 

does this zonality relate to the hypothetical unperturbed Earth, and then to the imposition 
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of forced anthropogenic change and the projected zonality under differing regimes of forced 

warming? 

3. JR2017’s hypothesis H2, that forced warming interacts with natural variability, requires 

interaction in either or both of two ways. Is there evidence to support either of the 

following? 

a. It may alter (and probably shortens) the periodicity of quasi-oscillatory ocean 

systems such as the PDO (McGregor et al., 2010, Kirby et al., 2010). 

b. It may intensify the extents of transitions from phase to phase of variability modes. 

This could be observed as step-like shifts rising above the detection threshold and 

first appearing as novel – new patterns of change may emerge and these may be 

coordinated with each other, “recruited”, across zones.  

Analytic approach 

For this analysis all models were treated as equally representative samples of possible past, 

historical, and future Earth climates, which allows for an initial assessment based on ensembles. 

Addressing the issues above in order:   

Altogether 35,296 individual change-points were generated by MSBV including six non-overlapped 

zones, global, hemispheric and other zones. The six non over-lapped zones were selected and tested 

from the pre-industrial control a.k.a. piControl (2762 points), RCP2.6 (5588 points) and RCP8.5 (6597 

points) runs. This covered land and ocean and combined land-ocean splits and six non-overlapped 

zones. It was immediately obvious (see Table Ch5.18, below) that for the piControls the duration of 

regimes between step-like changes was far longer than observed and longer than the observational 

periods in the same models. Pre-industrial controls runs varied in duration and in nominal dates. 

Therefore they were analysed against a normalised base interval of 1000 years, and additionally 

analysed after bootstrapping. The question of zonality in the pre-industrial Earth and during changes 

of industrialisation, then on into projected futures was explored by computing the duration of 

regimes in each zone during suitably chosen epochs. Apart from the piControls, these were the years 

until post WW2, 1850-1950; the years from then until observed onset of rapid warming, 1951-1975; 

the years until RCP2.6 and RCP8.5 suddenly diverge, 1976-2040; and from then until the end of the 

21st century 2041-2100. 

The RCP8.5 data in particular after 2005, appears to more often resemble noise about an 

increasingly curvilinear progression. This tendency was described as steps progressing to an 

escalator under warming (Jones and Ricketts, 2016a). Increasing trend also increasingly pushes the 

MSBV out of its range of assumptions, the data is increasingly misspecified for the detection 
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method. Therefore it is important to assess the effect of this misspecification. For this purpose the 

CP-Index (Chapter 4, Validation) was used and false positives defined as those with a CP-index of 

one, two, or three (ANCOVA p-value > 0.05 pre-change or post-change trend non-zero (p> 0.05)). 

This is a broader definition than the rejection of change-points with a CP-index of three.  

The difference between the two RCPs is quite striking (see Figure Ch5.30). Even though RCP2.6 and 

RCP8.5 do not diverge greatly until after 2040 the results for two intervals, 2016-2040 and 2041-

2100, differ greatly. For RCP2.6 overall the false positive rate is quite acceptable, 4.7% over all zones 

between 1850 and 2100. However for RCP8.5 they are much higher post 2005. Over 1850-2100 

false-positives are 24%, for 1850-2005 they are 3.3%, and post 2005, 35%. The impact of this on 

individual statistics has not been fully assessed. This is possibly to be due to the RCP8.5 change-

points in the 21st Century being not well aligned to step-like change. 

The ensembles used for the two scenarios are not identical, but this does not explain Figure Ch5.30.  

As a result detailed analysis of RCP8.5 is treated as questionable after 2020.  
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Zonality in observations and models during observational period. 

Changes in zonality are judged by changes in the duration of regimes. To provide a suitable measure 

of duration of regimes in zones, a mean return period is defined. This is simply the average interval 

between change-points between the years in question for all of the models in the ensemble.  

The performance of the model ensemble was compared to observations in the period 1880 to 2014. 

Table Ch5.18: Ensemble mean/median return intervals for significant (ANCOVA p<=0.05) regime like changes. Results are 
shown with North-most in the left column to South-most in the right hand column. A. Pre-Industrial Controls (ensemble 
of 23 global climate models). B. Observed. C. RCP 2.6 (ensemble of 25 climate models). D. RCP8.5 (ensemble of 28 climate 
models). Boot-strapping was used where possible due to relative sparsity of data in some cases, in particular for Pre-
Industrial controls. Return intervals returned by bootstrapping are shown to the left of the slash and raw means on the 
right. (See also Table A5.1.34 and Table A5.1.35 in the appendix) 

A. Pre-

Industrial  

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 342/341 387/387 830/850 808/828 422/424 409/414 

Ocean 190/192 114/114 438/445 400/410 58/59 108/109 

Land/Ocean 215/216 176/177 445/450 454/460 55/56 154/154 

 

B. Observed 

1880 to 2014 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 67 34 45 34 45 N/A 

Ocean 67 22 45 45 27 N/A 

Land/Ocean 45 45 34 45 27 N/A 

 

C. RCP2.6 

1880 to 2014 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 54 57 49 53 52 78 

Ocean 47 39 46 44 38 68 

Land/Ocean 48 44 46 49 39 74 

 

D. RCP8.5 

1880 to 2014 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 48 45 42 47 47 73 

Ocean 38 29 36 38 28 51 

Land/Ocean 35 36 37 40 30 57 
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Figure Ch5.30: False positive determination rates for RCP2.6 and RCP8.5 model runs given MSBV as a detection method. 
Note especially the difference between the post 2006 groups, where false positive rates average out at 35%  

Figure Ch5.31 and Table Ch5.18 show the computed return periods for step-like regime changes 

over the observational period (1880-2014), for observations and models broken into zones. The 

southern and northern mid-latitude oceans show shorter return periods than other ocean zones or 

land zones. In general model land periods are longer than observed, but for observed and modelled 

data, models correctly show land returns greater than oceans. 
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Figure Ch5.31: Return periods of step-like regime shifts in the six defined zones shown for land, ocean and combined 
land-ocean data (see Table Ch5.18). The model behaviour mostly mirrors observations in that ocean return periods are 
generally shorter than land ones, more so in the northern mid-latitudes (30N.60N) and especially in the southern mid-
latitudes (60S.30S). 

Pre-industrial controls do not have an equivalent to an observational period. While the return 

periods are very much longer, the oceans of the northern mid- latitude are noticeably shorter than 

the rest and the southern mid-latitude even more so. The last point is consistent with findings 

previously reported in the SML (Ricketts and Jones, 2017, see their Figure 2). 

This indicates that the models tell a similar story as observations as far as present day zonality is 

concerned. This gives a basis for examination of changes within ensembles of RCP2.6 and the early 

part of RCP8.5 model runs.  

Changes in patterns of zonality 

The PI-Control periods are very different from the RCP runs but are consistent with the proposition 

that in an undisturbed Earth with a stable atmosphere (and in the absence of singular events, for 

example volcanoes) the SML is the principal area where localised step-like regime shifts occur. 

Within the historical period, observations and models both show regime changes becoming more 

frequent as warming continues, with the land based regime changes post 2040 in particular 

becoming less frequent and ocean ones reverting to something similar to pre-1975 rates.  

The analysis of return periods of regime shows major features as follows  

1. The Pre-Industrial climate as modelled shows very rare shifts over land and more over the 

oceans. 

0

20

40

60

80

100

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S

Re
tu

rn
 p

er
io

d 
(Y

ea
rs

)

Return periods of zonal shifts in observations, rcp2.6 
models and rcp8.5 models

Observed Land RCP2.6 Land RCP8.5 Land

Observed Ocean RCP2.6 Ocean RCP8.5 Ocean

Observed LandOcean RCP2.6 LandOcean RCP8.5 LandOcean



156 
 

2. The SH mid-latitudes show much more frequent shifts than the tropics with the Northern 

mid-latitudes also more active.  

3. Throughout, the Southern mid-latitudes shows a tendency to be more active than other 

zones, especially once greenhouse gas levels and mean global temperatures rise above pre-

industrial levels.  

4. The early historical parts of the models (RCP2.6 and RCP8.5 share common historical data 

within models) still seem to quite rapidly converge on observations and the Northern and 

Southern mid-latitudes are more active than the tropics. At the same time the tropics seem 

to rapidly become about five times more active than in the pre-industrial era. 

5. The RCP2.6 and RCP8.5 ensembles contain a slightly different mix of models and the two 

“eras” from 1850-1950 and 1950-1975, differ a little but once observed temperatures 

commenced a rapid rise after 1976 – which is mirrored by the models – the two RCP sets 

converge.  

6. Once the two RCP ensembles diverge around 2040, RCP8.5 continues even more actively 

with regime shifts in the Southern mid-latitudes occurring at rapidly as every 17 years. 

RCP2.6 on the other hand rapidly reverts to activity more reminiscent of early 

industrialisation with land zones showing even more reduction in activity. 

Figure Ch5.32 shows the changes in return periods of regime shifts for both RCP2.6 and RCP8.5 

(values are tabulated in the appendix, Table A5.1.34 and Table A5.1.35, and the changes of 

clustering across zones can be seen in Appendix 5.2 also,  Figure A5.1.54, Figure A5.1.55, and Figure 

A5.1.56, for interest). To estimate error bounds the model data were pooled for each of land, ocean 

or combine land-ocean in each zone, and then bootstrapped to give an estimate of the distribution 

of return periods. As can be seen, for all zones, and for both RCPs the period from 1976 to 2040 

shows much shorter return periods than the previous periods.  These difference are very significant. 

Again, it can also be seen that the mid-latitude oceans appear as more active than elsewhere. The 

changes of zonality are consistent with a pre-industrial climate with abrupt shifts that are 

predominantly oceanic and mid-latitudinal in origin, where the southern mid-latitudes are especially 

dominant. Once anthropogenic warming commences the system rapidly increases the frequency and 

zonality of step-like changes, and as shown in RCP2.6, once warming is reduced or becomes negative 

regimes shifts rapidly reduce in frequency with the normally most active area, the Southern mid-

latitudes remaining more active. In the presence of continued warming, as in RCP8.5 no reversion is 

observed. 
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Figure Ch5.32: Comparison of median of bootstrapped return periods for significant step-like changes in RCP2.6 and RCP8.5 forcings. Error bars are 5%-95%. Each zone is plotted separately with the most 
poleward zones (Arctic and Antarctic) on the first row.  
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Intensification and “recruitment” of zones.  

Not only does the frequency of step-like shifts change within zones, events also seem to involve 

more zones at once. From the above analysis and as seen in Table Ch5.14 earlier, it appears that 

whereas in the pre-industrial times most regime shifts identifiable by the MSBV will have been 

localised ocean based events, this is not the case in industrial times. Rather, it appears that a 

number of events have shown as coordinated regime like changes over multiple zones. Additionally, 

as seen in JR2017, a very comprehensive ensemble of RCP4.5 climate model runs shows clustering 

around the three documented post WW2 change dates, and suggest another change may occur in 

the second decade of the 21st Century. Events may appear in different zones at slightly different 

times. Whilst it is possible that this is due to imprecision in detection, it may also be physical, for 

instance involving multiple systems. In either case it is reasonable to treat all events in adjacent 

zones within +/- two years as a single event. Therefore a simple analysis was conducted. A year by 

year count of the number of models in each RCP ensemble for which the window round that year of 

+/- two years contained significant (ANCOVA p <=0.05 or CP-Index = 0) change-points for three or 

more zones. These are plotted and a five year running mean of the counts is plotted as well (see 

Figure Ch5.33). Land, Ocean and Land-Ocean are plotted separately.  

In the historical period a land peak occurs about 1969, and ocean peaks around 1976 and 1985.  

RCP2.6 shows a consensus of land based shifts circa 1970, and ocean shifts circa 1976 and 1986 

(with some land shifts in 1986). RCP8.5 based on a slightly different mix of models, shows land and 

land-ocean peaks circa 1971, and ocean and land-ocean peaks circa 1976 (this may correspond to 

the earlier SH change and the later Pacific changes observed in Section 1. By far the strongest 

consensus peaks are in land, ocean, and land-ocean between 1995 and 1998.  In RCP2.6 there is a 

pair of peaks, round 2008 and 2019, which are possibly separate estimates of the same 

phenomenon from differing models rather than being two distinct events (due to the MSBV’s seven 

year prohibition) with land and land-ocean showing peaks between 2019 and 2021.  In RCP8.5 there 

is an ocean and a land-ocean peak, circa 2015 and an ocean peak circa 2021, which should be 

treated as two separate estimates of the same event from differing models for the same reason. 

However, given the evidence that the MSBV is operating beyond its design criteria the RCP2.6 results 

are preferred.  

If the consensus approach to the models is valid, then the well documented bio-physical regime 

changes post WW2 are represented in the model consensus. The so-called hiatus, circa 1996/8 is 

strikingly strongly represented.  There is a strong indication that another such regime change is to be 

expected in the second half of the second decade of the 21st century. There are early indication that 

this may have occurred. The PDO showed signs in 2013 of changing phase (see for example 
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(Thomson and Emery, 2014) where STARS was used), and recently a large jump has been detected in 

Global Mean Temperature and associated with ocean heat release (Yin et al., 2018).3 

The analysis of model zones gives strong evidence that regime changes interact with warming in line 

with H2. They become more frequent, and as shown by RCP2.6, once warming reduces so regimes 

become less frequent again. As shown by the transition from pre-industrial to observed forcings 

(Table Ch5.18) and the clustering in Figure Ch5.33, especially the decline post 2040 in RCP2.6, the 

coupling between forcing and interaction is quite rapid, and interaction also shows in the spatio-

temporal clustering with events occurring across zones at similar times together with the numbers of 

zones increasing. 

 

Figure Ch5.33:  RCP2.6 (top) and RCP8.5 (bottom). For each split the number of models which predict shifts in three or 
more zones for each year (dots). The dotted line is a five year running average on the secondary axis.  

                                                             
3 It is now highly likely that a regime shift occurred circa 2014 
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Discussion 

Observational records 

In the observational series, there are distinct differences between land and ocean change-points. 

And there are differences between zones (see also Table A5.1.32 in the Appendix). 

Composition misspecification issues also occur, and they show not just by use of stationarity tests, 

but also by cross comparisons of events by date. For instance, in the zonal analysis of NCDC zones 

(Appendix Table A5.1.36), an event circa 1957. Over land a shift after 1957 seems to be associated 

with the southern tropics, but does not show in oceans. It shows as an insignificant negative trend 

change in the tropics 20S.20N with a positive shift, with a CP-index of zero (ANCOVA has p-value > 

0.05 as do pre and post trends). However the test on 30S.00S zone assigns a positive trend change 

plus a positive shift, confirmed by ANCOVA and the same date is assigned by the ZA test as an 

exogenous change. This is consistent with the event being localised in the SH, and 20S.20N zone 

carrying a mix of signals. 

Land records and Ocean ones then mostly align with events from 1976/8, 1986/8 and 1996/8 

although it is not clear whether statistically insignificant land shift in 2002/3 in the southern mid-

latitudes should be assigned a meaning. 

In general change-points over land, change-points are almost entirely classed as “single-stationary”, 

which I interpret to mean the events are wide spread and coordinated. 

The ocean signal is more complex than the land one and almost certainly reflects the results of 

complex internal states.  As already noted the tendency for smaller sectors to be more likely to be 

stationary strongly supports this and provides a first approximation of the dimensions of co-varying 

areas in that they are bigger than the sectors and smaller than sub-basins or zones.  

The exogenous change year, as determined by the ZA, corresponds to the most likely year of change 

with any or all of a step, a transient, or a trend change. Hence the year given is not based on the 

same criteria as the MSBV. Thus, when the MSBV and the ZA agree on the year of change, this can 

be taken as evidence that within the whole data segment step-change is the most likely type change, 

and that random drift is not the explanation.  Several dates show up persistently in the ZA tests 

which seem to be indicative of a strong but transient responses. In particular dates after 1936 up to 

1945 over land and after 1936 up to 1962 over oceans are frequently found by ZA and not by MSBV. 

This suggests that a strong but relatively transient heat release was responsible. Further support to 

this is shown by the spatial analysis in the next chapter. 1963 shows up over land commonly by ZA 

tests and only rarely otherwise. This is consistent with the Mount Agung volcano and a transient 
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reduction in atmospheric temperatures and subsequent recovery. The series of step changes 

between 1919 and 1925 is prominently a land feature, while there are no ZA identified exogenous 

changes between 1914 and 1935.  

The three most identifiable and best characterised global regime changes are circa 1976/8, 1986/88 

and 1996/8. Closer examination of the ocean results shows that step-like and transient responses 

are not easily separated prior to 1950. 

1963 is very likely the transient response to the Mount Agung volcanic eruption. 

1945 and surrounding years may be a complex heat release event. It is predominantly an extra-polar 

event, likely originating in the tropics, and involving the Pacific and Indian through-flow. This year is 

also the year often assigned as the change of sign of the PDO from warm to cool phase (Minobe, 

1997).  

The ocean records in the southern mid-latitudes could likely represent records within which there 

was a strong effect of compositional misspecification. This was tested by examining sub-sectors of 

the segment, and reported above in Section 2, and also by Ricketts and Jones (2017).   

Based on these results it seems plausible that there are several components to be considered in 

deciding what constitutes a regime change at decadal scale. 

1. The appearance of step-like regime shifts in temperature records at any scale is not an 

artefact of random drift.   

2. The simple composition of data from regions which show any form of independent but 

sequentially organised regime changes is likely to be deceptive and may initially give the 

appearance of random drift, but detailed analysis shows otherwise. 

3. Non-stationarity, when detected by the tests used here, almost entirely resolves to 

exogenous step-like changes when the data is subdivided spatially. This suggests that such 

extreme autocorrelation is a result of systemic complexity, rather than simple behaviour. 

4. Land and ocean responses seem to be differently organised. This is entirely in line with the 

idea that heat transports over land are the result of atmospheric states and these states are 

in turn influenced by ocean temperature states with which they are partially mutually 

causal. It’s also a sign of rapid adjustments in radiative equilibrium, and is a feature of the 

circa-1987 shifts (Jones, personal communication). 
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Analysis of climate models 

Regime changes behave differently by zone. 

It is clear that the majority of events detected in observed and in all modelled time series are 

relatively local to regional in scale. It is very clear (Figure Ch5.32) that in the pre-industrial control 

runs, regime changes are quite rare in the tropics, especially over land, whereas they are more 

common in the mid-latitudes. The mid-latitude oceans and 60S.30S in particular, show rates of 

regime change much higher than the tropics. The majority of these shifts however have the 

characteristics of incoherent composition – being averages of processes which are under non-shared 

influences. 

Observed and modelled historical data show less of a differential across zones and a higher 

frequency of shift over-all. The observed mid-latitude oceans still have more changes than the 

tropics as do the modelled oceans.  

Regime changes behave differently within zones over time 

Analogues for the major post-WW2 regime changes are present in the climate model consensus 

analyses. The time-wise relationship is almost certainly a reflection of the rate of warming. During 

times of little warming (modelled and observed pre-1950, PiControls, and RCP2.6 post 2040) regime 

changes are relatively rarer, and less tropically concentrated than during high rates of warming.  

Given that the PDO again seems to have changed phase, it is likely to be followed by onset of more 

rapid warming (Henley, 2017) and also a substantial shift upward. RN Jones has extensively analysed 

recent data and shows just such a shift (personal communication). 

Regime changes behave differently between land and ocean.  

Zonally analysed ocean shifts tend to be more likely than land to be measured as having being non-

stationary, especially in the SH. In the SMLs there is evidence that this remains after the internal 

trend and shift are removed, indicating that there is a great deal of structure in the signal. The 

simplest explanation is the ocean signal is regionalised with shifts at differing locations and times. 

Land shifts by the same logic would be predominantly zonal. This is seen in Section 2. 

The zonality changes under modelled anthropogenic warming. 

The climate models tell a story of shift-like regime change under steady state conditions being 

distinctly absent from the tropics and more common in the mid latitudes, and also being mostly an 

ocean phenomenon. Coherent shifts involving three or more zones, are almost absent, but become 

common in the RCP runs.  
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The earlier part of the historical runs up until 1950, show more activity and some more tropical 

involvement. The first sign of multiple zone shifts are post WW2, circa 1976, 1986 and 1997 and the 

tropics are involved in the first and last of these. These are both coincident with a PDO phase 

change. RCP2.6 and RCP8.5 are both consistent with continued tropical involvement under strong 

warming with the RCP2.6 scenario showing a rapid reversion to near pre-industrial frequencies 

toward the second half of the 21st Century. 

Conclusions 

The temperature record is complex, but not so much so that features cannot be extracted. The 

stationarity tests are interpreted as indicators of misspecification of data composition, rather than 

necessarily as indicators of underlying uncorrelated climate processes, or as reasons to accept or 

discard an analysis. 

This chapter has shown that regime shifts interact with forced global warming. They (a) vary in 

intensity, (b) become more global and coherent with forced warming, (c) become more frequent, all 

consistent with the hypothesis of warming/variability interaction. 

It has also shown that regime shifts (d) are roughly decadal, (e) regional on what appears to be sub-

ocean basin to ocean basin scale, (f) possibly more zonal over land. 

Some evidence has been given than ensembles of global climate models suggest that a step-change 

and regime change is due in the second decade of the 21st Century, and I have noted that some 

publications suggest this has already happened at the time of writing.  

The validation suite has proved useful in giving nuance to the work, and further refinement of this 

approach is warranted. 

The MSBV seems to return many possible false positives in strong warming scenarios when judged 

by the ANCOVA test on a point by point basis (see Appendix 5.1, Figure A5.1.54, Figure A5.1.55, and 

Figure A5.1.56). This is an issue which will need to be addressed in future work.  

There is no guarantee that structures responsible for decadal scale variability are aligned with 

observations, or GCMs or even within the set of individual realisations of any one. The ensemble of 

CGMs analysed here, none-the-less, produces a consensus, especially post 1950, that produces 

peaks of regime changes circa 1976, smaller in 1986, and very strongly circa 1997, each 

corresponding to an observed and well documented event. The future evolution, post 2006, is 

“blurrier” but the most prominent peak in RCP2.6 is centred on 2018. RCP8.5 also shows a matching 

peak, with increasing less coherence going forward in time. The prior considerations temper this to 
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an extent as a prediction – at the very least however it suggests that GCMs form internal decadal 

variability modes that can be entrained by external forcing and that this entrainment is coherent for 

a while.  

Therefore there is a possibility that a regime change has very recently occurred in the model 

ensemble, and this suggests that the next generation of models, which will have incorporated the 

observed conditions up until 2015 should be studied for evidence of the next change after this one4.   

  

                                                             
4 And (see Chapter 7) there are early indications that a regime change occurred circa 2014, coincidental with a 
change of phase of the PDO from cool to warm. 
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Chapter 6: Spatial distributions of abrupt 
climate shifts 
Introduction 

Zonal analysis of observed and modelled climates (Chapter 5, Zonal Analyses) shows that there are 

distinct variations in the zonal distribution of abrupt shifts. At least two climate variability modes, 

the Pacific Decadal Oscillation (PDO) (Bjerknes, 1969, Meehl et al., 2009, Trenberth and Hurrell, 

1994), and the Atlantic Multi-decadal Oscillation (AMO) (Knudsen et al., 2011, Schlesinger and 

Ramankutty, 1994) have been previously linked to tele-connected changes at global scale. Signatures 

of abrupt regime change corresponding to both have been found in zonal analyses (JR2017) and 

were further elucidated in Chapter 5. 

This chapter extends the previous chapter. The principal finding is that coherent spatial patterns of 

step-like shifts in the surface temperature record correspond to phase changes in the PDO, and the 

AMO; and that these align with changes in deeper ocean circulation. These new patterns are quite 

different in meaning from the signature patterns of these indices computed by empirical orthogonal 

functions (EOF see for example (Newman et al., 2016 Fig. 1)). Spatial features that align with the 

indices are delineated to create a type of ontology. The last part of the chapter makes use of this to 

lay out some challenges for the use of global climate models. In doing so, it becomes clear that 

climate models are not initialised to, and do not evolve so as to, reflect the coordination of the large 

scale structures found. The finding of the last chapter, that climate model ensembles appear to 

predict a shift in surface temperatures between 2015 and 2020, suggests further work well out of 

scope for this thesis. 

Of the six requirements for a program of investigation to severely test the relationship between 

step-like and trend-like processes listed in JR2017, this chapter addresses four of them.  

 Test 1 What patterns of step changes can be detected in temperature observations? Do 

particular dates and locations line up with known events or processes?  

 Test 2 Do models forced by historical emissions reproduce the patterns of steps changes 

shown in observations? 

 Test 5 Do other climate variables also undergo step changes? 

 Test 6 Are temperature time series more step-like or trend-like?  
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As with the previous chapter, data are examined using the MSBV, this time at 5°x5° grid scale, 

internal shifts and internal trends are computed, the numbers of change-points are counted.  

A strong result is that shift-like temperature progression becomes more predominant over trend-like 

progression when data are analysed at finer scale. This is shown by comparisons of global, zonal and 

spatial observed temperatures, and using global and spatial modelled temperatures. 

The previous chapter does suggest that abrupt and decadal regime changes are dominated by ocean 

changes with land shifts following, possibly after a persistent regime like change of atmospheric 

circulation. Peyser et al. (2016) have demonstrated a potential switching mechanism involving the 

West Pacific warm pool, which Jones interprets as a component of a trigger mechanism for regime 

changes (personal communication), and Henley (2017) concludes that Pacific Decadal Variability is 

the result of continuous tropical-extratropical interactions at decadal timescales, warning that too 

little attention has been paid to alternating attenuation and amplification modes of variability. 

The rest of this chapter is organised as follows. Section 1: The multi-step bivariate test (MSBV) is 

used to delineate shift-like features in the surface temperature record (addressing Tests 1 and 6). 

Section 2: A variation is used to examine changes in the regression relationships of the ocean mixed 

layer and the deeper layers (addressing Test 5).  Section 3: A sample of global climate models is 

examined at spatial scale, and some features are identified similar to those present in observations 

(addressing Test 2). Section 4: This draws together results from previous sections. Warming 

attributed to shift-like behaviour is shown to increase when data is analysed at finer than regional 

spatial scale. This can only happen if shifts are present in the data and they occur regionally (Test 6). 

Data sources and methods 

Unless otherwise noted, all spatial data used in this chapter are as per Appendix 1.1, and were 

regridded to a common 5°x5. 

The GISTEMP3 surface temperatures, ocean temperatures at 100m and 700m, and CMIP5 surface 

temperature data were analysed for the presence of step like changes in annual averages using the 

MSBV with a Rapid Assessment Stopping rule (Chapter 3), for every grid point where there were no 

missing data. Once step-like changes were located, the internal trends and internal shifts were 

computed. An ANCOVA test is performed, but other tests from the validation suite were not 

performed routinely due to computational constraints, however selected data were tested during 

development as required. Change years reported here are the first changed year – the first year of 

the new regime, in keeping with (Vives and Jones, 2005, Jones, 2012).  
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Spatial analyses of observed temperatures. 

Section 1: Patterns in gridded annual observed surface temperatures. 

The GISTEMP3 data were analysed on a 5°x5° grid as above. Variables collated include the times of 

change for each grid point with their step-change value, probability, and Ti0 value. For each step-

change point, linear regression of the data on either side was used to produce estimates of internal 

trend, and the internal shift as the change-point. The probability associated with the change-point 

by an ANCOVA test was obtained using purpose built Python code at the same time. For every grid-

point, I computed year by year the progressive change corresponding to the combined internal 

trends and internal shifts. I also computed the progressive changes imputed to just the shifts, and to 

just the trends, and the number of changes. This produces separate spatial files in NetCDF format for 

each variable, representing the annual values of each variable at each grid point over time. 

Summary plots 

The “step and trend” statistical model is composed of abrupt internal shifts and ongoing trends 

between these shifts (imputed from the step and trend model and the changes detected by MSBV), 

which when combined give a close approximation to the mean temperature. This enables an 

attribution of warming between abrupt internal shifts and ongoing internal trends spatially. Figure 

Ch6.34 and Figure Ch6.35 show the spatial patterns of overall temperature change attributable to 

abrupt internal shifts and internal trends. Figure Ch6.36 shows the number of step-like changes 

detected during the same period (see also Figure Ch6.39 below which focusses on the Pacific and 

Atlantic Oceans). Each figure shows the spatial map in the left pane, and a time-latitude Hovmöller 

plot on the right. These Hovmöller plots show the evolution over time of a spatial signal by averaging 

all but one spatial dimension and plotting the time-series of the result in colour. In the first three 

figures, the signals are zonally averaged (all values along each latitude).  

Figure Ch6.37 compares the statistical step-and-trend model on a spatial grid to the observations, 

both being treated as anomalies from the mean of the last 20 years of the nineteenth century. It 

shows on the left pane, the sum of the internal shifts and trends 1880 until 2008. On the right pane, 

the difference between that and an estimate of observed temperatures (the 15 year mean about 

2008).  This year was chosen because the detection method will not detect changes after then due 

to a seven year prohibition rule. The step-and-trend statistical model captures much of the longer 

term variability. One would expect that, simply because more segments enable closer tracking of a 

signal, regions with more step counts also have closer agreement between the step-and-trend 

estimate and the observations (hence reduced spread of errors). This is the case. All of the locations 

on the 32x72 grid of the difference (illustrated in Figure Ch6.37, right pane), were grouped according 
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to the number of corresponding change-points (as seen in Figure Ch6.36), and tested for a 

dependency between the number of change-points and the spread of differences from observations. 

There were too few with more than five changes to be meaningful. Bartlett’s test for homogeneity of 

variance was applied to the groups and this strongly supports a dependency between all groups 

(p=8.88x10-15), and between two, three, and four steps (p=0.01) (see also Figure Ch6.38, below).  

Total shifts are overwhelmingly positive, over land especially. Negatives values are confined mostly 

to: an area in the Western tropical Pacific North contained in the region 120°E to 150°E, 15°S to 

15°N; much of the South Pacific bounded by 120°E to 270°E, 45°S to 60°S; much of the Northern 

Pacific from 45°N to 60°N. As can be seen in the right pane of Figure Ch6.34, since the late 1980s the 

zonal average temperature change attributed to shifts everywhere has been positive. 

The nett contribution of trends however is more complex, but shows that much of the extra-tropical 

Pacific, extra-tropical North Atlantic and much of the Southern Ocean show nett negative 

temperature trends when internal shifts are factored out. As can be seen in the Hovmöller plot in 

Figure Ch6.35 below, two zones approximately 30°N and 60°S have shown negative trends 

throughout. The Northern polar and later the higher mid-latitudes have shown general warming due 

to trends. Since the 2nd World War the Southern Hemisphere also shows warm trends. 

The Southern Hemisphere, particularly in the poleward mid-latitudes, shows more of a tendency for 

local regime shifts to occur than the Northern mid-latitudes (Figure Ch6.36). Looking closer, “hot 

spots” of step change in the oceans appear to be more common to the West of most ocean basins, 

except the North Atlantic; The are also more common off the coast of Chile, and over Western 

Australia and Southern India. Only five locations, all oceanic, have not experienced a step-like 

change. Of these  

Shift-like changes occurred first in the late 1890s in the higher and mid-latitudes, then in the 

Northern tropics and more generally in the 1900s. In the 1930s shifts in the Tropics and extra-Tropics 

occurred. More substantial changes occurred first in the Southern Hemisphere in the 1960s and 

quite rapidly over the rest of the planet in ensuing decades.  

The difference between land and ocean is interesting. Land, in contrast to the ocean, shows mostly 

positive cumulative step changes and with the exception of the Eastern part of North America only 

positive contributions due to trend. The East of North America showed a very strong upward shift in 

temperatures circa 1997 followed by cooling trends to the point that as of now the nett contribution 

to warming due of trends is nil, and the total temperature rise results from a series of shifts, with 
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most coming post 1997. The West of North America has warmed in a series of smaller shifts with 

trend predominant only North of 60°N.  

Ocean changes show quite a different pattern. Often, and mostly extra-tropically, total shifts and 

cumulated trends are of opposite sign. For example: the Western Pacific around 30°N, the region 

just north of PNG, around 55°S in western Indian Ocean, the mid Pacific 160°E to 225°E from the 

equator to 45°S and much of the Eastern side of the North Atlantic Ocean. The tropics however, 

show continued residual trends. 

The distribution of “hotspots” of regime changes is shown in Figure Ch6.36 below, and a more 

detailed examination of the Pacific and Atlantic Oceans is shown in Figure Ch6.39 below. Several 

things are highlighted. Firstly, in both the Pacific and Atlantic the rate of occurrences of regime 

changes marked by shifts increases over time. Secondly the North Pacific shows increases in such 

regime shifts to the West, but the South Pacific clearly has a zone of action off Chile that connects 

with the Southern Ocean directly South. This region has been associated with decadal scale variation 

in density compensated temperature and salinity (spiciness) anomalies that seem to relate to ENSO 

and the PDO (O’Kane et al., 2013, Risbey et al., 2014). The same region is associated with strongly 

negative overall internal trends against relatively minor overall total change. The more Eastern 

(closer to Chile) area has very high shift to total change ratios. Thirdly, the Tropical Pacific shows 

more activity to the Western side than the Eastern, and the Eastern extent of the North Pacific does 

not have a “hotspot” that corresponds to the South Pacific. The Western tropical Pacific activity 

against Eastern tropical quiescence has been shown to be quite meaningful and is highly consistent 

with a self-regulating heat engine in the tropical Pacific that governs the process of step-like change 

in climate (JR2019). 

The Atlantic shows overall higher rates of regime shifts with the Northern tropical area being a 

somewhat more active that the Southern tropical area. The regions of lower activity correspond 

spatially to the extra-tropical gyres. Activity in the West tropical Atlantic does not appear to co-vary 

with the Eastern tropical Pacific. There are four regions where no shifts are found. A small region in 

the tropical mid-Pacific, consistent with the heat pump proposed in JR2019, the Northern and 

Southern Pacific mid-latitudes, and the middle of the North Atlantic mid-latitudes.  

Finally the relative contributions of internal shift and internal trends are computed by using area 

weighted averaging to obtain values for land, ocean, and combined land-ocean. Global and 

hemispheric values are in Table Ch6.19 below, where clearly, the majority of warming appears to 

have occurred in periods of rapid or abrupt change. It can be seen that overall, warming over land 

shows about 62% of change due to shifts and oceans 79%. Land/Ocean is composed of separately 
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analysed land and ocean grids and serves here to provide contrast to previous zonal analyses 

conducted on blended averages. 
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Figure Ch6.34:GISTEMP3 surface temperature changes. Left pane. Total temperature change attributed to internal shifts from 1880 to 2015. Right pane. Time-latitude Hovmöller plot of 
the same data showing zonally averaged changes evolving over time. 

 

Figure Ch6.35: GISTEMP3 surface temperature changes. Left pane. Cumulated internal trends of surface temperature from 1880 to 2015. Right pane. Time-latitude Hovmöller plot of the 
same data showing zonally averaged changes evolving over time. Note that progressive warming due to trends shown this way will be smooth due to the removal of shifts. 

 

Figure Ch6.36: Numbers of detected step-like changes in surface temperature corresponding to the above. Left pane. Spatial distribution. Right pane. Time-latitude Hovmöller plot of the 
same data showing zonally averaged counts. 
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.  

Figure Ch6.37: Left pane: Sum of changes due to internal shifts and due to internal trends (Figure Ch6.34 and Figure Ch6.35). These are based on anomalies from 1880-1899. Right pane: 
The difference between the data shown on the left and the fifteen year GISTEMP3 mean observed temperature centred on 2008  (Positive where the former  exceeds the latter).  

 

 
Figure Ch6.38: Where step changes are more frequent (see Figure Ch6.36), the difference of the observations and the estimate from internal trends and shifts (Figure Ch6.37) becomes 
closer as shown by the spread (left pane) and the variance (right pane).    
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Figure Ch6.39: Top pane, Pacific Ocean: Bottom pane Atlantic Ocean: Shown here are Hovmöller plots of the numbers of step-like changes averaged over time by latitude (left) and 
longitude (Northern Hemisphere above, and Southern Hemisphere below spatial maps), of the number of step-like changes (or shifts) up until 2015. 
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Table Ch6.19: Differential warming attributed to internal shifts and internal trends – and for land, ocean and combined 
land/ocean. The trend proportion is simply the temperature change attributed to trend divided by the total change. 

Location Hemisphere Shift °C Trend °C Total °C Shift 
Proportion 

Trend 
Proportion 

Land Globe 0.70 0.44 1.13 0.62 0.38 
Land NH 0.79 0.47 1.27 0.63 0.37 
Land SH 0.42 0.32 0.74 0.57 0.43 
Ocean Globe 0.50 0.13 0.63 0.79 0.21 
Ocean NH 0.52 0.15 0.66 0.78 0.22 
Ocean SH 0.49 0.12 0.61 0.80 0.20 
Land/Ocean Globe 0.56 0.22 0.78 0.72 0.28 
Land/Ocean NH 0.64 0.29 0.93 0.69 0.31 
Land/Ocean SH 0.48 0.15 0.63 0.76 0.24 

Annual patterns 

The MSBV reports years of change, that is, the year after which a change is clearly established. This 

is not necessarily a universal usage, and so the notation used in this discussions is YYYY/Y (e.g. 

1996/7) to mean the year of change/first changed year. Where single dates are mentioned in the 

figures and titles this will be the first changed year. 

The previous chapter produced three main events post WW2, all corresponding to well documented 

wide ranging biophysical changes, that lead to apparent step-like regime changes in the mean global 

surface temperature (see also Jones and Ricketts, 2017b) an event circa 1968/9 is included here 

because it was detected in the Southern Hemisphere and has been previously documented (Jones, 

2012, Kirono et al., 2009). The zonal analysis of the previous chapter shows that none of these are 

truly global, although the so-called hiatus event which shows in most zones between1996/7-1998/9 

comes closest (and in zones where it is not present zonal changes are found between 2001/2 and 

2003/4, leaving an open question as to whether these are the same event).  

The years of change in the GISTEMP3 mean global surface record are 1929/30, 1978/9, 1996/7. 

Additionally examination of the zonal shifts Table Ch5.14 shows that in the 20th Century, shifts may 

have occurred within a couple of years in more than one zone 1920/1-1921/2, 1926/7, 1937/8, 

1968/-1970/1, 1976/7-1978/9, 1987/8-1988/9, and 1996/7-1998/9. It is possible that the 1929/30 

change in the global analysis date is intermediate due to averaging artefacts. The deceptive effect of 

averaging was examined in some detail in Chapters 4 and 5, and is a finding of this thesis. 

Accordingly, patterns of change points were examined annually concentrating on the six groups of 

dates above, with 1921/2 to 1926/7 as one group (see Figure Ch6.40 to Figure Ch6.45, all below). It 

is clear that changes detected in global and zonal records are spatially complex, tend to be focussed 

on specific regions and evolve over several years. The spatial evolution is shown in these figures, 
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each with four panes. From to top left to bottom right the panes are as follows: (a) the first year 

change at each grid point is shown with the earliest in light orange and the latest in red; (b) the 

internal shift at each point; (c) the internal trend prior to the change; and (d) the internal trend after 

the change. Only points which when tested by ANCOVA have p<=0.05 are shown. Note that this is 

highly conservative, in that ANCOVA is less sensitive that MSBV where all of the assumptions of the 

MSBV are met.  

1922-1928: (See Figure Ch6.40). An organised shift-like response in the East of the North Atlantic in 

1925 corresponds to a change in sign of the AMO from negative to positive (see figure 1 in Knudsen 

et al., 2011). The trends on the more southerly arc of this feature can be seen to have changed from 

a slight cooling to a slight warming, whilst the in the northerly part the reverse is the case. A similar 

feature present in 1994/5 (Figure Ch6.45 below) also corresponds also to a change of the same sign 

in the AMO (McCarthy et al., 2015). In 1922/3 there is also a step-like response over western 

Greenland which has been previously noted (Mosley-Thompson et al., 2005). The next time such a 

shift is detected is in 1997 when there is also a much more wide spread response, but this feature is 

less obvious. Links between the AMO and Greenland regional temperatures have been explored 

(Trenberth and Caron, 2001, Mann et al., 2014) but not to the best of my knowledge from the angle 

of regime changes in surface temperatures. 

1937-1943: (See Figure Ch6.41). A step-like shift in 1937 over Northern India, and then from 1939 a 

step-like rise in the Western extra-tropical Pacific in the vicinity of West Pacific Warm pool, which 

propagates a little to the North and strongly to the South by 1941. Changes in ongoing trend are 

quite small.  Although the PDO enters a cooling phase after 1945 as given by the PDO index (e.g. 

Trenberth, 2015), by this analysis most shifts had happened earlier. The ocean based step-like shifts 

are not seen again in this shape until the more wide spread event of 1994-1997. 

1967-1973: (See Figure Ch6.42). A predominantly Southern Hemisphere event that was detected as 

a change in zonal mean air temperatures (24°S-44°S) circa 1968 along with contemporaneous step-

like changes in minimum temperatures over SE Australia (Jones, 2012). The year also coincides with 

a step-like change in mean sea-level air pressures in Southern Australia and in rainfalls over SW 

Western Australia (Hope et al., 2010). A change in rainfall over South Africa about the same time 

may relate to teleconnections with the Indian Ocean (Richard et al., 2000), or to the SE Atlantic via 

atmospheric teleconnections (Reason et al., 2006).  

1974 -1979: (See Figure Ch6.43). This is the period of the well documented Great Pacific 

reorganisation, nominally 1976, (Trenberth, 1990, Trenberth and Hurrell, 1994, Minobe, 2002, 

Overland et al., 2008) after which the temperatures globally show a still continuing upward trend. 
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The Indian Ocean shows a rather diffuse but upward step with increased trends whereas the mid-

latitude, Eastern Pacific shows a general negative trend. Land changes show after 1978 in Eastern 

Australia, the Indonesian archipelago and, the sub-polar area of central North America and around 

the Ural Mountains, all as up-steps with intensification of prior warming.  

1983-1988: (See Figure Ch6.44). Previously, associated shifts in the North Pacific have been 

documented (Hare and Mantua, 2000), and an extensive bio-physical shift has been shown in the 

North Atlantic (Reid et al., 2015, Beaugrand, 2004). During 1983 there is a distinct equatorial up-shift 

of the tropical East Atlantic with an increase of a prior slight warming trend. In 1985, the US North 

West, 35°N-55°N, shows an up-shift of which the central portion is not strongly supported by 

ANCOVA, with the outer portion continuing to trend upward. During 1987and 1988, Europe and 

much of Asia from 90°E at the same latitudes shows up shifts, with continued warming which is less 

prominent over Asia. 
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Figure Ch6.40: 1922-1928. Evolution of the step-change events that occurred principally in the North Atlantic circa 1925. 

 

  

  
Figure Ch6.41: 1937-1943. Evolution of the predominantly step-like events that occurred in the Western Pacific, mainly in 1939 and 1941. 
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Figure Ch6.42: 1967-73. Evolution of a predominantly Southern hemisphere event. All shifts are positive and most show an increased warm trend.  

 

  

  
Figure Ch6.43: 1974-1980. Evolution of the predominantly shift-like events that occurred in the Eastern Pacific. Ongoing associated trends changed mostly positively although the Eastern 
side of the South Pacific shows a cooling trend.  
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Figure Ch6.44: 1984-1990. Shows the evolution of a predominantly land based event. The tropical South Atlantic shifts up and starts to warm followed by much of the mid-latitudes 
Northern land surface. 

 

  

  
Figure Ch6.45: 1994-2000. This shows the evolution of the complex series of surface temperature changes which may be involved the so-called hiatus. Early West Pacific changes are 
followed by later land and ocean mid latitude changes.  
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1994-2000: (See Figure Ch6.45).  This corresponds to a wide spread event which has been variably 

interpreted in a large number of papers. For example, as one of two 20th century slowdowns 

(Trenberth and Fasullo, 2013, Trenberth, 2015) or as an artefact of statistical methods (Rajaratnam 

et al., 2015).  By this spatial method it shows a substantial and complex evolution. In keeping with 

the previous two events all of the changes involve positive internal shifts; the bulk also showing 

strong changes in internal trends, many of which are however negative. The Eastern North Atlantic 

crescent of 1925 is present again in 1994, possibly more extensive. These years both correspond to a 

change in sign of the AMO from negative to positive. The Western Pacific changes include the areas 

of the Western Pacific from 1937-1943. As stated, the earlier date may just precede the change from 

warm to cool phase of the PDO and this later one correlates well with the same change. The land 

based changes are at the same latitudes in both cases although, rather than being over India as 

previously this time they are over the Middle East and Northern Africa. Also two areas in 1994 and 

1995 in the central South Pacific align with areas identified by altimetry as part of a spin-up of the 

South Pacific gyre and suggested as an associated phenomenon (Roemmich et al., 2007).  

Section 2: Vertical ocean structure 

An examination of globally averaged ocean temperatures at 100m and 700m depth, was presented 

as a case study in Chapter 3 (MSBV). I look in detail at the step-like changes in vertical ocean 

structure at the same scale as the previous section.  

A considerable body of literature supports the notion that decadal variability modes (e.g. PDO) 

correspond to variations in ocean heat uptake (e.g. Watanabe et al., 2013), and in the vertical 

structure of the oceans (Drijfhout, 2018) as well as variations in circulation patterns. Since a change 

in vertical ocean structure at least regionally, may follow from changes in circulation patterns, it is of 

interest to see if the patterns in the changes of relationship between shallow and deeper ocean 

temperatures relate to those of surface temperatures. 

Spatial analysis of the Ocean 100m and 700m temperatures 

Data was available from 1955 onwards, although temperatures at 2000m are clearly unsuited until 

much later and hence not used. Four shifts of the second half of the 20th century are analysed for 

comparison with the temperature analysis in Section 1 (above). The same intervals are shown with 

the same colouring. In the following figures, the points at which either the 100m temperatures shift 

as judged by the 700m temperatures, or vise-versa are shown in the top pane, colour coded by year. 

Then in the middle, the internal-shift at 100m is on the left pane with the post-change internal trend 

on right. The bottom panes are the internal shifts in temperature, and post-change internal trends 

for 700m temperatures. All points detected are shown.
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Figure Ch6.46: 1967-1973. A pattern that differs from that of Figure Ch6.42. The SW North Atlantic shows a downward shift followed by an upward trend in 100m temperatures and an 
upward shift in 700m temperature. 
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Figure Ch6.47: 1974-1980: Compare to Figure Ch6.43. Changes show in the mid-Western tropical Pacific as a shift with only a slight ongoing trend change, and a small shift with ongoing 
warming in both layers in the Eastern North Atlantic.   
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Figure Ch6.48: 1983-1990. Compare to Figure Ch6.44. This is a diffuse pattern with some more organised features in the mid-Pacific, mid-latitudes.  
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Figure Ch6.49: 1994-2000. Compare to Figure Ch6.45. The changes are extensive and highly correlated with the pattern of change in the surface temperatures. 
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1967-1973: (See Figure Ch6.46). The patterns contrast strongly with temperature patterns shown in 

Figure Ch6.42 above.  Surface changes are predominantly over Southern Australia and the South 

Atlantic, but ocean temperature shifts showing a diffuse pattern in the Northern Pacific and a 

coherent pattern in the West of the North Atlantic. The North Atlantic pattern shows a downward 

shift at 100 metres with subsequent warming, and an upward shift at 700m, also with slight 

subsequent warming. The location of the region is within the North Atlantic surface “hotspots” (see 

Figure Ch6.39 above).   

1974-1980: (See Figure Ch6.47). A prominent feature is the area from about 170E to 150W between 

15N and 15S. This is mostly not represented in the surface temperatures (see Figure Ch6.43 above). 

The region to the East of the Pacific only approximately coincides with the more prominent region in 

Figure Ch6.43. The small region in the East of the North Atlantic is also included in the 1994-2000 

event in surface temperatures (Figure Ch6.45). 

1983-1990 (See Figure Ch6.48). This mostly shows a very diffuse pattern. Whilst the pattern of 

surface temperature response shown over the surface in Figure Ch6.44 is firstly in the equatorial 

South Atlantic and later over the Northern land masses, the ocean response is rather diffuse with 

the South showing up-shifts in 100m and to a lesser extent 700m temperatures and slight ongoing 

positive trends.  

1994-2000: (See Figure Ch6.49). By contrast, with the prior period, the surface temperatures shown 

in Figure Ch6.45 match contemporaneous patterns in the vicinity of the Western Warm pool and 

Eastern North Atlantic with the addition of more diffuse changes in the Southern Hemisphere 

Oceans.  In the Pacific, both variables show an up-step and both then show ongoing downward 

trends in the Northern mid-latitudes. This is matched in the surface temperatures. The prominent 

feature on the Eastern North Atlantic also matches the timing and, as in the Pacific, an up-shift in 

both variables with the more Northern part tending to trend downwards thereafter. The organised 

changes in temperature profile in the North Atlantic appear along the location of the poleward 

moving surface flow of the thermohaline circulation in the North Atlantic (Rahmstorf, 2002, see Box 

1). 

It appears that of the four events shown here, the two major post WW2 surface temperature events 

that are associated with a change of sign of the PDO (circa 1976 and 1996), are also associated with 

changes of ocean temperature profile in the Pacific.  The other two (circa 1968 and 1986) by 

contrast, show differing patterns to their surface temperature counterparts, and various 

atmospheric mechanisms have been proposed. The first of these, already noted above, is associated 

with rainfall changes over Southern Australia. Frederiksen et al. (2011) suggest the rainfall changes 
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are related to changes in storm tracks and attribute these to changes in the Hadley circulation. 

Several atmospheric mechanisms have been proposed for the circa 1986 event. Reid et al. (2015) 

suggest a rapid recovery following a transient cooling due to the El Chichón volcanic eruption,  Lo 

and Hsu (2010) suggest interaction between the Arctic Oscillation (AO) and the PDO, and  Xiao et al. 

(2012) suggest atmospheric structural changes associated with northern SST.  

Section 3: Spatial Analysis of AOGCMs  

In order to further address Severe Test 2 of JR2017, it is of interest to know if GCMs give similar 

results spatially to observations up during the period of observations. The previous zonal analysis of 

climate models suggests that step-like change dates from an ensemble of GCMs aligns with observed 

dates of documented bio-physical regime changes, especially post WW2. The analysis also shows 

that for models forced by RCP8.5 the MSBV was pushed beyond its design limits, especially post 

2040. Therefore this section combines RCP8.5 runs of a selection of climate data, but considers only 

changes points within the current observational period. Another related point of interest is whether 

what appears to be East/West differentials in the number of shifts in the Pacific is also seen in GCMs.   

The aim of this section is to address … 

1. Whether any of the signature patterns of shifts determined from observations are replicated 

in any GCMs. 

2. If so, to determine if the signature patterns of regional changes, postulated to be related to 

known internal variability modes, coordinate in the models in the same way and with similar 

timing. This is of interest because GCMs, by design, are free to develop their own internal 

states.  

Factors may be combinations of … 

a. inherent properties of gridded climate models in general  

b. specific models or model families 

c. stochastically determined initialisation states 

d. well and poorly modelled behaviour expressed regionally 

A detailed examination of these questions and factors is well outside the scope of this thesis, and 

hence an indicative analysis was performed. 

Large numbers of model realisations are available. A reasonable heuristic is required in order to (a) 

represent regional, timewise variation in models and observations at a scale suited to rapid 
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screening, and (b) provide a ranking scheme that represents similarity, and (c) allow intra-model 

exploration. 

Additional considerations regarding GCMs 

Global climate models generate their own internal states, based on their internal physical 

assumptions, the prescribed atmospheres, and purely stochastic parameters. Due to the manner of 

their initialisation there is no reason to believe that any particular model will enter the observational 

period with specific internal states. (For further, see Box A6.2.1 in Appendix 6.2). Rather, the models 

overall can be shown to have particular spatial patterns of variability analogous to particular 

observed patterns of variability (Eyring et al., 2016), (their Figure 8 is shown as Figure A6.2.58 in the 

Appendix). But the timings and phases of those modelled variability modes vary greatly. The 

ensemble has shown that particular observed change-point dates in zonal and global temperature 

series align with observations (see Chapter 5). This alignment does not however mean that the 

internal structures of the model necessarily align with reality. Models may form (a) completely novel 

structures, (b) build up a set of similar sub-structures (e.g. PDO) but align them differently with 

different phases, (c) build imperfect versions of the same structures with the same relationships, (d) 

combinations of (a) and (b).  

Producing a similarity index 

I wanted to select a representative climate model that had similar regional scale variability to 

observations. This requires some form of index based on representative regions, and had to allow 

for differences in timing between model and observed versions of the same events. Ideally such an 

index would be based on a coarse scale analysis that was informative about any differentials, 

East/West or North/South in ocean basin or continental responses. 

Continent and ocean basin quadrants 

The last part of Chapter 5 suggests that a coarse 6x8 grid of the Earth surface is sufficient to capture 

broad spatial variation in step-like behaviour. It also suggests that ocean and land responses differ, 

so that a coarse scale scheme should separate land and ocean.  Hence for this work I define five 

ocean basins and five continental land masses. These are North and South Pacific, North and South 

Atlantic and Indian oceans; plus North and South America, Eurasia, Africa, and Australia. Each is 

divided into North and South, East and West quadrants. This provides 40 quadrants, 20 land, and 20 

ocean. Additionally, for each basin or continent, a whole of basin, and East and West hemi-basins 

were produced. 
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Correlation between each model and observations 

The observations plus the RCP8.5 runs of the models listed in Table Ch6.20, all regridded to 5°x5° 

were analysed by MSBV in Rapid Halting mode, and annual patterns of step-like change were 

extracted. For each of the forty quadrants, the proportion of step-like change-points found in the 

corresponding 5°x5°grid is computed. In order allow for differences in timing, the time-series were 

first “blurred” by convolving with eleven element weighting kernel [0.1,0.2,0.3,0.5,0.3,0.2,0.1]. 

This produces an annual time-series for each quadrant that relates to the proportion of step-change 

(see Figure Ch6.50). The time-series for each model in each quadrant are regressed against 

observations, producing a correlation index (the term “index” is used due to the blurring) and the 

models are then ranked on their correlation index in each quarter.  

The result of all of this over each of the forty quarters (ocean basins/continents) is a table of 

correlation indices and rankings that indicate the degree with which each model predicts the 

amount of step-like change at about the same time and in about the same region.  

At this stage quadrant indices from each continent/ocean basin can be tabulated. There would be 

ten tables similar to Table Ch6.20, below. In this example IPSL-CM5A-MR would be judged as having 

the most acceptable overall similarity to observations.  

Two final similarity indices were computed. The first is simply the mean correlation index over all 40 

quadrants. The second is the grand mean of the ranks.  

IPSL-CM5A-LR was second ranked by both similarity indices, and for this model four replicate runs 

were available. Therefore it was selected for closer examination. 

 

Figure Ch6.50: Schematic of the method for correlating finer generalised patterns between observations and climate 
models. Here, an area of interest (A quadrant of an ocean basin) is represented as a rectangle, and the smaller squares 
represent individual grid-points on the 5°x5° grid at which the MSBV was run. In this case orange represents land and is 
masked out. The particular feature observed is present in 8 of 12 available grids. At the same time it is present in only 
one from Model 1, but eight of model 2, albeit distributed differently. When this is repeated over time three time-series 
result. The two models are ranked in this quarter on the degree of correlation between their time-series and 
observations.  
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Table Ch6.20: Sample ranking analysis for one continent, South America. Correlation indices are shown for each 
quadrant as well as their relative ranks. Overall, no model does particularly well, and the selected model in this case is 
one that does better in the west than any other model.  

South America 
Correlation index Rank of Correlation Index Mean 

correlation-
index 

Rank of 
mean  

NE NW SE SW NE NW SE SW 

ACCESS1-0 0.16 0.07 0.03 0.00 7 7 7 16 7.4 9 
ACCESS1-3 0.00 0.02 0.00 0.03 15 15 16 5 10.2 15 
bcc-csm1-1 0.12 0.17 0.04 0.00 10 2 6 17 7 8 
bcc-csm1-1-m 0.32 0.08 0.00 0.01 2 6 15 11 6.8 5 
BNU-ESM 0.20 0.07 0.07 0.04 6 8 4 4 4.4 2 
CanESM2 0.00 0.04 0.00 0.01 18 13 17 10 11.6 18 
CESM1-BGC 0.13 0.08 0.00 0.00 9 5 18 19 10.2 15 
CESM1-CAM5 0.34 0.12 0.02 0.01 1 3 13 8 5 3 
IPSL-CM5A-LR 0.25 0.04 0.00 0.05 4 14 19 3 8 10 
IPSL-CM5A-MR 0.10 0.22 0.05 0.20 11 1 5 1 3.6 1 
IPSL-CM5B-LR 0.00 0.00 0.14 0.00 19 18 1 13 10.2 15 
MIROC5 0.00 0.00 0.02 0.00 17 19 8 14 11.6 18 
MIROC-ESM 0.01 0.04 0.02 0.01 14 12 9 9 8.8 12 
MIROC-ESM-CHEM 0.03 0.01 0.10 0.01 13 16 3 12 8.8 12 
MPI-ESM-LR 0.16 0.01 0.02 0.03 8 17 11 6 8.4 11 
MPI-ESM-MR 0.29 0.05 0.13 0.00 3 11 2 18 6.8 5 
MRI-CGCM3 0.05 0.08 0.01 0.05 12 4 14 2 6.4 4 
NorESM1-M 0.00 0.06 0.02 0.00 16 9 10 15 10 14 
NorESM1-ME 0.22 0.05 0.02 0.02 5 10 12 7 6.8 5 
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Table Ch6.21: Model ranking for overall correlation of predicted portion of shifts that occurred within each E/W, N/S 
sectors of ocean basins and land masses. Each model was ranked in two ways. Method 1 ranks each model within each 
sector, then computes a mean ranking for the land mass/ocean basin and ranks that mean to give a secondary ranking; 
finally repeating the ranking again at global level for a tertiary ranking. The second computes a mean R2 for all sectors 
per model and ranks that for a primary ranking. 

Name of climate 
model 

Mean 
Ranking 
Across All 
Land masses 
and Ocean 
Basins 

Ranked 
by mean 
ranking  

Mean 
R2 of 
all 
sectors 
for 
each 
model 

Ranked 
by mean 
R2 

ACCESS1-0 8.333 11 0.13 4 
ACCESS1-3 9.400 17 0.05 19 
bcc-csm1-1 7.378 6 0.13 5 
bcc-csm1-1-m 7.822 9 0.10 8 
BNU-ESM 9.533 18 0.06 17 
CanESM2 7.956 10 0.09 9 
CESM1-BGC 7.222 5 0.09 10 
CESM1-CAM5 7.044 3 0.11 7 
IPSL-CM5A-LR 6.511 2 0.14 2 
IPSL-CM5A-MR 7.156 4 0.12 6 
IPSL-CM5B-LR 9.378 16 0.05 18 
MIROC5 9.111 13 0.09 11 
MIROC-ESM 9.133 14 0.07 16 
MIROC-ESM-CHEM 10.578 19 0.07 15 
MPI-ESM-LR 8.867 12 0.07 14 
MPI-ESM-MR 6.200 1 0.13 3 
MRI-CGCM3 9.200 15 0.07 13 
NorESM1-M 7.800 8 0.15 1 
NorESM1-ME 7.600 7 0.08 12 

 

General findings 

During production of the index it became apparent that patterns in East Pacific are universally poorly 

modelled, and that for no ocean basin nor continent were all four quadrants well predicted. 

Table A6.1.38 in Appendix 6 summarises the overall findings of the observations/models correlations 

by quadrant. No model correlated well over all four quadrants of any region, in fact nine different 

models were preferred for at least one region (Appendix 6, Table A6.1.38). In the Pacific, which is of 

special interest due to its complexity, models performed quite poorly, especially in the Eastern side 

for which there was essentially no correlation over any model (see example in Figure Ch6.51). This is 

of some concern since by many measures the Pacific is a major player in climate modulation and 

change. Visual inspection of the diagnostic plots shows the principal reason is that for most models, 

a step in the West is accompanied by one to the East, whereas in observations this is not the case at 
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all. Rather steps in the East are rarer. Figure Ch6.52 illustrates other differences between more 

correlated and non-correlated models at sub-region scale using two sample models. Table A6.1.37 in 

Appendix 6.1 gives more detail.  

The full results of the ranking study do not support the idea of coarse scale quadrant style analysis 

being synchronous with observations, especially in that the observed differential of the Pacific East 

and West is replaced by more synchronised behaviour in models. This can be seen by looking for 

correlated surface responses using Empirical Orthogonal Teleconnections (EOT) (Dool et al., 2000), 

where the first mode correlations of most models show equatorial East/West communication that is 

absent in observations (see Appendix, Figure A6.2.57).  

  

Figure Ch6.51: Typical example of the difference between model predictions of regime changes in the Eastern and 
Western sides of the Pacific Ocean. MPI-ESM-MR is the GCM which gives the best overall correlation with observations. 
Here, the Western side of North Pacific (combined NW and SW of North Pacific) is compared to Eastern side for the 
nominally preferred climate model. Red denotes observed, blue the GCM. The model behaviour in the West (correlation 
index 0.48) closely captures two of four changes, and possibly predicts the 1976 event too early. However the model’s 
Eastern side (correlation index 0.05) much more resembles its own Western side than it does observations. The quite 
striking contrast between observed Eastern and Western sides is not well replicated in models. 

However the question of whether models show some of the signatures of the AMO and PDO, and at 

what intervals was explored.  Three replicates of the chosen model were then analysed by rapid 

MSBV at 5 degrees grid using RCP8.5 forcings and examined for correlation with the three signature 

dates (1976, 1986 and 1996) and timings of the AMO and PDO signatures (Crescent in East North 

Atlantic, and Tropical Pacific). 
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Figure Ch6.52:  Sample plots: Good and poor predictions of one land and one ocean region shown by correlation index of 
quadrants. Left is the highest ranked model for each quadrant, right is an uncorrelated one.  Top row NE Africa (CESM1-
CAM5 correlation index 0.34, MRI-CGCM3 correlation index 0.01), Bottom Row North-West North Pacific (MPI-ESM-MR 
correlation index 0.42, MRI-CGCM3 correlation index 0.001) 

Features of individual runs IPSL-CM5A-LR. RCP8.5  

Note that in common with all models which express an analogue of the Pacific shifts of circa 1976 

and 1996 these models are also generally more uniform across the tropical Pacific. 

r1i1p1 

This replicate evolves very quietly.  

 1898. An AMO like signature in with an up-step and rising trend.  

 1920-21. A tropical Pacific event and propagation 1921 with up-step and rising trend. 

 1975/80 – No analogues of observed reorganisation 

 1983.  Southern Ocean/South Atlantic event and Northern North Atlantic, up-step and rising 

trend. 

 1986/8 – No analogue of Northern mid-latitudes/sub-polar land response 

 1994/8 – No analogues of so-called hiatus. 

 2009/10 Mid-latitudes Southern Atlantic and Eastern tropics, up-step and rising trend. 
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 2013-16 Huge tropical break (2014/5 formation of NE Pacific warm blob), up-step and rising 

trend. 

 2017. South East Australia, up-step and rising trend. 

r2i1p1 

Generally less quiet and with more similarity to observations. 

 1864. An AMO like signature up-step mixed trends  

 1908, Pacific event up-step small positive trend change 

 1970, A small event near the North Pacific sub-tropical gyre with up-step and increased 

trend.  

 1974/5, Northern mid-latitudes/sub-polar land response, up-step and rising trend (similar to 

an event circa 1986 ascribed by Reid et al. (2015) to Hadley cell expansion). 

 1978-1981. Complex event with up-step and rising trends commencing with an up-step in 

the South Pacific ENSO tongue and N East Atlantic up-step and rise in trend from near zero 

rate to 0.02 degrees/year.  

 1979 Complex release over WPWP and NE Pacific blob plus SW North Atlantic which 

propagates in 1980 and also a zonal Southern South Atlantic shift, in 1981 culminating in the 

AMO signature. 

 1985-89 zonal mainly land, similar to observed and as ascribed by Reid et al. (2015). 

 1993-1998, another complex series of events, all showing up-steps and mostly increased 

trends, that commences with Atlantic Southern Ocean, and in 1994 the tropical Pacific 160E-

130W, the Southern Ocean and SW Indian. 1995-1998 similar to observed with more 

zonality and indications of teleconnection. 

 2001 Southern coastal Australia, S Indian and S Pacific near the sub-tropical gyre. This shows 

propagation in 2001 

 2008 Sothern Tropical Atlantic and Mid-latitudes over Western Europe. The latter then 

propagates East over the Pacific in 2009/10 and towards Alaska in 2011/12 

 2010. An event near the North Pacific sub-tropical gyre with up-step and mostly increased 

trend. 

 Next large event is 2025 with a zonal pattern but with up-steps over the tropical Pacific 

which show reduction in the rate of warming away from the centre of action. This is the 

earliest that this mixed response (a feature of the so-called hiatus) is seen. 
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R3i1p1 

 1918 A small event near the North Pacific sub-tropical gyre with up-step and increased 

trend.  

 1927, 1929, an AMO signature like event with up-step and essentially no change of trend. 

 1935 Step-like heat release in the mid Tropical Pacific with little change of trend,  

 1939, 1943 Similar response in more Eastern tropical Pacific and in 1943 in the South Pacific 

ENSO tongue 

 1968 SW Western Australia shows an up-step and increased trends. 

 1976. No analogue of the Great Pacific reorganisation. 

 1981 a small East Pacific ENSO tongue event with a possible sub-tropical North Atlantic heat 

release that propagates East. 

 1982 a distinctive zonal continuation in the tropics and sub-polar regions with up-steps and 

strong upward trend changes. 

 1983 tropical Atlantic shows an up-step and strong trend changes. 

 1988 a prominent SE Northern Pacific warm blob appears as an up-step with warming 

increases. 

 1994/8. No analogue of the so-called hiatus event. 

 1993-2000 Scattered Pacific and progression into continued small scattered events 

 2015. Small possible spin-up over the North Pacific sub-tropical gyre with an up-step and 

continued warming.  

 2017 a prominent NW North Pacific mid-latitude warm blob. 

Characteristic events 

Possible North Pacific Sub-tropical Gyre spin-ups. 

In observations, spin-up of the South Pacific sub-tropical gyre is seen in 1994 (Roemmich et al., 

2007). No such signature is seen in r1i1p1 but they are seen in r2i1p1 (in 1970, and 2010), and 

r3i1p1 (in 1918, and 2015), which are both well out of phase with observations. 

AMO 

The AMO index was published for one replicate of this model, r1i1p1, 

(http://www2.geog.ucl.ac.uk/~ucfaccb/PaleoVar/IPSL-CM5A-LR/amo.timeseries.png). The event 

which I note in 1898 as a signature corresponds to a prominent negative to positive warm phase 

shift, but the index shows similar strong changes in the mid-1930s and mid 1980s without any such 

signature step change. R2i1p1 shows signature events in 1864 and 1981. R3i1p1 in 1927.  
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PDO 

The PDO index computed for r1i1p1 (http://www2.geog.ucl.ac.uk/~ucfaccb/PaleoVar/IPSL-CM5A-

LR/pdo.timeseries.png). There was a warm to cool shift in the early 1940s, a cool to warm one in the 

mid-1970s and a warm to cool one in the mid-1990s, with a cool to warm shift having also occurred 

circa 2015. The PDO index computed for r1i1p1 shows a mid 1920s cool to warm phase change, with 

a reverse change in the early 1930s and a cool to warm transition circa 1970 which strengthened 

further in the mid-1970s.  A warm to cool phase shift in the late 1990s is followed by an upward 

inflection circa 2015. The latter part of this aligns quite well with observations. 

Pacific Warm Blobs (r3i1p1) 

In the observed data a possible Eastern occurrence is shown in the MSBV in 1976 along with many 

other features. There are no Western occurrences. A well documented event occurred in 2014 (Bond 

et al., 2015) but the MSBV will not show this due to the seven year refractory period. The Western 

location of a blob from R3i1P1 in 2017 is counter to expectation as is a SE Pacific blob – both 

suggesting that R3i1P1 has an out of phase Pacific circulation. 

The results of the replicates examined in detail here, the surface signatures (and where available 

PDO and AMO indices), suggest that the model ocean circulation configurations are not close 

analogues of observations.   

Examples 

Some example spatial plots are shown in Figure Ch6. 53. These consist of paired images showing 

internal shifts and internal trend changes from different realizations of IPSL-CM4A-LR RCP8.5 runs.  

(A) r1i1p1 for 1898/9, aligning with an AMO cool to warm event, and which morphologically 

resembles the GISTEMP3 1924/5 (Figure Ch6.40). This latter event also aligns with an AMO cool to 

warm phase shift, as also a 1994 event which also aligns with the same class of change.  

(B & C) are the same r1i1p1 realization, 1920 and 1921, and (D and E) 1978 and 1979 showing zonal 

tropical shifts, with less zonal structure in the second case. These superficially resemble the events 

associated with PDO changes circa 1976 (Figure Ch6.43) and 1996 (Figure Ch6.45) but are more 

zonal and less differentiated – GISTEMP3 shows events at the same dates but in 1976 the observed 

change was from cool to warm and the modelled case it was from warm to cool phase. The modelled 

1979 also shows the formation of a NE Pacific warm blob which was present in observations then 

and in 2014.   

(F) Persistent Pacific warm blob formation shown in r3i1p1. Eastern Pacific Warm Blob 1988 and (G) 

a West Pacific Warm Blob formation 2017. In the observations a somewhat similar Eastern Pacific 
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response is seen circa 1976, and in 1997 a Western event. Both are part of more complex events and 

both are further South. 
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R1I1P1 Sample AMO and PDO Signatures 

A  

B  

C  

D  



198 
 

E  

R3I1P1 Sample Pacific Warm Blobs 

F  

G  

Figure Ch6. 53: Internal shifts and internal trend changes from different realizations of IPSL-CM4A-LR RCP8.5 runs. (A). r1i1p1 1898 morphologically resembles the GISTEMP3 1925 event 
which aligns with an AMO cool to warm phase shift, and also a 1994 event which also aligns with the same class of change. (B & C) are the same realization, 1920 and 1921, and (D and E) 
1978 and 1979 showing zonal tropical shifts, with less zonal structure in the second case. (F) An Eastern Pacific Warm Blob 1988 and (G) a West Pacific Warm Blob formation 2017. 
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In conclusion, whilst it is probable that the IPSL-CM4A-LR replicate models show some similar 

surface features to observations, and that these could be diagnostic of the equivalent decadal 

features operating within the models, they occur out of phase with observations and with 

other replicates. The preliminary quadrant analysis also suggests that overall models do not 

closely track surface features. This gives a discrepancy between the model behaviour when 

examined at global and zonal scale and the detail that emerges at finer scale. It would be 

consistent with similar global scale features being produced by a variety of configurations of 

variability modes. 

This study is not extensive enough to draw any firmer conclusion. However further work is 

warranted. A substantial body of work has been performed which attempts forecasts of future 

weather patterns by pattern scaling, a technique which intrinsically assumes linearity between 

models and observations (Santer et al., 1990, Mitchell et al., 1999). I have been involved in 

such work (Ricketts and Page, 2007, Ricketts, 2009, Hennessy et al., 2011, Ricketts et al., 2013). 

The results in this section so far do not lend support to the underlying assumptions. At the very 

least, models which show evidence that their decadal variability modes synchronise with those 

observed should be sought out and assessed. 

Section 4: Study of step or shift-like behaviour at differing spatial scales. 

This section consolidates the relationship between the shift and trend components at various 

spatial scales. Chapter 5 lays out the case for compositional misspecification springing from the 

aggregation of data from regions where changes occur with different timing, or propagate over 

time within regions, and increased contribution of shifts to total change was shown to be 

evidence of misspecification.  

The contribution of internal shifts to total change in the GISTEMP3 data analysed in section 1 

was assessed two ways. Firstly the same quadrant scheme as defined in the previous section 

was used to produce was used to produce weighted annual average temperature for each 

quadrant. There were analysed by MSBV as before. The total internal shifts and internal trends 

were combined by area weighting to produce estimates of global and hemispheric 

contributions to total warming over land, ocean and combined land-ocean areas. This gives 

nine estimates of shift to total warming ratios that can be compared to the similar values in 

Table Ch6.19 in the first section. These are shown side-by-side in Table Ch6.22 below. A 

students paired t-test for gives a two tailed p-value of 0.0018 on the hypothesis of no 

difference, and supports the notion that the data composition makes a systematic difference, 

in this one data set.  
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Table Ch6.22: Shift/Total ratios computed for 5°x5° Spatial grids and for quadrants. 

GISTEMP3 
From 5°x5° Spatial 

From 
Quadrants 

Location Hemisphere Shift °C Trend 
°C 

Total °C Shift 
Proportions 

Shift 
Proportions 

Land Globe 0.7 0.44 1.13 0.62 0.58 
Land NH 0.79 0.47 1.27 0.63 0.64 
Land SH 0.42 0.32 0.74 0.57 0.38 
Ocean Globe 0.5 0.13 0.63 0.79 0.66 
Ocean NH 0.52 0.15 0.66 0.78 0.65 
Ocean SH 0.49 0.12 0.61 0.8 0.66 
Land/Ocean Globe 0.56 0.22 0.78 0.72 0.63 
Land/Ocean NH 0.64 0.29 0.93 0.69 0.65 
Land/Ocean SH 0.48 0.15 0.63 0.76 0.59 
Mean     0.707 0.604 
Variance     0.0071 0.0079 

t-Stat      4.587 
P(T<=t) two-tail     0.0018 

 

R.N. Jones (personal communication) recombined the observational data from up to five 

different data sources published in JR2017, to produce a comparison of the shift/total ratios 

for global versus sub-global composites (see Table Ch6.23). I have selected the warming over 

all available times (from 1880 to 2014). Since the underlying data are drawn from the same 

physical Earth, the differing data sets are treated as independent samples of the same data. 

Three of these had available data representing some sort of subsampling. The effect of 

subsampling can be calculated. The main finding is that the warming attributable to internal 

shifts averages out at 50% across the five global data sets, and these are always less than for 

11 subsamples which average 66%. The t-test for zero difference with unequal variances 

returns a two tail p-value of 6.96x10-8.  

So for GISS data sets looking at combined land-ocean data, the shift/total ratios are, Globally, 

averages temperatures 0.51, zonally 0.64, for quadrants constructed from spatial grids, 0.63, 

and from grid-scale 0.72. A clear progression.  
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Table Ch6.23: Shift/Total ratios computed for single runs of and available breakdowns courtesy of R.N. Jones.  

Sub-Global Global 
Observation Set Shift 

Proportions 
Observation 
Set 

Shift 
Proportions 

GISS Hemispheres 0.71 BEST 0.53 
GISS trop-extrop 0.64 Cowtan&Way 0.50 
GISS Zonal 0.64 GISS 0.51 
HadCRU 
Hemispheres 

0.66 HadCRU 0.48 

HadCRU Land-ocean 0.65 NCDC 0.49 
HadCRU L-O N-S 0.68   
NCDC Hemispheres 0.66   
NCDC Land-ocean 0.71   
NCDC L-O N-S 0.64   
NCDC trop-extrop 0.63   
NCDC Zonal 0.62   
Mean 0.66  0.502 
Variance 0.00086  0.000387 
t-Stat    
P(T<=t) two-tail  6.96x10-08 
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A selection of GCMs from the RCP8.5 runs for which both the global mean annual signal had 

been analysed and for which gridded scale data was available was also examined, this time as 

a paired t-test between the values return for each model analysed firstly as global average and 

then analysed spatially. In this case the computation was between 1850 and 2100 (see Table 

Ch6.24).  

Table Ch6.24: Shift/Total ratios for RCP8.5 Global Climate Models 

RCP85 Model 5°x5° 
Spatial 

Global 
mean 

IPSL-CM5A-LR 0.53 0.40 
MPI-ESM-LR 0.58 0.27 
ACCESS1-0 0.64 0.25 
ACCESS1-3 0.64 0.28 
CanESM2 0.54 0.40 
MIROC-ESM-
CHEM 

0.61 0.27 

BNU-ESM 0.61 0.31 
IPSL-CM5B-LR 0.64 0.30 
NorESM1-ME 0.64 0.45 
MIROC5 0.60 0.52 
MRI-CGCM3 0.63 0.23 
MPI-ESM-MR 0.63 0.35 
bcc-csm1-1-m 0.64 0.27 
IPSL-CM5A-MR 0.50 0.28 
NorESM1-M 0.59 0.32 
CESM1-CAM5 0.49 0.38 
Mean 0.60 0.33 
Variance 0.0027 0.0063 
t-Stat  10.32 
P(T<=t) two-tail  1.76x10-08 

 

Test 6 of JR2017 asks whether temperature progression is more step-like or more trend like. 

This section has shown that not only is it more step-like but that it becomes even more so 

when the MSBV test is applied to data at finer scale. This is consistent with step-like shifts 

being present in temperatures, and being regional. The phenomena are also rather diffuse, so 

that simple rectangular averaging inevitably induces artefacts or at larger scale, swamps the 

signal.    
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Summary and Discussion 

The first two sections show serve both to establish a sort of ontology of step change patterns – 

isolating meaningful spatial signatures, and to establish a link between vertical ocean 

structures and surface temperature expressions. A crescent like anomaly in the surface 

temperatures of Eastern North Atlantic in 1925 and 1994 and at no other time aligns with the 

transition from cool to warm phase in the AMO index. Mosley-Thompson et al. (2005) 

demonstrated a step-change in the correlation between the NAO and precipitation in the mid-

1920s, and also in temperatures, and the AMO and NAO are linked. The 1922 step off Western 

Greenland has been noted before. Box (2002) suggests a correlation between the North 

Atlantic Oscillation (NAO) and Western Greenland temperatures (see his Section 4.6). The next 

time such a shift occurs is in 1997 when there is also a much more wide spread response, 

although Lloyd et al. (2011) attribute the early to mid-1990s warming of the Greenland waters 

to the AMO. Nakamura (2013) noted a sudden de-correlation between Greenland sea surface 

temperatures and NAO phase in the late 1970s suggesting a link to the AMO. The crescent 

shape is also seen in some of the climate models, especially the ones selected by the quadrant 

correlation index, and possibly aligned to the AMO there also.   

Surface temperature change patterns from 1931 to 1941 appear within the much more wide 

spread patterns of the 1994 to 1999 event. Although the PDO enters a cooling phase after 

1943/5 as given by the PDO index, by this analysis most shifts had happened earlier 

accompanied by an apparent appearance at the surface of the waters of the West Pacific 

Warm pool. If the PDO index reflects the circulation of the Pacific then the warm pool release 

preceded the change of the PDO to cool phase. 

1986 This event, by contrast to the other analysed here, is primarily a land based event. Reid 

et al. (2015) performed a comprehensive analysis of biological and physical variables to 

conclude that a synchronised change occurred in the mid-1980s suggesting that the El Chichón 

volcanic eruption of 1982 was contributory to a physical state change. Their method detects 

changes in SST in 1986 at basin level for which there is little evidence in the spatial analysis, 

which however  finds strong Northern land involvement, suggestive of a predominantly 

atmospheric state changes, for example Hadley cell expansion.  

A series of interlinked events seem to define a signal of the change of phase of the PDO. The 

pattern of change-points in the spatial surface temperatures shows indicates Pacific changes. 

The vertical ocean structure in tropical Pacific indicates the sign of the phase change. This is 



204 
 

shown by change-points in the relationship between 100m and 700m global averaged ocean 

temperatures, and in a spatial analysis of the latter two variables.  

These two variability modes have often been suggested as governing regional climate, 

although the NAO (Tsonis et al., 2007) is also a possible factor.  

A principal finding from Section 1 is that when internal shifts and internal trends are 

separated, the picture for oceans is one of heat release in a step-like fashion and with much of 

the mid-latitude oceans showing nearly compensatory cumulative trends serving to restore 

thermal equilibrium. The picture for land is different since land trends are mostly quite 

uniformly positive.  

Other findings are that step-like regime shifts … 

1. are rarer over land than ocean and overall they contribute much of the observed 

warming,  

2. are commoner in the Southern Hemisphere than the Northern, again mostly oceanic, 

3. predominate the Arctic although this analysis under-samples that area due to using 

only uninterrupted data, 

4. are responsible for most of nett ocean surface warming, especially extra-tropically,  

5. occur more often on Western basin boundaries, and in the Southern Ocean which has 

annular flow, 

6. are rare to absent near the polar and subtropical gyres which are convergence zones.    

At grid scale some of the apparent time-wise precision of global and zonal analyses disappears; 

events do not happen simultaneously but in a rapid cascade of smaller, linked events.  

It is also notable that if one attributed the circa 1939 event to a warm to cool PDO regime shift 

(more usually attributed to the early 1940s), then in the Pacific, warm to cool regime shifts 

(1939, 1997) are marked by surface step-like changes further West than the cool to warm one 

(1976). The effect of the 2015 cool to warm shift remains to be analysed by these methods 

when more data has accumulated5.  

Overall it would seem that in addition to  larger events, there are regional ones that involve 

shallow ocean circulation unsupported by deeper ocean structures; Indian Ocean, and 

Western boundaries, and  the Southern Ocean (1976 for example). The circa 1976 and 1997 

events are accompanied by Pacific changes involving the surface and deeper changes in the 

                                                             
5 But see the late part of the discussion. There appears to be a corresponding sharp upward step. 



205 
 

Atlantic. The 1986 event remains mostly a land only event more suggestive of an atmospheric 

reorganisation with minor involvement in the tropical Eastern Pacific and Western North 

Atlantic not accompanied by ocean structural change. 

Some changes are purely regional, for example in the Southern Ocean and south Indian Ocean, 

some are highly structured and suggest vertical and horizontal changes in the oceans that 

involved a complex of events, and some are potentially more atmospheric like. 

The fact that in 1994/5 the two way analysis of 100m/700m ocean temperature shows 

indications of warming at the surface, plus the 100m and 700m oceans over the WPWP 

suggests that the thermal structure warmed right down with warmer waters intruding deeper 

and to the surface. This would suggest an emplacement of warmer waters a little before the 

onset of the El Niño and subsequent change of phase of the PDO that is associated with the so-

called hiatus. This is consistent with a trigger mechanism related to the Western Pacific Warm 

Pool mentioned .in the introduction to this chapter. 

Section 3 of the chapter was dedicated to bounding the utility of climate models as a tool for 

making physical inferences about the projection of decadal scale variability into the future. A 

naïve prediction from models requires that the models somehow represent, not just the 

separate systems that give rise to variability, but maintain their phases relative to each other 

and in synch with observations. A conclusion of the previous chapter is that not only do 

ensembles of global climate runs show sufficient coherence with reality that one can suggest a 

step change in global temperatures circa 2015, but that one can suggest this be due to 

differential changes in zonal temperature progression over land and oceans. The ensemble 

showed alignment with known variability modes. However the reason for this is unclear given 

the manner by which climate models are initialised. 

A method was given for comparing models with observations of reality at finer than global 

scale, to see if they concur at sub-basin sub-continental scale. There is a systematic variation in 

these assessments.  No model performs equally well in all four quadrants of all five land 

masses and five ocean basins. A survey by EOT analysis supports the notion that climate 

models communicate across the Pacific in a manner that reality doesn’t (see the example 

Figure A6.2.57 in Appendix 6.2). 

The principal finding in this part of the chapter is that global climate models do behave as if 

they have internal states reminiscent of decadal variability modes but that variability is not 

aligned to observations.  
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This does not invalidate the conclusion of the previous chapter that climate model ensembles 

tend to predict an upward and persistent shift in temperature in the latter half of the current 

decade. It does mean that in future work, more careful selection of climate models and 

features is needed. 

The beginning of a type of ontology of sub-regional features of climate regime shifts has been 

made. For example the crescent-like feature on the Eastern side of the North Atlantic in 1925 

and 1994, and aligned with the AMO, is associated with derived AMO indices in some models. 

The extra-tropical region that surrounds the ENSO-tongue, seen circa 1976 has two features. 

Firstly, despite the concentration in the literature on the Northern Pacific, the shifts are more 

extensive in the Southern hemisphere. This also meshes with the zonal analyses. However the 

quadrants analysis finds them, in fact they are the only shifts detected in the Eastern non-polar 

Pacific. The second is that by contrast with the models, the region of the ENSO tongue is rarely 

detected as part of the shift (IPSL-CM5A-MR is somewhat exceptional in this).  

The important findings again include that land and ocean based regime shifts differ: land less 

frequent, more zonal, ocean more variable and more regional. The zonal averages of step 

counts in Figure Ch6.36 highlight a long suspected difference in the roles of the Northern and 

Southern hemisphere. The earliest post WW2 response to forced warming is in the Southern 

mid-latitudes.  

A fundamental methodological finding is that the spatial averaging of data is of critical 

importance, and multiple scales should be used. Since the oceans circulate, the influence of an 

upwelling event may rapidly smear. Consideration of a rotationally referenced coordinate 

system may assist. 

Section 4 provides an important result in that it is clear that processes are more shift-like at 

smaller scale. This is considered in the next chapter, the Discussion. 
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Chapter 7: Discussion 
Introduction 

This work addresses the nature of previously observed abrupt decadal regime shifts in Earth’s 

climate, and whether there is evidence of these shifts being affected by increases in 

atmosphere and ocean temperatures due to greenhouse emissions. This is important for 

climate science, because it goes to the contribution of forced warming on modes of natural 

variability and any role they have in moderating climate and natural heat flows. It is important 

for practitioners of climate change risk, because unaccounted for changes to such moderation 

constitute a risk in their own right.   

The work follows on from, and adopts the methods in, previous work of Jones (Jones, 2012, 

Jones et al., 2013), where abrupt changes in temperature and rainfall records regionally were 

linked to large-scale and global regime changes in a range of bio-physical systems. It 

contributed to recent published work that further refines the research by grounding the 

linkage between the physical climate and statistical induction about it; and then severely 

testing competing hypotheses of the interaction between forced warming and natural 

variability (JR2017). 

The thesis has focussed on three aspects of the science. 

1. How to best measure regime shifts in time-series. What are the limits of the chosen 

detection method (MSBV)? What are the effects of autocorrelation, red-

noise/random-walks, or extreme ongoing trend on the reliability of the MSBV?  

Chapter 3 presented the MSBV, and sensitivity testing of it with brief case studies. 

Within the limits established by the sensitivity tests the MSBV is found to be fit for 

purpose.  

Chapter 4 presents a set of post-detection tests which probe the data for features that 

could deceive the detection method. These can be condensed into two summary 

metrics, (a) a segment classification, that gives a guide as to whether the data segment 

within which a change is found shows evidence of underlying non-stationarity, (b) the 

CP-Index which gives a graded guide to possible false positive change-points. When 

tested on real data, it further established that the data was generally suited to the 

analysis.  

Furthermore, when some types of data consistently return many possible false-

positives, for example RCP8.5 climate averages whether detected by MSBV or 
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structural-change, it indicates that the data (and therefore the climate) may no longer 

be obeying the same statistics. Further investigation is thus indicated in a way that it 

could not be if the data were not tested-post detection. 

2. What evidence is there that regime shifts are real phenomena? To what extent are 

they influential and to what extent does climate change proceed step-like as 

postulated by Jones and latterly, others (Bartsev et al., 2017, Belolipetsky et al., 2015, 

Saltykov et al., 2017, Yan et al., 2016). JR2017 proposed and demonstrated six severe 

tests that distinguished H1 (forced warming and natural variability change separately) 

and H2 (they interact) (Chapter 2).  This work tests and supports four of those tests, 

the other two being out of scope. 

a. Comparisons of change-point return periods in zonally averaged, modelled 

pre-industrial, historical and future climates, matched with observations, 

showed that during the historical period regime change occurred more 

frequently as warming progressed, changed to include more zones, and 

changes occurred simultaneously over more of the Earth. Pre-industrial model 

runs showed much longer return periods, in general, with only the Southern 

mid-latitudes showing much activity. 21st Century runs strongly contrasted, 

with short return periods, and wide-spread shifts. When, under RCP2.6 

warming slows, so too the return periods become longer, especially mid-

latitude land based ones. This addresses Test 1 of the six severe tests and 

supports H2.  

b. Examination of the RCP26 and RCP85 ensembles of global climate models 

showed that clusters of regime shifts in the models corresponded both by date 

and by zone with those observed. This addresses Test 2 of the six tests in 

favour of H2. 

c. Analysis of the spatio-temporal patterns of ocean temperature regime shifts, 

showing that they correspond to surface temperature patterns for those dates 

associated with regime shifts in the PDO, supports Test 5 of the six tests in 

favour of H2. 

d. Test 6 of the six, was also resolved in favour of H2, in that step-like behaviour 

predominates trend-like behaviour. The analysis related to this also clearly 

indicated that the degree to which step dominates is inversely proportional to 

the spatial scale over which the climate data are analysed. This is consistent 

with regimes occurring with somewhat varying timing within areas of roughly 

half the size of an ocean basin or continent. The analysis of Chapter 6, Section 
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1 also showed that regime shifts often spread out from an initial event over 

time, and often that changes over land follow ones involving oceans. And it 

further showed that trends over ocean, once shifts are accounted for, 

contribute very little to the GMST. This is very much in keeping with heat being 

released in bursts accompanied by step-like shifts, and the more stationary 

periods maintaining equilibrium.  

e. Overall, the reduction of non-stationary behaviour at finer scales, along with 

the increase in shift to trend ratios, and reduction in AR(1) autocorrelation also 

suggests that the composition of climate signals is a source of apparent 

autocorrelation in global and hemispheric data   

3. Do regional regime shifts relate to climate variability modes? 

a. Chapter 5 consists of a detailed investigation into the zonal variation of step-

like changes in the observed and modelled temperature record. It clearly adds 

to the knowledge about the non-uniformity of decadal variability attributable 

to anthropogenic climate change. In the observed and modelled surface 

temperature records, as demonstrated by step-like shifts, the progress of 

climate change differs by latitudinal zones with distinct differences over land 

and over ocean.  

b. Chapter 6 concentrates for the most part on a detailed analysis of spatial 

patterns formed by abrupt step-like changes in surface temperature 

observations, ocean temperatures at depth and to a lesser extent global 

climate models. 

Advances 

The literature review brings a focus onto statistical climatology. JR2017 built on previous work 

concerning statistical induction (e.g. Mayo and Spanos, 2006, Roush, 2010) and outlined the 

Theoretical-Mechanistic/Statistical-Inductive framework (TMSI). This was of use in the latter 

stages of the thesis, acting as an organising principal, and is treated in more depth due to my 

contributions to the paper. 

The literature review also tabulates different approaches to validation of methods and 

validation findings. The first is of relevance to those investigating and designing statistical 

detection and analysis techniques; the second to those using them. 

Inspiration is drawn from work on misspecification testing (Mayo and Spanos, 2004). The 

resulting methods proved to be useful in showing that the MSBV was fit for purpose, and very 



210 
 

importantly that at finer scale climate data is deterministic, and thus in sharp contrast of the 

concerns of Rudnick and Davis (2003) regime shifts can be reliably separated from red-noise in 

oceans. 

MSBV 

The work detailed in Chapter 3 advances the objective assessment of multiple change-points in 

climate time series, when the principle feature being sought is step-like – an abrupt shift and a 

sustained change. The Multistep Bivariate test (MSBV) is built on the Maronna-Yohai (MYBV) 

test, and differs from other published methods in several respects.  

 Whilst not unique in this, the MYBV test uses a reference series. The use of multiple 

resampling with a random reference is unusual, and adds sharpness. This relates to 

stochastic resonance (Moss and Wiesenfeld, 1995, McDonnell and Abbott, 2009) where 

injection of noise, apparently paradoxically, enhances feature detection, an area of 

research which has its roots in climatology (Benzi et al., 1981, Benzi et al., 1982). This is the 

first use that I know of where stochastic resonance is achieved by injection of noise into an 

auxiliary variable.  

 The MSBV differs from the principal multiple change-point methods that have been 

published. Two of these allow for change-points that include, but are not focussed on, 

discontinuities. These are “structural change” (SC) from the econometric literature (Zeileis 

et al., 2001, Zeileis et al., 2010), and “changepoint” (CP), which has its basis in 

oceanography (Killick and Eckley, 2011, Killick et al., 2010).  

 If differs from another method that was published during this work, the “multiple STARS” 

method (Reid et al., 2015) which was developed from the STARS method of (Rodionov, 

2004).  

 It also differs from another method, also published during this work, often discussed under 

the name named “change point” (Cahill et al., 2015), which implements a version of non-

disjoint segmented model (one inapplicable to the problem of shift detection). It is based 

on CP-regression (Carlin et al., 1992). Cahill et al. (2015) also ignore the issue of data 

dredging (Epstein, 1982, Solow, 1987), whereas the approach used in the MSBV and 

subsequent analysis does not. 

The MSBV builds a disjoint stepwise regression, splitting segments on change-points, and then 

refines it in a causal order. The statistical model is deemed complete on each iteration when 

no change-point is found in any segment (p<0.01). This is a less general halting criterion and 

generally terminates sooner than other methods, with mostly less complex models. Given that 



211 
 

AIC based termination used for structural-change methods is known to be prone to overfitting 

(Spanos, 2010), the relative parsimony of the MSBV is a virtue. The MSBV avoids an 

assumption of variance stationarity between change-points in the data (by contrast with the 

AIC).  

The work and approach of Jones differs from many others. This thesis has explored that body 

of work and sought the boundaries of applicability. The step/shift detection method was 

developed from the description in Vives and Jones (2005) and in consultation with Jones. The 

method had been limited by a requirement for researcher choice, and some simple rules were 

developed to capture these choices. Reviewer’s comments have also stimulated an 

investigation into the rationale for using level shift detection in preference to the more usual 

trend-change or step-and-trend approaches. It has been shown in the literature from time to 

time that the problems of shift detection and trend-change detection are different (Jarušková, 

1997, Kaiser and Maravall, 1999, Wang and Wang, 1994, Wu, 2005) but methods continue to 

be proposed that do not take this into account. Several approaches to understanding this have 

been demonstrated, one using a limit case of a sigmoid curve, another from numerical 

methods theory (Stoer and Bulirsch, 2013). 

Characterisation of change-points 

Advances have been made in addressing the issue of mismatches between data and the 

selection of statistical models of the data which embeds assumptions about the composition 

of the data. The TMSI requires that the links between physical processes, the measurements of 

them, and the interpretation of those data be well argued, and that there exist well argued 

links between the statistical detection (or non-detection) of events and alternative hypotheses 

about physical processes. This chapter addresses that need. Until now the detection of abrupt 

shifts in temperature data has generally been conducted without sufficient consideration of 

unconsidered processes as they affect error-statistics, decreasing the utility of probabilities, 

and weakening the conclusions.  

Because it’s impossible to test for all unconsidered processes, Chapter 4 uses a battery of 

tests, each with differing assumptions, and which are individually framed as null hypothesis 

tests. That none of the validation tests share the same null or alternate hypotheses with the 

detection test is critical6. The result is sharper because the data segments are only tested 

further if they contain a change-point determined by a prior test.  

                                                             
6 The nearest to sharing null hypotheses is between the MYBV and ANCOVA. But the MYBV actually has 
a null of continuity given an assumption of continuing zero trend and i.i.d. data, whilst ANCOVA has a 
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Another advance is the combination of stationarity tests to investigation of the effect of 

averaging of observed temperatures at varying scale. This in turn leads to evidence in later 

chapters that step-like regime changes occur at regional to sub-regional scale.  

Finally the results of later work are improved (e.g. zonal analyses of climate model data) by 

signalling when data are unsuited to the detection method. 

Chapter 4 attempts to address the gap between the error statistics of a detection method, and 

the assumptions about the data that govern the choice of detection method. It is telling that 

the MSBV and structural-change methods may return similar sets of change-points, despite 

one detecting only shifts and the other shifts and/or trend changes, especially in the RCP8.5 

futures. When this happens many of the change points may not be statistically significant 

(p<0.05) tested within the data delimited by neighbouring change-points; either by the Chow 

test or the more general ANCOVA used herein. The fact that both methods give similar results 

probably indicates that (a) the MSBV detects existing shifts, and (b) the ANCOVA test 

(equivalent to a Chow test), since it treats shift and trend as interacting parameters is relatively 

conservative. Regardless it certainly means that care must be taken.  

The use of Unit Root tests is not unprecedented, the use made of them is perhaps a bit 

different. They have been used for detection of change-points, especially where both 

endogenous changes (those resulting from the unforced structural properties of the system) 

and exogenous changes (resulting from restructuring of the system after an intervention) are 

possible. In this domain, a state change under forced warming is exogenous, a random walk 

which eventually returns is endogenous. The main use made here however is that three tests 

are used to examine segments within which a supposed exogenous shift has occurred. Each is 

based on different assumptions and null hypotheses. This form of post-hoc testing yields both 

extra data and greater nuance.  

Climate 

The Chapter 5 commences with three questions, and advances have been made in answer to 

all three.  

1. Does the composition of area averaged data bias results? Many papers commence 

with an assumption that it does not. 

                                                             
null of continued linear progress given any trend and i.i.d. data. The tests applied as a conditional pair, 
given that MSBV has found a change-point, can this be an error due to continued trend? This is the 
reverse of a multiple testing fallacy.  
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2. Does the analysis at zonal scale support regime shifts, and if so do they favour regimes 

being global or sub-global in scale? 

3. Is H2 – interaction between warming and natural variability – supported by global 

climate models? 

To answer question 1, and partially address question 2. Area averaging of data does indeed 

have an effect – and it appears to increase the complexity of the data.  

 Combining land and ocean temperatures increases measures of non-stationarity. Data 

segments containing single change-points from combined-ocean data are more likely 

to show non-stationarity than those from either land or ocean separately. And in any 

event land segments, global or zonal are more likely to be stationary than 

corresponding ocean ones.  

 Combining data over the globe increases the same measures relative to zonal 

averages, whether land, ocean or combined land-ocean averages are involved. When 

data are averaged to finer scale as sectors of zones, the effect is more pronounced. 

Measures of stationarity increase and in fact stationarity rates in oceans converge on 

those for land. False positive rates for the MSBV observable in ocean data fall in going 

from zones to sectors, and within sectors no confirmed false positives due to 

continuing trend being identified as shifts occur.  

 Lastly the signals become more step-like and less trend-like at finer scale, consistent 

with shift-like regimes occurring more locally, and not consistent with the absence of 

shifts locally (hence shifts at global scale do not result from the averaging of trend 

changes in finer scale data). Evidence that the zonal averages are themselves 

composites was also given, and the UR tests were used to demonstrate that a plausible 

scale for ocean regimes was probably sub-basin level. 

To further address question 2.  Step-like regime shifts show in zonally averaged data. They are 

also differentiated with some events in the Southern Hemisphere, some in the North. Hence 

regimes are sub-global phenomena, although some events appear to be more global.  

 Post WW2 they tend to be more frequent everywhere.  

 An event circa 1968 shows in the Southern mid-latitude oceans but not over land.  

 The circa 1976 shows over all of the South and in the Northern tropics.  

 The circa 1986 event shows in the Northern extra-tropics.  

 The so-called hiatus, circa 1996 is apparent in all zones. It is possibly earlier in the polar 

North but differs slightly between data sets. 
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 In the global scale analyses, 1968 does not appear, and the 1986 event shows only in 

the oceans of the NCDC data set. 

 Prior to WW2 there is more variation between data sets and between land and ocean 

splits. Although a very clear Southern Hemisphere event shows circa 1936. 

Question 3, interaction between warming and variability, is addressed by addressing a series of 

questions, all based on an ensemble of global climate models run with hypothetical pre-

industrial, observed, and hypothetical 21st Century atmospheric conditions. As a result the 

models clearly show warming interacts with the variability modes that give rise to regime 

shifts.  

(a) Are patterns of zonal regimes from models consistent with observations?  

(b) If so, do the patterns change with warming, especially either side of the observed time 

line?  

(c) If so does warming affect the periodicity of quasi-oscillatory variability modes? Does it 

intensify such events? Does it affect the area involved? 

(3a) The ensemble of GCMs appears to reproduce approximations of the major events during 

the 20th Century. There is a general tendency to find events in the early 20th Century which are 

weakly represented in observed data, but post WW2 there are peaks for events around 1968, 

1976, 1986 and 1996, the latter by far the most extensive.  (3b&c) The study of return periods 

within zones shows that without forced warming and under steady state conditions models 

predict very rare regime shifts except in the Southern mid-latitude oceans. When forced by 

observed conditions regime shifts converge on observed rates, with more frequent, and more 

extensive shifts. These do not necessarily become more intensive.   

As stated in the introduction to this chapter, analysis of global climate averages alone is 

inadequate to the task of understanding decadal climate variability. 

Evidence that the zonal averages are themselves composites was also given, and the 

stationarity tests were used to demonstrate that a plausible scale for ocean regimes was 

probably sub-basin level. 

Spatial 

The extension of change-point analysis to spatial scale is itself an advance. Although a 

superficially similar paper was published during this thesis (Yan et al., 2016), the authors 

simply assumed abrupt changes and attempted to quantify the duration of the transition 

between states. 
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 Hot spots of regime changes are apparent, especially along Western ocean boundaries. 

 The role of the Southern higher mid-latitudes, and to a lesser extent the Northern sub-

polar regions, seems to be earlier regime changes than elsewhere.  

 Once step-like regime shifts are accounted for, land regions have a remaining and even 

accelerating trend, whereas ocean regions are close to having zero residual trend. This 

would imply that the ocean overall (polar regions excepted) releases heat in well 

defined events that mark regime changes and largely maintain (or attain) equilibrium 

in the stable periods between.   

 Characteristic patterns associated with known decadal variability were catalogued. 

How these relate to climate models remains to be explored although replicates of one 

climate model’s representation of the 20th century were examined and found to show 

strong intra-model variability. In the process they were also shown to contain some 

similar characteristic patterns to observations, indicating that the models may form 

similar regional structures to reality, but with variable sequencing with respect to each 

other and observations. The last might mean that the model runs each find different 

pathways to energetic equilibrium under the constraint of prescribed atmosphere; or 

it may simply be an artefact of the models. How this relates to the physical Earth is still 

an open question.   

 Analysis of the ocean temperatures at 100m and 700m also showed that wide-spread 

events such as 1976 and 1996 are accompanied by changes in the vertical ocean heat 

structures. These happen extensively and rapidly. There are suggestions in the North 

Atlantic that these are spatially correlated with the Atlantic Meridional Overturning 

Circulation. Drijfhout (2018) discusses hiatus periods within GCMs as a function of 

ocean heat uptake and ocean heat redistribution. While his method applies a 

smoothing filter and applies different criteria, the results are pertinent to the thesis, 

JR2017, and JR2019, since I find a link between vertical ocean heat profiles and 

decadal scale variability. He also makes the point that observed behaviour would be 

likely to be more severe than suggested by models.  

 Sgubin et al. (2017) identify prolonged cooling over the northern Atlantic in their 

discussion of the potential for an AMOC tipping point. Figure Ch6.35 in the left pane 

shows the same cooling as mentioned but the story is more nuanced. Much of the 

Northern Pacific and Northern Atlantic show cumulated negative trends, once the 

influence of steps is partitioned out (Figure Ch6.34). Figure Ch6.37 (cumulative sum of 

steps and trends) shows that three NML locations display net cooling (as modelled by a 
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step and trend model) the North Pacific Sub-polar gyre being another. Further analysis 

is out of scope of this thesis. 

Modelling the hiatus 

A model ensemble shows consensus corresponding to the so-called hiatus in the zonal analysis 

(see Figure Ch5.33), and yet spatially there is evidence that the internal states of replicates of 

one model differ and do not necessarily align to observations. JR2017 shows that an ensemble 

of RCP4.5 runs produces a pattern mirroring the observed shift dates (see our Figure 2), 

although no one ensemble of runs from individual models produced all the observed dates.  

JR2017 says, “The only event reproduced widely by the models was the 1996–98 step change, 

peaking in 1997, when 58 of the 107 MME (55 %) underwent a step change …” (ibid, page 

190).  As I stated in the section “Additional considerations regarding GCMs”, page 187, there is 

no reason to expect models to closely replicate internal structures and their evolution given 

prescribed atmospheres. But the consensus for the so-called hiatus is stronger than for any 

other event.  (Guemas et al., 2013) (GU13) used EC-Earth to continually re-initialise model 

state variables from observations to show that the near-term prediction (1-3 years) improves. 

Their Figure 1 shows what may represent a consensus marked increase in temperatures circa 

year 2000, although this is not discussed. Kosaka and Xie (2013) (KC13) shows that with the 

prescribing of SSTs in the 8.2% of the SSTs represented by the tropical Pacific the predicted 

GMST closely represents that observed. This was taken further when Kosaka and Xie (2016) 

(KX16) proposed the tropical Pacific as a key pacemaker of global warming, a proposal not 

unrelated to that of JR2019. They delineate epochs: 1910 to mid-1940s,1940s-1970s (the “big 

hiatus”, echoing Trenberth (2015)), 1970s to -1990s, 1990s to now (at 2016). These three 

papers may cause one to believe that strong nudging (GU13), or pace-making (KX13, KX16) are 

required for a model consensus of regime changes to meaningfully align to time. However 

Meehl et al. (2014) also showed that when by chance, GCM simulations have IPOs that align to 

observations around the hiatus period they tend to also show reduced rates of warming (e.g. 

their Figure 1). The result illustrated in Figure Ch5.33 may well be explained as a result of an 

embedded signal in the atmospheric prescriptions, models evolving a selection of internal 

states which track this signal more or less successfully, and a degree of persistence in the 

models sufficient to give some decadal predictive capacity. Further work would be required. 

Very recent findings 

This section discusses some very recent results that I have not yet fully processed, and several 

recent publications of interest. 
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Much of the data in this thesis dates back several years. Over time climate data collections are 

updated in three important ways. (a) New data is added, (b) errors and biases in existing data 

are addressed, and (c) data processing algorithms change.  

At the outset of this work in 2014 the PDO was already thought to be a component of decadal 

variability, and it was showing indications of a looming change of phase, and in fact Thomson 

and Emery (2014, p561), as an example of regime change detection, demonstrate a change in 

the PDO circa 2013 using STARS. The prohibition period in MSBV would mean that changes 

within the last seven years would not be detected. Hence, to maintain consistency, I elected 

not to continually update the data included for the body of the thesis. 

In preparation for JR2019, Jones analysed more recent datasets, while I continued mainly with 

data collected earlier. It is now clear that two post WW2 major step-like regime changes have 

aligned with the phase changes of the PDO, and that detection of another temperature shift 

aligned with the PDO would serve as a degree of confirmation. Definitive measures of the PDO, 

suited to assignment of phase, include substantial data and mean that values are not available 

for some time. However as of now, according to Jet Propulsion Laboratory, the PDO last 

changed phase in 2014. (see https://sealevel.jpl.nasa.gov/science/elninopdo/pdo/) 

Use of the MSBV to investigate recent changes requires that the prohibition period be 

shortened such that a final change-point observe a three year prohibition from the end of 

data. Code changes in the MSBV to support this are not fully tested.   

Two datasets of interest were examined, GISTEMPv3-2019, a 2°x2° grid and NOAAGlobalTemp-

2019, a 5°x5° grid (see Appendix 1.1).  

Examination of the global mean surface temperature shows that temperatures spiked (by at 

least 0.2°C and as much as 0.6°C) in an identifiable step-like change after 2013, and even five 

years later remain above the previous record temperatures. Over Europe, for example, the 

internal shifts may exceed 0.6°C after 2013. There is too little data to assess the statistical 

effect of trend or trend change, nor for the diagnostics to be fully meaningful. None the less it 

aligns, or slightly precedes the model consensus of a regime change shown in Chapter 5.  

The dates obtained may be affected by the central bias issue (change at one end of the data in 

the presence of continuing trend) that I investigated in Chapter 3. This would give earlier dates 

for an analysis conducted now than if repeated in another four years.  
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Further directions 

Studies of the recent 21st century regime change 

The apparent regime shift of 2013/4 just mentioned would be a critical event in climatology. A 

simple model of regimes linked to the PDO is that warming rates decline in a cool phase PDO 

and rise in a warm phase PDO. For example in a study of GCMs, Meehl et al. (2011) suggest 

increased heat uptake below 300m associated with slower surface warming. Trenberth (2015) 

links warming rates with the PDO. The PDO switched from cool phase to warm phase in 2014, 

as it did in 1976/8. Further to that JR217 and JR2019 suggest that heat release events are 

intimately associated with the regime changes, with the Western Pacific Warm Pool storing 

and then releasing heat. 

The extent of the 2014 event, it’s biological and weather related consequences, and underlying 

mechanisms all remain open questions. 

The date itself is increasingly being recognised (Yin et al., 2018). In Chapter 6, spatially 

distributed patterns in persistent, regime-like changes, signalled as vertical redistributions of 

100m and 700m ocean temperatures, were associated with the 1976/8 event as were patterns 

of surface temperature shifts. Therefore a similar study of current ocean temperature 

structure is warranted.  

For many reasons lead indicators of such a change are needed. These could be physical or 

ecological. The relationship between physical regime shifts and biological regime changes has 

been studied (Mantua, 2004, Hare and Mantua, 2000, Reid et al., 2015, Reid and Beaugrand, 

2012). Different audiences have different needs, and lead indicators should be generally 

applicable and easily understood. Work has been done with covariability and coupling 

between climate indices (Tsonis and Swanson, 2011), and ecologist have looked at changes in 

variability as lead indicators.  

The detail of the recent event is very much an open question. For one studying climate regime 

changes, a linear study is needed to track the ongoing climate state. The explosion of literature 

concerning the so-called hiatus is something of an object lesson. The debate has been dogged 

by imprecise definitions, lack of inductive frameworks, and misused methods. 

Statistical induction in climate science 

When searching for important statistical markers of variations in climate, it is imperative to 

have a clear understanding of the link between the physical systems and the appropriate 

statistical test, and yet it is quite common for papers to be based on ungrounded assumptions. 
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The particular assumption (usually implicit) that has led to much contention is that mean 

ocean surface temperatures are suitable proxies for ocean heat content, so that only trend is 

important, and thus (what JR2017 refers to as H1), variability in surface temperatures given 

steady ocean heat accumulation must be independent of forced warming) (Risbey et al., 2018, 

Rahmstorf et al., 2017, Foster and Abraham, 2015, Beaulieu and Killick, 2018). This leads to 

authors attempting to conflate the statistics of detection and probative testing. 

There appears to be a need for a review of statistical induction in climate science that includes 

such things as the TMSI framework. 

Detection of change-points 

The optimal detection of steps in the presence of a possibly confounding trend change appears 

to remain an open problem. The research domain of this thesis dictates that one use a method 

weighted for the detection of steps and resistant to trend, rather than adapting an F-ratio 

method such as the Chow test. This is because it is postulated that step-like changes are 

associated with climatic regime changes (Yin et al., 2018, Jones and Ricketts, 2017b, Bartsev et 

al., 2017, Yan et al., 2016, Reid et al., 2015, Varotsos et al., 2014, Belolipetsky et al., 2015, 

Belolipetsky, 2014).  

However the detection of an abrupt change also has parallels to many other problems from 

diverse sciences, such as edge detection. When my methods are applied spatially one finds 

coherent spatial local shifts, and I take the spatial coherence to be meaningful, so perhaps 

image processing methods also may be adapted. Similarly, the MYBV test itself appears to 

have much in common with digital filter theory; the formulation of the Ti function would 

suggest that. 

The MYBV is not suited to data in which substantial sustained trend is present. The effects are 

shown mostly in the climate model analyses, especially of RCP8.5, where high levels of 

apparent trend are seen in the zonal averages. As a result the numbers of detected change-

points which are rejected by ANCOVA rules against further analysis of ensembles after the first 

quarter of the 21st century. Further work is needed to make the MYBV resistant to trend 

without losing precision. 

The PELT algorithm of Killick et al. (2012) is an exact search method which can work with any 

change-point detection test and which uses a choice of halting criteria. The difference between 

the MSBV’s approach to the search part of the algorithm (recursion combined with step-wise 

refinement) and PELT (a tree pruning method) may be of interest. Any test can be combined 

with PELT. 
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The role of noise specifically in level change detection has not to my knowledge been fully 

explored, and should be. The ideas of injecting it into an auxiliary variable rather than the 

primary independent variable, as per VJ2005, is novel and immensely useful. 

Autocorrelation 

An issue raised quite recently is that of auto-correlation (Beaulieu and Killick, 2018) (see last 

part of Chapter 4). Whilst it is unlikely that step-like changes are misidentified as a result of 

auto-correlation, auto-correlation is mis-quantified, just like any other parameter is, when 

unconsidered deterministic features such as step-like change are present. The mis-

quantification can extend to the identification of a sequence being dominated by unit-root 

progression. This is important to my selection of unit-root based tests, and the interpretations 

I give them. 

There remains an open question of how to best isolate the auto-correlated component of a 

signal when it may contain multiple deterministic components, trends, shifts, oscillations etc. 

as well as random components. This affects both use of autocorrelation as a parameter of 

interest, and as a parameter to be compensated for. Mizon (1995) outlines the complexities of 

autocorrelation estimation and warns against OLS approaches and the use of them to correct 

data for it. It is likely for example that this explains the failure of Belolipetsky et al. (2015) to 

find a change-point for circa 1976. Rodionov (2006b) acknowledges the issue but finds that, 

even using more complex estimates of auto-correlation, regime detection sensitivity for the 

STARS test reduces.  

Post-detection testing 

I would also strongly recommend that the issues flowing from the composition of the signals 

and the ability of simple but under analysed averaging to add features or hide features, and at 

worst, to deceive the detection methods, be considered.  It is becoming clear that renewed 

interest in autocorrelation dictates that care be taken in isolating it.  

Despite the various stationarity tests themselves being automatable, the decision rules for 

their interpretation remain under-determined, however in Chapter 4 the selected suite of tests 

provides sufficient nuance to inform a strong conclusion about the composition of mean 

temperature series; specifically that it is the inappropriate composition of temperature data 

from regional data affected by different processes and timings that leads to the appearance of 

a degree of non-determinism which in turn leads analysts to attribute deterministic variation 

to random fluctuations. 
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Zonal and spatial analyses 

I suggest that the spatial analysis be concentrated upon and extended. There are more 

challenges, but I believe much more information to be gained. There are clearly multiple 

events within zones, and these events also extend outside zones. As seen with the analysis of 

ocean temperature at depth, and fact by the presence of shifts in the troposphere (Jones and 

Ricketts, 2017b Figure 4) regimes involve three dimensional structures. 

The atmosphere and the ocean are in constant motion, and hence, although having spatial 

analyses referenced against Cartesian coordinates is appealing, the motion can confound our 

understanding. This issue of appropriate coordinates is too, an open question. 

Models and internal states 

The results of GU13, KX13 and KX16 mentioned above may be taken to argue against my 

conclusion that the model ensemble consensus location of a step-change corresponding to the 

so-called hiatus gives credence to a prediction of a corresponding step-like change in the 

second half of this decade. This creates an open question as to the necessity of close control of 

internal model states for near term prediction, and the desirability of lead indicators suggests 

this open question be addressed and the results utilised. 

Exploration of other data. 

Since the PI-Controls in models are prescribed, paleo-reconstructions could be added to PI-

Controls as a source of information on the unperturbed climate, since the imprint of actual 

climate processes is present. Proxy studies were performed by Jones (1995) and in subsequent 

work. The main issue is that detection of abrupt shifts can be desensitised by smoothing. 

Individual tree ring data may well be fine but compositing methods would need to be 

considered carefully. Other data sources need to have temporal resolution compatible with 

observations, without intrinsic smoothing and with serial independence.  

The attribution studies outlined by Jones (2012) and Jones and Ricketts (2017b) can be 

performed both in models and in gridded data. It is of interest to find out how general and 

informative these can be.  

Publications 

Through the course of this thesis I have published three conference papers, contributed to and 

co-authored a number of working papers (Jones and Ricketts, 2016a, Jones and Ricketts, 

2016b, Jones and Ricketts, 2017a) and co-authored two papers (JR2017 and JR2019). 
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 The first conference paper built on previous work in machine learning called stepwise 

symbolic regression (SSD) (Ricketts, 2013) and applied the method to locating abrupt shifts 

in temperature time-series, comparing it to the MSBV (Ricketts, 2015b).  

 The second introduced the MSBV under the name “probabilistic bivariate test” (Ricketts, 

2015a).  

 The third proposed the tests to be used for validation of change-points (Ricketts and Jones, 

2017). 

 JR2017 contains both the results obtained using the MSBV applied to zonal and global 

observations, and global climate models, plus work on regional attribution. In addition it 

contains the foundational work for the TMSI (Jones and Ricketts, 2017b). 

 JR2019 proposes a conceptual model that ties decadal variability to a global heat pump 

(Jones and Ricketts, 2019). 

Conclusion 

The nature of abrupt decadal shifts in a changing climate is that they constitute an 

enhancement of decadal scale natural variability driven by energy imbalances, and are 

regional, not global in origin. They involve regime state changes in three dimensional 

structures in the atmosphere and in the oceans that underlie natural decadal variability. They 

are deterministic in character, rather than random events. 

The abruptness detected in climate time-series is a primary signal, certainly more than an 

artefact of detection methods or data analysis. By and large, trends may be properties of the 

new regimes, but shifts signal the timing. 

Therefore it is important to understand fully the impact of all stages of data preparation. The 

approach used here is to avoid pre-processing, and to examine the data after change-points 

have been detected. Overwhelmingly when finer scale data are used non-stationarity is mostly 

revealed to not factor in the detection. 
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Appendices 
Appendix 1.1: Data sources and preparation 

NCDC zonal data version v3.5.4.201504.   

Annual and monthly files in ASCII format covering anomalies of land, ocean, and combined 

land and ocean were downloaded from The National Climate Data Center (NCDC, now known 

as National Center for Environmental Information) on 29 May 2015 via  

ftp://ftp.ncdc.noaa.gov/pub/data/mlost/operational/products/ using wget  in recursive mode. 

Each file contains data for one zonal average and for one of land, ocean and combined land 

and ocean.  The zonal averages were over:  90°S– 0°N (Global), 90°– S0°S (Southern 

hemisphere), 0°N–90°N (Northern  hemisphere), 90°S–20°S, 60°S–30°S, 60°S– 60°N, 30°S– 0°N, 

0°N – 30°N, 20°S– 20°N, 20°N– 90°N, and 60°N– 90°N. Data in the files labelled as 90°S–60°S 

for all three subsets was clearly corrupted on receipt and was not used. Annual averages are as 

provided, rather than simple averages of monthly values. Anomalies are based on a 1971-2000 

average. The data format is documented online in the file 

ftp://ftp.ncdc.noaa.gov/pub/data/mlost/operational/products/readme.timeseries.  

GISTEMP3 zonal data  

Also reported in Chapter 3 is an analysis of GISTEMP3 zonally averaged data of combined 

land/ocean temperatures LOTI anomalies (1950-81) downloaded on 15/10/2014 from 

http://data.giss.nasa.gov/gistemp/tabledata_v3/ZonAnn.Ts+dSST.txt. This data is differently 

zoned than the above mentioned NCDC zonal data version v3.5.4.201504. 

GISTEMP3. Combined Land Ocean Gridded Data 

GISTEMP3 monthly gridded combined air surface temperature with a final record of January 

2017, was downloaded from Koninklijk Nederlands Meterorologisch Instiuut (KNMI) using their 

climate data explorer on 6 March 2017 

https://climexp.knmi.nl/selectfield_obs2.cgi?id=someone@somewhere =giss_temp_1200 

The data are combined Land-Surface Air and Sea-Surface Water Temperature Anomalies 

(Land-Ocean Temperature Index LOTI) as anomalies from the 1951-1980 mean, smoothed at 

1200Km commencing in 1880. (See also documentation at 

https://data.giss.nasa.gov/gistemp/).  Land air temperatures at 2m are combined with sea 

surface temperatures from the Extended Reconstructed Sea Surface Temperature (ERSSTv4) 

on a 2o x 2o grid, provided by NCDC (see https://www.ncdc.noaa.gov/data-
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access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v4). This 

dataset is designated as GISTEMP3 throughout. (GISSTemp Team, 2015, Liu et al., 2015, Huang 

et al., 2015) 

Ocean temperatures 

Estimated ocean temperatures anomalies (from mean 1955-2012) at 100m and 700m depths 

were also downloaded from KNMI at the same time. These are monthly estimates on a 1°x1° 

grid, between January 1955 and December 2016, and derived from the World Ocean Atlas 

(WOA12v2) https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/avt_global.html  

Ocean basin averaged monthly temperature data for 100m, 700m and 2000m depths, 

originating the National Oceanographic Data Centre (NODC)  from  were also downloaded 

from KNMI on 13 Nov 2015, as NetCDF files. 

https://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=nodc_temp100 

Monthly data for the standardised depth anomalies (1982-present) of the 20°C isotherm in the 

tropical West Pacific and the tropical East-Central Pacific were downloaded on 29 January 

2018, using the following URLs. Data collection is February 1982 to present (Levitus et al., 

2010). 

https://iridl.ldeo.columbia.edu/maproom/ENSO/Time_Series/Heat_Storage_ECent_Pac.html 

https://iridl.ldeo.columbia.edu/maproom/ENSO/Time_Series/Heat_Storage_West_Pac.html 

Global Climate Models. 

Modelled surface temperature monthly data used here was originally released to the Program 

for Climate Model Data & Intercomparison (PCMDI) as part of the Intergovernmental Panel on 

Climate Change (IPCC) Climate Model Intercomparison Project Phase 5 (CMIP5). A mirror of 

selected data held on the National Computing Infrastructure (NCI) facility (raijin.nci.org.au), 

compiled by the Bureau of Meteorology, was used with permission. The data had all been 

gridded to a one degree common grid using the Climate Model Data Output Rewriter (CMOR). 

Pre-industrial control runs, Historical and future climates evolved under scenarios defined for 

four future representative climate pathways (RCPs) (Meinshausen et al., 2011) were obtained. 

Pre-industrial, historical and RCP runs are derived from a specified initialisations designated by 

a “RIP” code where all files sharing a RIP code descend from the same original initialisation. 

Pre-industrial runs are evolve under a stationary atmospheric compositions, historical runs 

continue on but with observed atmospheres, and RCP runs continue after 2005 but with 

prescribed future atmospheres. RIP codes look like “r1i1p1” where “r” is followed by a 
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realization number where all realizations are different but start from equally likely initial 

conditions, “i” by an initialisation number, denoting either a different time of divergence of a 

run from spin-up, and “p” by a “physics” number denoting alternative implementations of 

physics or parameterisations.  

I acknowledge the World Climate Research Programme’s Working Group on Coupled 

Modelling, which is responsible for CMIP, and thank the climate modelling groups (listed in 

Table A1.1.25) for producing and making available their model output. For CMIP the U.S. 

Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides 

coordinating support and led development of software infrastructure in partnership with the 

Global Organization for Earth System Science Portals. 

Land Ocean Masks  

A 1°x1° gridded ocean basin map was downloaded from NOAA NODC WOA09: World Ocean 

Atlas 2009 (Levitus et al., 2013) on the 7th March 2017 from 

http://iridl.ldeo.columbia.edu/SOURCES/NOAA/NODC/WOA09/oceanbasindata_1x1.nc. This 

was used to delineate ocean basins and extra code was used to delineate continental land 

masses, with Europe and Asia treated as a single Eurasia. The dataset is referred to as WOA09. 

Each climate model is also supplied with its own land/ocean mask.  
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Climate Modelling  Centres 

Table A1.1.25: Global Climate Models and institutions. Edited from the table published at 
https://pcmdi.llnl.gov/mips/cmip5/availability.html 

MODELLING 
CENTER 

MODEL INSTITUTION 

  BCC BCC-CSM1.1  
BCC-
CSM1.1(m) 

Beijing Climate Center, China Meteorological Administration 

  CCCMA CanESM2 Canadian Centre for Climate Modelling and Analysis 
  CNRM-
CERFACS 

CNRM-CM5 Centre National de Recherches Meteorologiques / Centre 
Europeen de Recherche et Formation Avancees en Calcul 
Scientifique 

  CSIRO-
BOM 

ACCESS1.0  
ACCESS1.3 

CSIRO (Commonwealth Scientific and Industrial Research 
Organisation, Australia), and BOM (Bureau of Meteorology, 
Australia) 

 CSIRO-
QCCCE 

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research 
Organisation in collaboration with the Queensland Climate 
Change Centre of Excellence 

  EC-EARTH EC-EARTH EC-EARTH consortium 
  GCESS BNU-ESM College of Global Change and Earth System Science, Beijing 

Normal University 
  IPSL IPSL-CM5A-LR  

IPSL-CM5A-
MR  
IPSL-CM5B-LR 

Institut Pierre-Simon Laplace 

  LASG-CESS FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of 
Sciences; and CESS, Tsinghua University 

  LASG-IAP FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese Academy of 
Sciences 

  MIROC MIROC5  Atmosphere and Ocean Research Institute (The University 
of Tokyo), National Institute for Environmental Studies, and 
Japan Agency for Marine-Earth Science and Technology 

  MIROC MIROC-ESM  
MIROC-ESM-
CHEM 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University 
of Tokyo), and National Institute for Environmental Studies 

  MOHC  
WITH INPE 

HadGEM2-ES Met Office Hadley Centre (additional HadGEM2-ES 
realizations contributed by Instituto Nacional de Pesquisas 
Espaciais) 

  MPI-M MPI-ESM-LR  
MPI-ESM-MR  

Max Planck Institute for Meteorology (MPI-M) 

  MRI MRI-CGCM3  
 

Meteorological Research Institute 

  NASA GISS GISS-E2-H  
GISS-E2-R  
 

NASA Goddard Institute for Space Studies 
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  NCAR CCSM4 National Center for Atmospheric Research 
  NCC NorESM1-M  

NorESM1-ME 
Norwegian Climate Centre 

  NOAA 
GFDL 

GFDL-CM3  
GFDL-ESM2G  
GFDL-ESM2M  

Geophysical Fluid Dynamics Laboratory 

  NSF-DOE-
NCAR 

CESM1(CAM5)  
 

National Science Foundation, Department of Energy, 
National Center for Atmospheric Research 

 

Regridding of data 

Unless otherwise noted, all gridded data were regridded one of two ways. 

Where data was required on a common grid, but necessarily not supplied on the required grid, 

they were post-processed on the NCI facility using Climate Data Operators (CDO) using flux 

conservative options. E.g. to produce a common regular 5°x5° grid using flux conservative 

options the shell command, “cdo remapcon,r72X36 input.nc output.nc” was issued; to produce 

a 2°x2° grid, “cdo remapcon,r180X90 input.nc output.nc”. 

In some cases, where the provided data was on a finer grid that could be overlaid on the 

required grid without overlap, the required grid was produced by area weighted averaging 

from the supplied data. Zonally averages were likewise produced when only gridded data was 

supplied, by area weighted averaging. 

  



228 
 

Appendix 3.1: Derivation of governing Maronna-Yohai test 

equations. 

Maronna-Yohai’s bivariate. 

The bivariate test was introduced as an homogeneity test by Maronna and Yohai (1978) who 

included sample tables of critical  levels of their T0 statistic for various sample sizes. Potter 

(1981) illustrated the use of the test in the detection of a mean shift in a precipitation series, 

corrected some typographic errors, and also extended the table of critical values to cover 

sample size 100. 

Bücher and Dessens (1991) derived a formulation of the test that included a normalisation step 

and applied this to a temperature series from the high Pyrenees. Vives and Jones (2005) used 

the later formulation and extended the method further using flat random reference series. 

Jones (2012) uses this work and supplements it with the STARS test (Rodionov, 2004) as an 

extra validation.  

The derivation of Bücher and Dessens (1991) is straightforward enough but I have not seen an 

assessment of the full effect of the use of a random reference series (Vives and Jones, 2005), 

although it seems well validated experimentally. 

Maronna & Yohai as presented by Potter. 

The formulation given by Maronna and Yohai (1978), was published with minor typographic 

differences in a paper exploring homogenisation of precipitation time series (Potter, 1981). 

Assuming that (𝑥 , 𝑦) are i.i.d. random vectors of length n, 

Let xi be a stationary reference time series and yi be a test time-series which is assumed to 

correlate to xi except for a single shift at some time i0.  

Step 1 Define running averages, where n is the length of the time series and where “time” 

really means sample number and no requirement for equi-spacing is implied. 

𝑋
ୀଵ

ൗ ∑ ௫ೕ

ೕసభ

, 𝑌
ୀଵ

ൗ ∑ ௬ೕ

ೕసభ

 (A1) 

 

Step 2, define grand means. 

𝑋ത = 𝑋,  𝑌ത = 𝑌, (A2) 
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Step 3, define deviation sums of squares, there are three of these, and are not time varying. 

𝑆௫ = ∑ ൫𝑥 − 𝑋ത൯
ଶ

ୀଵ , 𝑆௬ = ∑ ൫𝑦 − 𝑌ത൯
ଶ

ୀଵ ,  𝑆௫௬ = ∑ ൫𝑥 − 𝑋ത൯൫𝑦 − 𝑌ത൯
ୀଵ . (A3) 

 

Now define two convenience functions Fi and Di, both of which vary by time 

𝐹 = 𝑆௫ −
(𝑋 − 𝑋ത)ଶ𝑛𝑖

(𝑛 − 𝑖)
, 𝑖 < 𝑛 

 

𝐷 =
ൣ𝑆௫(𝑌ത − 𝑌) − 𝑆௫௬(𝑋ത − 𝑋)൧𝑛

(𝑛 − 𝑖)𝐹
, 𝑖 < 𝑛 

 

(A4) 

 

 

(A5) 

 

Then define the statistic Ti  

𝑇 =
ൣ𝑖(𝑛 − 𝑖)𝐷

ଶ𝐹൧

൫𝑆௫𝑆௬ − 𝑆௫௬
ଶ ൯

, 𝑖 < 𝑛 

 

And finally the test itself, 

 

𝑇୧ = max
ழ

{𝑇}, and where i0 is the i value corresponding to T0 . 

 

 

(A6) 

 

 

 

(A7) 

Bücher et al.’s derivation 

The formulation published in (Vives and Jones, 2005, Kirono and Jones, 2007, Jones, 2012) is 

simpler and derived from Appendix B of  Bücher and Dessens (1991) in order to apply the 

published critical values. Here follows a derivation of the latter form. 

Below, I have preserved their notation with one exception. In their step 1 (equation A8), 

because they are about to redefine {𝑥} and {𝑦} as normalised versions, they indicate the un-

normalised series as {�́�} and {�́�}. I have extended this to the derived values throughout. This 

is especially important since Sx and Sy change their meaning from Potter equation (3), although 

they do not appear in the final equations in either form. 
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Step 1 : Means and standard deviations. 

𝑋′ഥ =
∑ ௫ണ́


ೕసభ


, 𝑌′ഥ =

∑ ௬ണ́

ೕసభ


, 𝑆ሖ௫ = ቆ

∑ ൫௫ᇱೕିᇱതതത൯
మ

ೕసభ


ቇ

ଵ/ଶ

, 𝑆ሖ௬ = ቆ
∑ ൫௬ᇱೕିᇱതതത൯

మ
ೕసభ


ቇ

ଵ/ଶ

 
 

(A8) 

 

Step 2: Standardise. 

 

𝑥 =
൫௫ᇲିᇱതതത൯

ௌሖೣ
 and 𝑦 =

൫௬ᇲିᇱതതത൯

ௌሖ
 for all j. 

 

 

(A9) 

Now Potter’s equations apply throughout, but because of the standardisation step (9) we also 

know that 

𝑋ത = 0 and 𝑌ത = 0 (A10) 

 

Sx, Sy and Sxy reduce to, 

𝑆௫ = ∑ 𝑥
ଶ

ୀଵ , 𝑆௬ = ∑ 𝑦
ଶ

ୀଵ ,  𝑆௫௬ = ∑ 𝑥𝑦

ୀଵ . (A11) 

 

Sx, Sy can be reduced further, as well. From equations (A9 and A11), 

𝑆௫ =  ቆ
(𝑥ᇱ − 𝑋ᇱതതത)

𝑆௫
ሖ

ቇ

ଶ

=



ୀଵ


(𝑥ᇱ − 𝑋ᇱതതത)ଶ

൫𝑆௫
ሖ ൯

ଶ =



ୀଵ


(𝑥ᇱ − 𝑋ᇱതതത)ଶ

൭
∑ ൫𝑥ᇱ

 − 𝑋ᇱതതത൯
ଶ

ି

𝑛 ൱൩



ୀଵ

 

Hence,  

𝑆௫ = 
𝑛

∑ ൫𝑥′ − 𝑋′ഥ ൯
ଶ

ୀ

 ൫𝑥′ − 𝑋′ഥ ൯
ଶ



ୀ

= 𝑛 

 

Similarly  𝑆௬ = 𝑛. 

 

 

(A12) 
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So immediately Fi and Di reduce to the later forms, 

𝐹 = 𝑛 −
𝑋

ଶ𝑛𝑖

(𝑛 − 𝑖)
, 𝑖 < 𝑛 

 

𝐷 =
ൣ𝑆௫௬𝑋 − 𝑛𝑌൧𝑛

(𝑛 − 𝑖)𝐹
, 𝑖 < 𝑛 

 

(A13) 

 

 

(A14) 

 

And Ti cannot reduce further than, 

𝑇 =
ൣ𝑖(𝑛 − 𝑖)𝐷

ଶ𝐹൧

൫𝑛ଶ − 𝑆௫௬
ଶ ൯

, 𝑖 < 𝑛 
 

(A15) 

Let 𝑇 = max (𝑇) and let 𝑖
∗  be the value of 𝑖 for which 𝑇 = 𝑇, the time after which a 

change occurred. Its successor is the first time of the new regime.  

𝐷
∗ is defined as the maximum likelihood estimator of a shift at 𝑖

∗.  

𝑇
∗  is the test statistic that tested against some constant, discriminates with a specified 

probability, a null hypothesis H0 of no shift against H1 that a shift exists (Maronna and Yohai, 

1978).  

A mean shift can be computed as ∆𝑦ത = 𝐷∙
∗𝑆ሖ௬.  

For the null trend case, analyzed in Maronna and Yohai (1978), critical values of Ti are given for 

probabilities of (0.25, 0.1, 0.05, and 0.01) for the null hypothesis of no change, given time 

series lengths n of 10, 15, 20, 30, 40 and 70, and a range of correlations (ρ) between X and Y . 

Potter (1981) provides these for n=100 and ρ=1.  

Maronna-Yohai test with random controls 

The imposition of a random control essentially simplifies the test further.  At all times the 

variates are normalised such that, absent trend and shift, the cumulative sums converge on 

zero. 

For a flat random control, after normalisation, some limits apply; lim
→ஶ

𝑆௫௬ → 0, 𝑋
ଶ = 0 and 

lim
ழ→ஶ

𝑋
ଶ → (𝑛 − 𝑖)/𝑛𝑖 due to Brownian progression. Note this latter is maximal at 𝑖 = 𝑛/2. 
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Consider Fi 

From (A13), given 𝐹 = 𝑛 −


మ

(ି)
  for all 𝑖 < 𝑛, after rearrangement and substitution we have  

𝐹 =
(ି)ିቀ

ష


ቁ

(ି)
  for all 𝑖 < 𝑛, and can simplify so we can see that for a flat normalised 

control, 

 lim


మ→
𝐹 = 𝑛 − 1. (A16) 

 

Consider Di 

Thus given 𝐷 =
൫ௌೣି൯

(ି)ி
 for all 𝑖 < 𝑛, without trend, 𝐷 =

൫ௌೣି൯

(ି)(ିଵ)
 for all 𝑖 < 𝑛  

lim
ழ,→ஶ

𝐷 = −
𝑌𝑛ଶ

(𝑛 − 𝑖)(𝑛 − 1)
= −

𝑌𝑛

(𝑛 − 𝑖)
 

 

(A17) 

 

Consider Ti 

We can obtain the exact estimator of this given the limits above. 

lim
ழ,→ஶ

𝑇 =
𝑖(𝑛 − 1)𝑌

ଶ

(𝑛 − 𝑖)
,for all 𝑖 < 𝑛 

 

(A18) 

 

A18 is the central estimate of the Ti function for a random control, where there is no cross 

correlation between variates and Sxy converges on zero by necessity. The normalisation is 

crucial. 

This version does not appear to be perturbed by red-like drift in the control variate which 

empirically seems to be an issue with segments of length less than 30 or so.  

The relationship between the two main components of Ti  is shown in Figure Ch3.6, which also 

illustrates its “spire” like construct.  
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Appendix 3.2: Comparisons of MSBV with other methods – table 

of results 
Table A3.2.26: Break dates in artificial data by each of three methods. Bivariate is MSBV with a flat random 
control. CP is the change point method, SC is the structural change method. Red denotes the target years. In set A 
2096 cannot be detected by MSBV due to the minimum seven year segment rule. In B there are two consecutive 
steps in 1973 and 1974, these cannot be separated by any method.  Bolding denotes agreement within one year 
of the standard. Underscores denote shifts < 1 StdDev. 

Set 
No 

Contains Analysis Shift Years Found 

A1 Random MSBV  []  

A1 Random CP  []  

A1 Random SC  [1958, 1969]  

A2 Random + Trend MSBV  [1979, 2037, 2058]  

A2 Random + Trend CP  [1979, 2037]  

A2 Random + Trend SC  [1979, 2037, 2058]  

A3 Random + Shifts MSBV  [1973, 1998, 2035, 2058]  

A3 Random + Shifts CP  [1973, 1998, 2035, 2058]  

A3 Random + Shifts SC  [1973, 1998, 2035, 2054, 2070]  

A4 Random + Shift + Trend MSBV  [1937, 1973, 1998, 2035, 2054, 2070]  

A4 Random + Shift + Trend CP  [1969, 1998, 2035, 2058, 2070]  

A4 Random + Shift + Trend SC  [1937, 1973, 1998, 2028, 2035, 2054, 2070, 2093]  

A Defined Breaks Change Years [1954, 1982, 1998, 2029, 2035, 2054, 2070, 2096] 

B1 Random MSBV  []  

B1 Random CP  []  

B1 Random SC  [2039]  

B2 Random + Trend MSBV  [1941, 1971, 2019, 2039, 2057, 2090]  

B2 Random + Trend CP  [1971, 2033, 2057, 2090]  

B2 Random + Trend SC  [1950, 1991, 2024, 2039, 2057, 2090]  

B3 Random + Shifts MSBV  [1973, 2024, 2055, 2074]  

B3 Random + Shifts CP  [1973, 2026, 2055, 2074]  

B3 Random + Shifts SC  [1973, 2024, 2033, 2055, 2074, 2086]  

B4 Random + Shift + Trend MSBV  [1941, 1973, 2000, 2024, 2033, 2055, 2074, 2086]  

B4 Random + Shift + Trend CP  [1973, 2014, 2030, 2055, 2074, 2086]  

B4 Random + Shift + Trend SC  [1941, 1973, 2000, 2024, 2033, 2055, 2074, 2086]  

B Defined Breaks Change Years [1973, 1974, 2009, 2026, 2031, 2054, 2073, 2084] 

C1 Random MSBV  []  

C1 Random CP  []  

C1 Random SC  []  

C2 Random + Trend MSBV  [1945, 1966, 2035, 2065]  

C2 Random + Trend CP  [1966, 2035, 2065]  

C2 Random + Trend SC  [1945, 1969, 2035, 2065]  

C3 Random + Shifts MSBV  [1969, 1994, 2035, 2048, 2070]  

C3 Random + Shifts CP  [1969, 1994, 2035, 2048]  
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C3 Random + Shifts SC  [1969, 1994, 2035, 2048, 2072]  

C4 Random + Shift + Trend MSBV  [1945, 1969, 1994, 2028, 2035, 2048, 2070]  

C4 Random + Shift + Trend CP  [1969, 1994, 2028, 2048, 2072]  

C4 Random + Shift + Trend SC  [1945, 1969, 1994, 2028, 2035, 2048, 2070, 2090]  

C Defined Breaks Change Years [1969, 1986, 1995, 2027, 2035, 2049, 2075, 2094] 

D1 Random MSBV  []  

D1 Random CP  []  

D1 Random SC  [1951, 2062]  

D2 Random + Trend MSBV  [1994, 2062]  

D2 Random + Trend CP  [1994, 2062]  

D2 Random + Trend SC  [1987, 2029, 2062]  

D3 Random + Shifts MSBV  [1979, 2010, 2017, 2060, 2067]  

D3 Random + Shifts CP  [1979, 2012, 2060, 2067]  

D3 Random + Shifts SC  [1979, 2007, 2017, 2060, 2067]  

D4 Random + Shift + Trend MSBV  [1979, 2007, 2017, 2046, 2060, 2067, 2084]  

D4 Random + Shift + Trend CP  [1979, 2007, 2017, 2046, 2060, 2067]  

D4 Random + Shift + Trend SC  [1972, 1979, 2007, 2017, 2046, 2060, 2067, 2087]  

D Defined Breaks Change Years [1950, 1979, 2009, 2017, 2046, 2057, 2067, 2084] 

E1 Random MSBV  []  

E1 Random CP  []  

E1 Random SC  []  

E2 Random + Trend MSBV  [1983, 2022, 2052, 2087]  

E2 Random + Trend CP  [1983, 2022, 2052]  

E2 Random + Trend SC  [1953, 1983, 2022, 2052, 2087]  

E3 Random + Shifts MSBV  [1953, 1983, 1999, 2022, 2052, 2064]  

E3 Random + Shifts CP  [1983, 2022, 2056]  

E3 Random + Shifts SC  [1953, 1983, 1999, 2022, 2052, 2067]  

E4 Random + Shift + Trend MSBV  [1953, 1983, 1999, 2022, 2039, 2052, 2064, 2087]  

E4 Random + Shift + Trend CP  [1953, 1983, 1999, 2022, 2052, 2067]  

E4 Random + Shift + Trend SC  [1953, 1983, 1999, 2022, 2039, 2052, 2067, 2087]  

E Defined Breaks Change Years [1954, 1980, 2000, 2028, 2038, 2056, 2070, 2079] 
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Appendix 4.1: Tables of results 
Table A4.1.27: Analysis of DS2 using the validation suite. Shift years returned by the bivariate test within two of the prescribed year are bolded. 

  Bivariate Unit Root and Stationarity Tests ANOVA/ANCOVA Segment Classification CP-Index 

   KPSS-Level KPSS-
Trend 

ADF Zivot Andrews  ANOVA ANCOVA (Stationarity testing) (segment trends 
and ANCOVA) 

Set Defined Break Shift A B A B A B A B ZA-year ZA-Diff pShift pTrend pRegime Feature 
Code 

Segment Class Index 

A3 1955 1952/3 0.29  0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1952 0 0.01 0.01 <0.01 25,26 Single, Stat 6 

A 1983 step<1SD    

A3  1992/3 0.58  0.01 0.10 0.02 0.10 0.01 0.01 0.01 0.01 1998 6 <0.01 0.90 <0.01 25,26 Single, Stat 7 

A 1999 In A4 (same dates) 1998/9 is found. 1992/3 may be intermediate    

A3 2030 2029/30 1.22  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 2029 0 <0.01 <0.01 <0.01 22,26 Single, Stat 7 

A 2036 Within prohibition period     

A 2055 Missed    

A3 2071 2070/1 0.65  0.01 0.10 0.05 0.10 0.05 0.01 0.01 0.01 2070 0 <0.01 <0.01 <0.01 26,26 Single, Stat 5 

A 2097 Within end prohibition period    

A4 1955 1954/5 0.73  0.01 0.10 0.01 0.10 0.1 0.01 0.01 0.01 1954 0 <0.01 0.01 <0.01 22,26 Single, Stat 7 

A 1983 step<1SD    

A4 1999 1998/9 0.65  0.01 0.10 0.03 0.10 0.01 0.01 0.01 0.01 1998 0 <0.01 0.13 <0.01 25,26 Single, Stat 7 

A 2030 Within prohibition period     

A4 2036 2034/5 1.21  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 2034 0 <0.01 <0.01 <0.01 22,26 Single, Stat 7 

A 2055 Missed    

A4 2071 2070/1 0.72  0.01 0.10 0.03 0.10 >0.10 0.01 0.01 0.01 2070 0 <0.01 <0.01 <0.01 22,26 Single, Stat 7 

A 2097 Within end prohibition period    

B3 1974/5 1973/4 1.74  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 1973 0 <0.01 <0.01 <0.01 22,26 Single, Stat 6 

B 2010 Step 1 SD (not guaranteed)    



236 
 

B3 2027 2026/7 0.93  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 2026 0 <0.01 0.95 <0.01 22,26 Single, Stat 5 

B 2032 Within prohibition period     

B3 2055 2054/5 1.23  0.01 0.10 0.06 0.10 >0.10 0.01 0.01 0.01 2054 0 <0.01 0.01 <0.01 20,20 Single, Stat 7 

B3 2074 2073/4 1.06  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 2073 0 <0.01 0.88 <0.01 0,2 Single, N/A 5 

B3  2081/2 0.38  0.01 0.10 0.10 0.10 0.05 >0.10 0.01 0.01 2088 7 0.05 0.44 0.14 2,2 Single, N/A 4 

B 2085 step<1SD, but 2081 may be intermediate    

B4  1944/4 0.06  0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1938 -6 0.63 0.15 0.21 26,26 Single, Stat 3 

B4 1974/5 1974/5 1.72  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 1974 0 0.00 0.00 <0.01 22,25 Single, Stat 7 

B 2010 Step 1 SD (not guaranteed)    

B4 2027 2026/7 1.01  0.01 0.10 0.01 0.10 >0.10 >0.10 0.01 0.01 2026 0 <0.01 0.13 <0.01 21,23 Single, Stat 7 

B 2032 Within prohibition period     

B4 2055 2054/5 0.62  0.01 0.10 0.02 0.10 >0.10 0.01 0.01 0.01 2054 0 <0.01 0.94 <0.01 18,20 Single, Stat 7 

B4 2074 2072/3 0.91  0.01 0.10 0.05 0.10 >0.10 0.1 0.05 0.01 2073 1 <0.01 0.52 <0.01 20,20 Single, Stat 5 

B4 2085 2084/5 0.51  0.01 0.10 0.10 0.10 0.1 0.05 0.01 0.01 2084 0 0.01 0.88 0.04 2,2 Single, N/A 5 

C3 1970 1969/70 0.48  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 1969 0 <0.01 <0.01 <0.01 22,26 Single, Stat 6 

C 1987 Findable-misplaced    

C3  1990/1 0.59  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 2003 13 <0.01 0.07 <0.01 22,26 Single, Stat 7 

C 1996 Findable (1990/1 may be intermediate)    

C 2028 step<1SD    

C3 2036 2034/5 0.48  0.01 0.10 0.08 0.10 0.01 0.01 0.01 0.01 2013 -21 0.02 0.56 0.02 26,26 Single, Stat 5 

C3 2050 2049/50 1.01  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 2049 0 <0.01 0.42 <0.01 18,20 Single, Stat 4 

C3 2076 2075/6 0.51  0.01 0.10 0.02 0.10 >0.10 0.05 0.01 0.01 2075 0 <0.01 0.01 <0.01 21,26 Single, Stat 7 

C 2095 Within end prohibition period    

C4  1939/40 0.28  0.01 0.10 0.06 0.10 >0.10 0.1 0.01 0.01 1924 -15 0.01 0.63 0.02 23,23 Single, Stat 5 

C4 1970 1969/70 0.66  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 1969 0 <0.01 <0.01 <0.01 21,26 Single, Stat 6 

C 1987 Missed    

C4 1996 1995/6 0.79  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 1986 -9 <0.01 <0.01 <0.01 22,26 Single, Stat 5 
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C4 2028 2029/30 0.65  0.01 0.10 0.01 0.10 0.1 0.01 0.01 0.01 2028 -1 <0.01 <0.01 <0.01 21,26 Single, Stat 7 

C 2036 Was found in C3, but 2028 was not    

C4 2050 2049/50 0.70  0.01 0.10 0.01 0.10 >0.10 0.1 0.01 0.01 2049 0 <0.01 0.08 <0.01 18,20 Single, Stat 7 

C4 2076 2075/6 0.22  0.01 0.10 0.03 0.10 0.01 0.01 0.01 0.01 2094 19 0.16 0.03 0.03 24,26 Single, Stat 7 

C 2095 Within end prohibition period    

D 1951 step<1SD    

D3 1980 1979/80 0.77  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 1979 0 <0.01 0.48 <0.01 22,26 Single, Stat 5 

D3 2010 2009/10 1.23  0.01 0.10 0.01 0.07 >0.10 0.1 0.01 0.01 2009 0 <0.01 0.01 <0.01 22,23 Single, Stat 6 

 2018 Missed    

D3 2047 2046/7 0.06  0.01 0.10 0.02 0.10 0.05 0.01 0.01 0.01 2037 -9 0.74 0.04 0.04 24,26 Single, Stat 7 

 2058 Missed    

D3 2068 2067/8 0.84  0.01 0.10 0.10 0.10 >0.10 0.1 0.01 0.01 2067 0 <0.01 0.01 <0.01 20,20 Single, Stat 5 

D3  2079/80 0.37  0.01 0.10 0.10 0.10 0.1 0.1 0.01 0.01 2079 0 0.01 0.02 0.02 20,20 Single, Stat 7 

D 2085 step<1SD    

D 1951 step<1SD    

D4 1980 1979/80 0.90  0.01 0.10 0.01 0.05 0.05 0.01 0.01 0.01 1979 0 <0.01 0.40 <0.01 25,25 Single, Stat 5 

D4 2010 2009/10 1.15  0.01 0.10 0.01 0.05 >0.10 >0.10 0.01 0.01 2009 0 <0.01 <0.01 <0.01 22,26 Single, Stat 7 

 2018 Missed    

D4 2047 2046/7 0.35  0.01 0.10 0.01 0.06 >0.10 0.01 0.01 0.01 2028 -18 0.04 0.10 <0.01 21,26 Single, Stat 7 

 2058 Missed    

D4 2068 2067/8 0.85  0.01 0.10 0.03 0.10 >0.10 0.1 0.01 0.01 2067 0 <0.01 <0.01 <0.01 18,20 Single, Stat 5 

D4 2085 2084/5 0.73  0.01 0.10 0.10 0.10 >0.10 >0.10 >0.10 0.1 2084 0 <0.01 0.61 <0.01 11,11 Single, Non-Stat 4 

E 1955 step<1SD    

E3 1981 1978/9 0.51  0.01 0.10 0.01 0.08 0.01 0.01 0.01 0.01 1917 -61 <0.01 0.89 <0.01 25,26 Single, Stat 5 

E3 2001 2000/1 0.91  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 2000 0 <0.01 0.02 <0.01 21,26 Single, Stat 7 

E3 2029 2028/9 0.78  0.01 0.10 0.01 0.10 >0.10 0.1 0.01 0.01 2028 0 <0.01 <0.01 <0.01 21,23 Single, Stat 7 

E 2039 Missed (and found in E4)    
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E3 2057 2056/7 0.66  0.01 0.10 0.02 0.10 >0.10 0.01 0.01 0.01 2056 0 <0.01 0.86 <0.01 18,20 Single, Stat 5 

E3 2071 2069/70 0.41  0.01 0.10 0.01 0.10 >0.10 0.05 0.01 0.01 2082 13 0.02 0.52 <0.01 18,20 Single, Stat 5 

E 2080 step<1SD    

E 1955 step<1SD    

E4  1963/4 0.29  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 1954 -9 0.01 <0.01 <0.01 22,26 Single, Stat 7 

E 1981 Was found in E3, 1963/4 may be intermediate    

E4 2001 2000/1 0.57  0.01 0.10 0.04 0.10 >0.10 0.01 0.01 0.01 2000 0 <0.01 0.49 <0.01 18,20 Single, Stat 7 

E4 2039 2038/9 0.75  0.01 0.10 0.01 0.10 >0.10 0.01 0.01 0.01 2038 0 <0.01 0.32 <0.01 21,26 Single, Stat 7 

E4 2057 2056/7 0.68  0.01 0.10 0.10 0.10 >0.10 0.01 0.01 0.01 2056 0 <0.01 0.10 <0.01 20,20 Single, Stat 7 

E 2071 step<1SD, found in E3, but 2080 was not    

E4 2080 2081/2 0.56  0.01 0.10 0.08 0.10 0.1 0.01 0.01 0.01 2070 -11 <0.01 0.44 <0.01 20,20 Single, Stat 7 
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Table A4.1.28: Heteroscedasticity testing of the data reported in Table A4.1.27. 

Studentized Breusch-Pagan Test 

Dataset 
Break 
model 

Linear 
model 

Quad 
model 

A1 0.4173 0.1083 0.2215 
A2 0.5127 0.1723 0.2215 
A3 0.1362 0.05181 8.92E-05 
A4 0.1828 0.02413 4.41E-05 
B1 0.8859 0.7991 0.9164 
B2 0.1509 0.1456 0.9164 
B3 0.0499 0.000644 0.002369 
B4 0.3204 0.001309 0.002369 
C1 0.9586 0.9725 0.7825 
C2 0.6503 0.9702 0.7825 
C3 0.1712 7.62E-07 0.4551 
C4 0.2684 5.79E-08 0.4551 
D1 0.1267 0.2892 0.07087 
D2 0.1115 0.3797 0.07087 
D3 0.9354 0.00359 0.002098 
D4 0.9567 0.001811 0.002098 
E1 0.2575 0.2874 0.539 
E2 0.0986 0.3317 0.539 
E3 0.3737 0.4607 0.00036 
E4 0.3147 0.116 0.00036 
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Table A4.1.29: classes of data segments/change-points and index values corresponding. 

Single, Non-stationary 

10,11 11,11 12,11 12,14 13,11 13,13 13,14 14,14 18,11 18,9 19,11 19,14 2,11 20,10 20,11 21,11 21,9 22,10 22,11 22,14 25,10 25,14 25,17 

Single, Stationary 

12,19 14,20 14,26 18,18 18,20 19,20 20,20 21,20 21,23 21,26 22,19 22,20 22,23 22,25 22,26 23,20 23,23 23,26 24,26 25,25 25,26 26,26 9,2 

Single, N/A 

0,0 0,0 0,2 11,1 11,2 2,2 
                 

Multiple, Stationary 

11,19 11,20 12,18 12,23 13,20 13,26 14,23 14,24 16,26 22,22 9,18 9,20 
           

Non-stationary 

12,10 9,0 9,1 9,11 9,9 
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Table A4.1.30: Extended analysis of the MSBV analysis first published by (Jones and Ricketts, 2017b illustrated in Figure 2). 

 
Dataset 

 

 
MSBV 

 
KPSS-L KPSS-T ADF Zivot Andrews 

 
ANOVA/ANCOVA 

 
Classification 

 
Autocorrelation 

 

Source 
Land/ 
Ocean 

Composition Boundary 
First 

Changed 
Year 

Internal 
Shift 

Internal 
Trend 

Change 
A B A B A B A B 

Year 
Of 

Change 

Trend 
Change 

Internal 
Shift 

Change- 
point 

   

    Year 0C 0C/Year Pr Pr Pr Pr Pr Pr Pr Pr Year Pr Pr Pr Code Class Segment Residual 

NCDC land Zone 00N-30N 1903 -0.3634  0.0006  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 1902 0.000 0.902 0.000 20,20 Single, Stat 0.4677  0.2699  

NCDC land Zone 00N-30N 1926 0.1579  -0.0041  0.010 0.100 0.012 0.100 0.010 0.010 0.010 0.050 1942 0.044 0.422 0.012 25,26 Single, Stat 0.1628  0.0505  

NCDC land Zone 00N-30N 1979 0.1574  0.0101  0.010 0.100 0.012 0.100 0.050 0.010 0.010 0.050 1977 0.095 0.170 0.002 25,26 Single, Stat 0.2018  0.0377  

NCDC land Zone 00N-30N 1998 0.2968  0.0006  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1997 0.011 0.956 0.035 20,20 Single, Stat 0.1133  -0.0846  

NCDC land Hem 00N-90N 1921 0.2461  -0.0019  0.010 0.100 0.013 0.100 0.100 0.010 0.010 0.050 1936 0.001 0.457 0.001 22,26 Single, Stat 0.2443  0.1287  

NCDC land Hem 00N-90N 1980 0.1979  0.0190  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1963 0.076 0.053 0.000 22,26 Single, Stat 0.2487  -0.0188  

NCDC land Hem 00N-90N 1997 0.3231  -0.0074  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 1997 0.012 0.538 0.034 20,20 Single, Stat 0.0417  -0.1054  

NCDC land Composite 20N-90N 1921 0.2260  -0.0030  0.010 0.100 0.018 0.100 0.050 0.010 0.010 0.050 1963 0.009 0.340 0.004 25,26 Single, Stat 0.1636  0.0780  

NCDC land Composite 20N-90N 1988 0.4654  0.0008  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1963 0.009 0.975 0.000 22,26 Single, Stat 0.2043  -0.0341  

NCDC land Composite 20N-90N 1998 0.4185  0.0040  0.010 0.100 0.090 0.100 0.100 0.010 0.050 0.050 1997 0.007 0.858 0.019 2,2 Single, N/A 0.1560  -0.0421  

NCDC land Tropic 20S-20N 1904 -0.1665  0.0021  0.010 0.100 0.100 0.100 1.000 0.010 0.010 0.050 1903 0.001 0.567 0.005 23,23 Single, Stat 0.2617  0.0802  

NCDC land Tropic 20S-20N 1926 0.2176  0.0046  0.010 0.100 0.028 0.100 0.050 0.010 0.010 0.050 1939 0.001 0.295 0.004 19,20 Single, Stat 0.4317  0.2872  

NCDC land Tropic 20S-20N 1957 0.1283  -0.0004  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 1942 0.123 0.941 0.274 20,20 Single, Stat 0.1764  0.1645  

NCDC land Tropic 20S-20N 1979 0.1856  0.0106  0.010 0.100 0.100 0.100 0.100 0.010 0.010 0.050 1976 0.069 0.234 0.056 23,20 Single, Stat 0.0677  -0.1185  

NCDC land Tropic 20S-20N 1997 0.1226  0.0022  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 2001 0.220 0.821 0.447 20,20 Single, Stat -0.0474  -0.0991  

NCDC land Zone 30N-60N 1894 0.1648  -0.0134  0.014 0.100 0.100 0.100 0.050 0.010 0.050 0.050 1902 0.198 0.338 0.110 20,20 Single, Stat 0.3264  0.2593  

NCDC land Zone 30N-60N 1921 0.2804  0.0005  0.010 0.100 0.037 0.100 0.010 0.010 0.010 0.050 1913 0.015 0.936 0.018 25,26 Single, Stat 0.0490  -0.0410  

NCDC land Zone 30N-60N 1981 0.2729  0.0162  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.050 1963 0.098 0.291 0.002 25,26 Single, Stat 0.0957  -0.0979  

NCDC land Zone 30N-60N 1997 0.5381  -0.0195  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 1997 0.007 0.314 0.014 20,20 Single, Stat 0.1949  0.0535  

NCDC land Zone 30S-00N 1937 0.3318  -0.0092  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1939 0.000 0.114 0.000 22,26 Single, Stat 0.4862  0.3297  

NCDC land Zone 30S-00N 1957 0.2612  0.0131  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1957 0.007 0.091 0.008 20,20 Single, Stat 0.0901  -0.0229  

NCDC land Zone 30S-00N 1979 0.1987  0.0091  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1976 0.035 0.201 0.050 20,20 Single, Stat 0.0156  -0.1711  

NCDC land Zone 30S-00N 2002 0.1682  -0.0086  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 2010 0.088 0.430 0.227 20,20 Single, Stat -0.0212  -0.0391  

NCDC land Zone 60N-90N 1920 0.6122  -0.0056  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.050 1949 0.002 0.439 0.001 25,26 Single, Stat 0.1165  0.0140  

NCDC land Zone 60N-90N 1988 0.5594  0.0373  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1963 0.014 0.003 0.000 22,26 Single, Stat 0.2331  -0.0875  

NCDC land Zone 60S-30S 1938 0.0919  0.0011  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1902 0.177 0.665 0.257 26,26 Single, Stat 0.2548  0.2349  

NCDC land Zone 60S-30S 1977 0.2841  0.0005  0.010 0.100 0.030 0.100 0.010 0.010 0.010 0.050 1976 0.001 0.912 0.002 25,26 Single, Stat 0.1590  0.0212  

NCDC land Zone 60S-30S 2003 0.0661  0.0225  0.010 0.100 0.036 0.100 0.050 0.010 0.010 0.050 1991 0.551 0.100 0.048 18,20 Single, Stat 0.1006  -0.0379  

NCDC land Composite 60S-60N 1921 0.0952  0.0031  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1902 0.232 0.654 0.165 20,20 Single, Stat 0.4056  0.3660  

NCDC land Composite 60S-60N 1938 0.1246  -0.0038  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1944 0.117 0.597 0.076 20,20 Single, Stat 0.0307  -0.0703  

NCDC land Composite 60S-60N 1979 0.2154  0.0150  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.050 1976 0.018 0.043 0.000 25,26 Single, Stat 0.2723  -0.0802  

NCDC land Composite 60S-60N 1997 0.2926  -0.0065  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1997 0.003 0.472 0.011 20,20 Single, Stat 0.1425  -0.0299  

NCDC land Hem 90S-00N 1937 0.3162  -0.0095  0.013 0.100 0.011 0.100 0.100 0.010 0.010 0.050 1939 0.000 0.086 0.000 22,26 Single, Stat 0.5056  0.3623  

NCDC land Hem 90S-00N 1957 0.2448  0.0141  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1957 0.007 0.056 0.006 20,20 Single, Stat 0.0919  -0.0311  

NCDC land Hem 90S-00N 1979 0.1946  0.0070  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1976 0.025 0.283 0.047 20,20 Single, Stat 0.0049  -0.1932  
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NCDC land Hem 90S-00N 2002 0.1445  -0.0036  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 2010 0.102 0.713 0.229 20,20 Single, Stat 0.0132  -0.0038  

NCDC land Composite 90S-20S 1926 0.2360  -0.0014  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1943 0.011 0.760 0.033 26,26 Single, Stat 0.3227  0.2871  

NCDC land Composite 90S-20S 1957 0.2275  0.0014  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 1957 0.024 0.848 0.041 20,20 Single, Stat -0.0060  -0.0548  

NCDC land Composite 90S-20S 1977 0.2612  0.0071  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1976 0.008 0.353 0.026 20,20 Single, Stat -0.1539  -0.2246  

NCDC land Composite 90S-20S 2002 0.1470  0.0083  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 2010 0.168 0.483 0.103 20,20 Single, Stat 0.1099  0.0601  

NCDC land Glob 90S-90N 1925 0.1829  0.0000  0.010 0.100 0.100 0.100 0.100 0.010 0.010 0.050 1936 0.003 0.994 0.009 23,26 Single, Stat 0.2498  0.1725  

NCDC land Glob 90S-90N 1980 0.1990  0.0150  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1963 0.036 0.070 0.000 22,26 Single, Stat 0.2805  -0.0169  

NCDC land Glob 90S-90N 1997 0.2500  -0.0042  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1997 0.016 0.672 0.050 20,20 Single, Stat 0.0041  -0.1222  

NCDC land_ocean Zone 00N-30N 1904 -0.2319  0.0033  0.010 0.100 0.100 0.100 1.000 0.010 0.100 0.050 1906 0.002 0.538 0.008 14,20 Single, Stat 0.4077  0.2901  

NCDC land_ocean Zone 00N-30N 1926 0.2545  -0.0025  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1942 0.000 0.594 0.000 22,26 Single, Stat 0.5108  0.3306  

NCDC land_ocean Zone 00N-30N 1979 0.1113  0.0075  0.010 0.100 0.055 0.100 0.100 0.010 0.010 0.050 1970 0.150 0.239 0.007 23,26 Single, Stat 0.4178  0.3231  

NCDC land_ocean Zone 00N-30N 1997 0.1398  -0.0022  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1986 0.070 0.760 0.186 20,20 Single, Stat 0.1575  0.0461  

NCDC land_ocean Hem 00N-90N 1925 0.3062  0.0034  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1923 0.000 0.033 0.000 22,26 Single, Stat 0.5789  0.3782  

NCDC land_ocean Hem 00N-90N 1987 0.2187  0.0050  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1963 0.013 0.702 0.000 22,23 Single, Stat 0.4441  0.2655  

NCDC land_ocean Hem 00N-90N 1997 0.2179  0.0031  0.010 0.100 0.077 0.100 0.100 0.010 0.050 0.050 1996 0.004 0.771 0.010 2,2 Single, N/A 0.2037  -0.0534  

NCDC land_ocean Composite 20N-90N 1925 0.3284  0.0003  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1920 0.000 0.854 0.000 22,26 Single, Stat 0.4666  0.2348  

NCDC land_ocean Composite 20N-90N 1988 0.2890  0.0079  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1963 0.008 0.625 0.000 22,26 Single, Stat 0.3477  0.0848  

NCDC land_ocean Composite 20N-90N 1998 0.2831  0.0004  0.010 0.100 0.074 0.100 1.000 0.010 1.000 0.050 1996 0.004 0.975 0.009 11,2 Single, N/A 0.3345  0.0951  

NCDC land_ocean Tropic 20S-20N 1936 0.2062  0.0027  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.050 1925 0.002 0.249 0.001 25,26 Single, Stat 0.4898  0.4085  

NCDC land_ocean Tropic 20S-20N 1979 0.1812  0.0067  0.010 0.100 0.018 0.100 1.000 0.010 0.010 0.050 1945 0.041 0.351 0.004 22,26 Single, Stat 0.3748  0.2322  

NCDC land_ocean Tropic 20S-20N 1997 0.1022  -0.0044  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 2001 0.235 0.588 0.435 20,20 Single, Stat 0.0897  0.0432  

NCDC land_ocean Zone 30N-60N 1921 0.3372  0.0011  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1920 0.000 0.618 0.000 22,26 Single, Stat 0.3531  0.1448  

NCDC land_ocean Zone 30N-60N 1988 0.3716  -0.0141  0.042 0.100 0.026 0.100 1.000 0.010 0.010 0.050 1963 0.005 0.513 0.000 22,26 Single, Stat 0.2080  0.0175  

NCDC land_ocean Zone 30N-60N 1997 0.4279  0.0188  0.010 0.100 0.100 0.100 1.000 0.010 0.100 0.050 1996 0.001 0.336 0.002 11,2 Single, N/A 0.3494  0.0974  

NCDC land_ocean Zone 30S-00N 1937 0.1599  0.0044  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.050 1902 0.006 0.040 0.000 25,26 Single, Stat 0.5334  0.4487  

NCDC land_ocean Zone 30S-00N 1979 0.1806  0.0044  0.010 0.100 0.010 0.100 0.100 0.010 0.010 0.050 1945 0.023 0.494 0.004 22,26 Single, Stat 0.4146  0.2756  

NCDC land_ocean Zone 30S-00N 1997 0.1112  -0.0042  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 2001 0.106 0.516 0.229 20,20 Single, Stat 0.1007  0.0305  

NCDC land_ocean Zone 60N-90N 1920 0.5775  0.0023  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.050 1919 0.000 0.664 0.000 25,26 Single, Stat 0.1758  0.0589  

NCDC land_ocean Zone 60N-90N 1988 0.5325  0.0115  0.025 0.100 0.010 0.100 0.010 0.010 0.010 0.050 1963 0.018 0.631 0.000 25,26 Single, Stat 0.1837  -0.0004  

NCDC land_ocean Zone 60N-90N 2002 0.3442  0.0105  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 2001 0.153 0.727 0.307 2,2 Single, N/A -0.3315  -0.4835  

NCDC land_ocean Zone 60S-30S 1887 -0.1860  0.0168  0.010 0.100 0.010 0.100 1.000 0.010 1.000 0.050 1913 0.011 0.356 0.000 13,13 Single, Non-Stat 0.7557  0.6455  

NCDC land_ocean Zone 60S-30S 1937 0.2404  0.0015  0.010 0.100 0.010 0.100 0.050 0.010 1.000 0.050 1931 0.000 0.478 0.000 16,26 Multiple, Stat 0.7425  0.5928  

NCDC land_ocean Zone 60S-30S 1968 0.0937  0.0174  0.010 0.100 0.022 0.100 1.000 0.010 1.000 0.050 1962 0.127 0.081 0.000 12,11 Single, Non-Stat 0.6649  0.4876  

NCDC land_ocean Zone 60S-30S 1977 0.0539  -0.0176  0.010 0.100 0.017 0.100 1.000 0.010 1.000 0.050 1981 0.123 0.006 0.001 9,11 Non-Stat 0.5229  0.2317  

NCDC land_ocean Zone 60S-30S 1996 0.1049  0.0014  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.050 1995 0.001 0.609 0.004 11,11 Single, Non-Stat 0.4300  0.3308  

NCDC land_ocean Composite 60S-60N 1903 -0.1383  -0.0041  0.010 0.100 0.081 0.100 0.100 0.010 1.000 0.050 1894 0.018 0.573 0.006 11,11 Single, Non-Stat 0.5104  0.3625  

NCDC land_ocean Composite 60S-60N 1914 0.1976  0.0023  0.024 0.100 0.100 0.100 0.100 0.010 1.000 0.050 1913 0.002 0.792 0.006 11,2 Single, N/A 0.4064  -0.0483  

NCDC land_ocean Composite 60S-60N 1925 0.0985  0.0092  0.010 0.100 0.100 0.100 0.050 0.010 0.050 0.050 1915 0.072 0.257 0.109 2,2 Single, N/A 0.1019  -0.0476  

NCDC land_ocean Composite 60S-60N 1937 0.1147  -0.0048  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 1945 0.050 0.534 0.008 20,20 Single, Stat 0.4269  0.3138  

NCDC land_ocean Composite 60S-60N 1979 0.1392  0.0091  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.050 1945 0.011 0.039 0.000 25,26 Single, Stat 0.5302  0.2636  

NCDC land_ocean Composite 60S-60N 1997 0.1671  -0.0054  0.010 0.100 0.100 0.100 1.000 0.010 0.050 0.050 1996 0.001 0.251 0.004 20,20 Single, Stat 0.2840  0.0464  
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NCDC land_ocean Hem 90S-00N 1890 -0.1208  0.0143  0.018 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1911 0.027 0.114 0.000 22,22 Multiple, Stat 0.6735  0.5252  

NCDC land_ocean Hem 90S-00N 1937 0.1979  -0.0010  0.010 0.100 0.026 0.100 1.000 0.010 0.100 0.050 1911 0.000 0.596 0.000 13,26 Multiple, Stat 0.6696  0.5522  

NCDC land_ocean Hem 90S-00N 1969 0.1819  -0.0005  0.010 0.100 0.015 0.100 0.050 0.010 0.050 0.050 1945 0.019 0.963 0.006 18,20 Single, Stat 0.5191  0.3785  

NCDC land_ocean Hem 90S-00N 1979 0.1195  0.0058  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 1976 0.033 0.485 0.096 2,2 Single, N/A 0.0642  -0.1668  

NCDC land_ocean Hem 90S-00N 1997 0.1067  -0.0032  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1996 0.008 0.381 0.023 20,20 Single, Stat 0.2041  0.0261  

NCDC land_ocean Composite 90S-20S 1887 -0.1750  0.0121  0.010 0.100 0.010 0.100 1.000 0.010 0.050 0.050 1911 0.003 0.399 0.000 22,22 Multiple, Stat 0.7203  0.5540  

NCDC land_ocean Composite 90S-20S 1937 0.2298  -0.0001  0.010 0.100 0.010 0.100 0.050 0.010 1.000 0.050 1931 0.000 0.958 0.000 16,26 Multiple, Stat 0.7108  0.5196  

NCDC land_ocean Composite 90S-20S 1969 0.1863  0.0046  0.010 0.100 0.010 0.100 1.000 0.010 1.000 0.050 1945 0.008 0.707 0.000 12,14 Single, Non-Stat 0.6678  0.4186  

NCDC land_ocean Composite 90S-20S 1977 0.0761  -0.0013  0.010 0.100 0.100 0.100 0.100 0.010 0.100 0.050 1976 0.031 0.847 0.030 11,11 Single, Non-Stat 0.1841  0.0736  

NCDC land_ocean Composite 90S-20S 1997 0.1039  -0.0003  0.010 0.100 0.100 0.100 0.100 0.010 1.000 0.050 1995 0.000 0.887 0.001 11,20 Multiple, Stat 0.4447  0.2407  

NCDC land_ocean Glob 90S-90N 1930 0.2453  0.0032  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1913 0.000 0.024 0.000 22,26 Single, Stat 0.6645  0.4959  

NCDC land_ocean Glob 90S-90N 1979 0.1157  0.0089  0.010 0.100 0.010 0.100 0.100 0.010 0.010 0.050 1945 0.033 0.045 0.000 22,26 Single, Stat 0.5345  0.3218  

NCDC land_ocean Glob 90S-90N 1997 0.1564  -0.0049  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 1996 0.002 0.286 0.007 20,20 Single, Stat 0.2471  0.0190  

NCDC ocean Zone 00N-30N 1907 -0.2312  0.0100  0.015 0.100 0.100 0.100 0.050 0.010 0.100 0.050 1906 0.006 0.128 0.020 11,20 Multiple, Stat 0.3654  0.2672  

NCDC ocean Zone 00N-30N 1926 0.2385  -0.0061  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1945 0.001 0.281 0.000 22,26 Single, Stat 0.5913  0.4115  

NCDC ocean Zone 00N-30N 1987 0.1487  0.0051  0.010 0.100 0.010 0.100 0.100 0.010 0.010 0.050 1969 0.016 0.117 0.000 22,26 Single, Stat 0.5029  0.4081  

NCDC ocean Hem 00N-90N 1903 -0.2528  0.0106  0.010 0.100 0.023 0.100 1.000 0.010 1.000 0.050 1906 0.000 0.015 0.000 12,11 Single, Non-Stat 0.6105  0.3778  

NCDC ocean Hem 00N-90N 1926 0.2671  -0.0079  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1945 0.000 0.012 0.000 22,26 Single, Stat 0.7637  0.4696  

NCDC ocean Hem 00N-90N 1987 0.1271  0.0071  0.037 0.100 0.023 0.100 0.100 0.010 0.050 0.050 1969 0.073 0.501 0.001 22,26 Single, Stat 0.5975  0.5100  

NCDC ocean Hem 00N-90N 1997 0.1307  0.0001  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.050 1996 0.035 0.989 0.074 11,11 Single, Non-Stat 0.3100  0.1302  

NCDC ocean Composite 20N-90N 1902 -0.2142  -0.0035  0.010 0.100 0.043 0.100 1.000 0.010 1.000 0.050 1901 0.000 0.505 0.000 9,11 Non-Stat 0.5963  0.3657  

NCDC ocean Composite 20N-90N 1915 0.1361  0.0245  0.010 0.100 0.020 0.100 1.000 0.010 1.000 0.050 1907 0.006 0.000 0.000 9,11 Non-Stat 0.4710  0.1796  

NCDC ocean Composite 20N-90N 1930 0.1341  -0.0154  0.010 0.100 0.010 0.100 1.000 0.010 0.100 0.050 1945 0.005 0.002 0.000 13,20 Multiple, Stat 0.6873  0.3986  

NCDC ocean Composite 20N-90N 1964 -0.1560  -0.0036  0.010 0.100 0.025 0.100 0.100 0.010 0.050 0.050 1963 0.000 0.181 0.000 22,20 Single, Stat 0.5088  0.3497  

NCDC ocean Composite 20N-90N 1988 0.1968  0.0056  0.014 0.100 0.019 0.100 1.000 0.010 1.000 0.050 1987 0.007 0.605 0.001 9,11 Non-Stat 0.4869  0.2180  

NCDC ocean Composite 20N-90N 1997 0.1951  0.0067  0.010 0.100 0.090 0.100 1.000 0.010 1.000 0.050 1993 0.003 0.514 0.008 11,11 Single, Non-Stat 0.5214  0.2013  

NCDC ocean Tropic 20S-20N 1926 0.2562  0.0060  0.010 0.100 0.032 0.100 0.010 0.010 0.010 0.050 1924 0.000 0.008 0.000 25,26 Single, Stat 0.4736  0.3423  

NCDC ocean Tropic 20S-20N 1979 0.1610  0.0049  0.010 0.100 0.034 0.100 0.100 0.010 0.010 0.050 1945 0.058 0.477 0.006 22,26 Single, Stat 0.3812  0.2794  

NCDC ocean Tropic 20S-20N 1997 0.0959  -0.0064  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 2001 0.261 0.431 0.405 20,20 Single, Stat 0.1333  0.0840  

NCDC ocean Zone 30N-60N 1902 -0.3433  0.0031  0.010 0.100 0.038 0.100 1.000 0.010 0.100 0.050 1901 0.000 0.619 0.000 9,11 Non-Stat 0.5852  0.1488  

NCDC ocean Zone 30N-60N 1915 0.2074  0.0135  0.010 0.100 0.100 0.100 0.050 0.010 0.100 0.050 1914 0.001 0.057 0.001 11,2 Single, N/A 0.3203  0.0827  

NCDC ocean Zone 30N-60N 1930 0.1320  -0.0113  0.010 0.100 0.017 0.100 0.010 0.010 0.100 0.050 1938 0.050 0.103 0.002 10,11 Single, Non-Stat 0.4667  0.3173  

NCDC ocean Zone 30N-60N 1964 -0.1841  -0.0063  0.010 0.100 0.020 0.100 0.100 0.010 0.010 0.050 1963 0.003 0.086 0.000 22,26 Single, Stat 0.4164  0.2517  

NCDC ocean Zone 30N-60N 1989 0.2803  0.0068  0.022 0.100 0.010 0.100 0.100 0.010 0.050 0.050 1988 0.002 0.621 0.000 18,20 Single, Stat 0.4497  0.0546  

NCDC ocean Zone 30N-60N 1998 0.2108  0.0074  0.010 0.100 0.100 0.100 1.000 0.010 0.100 0.050 1993 0.012 0.586 0.034 11,2 Single, N/A 0.4639  0.2389  

NCDC ocean Zone 30S-00N 1937 0.1489  0.0029  0.010 0.100 0.016 0.100 0.050 0.010 0.010 0.050 1911 0.012 0.184 0.006 25,26 Single, Stat 0.5315  0.4737  

NCDC ocean Zone 30S-00N 1979 0.1830  0.0036  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1945 0.024 0.576 0.006 22,26 Single, Stat 0.4570  0.3387  

NCDC ocean Zone 30S-00N 1997 0.1307  -0.0056  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 2001 0.045 0.356 0.095 20,20 Single, Stat 0.1490  0.0353  

NCDC ocean Zone 60N-90N 1926 0.4000  0.0020  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1925 0.000 0.243 0.000 22,25 Single, Stat 0.6016  0.3729  

NCDC ocean Zone 60N-90N 2000 0.4789  0.0249  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1981 0.000 0.005 0.000 22,25 Single, Stat 0.8191  0.3889  

NCDC ocean Zone 60S-30S 1887 -0.1958  0.0171  0.010 0.100 0.010 0.100 1.000 0.010 1.000 0.050 1913 0.011 0.371 0.000 13,13 Single, Non-Stat 0.7703  0.6657  
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NCDC ocean Zone 60S-30S 1937 0.2358  0.0029  0.010 0.100 0.010 0.100 0.050 0.010 1.000 0.050 1931 0.000 0.149 0.000 16,26 Multiple, Stat 0.7551  0.6146  

NCDC ocean Zone 60S-30S 1970 0.1396  0.0111  0.010 0.100 0.025 0.100 1.000 0.010 1.000 0.050 1962 0.060 0.463 0.001 12,11 Single, Non-Stat 0.6659  0.4450  

NCDC ocean Zone 60S-30S 1977 0.0496  -0.0122  0.010 0.100 0.084 0.100 1.000 0.010 1.000 0.050 1981 0.169 0.146 0.018 11,11 Single, Non-Stat 0.4941  0.2948  

NCDC ocean Zone 60S-30S 1996 0.1064  0.0001  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.050 1995 0.001 0.971 0.004 11,11 Single, Non-Stat 0.4756  0.3842  

NCDC ocean Composite 60S-60N 1890 -0.1357  0.0080  0.016 0.100 0.010 0.100 1.000 0.010 1.000 0.050 1913 0.039 0.452 0.003 13,13 Single, Non-Stat 0.7049  0.6223  

NCDC ocean Composite 60S-60N 1930 0.2165  0.0011  0.010 0.100 0.022 0.100 1.000 0.010 1.000 0.050 1913 0.000 0.540 0.000 13,26 Multiple, Stat 0.7148  0.6017  

NCDC ocean Composite 60S-60N 1977 0.1088  -0.0017  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1945 0.116 0.872 0.071 20,20 Single, Stat 0.5643  0.5356  

NCDC ocean Composite 60S-60N 1987 0.1004  0.0013  0.013 0.100 0.100 0.100 0.050 0.010 1.000 0.050 1986 0.027 0.853 0.076 11,11 Single, Non-Stat 0.0923  0.0138  

NCDC ocean Composite 60S-60N 1997 0.1364  0.0013  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.050 1996 0.005 0.849 0.011 11,11 Single, Non-Stat 0.3655  0.0690  

NCDC ocean Hem 90S-00N 1890 -0.1235  0.0161  0.018 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1911 0.022 0.072 0.000 22,22 Multiple, Stat 0.7140  0.5597  

NCDC ocean Hem 90S-00N 1937 0.2039  -0.0023  0.010 0.100 0.039 0.100 1.000 0.010 1.000 0.050 1911 0.000 0.254 0.000 13,26 Multiple, Stat 0.7079  0.5961  

NCDC ocean Hem 90S-00N 1969 0.1806  0.0025  0.017 0.100 0.010 0.100 1.000 0.010 0.050 0.050 1945 0.017 0.815 0.002 21,11 Single, Non-Stat 0.6186  0.4779  

NCDC ocean Hem 90S-00N 1979 0.0993  0.0027  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1976 0.035 0.702 0.092 2,2 Single, N/A 0.1025  -0.1034  

NCDC ocean Hem 90S-00N 1997 0.1158  -0.0044  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1996 0.001 0.164 0.003 20,20 Single, Stat 0.3183  0.0568  

NCDC ocean Composite 90S-20S 1887 -0.1840  0.0130  0.010 0.100 0.010 0.100 1.000 0.010 1.000 0.050 1911 0.003 0.386 0.000 13,13 Single, Non-Stat 0.7778  0.6367  

NCDC ocean Composite 90S-20S 1937 0.2456  -0.0001  0.010 0.100 0.010 0.100 0.100 0.010 1.000 0.050 1933 0.000 0.975 0.000 13,26 Multiple, Stat 0.7678  0.5928  

NCDC ocean Composite 90S-20S 1969 0.1653  0.0121  0.013 0.100 0.010 0.100 1.000 0.010 1.000 0.050 1944 0.017 0.322 0.000 12,14 Single, Non-Stat 0.7423  0.5159  

NCDC ocean Composite 90S-20S 1977 0.0404  -0.0096  0.010 0.100 0.069 0.100 1.000 0.010 1.000 0.050 1987 0.185 0.118 0.021 11,11 Single, Non-Stat 0.4108  0.2906  

NCDC ocean Composite 90S-20S 1996 0.1084  -0.0002  0.010 0.100 0.100 0.100 1.000 0.010 1.000 0.050 1995 0.000 0.924 0.001 11,11 Single, Non-Stat 0.5678  0.4655  

NCDC ocean Glob 90S-90N 1890 -0.1330  0.0083  0.014 0.100 0.010 0.100 1.000 0.010 1.000 0.050 1913 0.040 0.433 0.002 13,13 Single, Non-Stat 0.7077  0.6258  

NCDC ocean Glob 90S-90N 1930 0.2200  0.0010  0.010 0.100 0.020 0.100 1.000 0.010 1.000 0.050 1913 0.000 0.560 0.000 13,26 Multiple, Stat 0.7247  0.6065  

NCDC ocean Glob 90S-90N 1977 0.1081  -0.0017  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1945 0.111 0.865 0.066 20,20 Single, Stat 0.5733  0.5439  

NCDC ocean Glob 90S-90N 1987 0.0973  0.0021  0.012 0.100 0.100 0.100 0.050 0.010 1.000 0.050 1986 0.028 0.771 0.075 11,11 Single, Non-Stat 0.0952  0.0162  

NCDC ocean Glob 90S-90N 1997 0.1350  0.0011  0.010 0.100 0.100 0.100 0.100 0.010 1.000 0.050 1996 0.004 0.875 0.010 11,11 Single, Non-Stat 0.3782  0.0784  

GISSTEMP land_ocean Zone 24N-44N 1930 0.2245  0.0042  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.050 1902 0.000 0.081 0.000 25,26 Single, Stat 0.6076  0.4507  

GISSTEMP land_ocean Zone 24N-44N 1964 -0.2122  -0.0016  0.010 0.100 0.013 0.100 0.050 0.010 0.010 0.050 1963 0.000 0.640 0.000 19,20 Single, Stat 0.2224  -0.0122  

GISSTEMP land_ocean Zone 24N-44N 1987 0.2263  0.0014  0.010 0.100 0.090 0.100 0.050 0.010 0.050 0.050 1986 0.025 0.916 0.022 20,20 Single, Stat 0.1992  -0.0138  

GISSTEMP land_ocean Zone 24N-44N 1998 0.4256  -0.0032  0.010 0.100 0.096 0.100 1.000 0.010 0.010 0.050 1997 0.000 0.813 0.000 2,2 Single, N/A 0.3765  0.0128  

GISSTEMP land_ocean Composite 24N-90N 1921 0.3951  -0.0008  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1929 0.000 0.712 0.000 22,26 Single, Stat 0.4537  0.2004  

GISSTEMP land_ocean Composite 24N-90N 1988 0.3278  0.0077  0.050 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1963 0.014 0.697 0.000 22,26 Single, Stat 0.3438  0.1436  

GISSTEMP land_ocean Composite 24N-90N 1998 0.3281  0.0041  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.050 1993 0.009 0.822 0.024 11,2 Single, N/A 0.2835  0.1003  

GISSTEMP land_ocean Tropic 24S-24N 1903 -0.2330  0.0044  0.018 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1906 0.004 0.456 0.014 20,20 Single, Stat 0.3603  0.2485  

GISSTEMP land_ocean Tropic 24S-24N 1926 0.1913  -0.0028  0.010 0.100 0.024 0.100 0.050 0.010 0.010 0.050 1945 0.008 0.552 0.002 25,26 Single, Stat 0.4005  0.2838  

GISSTEMP land_ocean Tropic 24S-24N 1979 0.1669  0.0063  0.010 0.100 0.014 0.100 0.100 0.010 0.010 0.050 1945 0.040 0.342 0.001 22,26 Single, Stat 0.3825  0.2473  

GISSTEMP land_ocean Tropic 24S-24N 1997 0.1121  -0.0041  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 2001 0.189 0.615 0.379 20,20 Single, Stat 0.0856  0.0293  

GISSTEMP land_ocean Zone 24S-00N 1937 0.1606  0.0030  0.010 0.100 0.018 0.100 0.010 0.010 0.010 0.050 1911 0.015 0.208 0.008 25,26 Single, Stat 0.4539  0.3946  

GISSTEMP land_ocean Zone 24S-00N 1979 0.1907  0.0065  0.010 0.100 0.010 0.100 0.100 0.010 0.010 0.050 1945 0.032 0.366 0.004 22,26 Single, Stat 0.3844  0.2408  

GISSTEMP land_ocean Zone 24S-00N 1997 0.1156  -0.0085  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 2001 0.172 0.295 0.244 20,20 Single, Stat 0.0888  0.0173  

GISSTEMP land_ocean Zone 44N-64N 1920 0.3010  -0.0028  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.050 1963 0.003 0.444 0.001 25,26 Single, Stat 0.0866  -0.0244  

GISSTEMP land_ocean Zone 44N-64N 1988 0.5660  -0.0242  0.024 0.100 0.011 0.100 1.000 0.010 0.010 0.050 1963 0.008 0.495 0.001 22,26 Single, Stat 0.1050  -0.0807  

GISSTEMP land_ocean Zone 44N-64N 1997 0.4503  0.0283  0.010 0.100 0.100 0.100 1.000 0.010 0.050 0.050 2008 0.008 0.302 0.026 2,2 Single, N/A 0.1519  0.0027  
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GISSTEMP land_ocean Zone 44S-24S 1887 -0.1067  0.0222  0.012 0.100 0.010 0.100 0.100 0.010 0.010 0.050 1912 0.092 0.166 0.000 22,22 Multiple, Stat 0.6199  0.4882  

GISSTEMP land_ocean Zone 44S-24S 1933 0.2179  0.0007  0.010 0.100 0.025 0.100 0.050 0.010 0.050 0.050 1931 0.000 0.671 0.000 25,26 Single, Stat 0.6707  0.5614  

GISSTEMP land_ocean Zone 44S-24S 1970 0.2322  0.0028  0.010 0.100 0.010 0.100 1.000 0.010 1.000 0.050 1944 0.000 0.594 0.000 13,11 Single, Non-Stat 0.7084  0.4786  

GISSTEMP land_ocean Zone 44S-24S 1985 0.0799  -0.0029  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.050 1986 0.088 0.629 0.226 11,11 Single, Non-Stat 0.4384  0.4186  

GISSTEMP land_ocean Zone 44S-24S 1997 0.1312  0.0100  0.010 0.100 0.100 0.100 1.000 0.010 1.000 0.050 1996 0.001 0.028 0.001 11,11 Single, Non-Stat 0.5676  0.2629  

GISSTEMP land_ocean Zone 64N-90N 1903 0.7491  -0.0336  0.010 0.100 0.061 0.100 0.050 0.010 0.010 0.050 1902 0.000 0.057 0.001 20,20 Single, Stat 0.1026  -0.1170  

GISSTEMP land_ocean Zone 64N-90N 1920 1.0669  0.0312  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1947 0.000 0.135 0.000 22,25 Single, Stat 0.3371  0.1444  

GISSTEMP land_ocean Zone 64N-90N 1995 0.7989  0.0025  0.035 0.100 0.010 0.100 0.010 0.010 0.010 0.050 1963 0.013 0.958 0.000 25,25 Single, Stat 0.2709  0.0625  

GISSTEMP land_ocean Zone 64N-90N 2005 0.7699  -0.0179  0.016 0.100 0.100 0.100 0.100 0.010 0.010 0.050 2004 0.026 0.745 0.078 2,2 Single, N/A -0.1172  -0.1973  

GISSTEMP land_ocean Zone 64S-44S 1887 -0.1932  0.0052  0.010 0.100 0.013 0.100 1.000 0.010 1.000 0.050 1886 0.001 0.640 0.000 9,2 Single, Stat 0.5013  0.0192  

GISSTEMP land_ocean Zone 64S-44S 1904 -0.0518  0.0028  0.010 0.100 0.100 0.100 1.000 0.010 0.050 0.050 1911 0.170 0.401 0.108 23,23 Single, Stat 0.3676  0.2985  

GISSTEMP land_ocean Zone 64S-44S 1937 0.2183  0.0068  0.010 0.100 0.010 0.100 1.000 0.010 1.000 0.050 1935 0.000 0.068 0.000 12,23 Multiple, Stat 0.7739  0.3562  

GISSTEMP land_ocean Zone 64S-44S 1952 0.0822  -0.0073  0.010 0.100 0.100 0.100 0.100 0.010 0.010 0.050 1951 0.032 0.085 0.027 20,20 Single, Stat 0.1124  -0.0693  

GISSTEMP land_ocean Zone 64S-44S 1968 0.1529  0.0037  0.019 0.100 0.021 0.100 1.000 0.010 0.100 0.050 1967 0.012 0.708 0.006 9,2 Single, Stat 0.2782  -0.1078  

GISSTEMP land_ocean Zone 64S-44S 1976 0.1762  -0.0016  0.010 0.100 0.010 0.100 1.000 0.010 0.050 0.050 1974 0.000 0.849 0.000 21,20 Single, Stat 0.5279  0.0659  

GISSTEMP land_ocean Zone 64S-44S 2007 -0.1806  0.0212  0.023 0.100 0.100 0.100 0.050 0.010 0.010 0.050 2006 0.000 0.017 0.002 20,20 Single, Stat 0.2526  0.0239  

GISSTEMP land_ocean Composite 90S-24S 1887 -0.1124  0.0165  0.010 0.100 0.048 0.100 1.000 0.010 0.100 0.050 1886 0.021 0.116 0.006 9,11 Non-Stat 0.2798  -0.1914  

GISSTEMP land_ocean Composite 90S-24S 1900 -0.1050  0.0039  0.082 0.100 0.011 0.100 1.000 0.010 1.000 0.050 1912 0.008 0.402 0.001 13,14 Single, Non-Stat 0.6658  0.5115  

GISSTEMP land_ocean Composite 90S-24S 1937 0.1888  -0.0009  0.010 0.100 0.063 0.100 1.000 0.010 0.100 0.050 1935 0.000 0.580 0.000 14,26 Single, Stat 0.6277  0.4447  

GISSTEMP land_ocean Composite 90S-24S 1970 0.2312  0.0038  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1968 0.000 0.141 0.000 22,26 Single, Stat 0.5638  0.2263  

GISSTEMP land_ocean Composite 90S-24S 1996 0.0681  0.0009  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1981 0.132 0.803 0.245 20,20 Single, Stat 0.0507  0.0319  

GISSTEMP land_ocean Zone 90S-64S 1912 -0.4806  0.0204  0.010 0.100 0.059 0.100 0.050 0.010 0.010 0.050 1935 0.099 0.152 0.049 26,26 Single, Stat 0.1476  0.0910  

GISSTEMP land_ocean Zone 90S-64S 1955 0.4264  0.0062  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1935 0.069 0.462 0.183 26,26 Single, Stat 0.1021  0.0787  

GISSTEMP land_ocean Zone 00N-24N 1904 -0.2392  0.0044  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1906 0.006 0.479 0.019 20,20 Single, Stat 0.3111  0.1900  

GISSTEMP land_ocean Zone 00N-24N 1926 0.2670  -0.0035  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1925 0.001 0.512 0.000 22,26 Single, Stat 0.4483  0.2669  

GISSTEMP land_ocean Zone 00N-24N 1979 0.1689  0.0043  0.010 0.100 0.073 0.100 0.100 0.010 0.010 0.050 1942 0.063 0.605 0.008 23,26 Single, Stat 0.3738  0.2710  

GISSTEMP land_ocean Zone 00N-24N 1995 0.1201  0.0038  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1986 0.184 0.673 0.397 20,20 Single, Stat 0.1266  0.0829  

GISSTEMP land_ocean Glob 90S-90N 1902 -0.1442  0.0050  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.050 1906 0.008 0.282 0.027 11,11 Single, Non-Stat 0.4493  0.3964  

GISSTEMP land_ocean Glob 90S-90N 1920 0.0655  0.0058  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1906 0.223 0.271 0.228 20,20 Single, Stat 0.2552  0.1911  

GISSTEMP land_ocean Glob 90S-90N 1937 0.1013  -0.0090  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1944 0.037 0.041 0.000 22,23 Single, Stat 0.4055  0.1996  

GISSTEMP land_ocean Glob 90S-90N 1980 0.1581  0.0102  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1963 0.005 0.034 0.000 22,26 Single, Stat 0.5160  0.1997  

GISSTEMP land_ocean Glob 90S-90N 1997 0.1463  -0.0020  0.010 0.100 0.100 0.100 0.050 0.010 0.050 0.050 1996 0.014 0.728 0.045 20,20 Single, Stat 0.1760  0.0052  

GISSTEMP land_ocean Hem 00N-90N 1924 0.3340  0.0016  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1920 0.000 0.356 0.000 22,26 Single, Stat 0.5573  0.3358  

GISSTEMP land_ocean Hem 00N-90N 1987 0.2295  0.0079  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1963 0.022 0.598 0.000 22,23 Single, Stat 0.4379  0.2598  

GISSTEMP land_ocean Hem 00N-90N 1997 0.2283  0.0036  0.010 0.100 0.100 0.100 0.050 0.010 0.050 0.050 1994 0.013 0.786 0.034 2,2 Single, N/A 0.1535  -0.0507  

GISSTEMP land_ocean Hem 90S-00N 1890 -0.1074  0.0143  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1911 0.039 0.099 0.000 22,19 Single, Stat 0.6578  0.5132  

GISSTEMP land_ocean Hem 90S-00N 1937 0.1989  -0.0004  0.010 0.100 0.014 0.100 0.100 0.010 0.050 0.050 1911 0.000 0.809 0.000 22,26 Single, Stat 0.6573  0.4907  

GISSTEMP land_ocean Glob 90S-00N 1969 0.2135  -0.0040  0.010 0.100 0.010 0.100 1.000 0.010 0.050 0.050 1945 0.001 0.660 0.000 21,20 Single, Stat 0.4561  0.1736  

GISSTEMP land_ocean Glob 90S-00N 1979 0.1399  0.0079  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.050 1976 0.030 0.408 0.091 11,2 Single, N/A 0.1511  -0.0668  

GISSTEMP land_ocean Glob 90S-00N 1996 0.0890  0.0007  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1995 0.058 0.877 0.161 20,20 Single, Stat 0.0547  0.0037  

CW land_ocean Glob 90S-90N 1920 0.1204  0.0085  0.065 0.100 0.013 0.100 0.010 0.010 0.010 0.050 1901 0.051 0.121 0.000 25,26 Single, Stat 0.5864  0.4551  
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CW land_ocean Glob 90S-90N 1937 0.1495  -0.0099  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1936 0.003 0.030 0.000 22,26 Single, Stat 0.4293  0.1207  

CW land_ocean Glob 90S-90N 1980 0.1424  0.0131  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1976 0.011 0.007 0.000 22,26 Single, Stat 0.4929  0.1192  

CW land_ocean Glob 90S-90N 1997 0.1530  -0.0002  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1996 0.016 0.974 0.053 20,20 Single, Stat 0.1315  -0.0268  

HadCRU land_ocean Tropic 30S-30N 1926 0.2502  0.0002  0.010 0.100 0.020 0.100 0.010 0.010 0.010 0.050 1925 0.000 0.872 0.000 25,26 Single, Stat 0.4686  0.3577  

HadCRU land_ocean Tropic 30S-30N 1979 0.1153  0.0089  0.010 0.100 0.024 0.100 0.100 0.010 0.010 0.050 1973 0.115 0.140 0.001 22,26 Single, Stat 0.3580  0.2231  

HadCRU land_ocean Tropic 30S-30N 1997 0.1527  -0.0046  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 2001 0.054 0.539 0.134 20,20 Single, Stat 0.1289  0.0145  

HadCRU land_ocean Hem 00N-90N 1925 0.3107  0.0016  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.050 1920 0.000 0.169 0.000 25,26 Single, Stat 0.5199  0.3156  

HadCRU land_ocean Hem 00N-90N 1987 0.2119  0.0078  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1970 0.021 0.570 0.000 22,23 Single, Stat 0.4267  0.2463  

HadCRU land_ocean Hem 00N-90N 1997 0.2148  0.0038  0.010 0.100 0.080 0.100 0.100 0.010 0.100 0.050 1996 0.012 0.756 0.031 11,2 Single, N/A 0.1781  0.0129  

HadCRU land_ocean Hem 90S-00N 1937 0.2477  -0.0003  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1883 0.000 0.846 0.000 22,26 Single, Stat 0.5959  0.4345  

HadCRU land_ocean Hem 90S-00N 1979 0.1559  0.0056  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1976 0.006 0.215 0.000 22,26 Single, Stat 0.3858  0.1257  

HadCRU land_ocean Hem 90S-00N 1997 0.1308  -0.0043  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.050 1996 0.005 0.316 0.015 20,20 Single, Stat 0.1354  -0.0733  

HadCRU land_ocean Glob 90S-90N 1930 0.2683  0.0004  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1929 0.000 0.739 0.000 22,26 Single, Stat 0.6145  0.4295  

HadCRU land_ocean Glob 90S-90N 1979 0.0949  0.0111  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1963 0.085 0.016 0.000 22,26 Single, Stat 0.4569  0.2199  

HadCRU land_ocean Glob 90S-90N 1997 0.1665  -0.0046  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 1996 0.003 0.368 0.010 20,20 Single, Stat 0.1961  -0.0104  

BERKLEY land_ocean Glob 90S-90N 1921 0.1255  0.0064  0.100 0.100 0.022 0.100 1.000 0.010 0.010 0.050 1901 0.067 0.325 0.000 22,26 Single, Stat 0.5610  0.4558  

BERKLEY land_ocean Glob 90S-90N 1937 0.1798  -0.0071  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.050 1936 0.001 0.151 0.000 22,26 Single, Stat 0.4223  0.1021  

BERKLEY land_ocean Glob 90S-90N 1980 0.1411  0.0114  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.050 1976 0.011 0.017 0.000 25,26 Single, Stat 0.4458  0.0851  

BERKLEY land_ocean Glob 90S-90N 1997 0.1566  -0.0016  0.010 0.100 0.100 0.100 0.050 0.010 0.050 0.050 1996 0.015 0.797 0.048 20,20 Single, Stat 0.1314  -0.0394  
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Appendix 5.1: Detailed tables of results and analyses 
Table A5.1.31: Results of the studentized Breusch-Pagan tests for each zone and for combined land/ocean, land and 
ocean sub-divisions. Three different models are applied. Probabilities are listed for each for the null case of 
homoscedasticity. The quadratic (“Quad”) model tests for a simple quadratic change as would be the case if temperature 
were determined solely by the CO2 concentrations. The Linear model simply provides a base case of at most a constant 
linear change. The Break model applies the deduced change-points and tests that the residuals of the segmented model 
are homoscedastic. Throughout red or green indicate probabilities: red is Pr <=0.01, green is 0.01<Pr<=0.05. Grey shading 
indicates differences between the two data sets. 

Dataset NCDC-z GISS-g 

Split Composition Zone Break Linear Quad Break Linear Quad 

Land/ocean Zone 60N.90N 0.6783 0.0197 0.0959 0.1138 <0.0001 0.0016 

Land/ocean Zone 30N.60N 0.1264 <0.0001 0.0069 0.1953 <0.0001 0.0241 

Land/ocean Zone 00N.30N 0.5625 0.2948 0.102 0.7182 0.8594 0.1212 

Land/ocean Zone 30S.00N 0.3024 0.0609 0.3988 0.0151 0.1153 0.0796 

Land/ocean Zone 60S.30S 0.0348 <0.0001 0.0061 0.2603 0.0001 0.1301 

Land/ocean Comp 60S.60N 0.1873 0.2028 0.0381 0.4146 0.3587 0.0822 

Land/ocean Comp 20N.90N 0.1367 0 0.0015 0.1670 0.0000 0.0003 

Land/ocean Tropic 20S.20N 0.5204 0.1527 0.4462 0.7780 0.7189 0.3341 

Land/ocean Comp 90S.20S 0.0898 <0.0001 0.0739 0.6994 0.0113 0.0611 

Land/ocean Hem 00N.90N 0.2204 0.0085 0.0059 0.2837 <0.0001 0.0019 

Land/ocean Hem 90S.00N 0.0911 0.0001 0.3718 0.0258 0.0047 0.0795 

Land/ocean Glob 90S.90N 0.1386 0.3796 0.0118 0.7458 0.2164 0.0120 

Land Zone 60N.90N 0.5756 0.0718 0.1943 0.0564 0.0033 0.0038 

Land Zone 30N.60N 0.0891 0.0002 0.0463 0.0963 0.0001 0.0515 

Land Zone 00N.30N 0.4082 0.0131 0.1123 0.7605 0.0002 0.1290 

Land Zone 30S.00N 0.4905 0.4223 0.6494 0.4038 0.9471 0.3275 

Land Zone 60S.30S 0.9761 0.6877 0.4879 0.7878 0.6080 0.3418 

Land Comp 60S.60N 0.4914 0.0005 0.1592 0.1819 0.0124 0.1347 

Land Comp 20N.90N 0.0735 <0.0001 0.0076 0.1177 0.0000 0.0038 

Land Tropic 20S.20N 0.1013 0.9545 0.0551 0.0828 0.0340 0.0679 

Land Comp 90S.20S 0.0293 0.5468 0.3089 0.0007 0.0003 0.0016 

Land Hem 00N.90N 0.167 <0.0001 0.0077 0.0908 <0.0001 0.0040 

Land Hem 90S.00N 0.3226 0.4167 0.4958 0.0163 0.0392 0.0090 

Land Glob 90S.90N 0.358 0.0001 0.018 0.0849 <0.0001 0.0065 

Ocean Zone 60N.90N 0.0459 <0.0000 0.0186 0.1316 0.0000 0.0006 

Ocean Zone 30N.60N 0.1553 0.6011 0.0624 0.0064 0.5199 0.2017 

Ocean Zone 00N.30N 0.5979 0.0071 0.0344 0.2652 0.0126 0.0459 

Ocean Zone 30S.00N 0.1859 0.0429 0.2434 0.0145 0.0461 0.0430 

Ocean Zone 60S.30S 0.0356 <0.0001 0.0027 0.2718 <0.0001 0.1463 

Ocean Comp 60S.60N 0.0735 0.0001 0.0098 0.1063 0.0160 0.0398 

Ocean Comp 20N.90N 0.2484 0.9081 0.0197 0.0095 0.0085 0.0361 

Ocean Tropic 20S.20N 0.3875 0.0673 0.3192 0.5194 0.2038 0.3779 

Ocean Comp 90S.20S 0.0402 <0.0001 0.0375 0.3650 0.0002 0.1105 

Ocean Hem 00N.90N 0.37 0.0663 0.0099 0.2497 0.9076 0.0287 

Ocean Hem 90S.00N 0.0324 <0.0001 0.2237 0.0037 0.0002 0.0919 

Ocean Glob 90S.90N 0.0693 0.0001 0.0083 0.0027 0.0037 0.0230 
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Table A5.1.32: Results of the main findings, break years, shifts and diagnostics for GISSS-g observed zonal annual average temperatures from the MSBV. The bivariate test shows the year 
of change (the start of a new regime is the next year), the internal shift and change of trend at that time. The unit root tests show the statistical significance of each test under two 
conditions. The A column shows the test applied to the segment of data containing a change-point and, the B column shows the same test on the residuals after the implicit shift and trend-
changes are removed. The year of exogenous for the ZA test is also shown. ANOVA tests are provided for the significance of a change of trend, and independently a change of intercept 
where the time is relative to the year of change (both should be considered in the context of the ANCOVA). The ANCOVA tests the two segment regression at the change-point against the 
single regression and is equivalent to a Chow test. The segment classification is as per Table A4.1.29 . For the unit-root tests, pink fill indicates a finding of non-stationarity, green indicates 
stationarity and no colour indicates insufficient the p-value is based on insufficient data. For the ANOVA and ANCOVA tests, green fill indicate tests with p-values that support acceptance 
of an H1 of a change of level, trend or persistent regime in each case. In the year of change column, red text indicates that the consideration of the ANCOVA together with non-zero trends 
casts means that the data is mis-specified for the MSBV and continued trends cannot be discounted. Green shading signals that only one of the pre and post trends is non-zero, while 
ANCOVA does not. 

Zone 

Bivariate Test Unit root and stationarity tests ANOVA ANCOVA Classifications 

Year of 
Change 

Internal 
Shift 

Trend 
Change KPSS-L KPSS-T ADF Zivot-Andrews Level Trend Regime Change Type Change-Index 

Year 0C 0C/Year Pr Pr Pr Pr Pr Pr Pr Pr Year Pr Pr Pr Code Class Ix 

   A B A B A B A B        

LandOcean.00N.30N 1935 0.26  -0.0008  0.010 0.100 0.025 0.100 0.010 0.010 0.010 0.010 1923 0.0001 0.7150 0.0003 25,26 Single, Stationary 4 

LandOcean.00N.30N 1978 0.21  0.0087  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1976 0.0157 0.2103 0.0003 25,26 Single, Stationary 4 

LandOcean.00N.30N 1996 0.13  0.0028  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1986 0.1171 0.7195 0.2628 20,20 Single, Stationary 0 

LandOcean.30S.00N 1902 -0.26  0.0025  0.085 0.100 0.050 0.100 0.010 0.010 0.010 0.010 1902 0.0002 0.5627 0.0002 26,26 Single, Stationary 6 

LandOcean.30S.00N 1939 0.18  -0.0055  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1945 0.0129 0.0935 0.0111 26,26 Single, Stationary 5 

LandOcean.30S.00N 1978 0.28  0.0083  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1945 0.0045 0.2784 0.0002 19,20 Single, Stationary 4 

LandOcean.30S.00N 1996 0.09  -0.0021  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2001 0.2070 0.7630 0.4337 20,20 Single, Stationary 0 

LandOcean.30N.60N 1920 0.28  0.0010  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1963 0.0000 0.6840 0.0001 25,26 Single, Stationary 4 

LandOcean.30N.60N 1987 0.37  -0.0066  0.015 0.100 0.015 0.100 0.010 0.010 0.010 0.010 1963 0.0054 0.7390 0.0001 25,26 Single, Stationary 4 

LandOcean.30N.60N 1997 0.41  0.0094  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.010 1997 0.0029 0.6303 0.0090 11,2 Single, N/A 4 

LandOcean.60S.30S 1896 -0.07  0.0095  0.010 0.100 0.035 0.100 1.000 1.000 1.000 1.000 1911 0.2201 0.0776 0.0094 13,14 Single, Non-stationary 5 

LandOcean.60S.30S 1936 0.27  -0.0003  0.010 0.100 0.038 0.100 1.000 0.050 1.000 0.010 1936 0.0000 0.9018 0.0000 13,26 Multiple, Stationary 4 

LandOcean.60S.30S 1968 0.15  0.0106  0.036 0.100 0.017 0.100 1.000 0.050 1.000 0.050 1944 0.0379 0.4025 0.0004 12,20 Single, Stationary 6 

LandOcean.60S.30S 1976 0.12  -0.0040  0.010 0.100 0.041 0.100 1.000 0.100 0.100 0.050 1981 0.0057 0.6525 0.0002 12,23 Multiple, Stationary 7 

LandOcean.60N.90N 1919 0.65  -0.0069  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1954 0.0000 0.1783 0.0000 25,26 Single, Stationary 5 
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LandOcean.60N.90N 1994 0.69  0.0212  0.010 0.100 0.010 0.031 0.010 0.010 0.010 0.010 1963 0.0154 0.6218 0.0000 25,25 Single, Stationary 4 

LandOcean.60N.90N 2004 0.61  -0.0367  0.013 0.100 0.100 0.100 1.000 0.100 0.010 0.050 2004 0.0527 0.4751 0.1282 2,2 Single, N/A 0 

LandOcean.90S.60S 1969 0.31  0.0072  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1965 0.0001 0.0048 0.0000 25,26 Single, Stationary 4 

LandOcean.20S.20N 1939 0.23  -0.0002  0.010 0.100 0.048 0.100 0.010 0.010 0.010 0.010 1902 0.0046 0.9503 0.0106 25,26 Single, Stationary 4 

LandOcean.20S.20N 1978 0.29  0.0114  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1950 0.0018 0.0078 0.0002 25,26 Single, Stationary 6 

LandOcean.60S.60N 1939 0.27  -0.0011  0.010 0.100 0.019 0.100 0.010 0.010 0.010 0.010 1902 0.0000 0.6450 0.0001 25,26 Single, Stationary 4 

LandOcean.60S.60N 1978 0.26  0.0095  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1945 0.0034 0.1688 0.0001 19,20 Single, Stationary 4 

LandOcean.60S.60N 1996 0.11  0.0003  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.010 2001 0.1390 0.9650 0.3272 20,20 Single, Stationary 0 

LandOcean.90S.20S 1899 -0.04  0.0061  0.010 0.100 0.049 0.100 1.000 1.000 1.000 1.000 1911 0.3063 0.0579 0.0239 13,14 Single, Non-stationary 5 

LandOcean.90S.20S 1936 0.26  -0.0017  0.010 0.100 0.029 0.100 1.000 0.050 0.100 0.010 1936 0.0000 0.4249 0.0000 13,26 Multiple, Stationary 4 

LandOcean.90S.20S 1968 0.23  0.0022  0.074 0.100 0.010 0.100 1.000 0.100 1.000 0.010 1944 0.0032 0.8744 0.0001 12,23 Multiple, Stationary 4 

LandOcean.90S.20S 1976 0.15  0.0031  0.010 0.100 0.100 0.100 1.000 0.050 1.000 0.100 1987 0.0522 0.8270 0.0990 11,11 Single, Non-stationary 0 

LandOcean.90S.20S 1995 0.05  0.0064  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1981 0.3718 0.1825 0.2618 20,20 Single, Stationary 2 

LandOcean.20N.90N 1920 0.34  -0.0001  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1919 0.0000 0.9710 0.0000 25,26 Single, Stationary 4 

LandOcean.20N.90N 1987 0.31  0.0046  0.018 0.100 0.010 0.071 0.050 0.010 0.010 0.010 1963 0.0111 0.8043 0.0000 25,26 Single, Stationary 4 

LandOcean.20N.90N 1997 0.31  0.0094  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.010 1993 0.0078 0.5768 0.0248 11,2 Single, N/A 6 

LandOcean.90S.90N 1936 0.24  -0.0012  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1936 0.0000 0.4400 0.0000 25,26 Single, Stationary 4 

LandOcean.90S.90N 1978 0.21  0.0112  0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.010 1976 0.0007 0.0199 0.0000 22,26 Single, Stationary 6 

LandOcean.90S.90N 1996 0.11  0.0013  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1986 0.0535 0.8182 0.1436 20,20 Single, Stationary 3 

LandOcean.00N.90N 1924 0.27  0.0008  0.010 0.100 0.011 0.100 0.010 0.010 0.010 0.010 1920 0.0000 0.6300 0.0000 25,26 Single, Stationary 4 

LandOcean.00N.90N 1986 0.26  0.0035  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1963 0.0115 0.8184 0.0001 25,26 Single, Stationary 4 

LandOcean.00N.90N 1996 0.22  0.0104  0.010 0.100 0.100 0.100 0.050 0.010 0.050 0.050 1994 0.0158 0.4359 0.0501 2,2 Single, N/A 2 

LandOcean.90S.00N 1901 -0.12  0.0060  0.010 0.100 0.014 0.100 0.050 0.010 0.050 0.010 1911 0.0067 0.0399 0.0002 19,20 Single, Stationary 4 

LandOcean.90S.00N 1938 0.18  -0.0003  0.010 0.100 0.100 0.100 0.050 0.010 0.100 0.010 1936 0.0003 0.8823 0.0014 17,26 Single, Stationary 4 

LandOcean.90S.00N 1976 0.24  0.0051  0.010 0.100 0.010 0.075 1.000 0.050 0.010 0.010 1945 0.0002 0.2861 0.0000 22,20 Single, Stationary 4 

LandOcean.90S.00N 1995 0.04  0.0013  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1991 0.4177 0.7668 0.6779 20,20 Single, Stationary 2 

Land.00N.30N 1923 0.22  0.0011  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1923 0.0009 0.6280 0.0038 26,26 Single, Stationary 4 

Land.00N.30N 1978 0.21  0.0118  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1976 0.0245 0.0951 0.0000 25,26 Single, Stationary 4 
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Land.00N.30N 1997 0.29  0.0014  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1997 0.0138 0.8994 0.0415 20,20 Single, Stationary 4 

Land.30S.00N 1939 0.25  0.0041  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1902 0.0002 0.1227 0.0000 25,26 Single, Stationary 4 

Land.30S.00N 1976 0.19  0.0149  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1976 0.0409 0.0507 0.0004 19,20 Single, Stationary 6 

Land.30S.00N 1994 0.04  -0.0039  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2010 0.6510 0.6680 0.8141 20,20 Single, Stationary 1 

Land.30N.60N 1893 0.25  -0.0097  0.010 0.100 0.056 0.100 0.050 0.010 0.050 0.050 1902 0.0378 0.4580 0.0245 20,20 Single, Stationary 4 

Land.30N.60N 1920 0.26  0.0033  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1963 0.0197 0.5990 0.0414 26,26 Single, Stationary 4 

Land.30N.60N 1985 0.47  -0.0058  0.010 0.100 0.011 0.100 0.010 0.010 0.010 0.010 1963 0.0152 0.8242 0.0010 25,26 Single, Stationary 4 

Land.30N.60N 1996 0.57  0.0031  0.010 0.100 0.100 0.100 0.050 0.010 0.050 0.050 1997 0.0039 0.9051 0.0103 20,20 Single, Stationary 4 

Land.60S.30S 1931 0.18  0.0011  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1931 0.0069 0.6373 0.0180 26,26 Single, Stationary 4 

Land.60S.30S 1976 0.28  0.0014  0.010 0.100 0.012 0.100 0.010 0.010 0.010 0.010 1976 0.0006 0.7587 0.0004 25,26 Single, Stationary 4 

Land.60S.30S 2002 0.07  0.0247  0.010 0.100 0.030 0.100 0.100 0.010 0.010 0.010 1991 0.5513 0.0674 0.0281 18,20 Single, Stationary 6 

Land.60N.90N 1899 0.49  -0.0127  0.010 0.100 0.087 0.100 0.050 0.010 0.010 0.010 1902 0.0083 0.4083 0.0236 20,20 Single, Stationary 4 

Land.60N.90N 1919 0.79  0.0134  0.010 0.100 0.010 0.039 0.010 0.010 0.010 0.010 1948 0.0003 0.4337 0.0001 25,25 Single, Stationary 4 

Land.60N.90N 1994 0.66  0.0380  0.010 0.100 0.010 0.044 0.050 0.010 0.010 0.010 1963 0.0053 0.0317 0.0000 25,25 Single, Stationary 6 

Land.90S.60S 2000 0.37  0.0048  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1957 0.0376 0.8074 0.0004 25,26 Single, Stationary 4 

Land.20S.20N 1900 -0.21  -0.0060  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1900 0.0033 0.2474 0.0096 20,20 Single, Stationary 4 

Land.20S.20N 1925 0.23  0.0020  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1923 0.0024 0.6599 0.0045 26,26 Single, Stationary 4 

Land.20S.20N 1978 0.27  0.0125  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1976 0.0042 0.1023 0.0000 25,26 Single, Stationary 4 

Land.20S.20N 1996 0.13  -0.0027  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1986 0.2660 0.8110 0.5241 20,20 Single, Stationary 0 

Land.60S.60N 1925 0.19  0.0053  0.010 0.100 0.041 0.100 0.010 0.010 0.010 0.010 1902 0.0011 0.0099 0.0005 25,26 Single, Stationary 5 

Land.60S.60N 1978 0.19  0.0116  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1976 0.0208 0.0646 0.0000 25,26 Single, Stationary 6 

Land.60S.60N 1997 0.18  -0.0014  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1997 0.0796 0.8817 0.2089 20,20 Single, Stationary 1 

Land.90S.20S 1935 0.09  0.0015  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1971 0.0997 0.4394 0.1320 26,26 Single, Stationary 0 

Land.90S.20S 1979 0.28  -0.0047  0.010 0.100 0.043 0.100 0.010 0.010 0.010 0.010 1979 0.0087 0.4973 0.0223 25,26 Single, Stationary 4 

Land.90S.20S 2001 0.27  0.0135  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1992 0.0979 0.4615 0.0691 20,20 Single, Stationary 0 

Land.20N.90N 1893 0.24  -0.0017  0.010 0.100 0.047 0.100 0.050 0.010 0.100 0.050 1906 0.0166 0.8769 0.0241 9,20 Multiple, Stationary 4 

Land.20N.90N 1920 0.35  0.0010  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1963 0.0005 0.8557 0.0003 25,26 Single, Stationary 4 

Land.20N.90N 1987 0.47  -0.0007  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1963 0.0079 0.9795 0.0001 25,26 Single, Stationary 4 
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Land.20N.90N 1997 0.46  0.0081  0.010 0.100 0.100 0.100 0.100 0.010 0.100 0.010 1997 0.0051 0.7267 0.0148 11,2 Single, N/A 4 

Land.90S.90N 1920 0.20  -0.0017  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1929 0.0005 0.4160 0.0004 25,26 Single, Stationary 4 

Land.90S.90N 1979 0.20  0.0157  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1963 0.0195 0.0266 0.0000 25,26 Single, Stationary 4 

Land.90S.90N 1997 0.24  -0.0039  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1997 0.0306 0.7087 0.0920 20,20 Single, Stationary 2 

Land.00N.90N 1895 0.23  -0.0082  0.016 0.100 0.045 0.100 0.050 0.010 1.000 0.050 1896 0.0096 0.3129 0.0070 9,20 Multiple, Stationary 4 

Land.00N.90N 1920 0.33  0.0058  0.010 0.100 0.012 0.100 0.010 0.010 0.010 0.010 1920 0.0002 0.2662 0.0003 25,26 Single, Stationary 4 

Land.00N.90N 1986 0.36  0.0096  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1963 0.0109 0.6139 0.0000 25,26 Single, Stationary 4 

Land.00N.90N 1997 0.37  -0.0010  0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.010 1997 0.0064 0.9552 0.0163 2,2 Single, N/A 4 

Land.90S.00N 1939 0.14  0.0040  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1902 0.0049 0.0347 0.0001 25,26 Single, Stationary 4 

Land.90S.00N 1979 0.25  0.0024  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1979 0.0028 0.6645 0.0015 25,26 Single, Stationary 4 

Land.90S.00N 2001 0.20  0.0015  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2001 0.0770 0.9070 0.1231 20,20 Single, Stationary 0 

Ocean.00N.30N 1935 0.33  0.0004  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1924 0.0000 0.8850 0.0000 25,26 Single, Stationary 4 

Ocean.00N.30N 1978 0.20  0.0076  0.010 0.100 0.016 0.100 0.010 0.010 0.050 0.050 1945 0.0150 0.1660 0.0008 25,26 Single, Stationary 4 

Ocean.00N.30N 2000 0.12  -0.0040  0.010 0.100 0.100 0.100 0.010 0.010 0.100 0.100 1985 0.1450 0.6350 0.3369 11,11 Single, Non-stationary 0 

Ocean.30S.00N 1939 0.29  0.0001  0.013 0.100 0.044 0.100 0.010 0.010 0.010 0.010 1938 0.0001 0.9660 0.0001 25,26 Single, Stationary 4 

Ocean.30S.00N 1978 0.30  0.0069  0.010 0.100 0.010 0.072 0.010 0.010 0.010 0.010 1945 0.0036 0.4011 0.0003 19,20 Single, Stationary 4 

Ocean.30S.00N 1996 0.11  -0.0015  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2001 0.1220 0.8230 0.2934 20,20 Single, Stationary 0 

Ocean.30N.60N 1901 -0.48  0.0043  0.010 0.100 0.028 0.100 1.000 0.010 1.000 0.050 1901 0.0000 0.6830 0.0000 9,20 Multiple, Stationary 4 

Ocean.30N.60N 1914 0.30  -0.0001  0.010 0.100 0.099 0.100 0.100 0.010 0.050 0.010 1914 0.0001 0.9909 0.0004 20,20 Single, Stationary 4 

Ocean.30N.60N 1931 0.16  -0.0048  0.090 0.100 0.010 0.048 0.010 0.010 0.010 0.010 1963 0.0390 0.5190 0.0026 25,25 Single, Stationary 4 

Ocean.30N.60N 1997 0.34  0.0166  0.010 0.100 0.010 0.054 1.000 0.010 0.010 0.010 1967 0.0001 0.0273 0.0000 22,26 Single, Stationary 6 

Ocean.60S.30S 1896 -0.07  0.0102  0.010 0.100 0.039 0.100 1.000 1.000 1.000 1.000 1911 0.2582 0.0696 0.0104 13,14 Single, Non-stationary 5 

Ocean.60S.30S 1936 0.28  0.0000  0.010 0.100 0.035 0.100 1.000 0.050 1.000 0.010 1936 0.0000 0.9957 0.0000 13,26 Multiple, Stationary 4 

Ocean.60S.30S 1968 0.15  0.0129  0.035 0.100 0.017 0.100 1.000 0.050 1.000 0.050 1944 0.0396 0.3165 0.0002 12,20 Single, Stationary 6 

Ocean.60S.30S 1976 0.11  -0.0066  0.010 0.100 0.035 0.100 0.100 0.050 0.100 0.050 1981 0.0094 0.4486 0.0002 12,20 Single, Stationary 7 

Ocean.60N.90N 1919 0.68  -0.0013  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1919 0.0000 0.7694 0.0000 25,26 Single, Stationary 4 

Ocean.60N.90N 1994 0.63  0.0347  0.027 0.100 0.010 0.047 0.050 0.010 0.010 0.010 1962 0.0108 0.3540 0.0000 25,25 Single, Stationary 4 

Ocean.60N.90N 2004 0.65  -0.0447  0.010 0.100 0.100 0.100 1.000 0.050 0.050 0.100 2004 0.0301 0.3569 0.0722 2,11 Single, Non-stationary 0 
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Ocean.90S.60S 1969 0.41  0.0055  0.010 0.100 0.010 0.042 0.010 0.010 0.010 0.010 1935 0.0000 0.0141 0.0000 25,25 Single, Stationary 6 

Ocean.20S.20N 1939 0.27  -0.0007  0.010 0.100 0.083 0.100 0.010 0.010 0.010 0.010 1902 0.0038 0.8418 0.0100 26,26 Single, Stationary 4 

Ocean.20S.20N 1978 0.31  0.0096  0.010 0.100 0.022 0.100 0.010 0.010 0.010 0.010 1956 0.0025 0.0382 0.0008 25,26 Single, Stationary 6 

Ocean.60S.60N 1939 0.32  -0.0015  0.010 0.100 0.019 0.100 0.010 0.010 0.010 0.010 1938 0.0000 0.5650 0.0000 25,26 Single, Stationary 4 

Ocean.60S.60N 1978 0.27  0.0084  0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1945 0.0031 0.2406 0.0001 19,20 Single, Stationary 4 

Ocean.60S.60N 1996 0.09  -0.0003  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 2001 0.2100 0.9640 0.4503 20,20 Single, Stationary 0 

Ocean.90S.20S 1899 -0.05  0.0069  0.010 0.100 0.060 0.100 1.000 1.000 1.000 1.000 1911 0.3159 0.0584 0.0251 14,14 Single, Non-stationary 5 

Ocean.90S.20S 1936 0.29  -0.0010  0.010 0.100 0.030 0.100 1.000 0.050 1.000 0.100 1936 0.0000 0.6520 0.0000 13,17 Non-stationary 4 

Ocean.90S.20S 1968 0.21  0.0106  0.070 0.100 0.010 0.100 1.000 0.050 1.000 0.050 1944 0.0081 0.4357 0.0000 12,20 Single, Stationary 4 

Ocean.90S.20S 1976 0.12  -0.0054  0.010 0.100 0.039 0.100 1.000 0.100 1.000 0.100 1987 0.0257 0.5934 0.0162 9,11 Non-stationary 4 

Ocean.90S.20S 1995 0.05  0.0035  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1981 0.1536 0.3119 0.2045 20,20 Single, Stationary 2 

Ocean.20N.90N 1901 -0.27  0.0014  0.010 0.100 0.070 0.100 0.050 0.010 0.100 0.050 1901 0.0001 0.8310 0.0001 11,20 Multiple, Stationary 4 

Ocean.20N.90N 1914 0.15  0.0147  0.010 0.100 0.100 0.100 0.050 0.010 1.000 1.000 1906 0.0053 0.0256 0.0037 11,11 Single, Non-stationary 6 

Ocean.20N.90N 1929 0.15  -0.0151  0.025 0.100 0.010 0.061 0.050 0.010 0.010 0.010 1962 0.0350 0.0575 0.0000 25,26 Single, Stationary 5 

Ocean.20N.90N 1994 0.26  0.0278  0.019 0.100 0.010 0.019 1.000 0.010 0.050 0.010 1962 0.0196 0.1885 0.0000 22,25 Single, Stationary 6 

Ocean.20N.90N 2002 0.06  -0.0118  0.010 0.100 0.100 0.100 1.000 0.100 0.010 0.050 2007 0.3210 0.3490 0.2984 2,2 Single, N/A 3 

Ocean.90S.90N 1902 -0.14  -0.0011  0.010 0.100 0.100 0.100 0.050 0.010 1.000 1.000 1894 0.0279 0.8865 0.0236 11,11 Single, Non-stationary 4 

Ocean.90S.90N 1913 0.15  0.0067  0.010 0.100 0.100 0.100 0.050 0.010 0.100 1.000 1911 0.0044 0.3324 0.0147 11,11 Single, Non-stationary 4 

Ocean.90S.90N 1936 0.23  -0.0026  0.010 0.100 0.010 0.100 0.050 0.010 1.000 0.010 1945 0.0000 0.3980 0.0000 16,26 Multiple, Stationary 4 

Ocean.90S.90N 1976 0.19  0.0097  0.010 0.100 0.010 0.100 0.100 0.010 0.010 0.010 1945 0.0005 0.0118 0.0000 22,26 Single, Stationary 6 

Ocean.90S.90N 1996 0.06  0.0011  0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.050 1981 0.1420 0.7629 0.2961 20,20 Single, Stationary 3 

Ocean.00N.90N 1901 -0.28  0.0090  0.010 0.100 0.019 0.100 0.100 0.010 0.100 0.050 1906 0.0000 0.0638 0.0000 12,20 Single, Stationary 6 

Ocean.00N.90N 1925 0.22  -0.0077  0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.050 1945 0.0002 0.0387 0.0000 25,26 Single, Stationary 5 

Ocean.00N.90N 1986 0.13  0.0126  0.010 0.100 0.010 0.097 0.050 0.010 0.050 0.010 1969 0.0806 0.1235 0.0000 25,26 Single, Stationary 4 

Ocean.00N.90N 2000 0.11  -0.0018  0.010 0.100 0.100 0.100 0.050 0.010 1.000 1.000 1991 0.1293 0.8349 0.3072 11,11 Single, Non-stationary 2 

Ocean.90S.00N 1901 -0.10  0.0068  0.010 0.100 0.018 0.100 0.050 0.010 0.050 0.050 1911 0.0219 0.0291 0.0006 19,20 Single, Stationary 5 

Ocean.90S.00N 1938 0.20  -0.0001  0.010 0.100 0.100 0.100 0.050 0.010 1.000 0.010 1936 0.0001 0.9716 0.0005 17,26 Single, Stationary 4 

Ocean.90S.00N 1976 0.25  0.0041  0.010 0.100 0.010 0.044 1.000 0.050 0.010 0.010 1945 0.0001 0.3870 0.0000 22,19 Single, Stationary 4 
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Ocean.90S.00N 1995 0.05  -0.0001  0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1980 0.2225 0.9823 0.4697 20,20 Single, Stationary 2 
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Table A5.1.33: MSBV and diagnostics based on sector analysis (See Figure Ch5.28). Columns denoted as A are of segments of data containing a change-point. Those denoted B are of the 
residual of the segments after internal trend and shifts are removed. Throughout red or green highlights indicate probabilities: red is Pr <=0.01, green is 0.01<Pr<=0.05. 

Zone Sector 

Bivariate Test Unit root and stationarity tests ANOVA ANCOVA Classifications 

Year of 
Change 

Internal 
Shift 

Trend 
Change KPSS-L KPSS-T ADF Zivot-Andrews Level Trend Regime Change Type  

Year 0C 0C/Year Pr Pr Pr Pr Pr Pr Pr Pr Year Pr Pr Pr Code Change-Class Change-
Index 

   A B A B A B A B        

LandOcean.00N.30N 105E.150E 1940 0.35 -0.003 0.045 0.100 0.022 0.100 0.010 0.010 0.010 0.010 1940 0.0000 0.3961 0.0000 25,26 Single,Stat 7 

LandOcean.00N.30N 105E.150E 1977 0.21 0.013 0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1946 0.0097 0.0334 0.0001 19,20 Single,Stat 5 

LandOcean.00N.30N 105E.150E 1997 0.35 -0.011 0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.050 1997 0.0002 0.1695 0.0007 20,20 Single,Stat 4 

LandOcean.30S.00N 105E.150E 1956 0.21 -0.001 0.010 0.100 0.039 0.100 0.010 0.010 0.010 0.010 1901 0.0625 0.9501 0.0331 25,26 Single,Stat 4 

LandOcean.30S.00N 105E.150E 1977 0.24 0.005 0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.010 1968 0.0340 0.5925 0.0812 20,20 Single,Stat 0 

LandOcean.30S.00N 105E.150E 1997 0.08 0.008 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2010 0.5470 0.5100 0.6113 20,20 Single,Stat 0 

LandOcean.30N.60N 105E.150E 1937 0.16 -0.001 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1913 0.2190 0.7990 0.4659 26,26 Single,Stat 0 

LandOcean.30N.60N 105E.150E 1987 0.70 0.009 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1987 0.0001 0.3240 0.0000 25,26 Single,Stat 4 

LandOcean.60S.30S 105E.150E 1899 -0.26 -0.006 0.025 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1923 0.0126 0.4899 0.0244 26,26 Single,Stat 4 

LandOcean.60S.30S 105E.150E 1956 0.21 0.006 0.014 0.100 0.038 0.100 0.050 0.010 0.010 0.010 1923 0.0672 0.4552 0.0062 25,26 Single,Stat 4 

LandOcean.60S.30S 105E.150E 1975 0.24 -0.005 0.010 0.100 0.024 0.100 0.050 0.010 0.010 0.010 1976 0.0058 0.4828 0.0054 19,20 Single,Stat 4 

LandOcean.60S.30S 105E.150E 2006 0.05 0.051 0.010 0.100 0.010 0.100 1.000 0.100 0.010 0.010 2005 0.6233 0.0103 0.0002 21,23 Single,Stat 6 

LandOcean.60N.90N 105E.150E 1987 0.36 0.039 0.010 0.100 0.010 0.092 0.010 0.010 0.010 0.010 1949 0.2449 0.0255 0.0000 25,26 Single,Stat 7 

LandOcean.90S.60S 105E.150E 1970 0.43 0.000 0.010 0.100 0.015 0.100 0.010 0.010 0.010 0.010 1970 0.0003 0.9525 0.0001 25,26 Single,Stat 5 

LandOcean.00N.30N 150E.165W 1939 0.36 0.004 0.010 0.100 0.019 0.100 0.010 0.010 0.010 0.010 1920 0.0000 0.0540 0.0000 25,26 Single,Stat 4 

LandOcean.00N.30N 150E.165W 1999 0.30 -0.001 0.010 0.100 0.010 0.049 0.050 0.010 0.010 0.010 1970 0.0025 0.9206 0.0001 25,25 Single,Stat 4 

LandOcean.30S.00N 150E.165W 1941 0.47 -0.008 0.036 0.100 0.010 0.091 0.010 0.010 0.010 0.010 1939 0.0000 0.0794 0.0000 25,26 Single,Stat 7 

LandOcean.30S.00N 150E.165W 1968 0.25 0.014 0.021 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1946 0.0004 0.0035 0.0000 19,20 Single,Stat 5 

LandOcean.30S.00N 150E.165W 1994 0.21 0.008 0.010 0.100 0.025 0.100 0.010 0.010 0.010 0.010 1994 0.0044 0.1282 0.0017 18,20 Single,Stat 6 

LandOcean.30N.60N 150E.165W 1896 -0.65 -0.020 0.014 0.100 0.026 0.100 0.050 0.010 0.050 0.010 1894 0.0001 0.1778 0.0003 25,26 Single,Stat 4 

LandOcean.30N.60N 150E.165W 1941 0.35 -0.005 0.010 0.100 0.045 0.100 0.010 0.010 0.010 0.010 1941 0.0009 0.1827 0.0006 25,26 Single,Stat 4 
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LandOcean.30N.60N 150E.165W 1998 0.32 0.010 0.100 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1988 0.1070 0.7670 0.0073 25,26 Single,Stat 4 

LandOcean.30N.60N 150E.165W 2007 0.23 -0.001 0.010 0.100 0.100 0.100 0.050 0.050 0.010 0.050 2010 0.0816 0.9723 0.1796 0,0 Single, N/A 0 

LandOcean.60S.30S 150E.165W 1953 0.31 0.004 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1896 0.0015 0.2189 0.0002 25,26 Single,Stat 4 

LandOcean.60S.30S 150E.165W 1997 0.23 -0.003 0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.010 1967 0.0611 0.7860 0.0853 26,26 Single,Stat 0 

LandOcean.60N.90N 150E.165W 1920 0.70 0.017 0.011 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1920 0.0009 0.0265 0.0028 26,26 Single,Stat 5 

LandOcean.60N.90N 150E.165W 1994 0.60 0.046 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1963 0.0504 0.0488 0.0000 25,26 Single,Stat 4 

LandOcean.90S.60S 150E.165W 1969 0.35 0.008 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1963 0.0011 0.0303 0.0000 25,26 Single,Stat 5 

LandOcean.00N.30N 165W.120W 1935 0.23 0.003 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1976 0.0533 0.3851 0.1443 26,26 Single,Stat 2 

LandOcean.30S.00N 165W.120W 1981 0.30 0.003 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1906 0.0065 0.4970 0.0001 25,26 Single,Stat 4 

LandOcean.30N.60N 165W.120W 1933 0.38 0.008 0.010 0.100 0.049 0.100 0.010 0.010 0.010 0.010 1916 0.0010 0.0157 0.0017 25,26 Single,Stat 6 

LandOcean.60S.30S 165W.120W 1989 0.28 0.006 0.010 0.100 0.010 0.081 0.010 0.010 0.010 0.010 1906 0.0066 0.3241 0.0000 25,26 Single,Stat 4 

LandOcean.60N.90N 165W.120W 1910 1.12 0.016 0.010 0.100 0.028 0.100 0.010 0.010 0.010 0.010 1901 0.0016 0.3363 0.0040 25,26 Single,Stat 4 

LandOcean.60N.90N 165W.120W 1986 0.65 0.031 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1963 0.0653 0.0999 0.0003 25,26 Single,Stat 6 

LandOcean.90S.60S 165W.120W 1986 0.49 -0.001 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1963 0.0000 0.9170 0.0000 25,26 Single,Stat 4 

LandOcean.00N.30N 120W.75W 1981 0.21 0.006 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1905 0.0384 0.2233 0.0003 25,26 Single,Stat 4 

LandOcean.30S.00N 120W.75W 1976 0.62 -0.002 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1975 0.0001 0.7225 0.0000 25,26 Single,Stat 4 

LandOcean.30N.60N 120W.75W 1920 0.27 -0.012 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1946 0.1305 0.0714 0.0074 25,26 Single,Stat 5 

LandOcean.30N.60N 120W.75W 1997 1.07 -0.038 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1997 0.0002 0.1200 0.0001 25,26 Single,Stat 4 

LandOcean.60S.30S 120W.75W 1890 -0.34 0.028 0.036 0.100 0.010 0.010 0.050 0.050 0.010 0.010 1937 0.0175 0.2141 0.0000 25,25 Single,Stat 4 

LandOcean.60S.30S 120W.75W 1978 0.43 -0.005 0.010 0.100 0.010 0.016 0.010 0.010 0.010 0.010 1937 0.0000 0.1810 0.0000 25,25 Single,Stat 4 

LandOcean.60N.90N 120W.75W 1922 0.58 -0.010 0.010 0.100 0.013 0.100 0.010 0.010 0.010 0.010 1954 0.0276 0.2665 0.0101 25,26 Single,Stat 4 

LandOcean.60N.90N 120W.75W 1994 0.98 0.035 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1971 0.0166 0.2564 0.0000 25,26 Single,Stat 4 

LandOcean.90S.60S 120W.75W 1905 -0.04 0.008 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1957 0.5625 0.0829 0.0379 26,26 Single,Stat 5 

LandOcean.90S.60S 120W.75W 1969 0.53 -0.003 0.037 0.100 0.012 0.100 0.010 0.010 0.010 0.010 1964 0.0003 0.7751 0.0000 25,26 Single,Stat 4 

LandOcean.90S.60S 120W.75W 1987 0.78 -0.002 0.010 0.100 0.053 0.100 0.050 0.010 0.010 0.010 1987 0.0007 0.9322 0.0017 20,20 Single,Stat 4 

LandOcean.00N.30N 75W.30W 1903 -0.27 -0.002 0.011 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1903 0.0173 0.8320 0.0512 20,20 Single,Stat 0 

LandOcean.00N.30N 75W.30W 1925 0.42 -0.001 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1925 0.0000 0.9360 0.0000 25,26 Single,Stat 4 

LandOcean.00N.30N 75W.30W 1977 0.09 0.008 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1970 0.3540 0.1540 0.0509 26,26 Single,Stat 0 
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LandOcean.00N.30N 75W.30W 2002 0.29 -0.007 0.010 0.100 0.082 0.100 0.050 0.010 0.010 0.010 1986 0.0257 0.6231 0.0524 20,20 Single,Stat 0 

LandOcean.30S.00N 75W.30W 1902 -0.26 0.004 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1915 0.0030 0.5054 0.0032 19,20 Single,Stat 4 

LandOcean.30S.00N 75W.30W 1938 0.29 0.003 0.010 0.100 0.075 0.100 0.010 0.010 0.010 0.010 1925 0.0016 0.4757 0.0056 26,26 Single,Stat 4 

LandOcean.30S.00N 75W.30W 1976 0.19 0.012 0.010 0.100 0.022 0.100 0.010 0.010 0.010 0.010 1976 0.0776 0.2099 0.0059 19,20 Single,Stat 6 

LandOcean.30S.00N 75W.30W 1993 0.10 -0.006 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2006 0.2865 0.5195 0.4125 20,20 Single,Stat 1 

LandOcean.30N.60N 75W.30W 1926 0.52 -0.001 0.010 0.100 0.030 0.100 0.010 0.010 0.010 0.010 1926 0.0000 0.8329 0.0000 25,26 Single,Stat 4 

LandOcean.30N.60N 75W.30W 1961 -0.42 0.008 0.010 0.100 0.028 0.100 0.050 0.010 0.010 0.010 1961 0.0001 0.1361 0.0003 25,26 Single,Stat 4 

LandOcean.30N.60N 75W.30W 1997 0.61 -0.001 0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1997 0.0000 0.9370 0.0000 19,20 Single,Stat 4 

LandOcean.60S.30S 75W.30W 1939 0.32 0.004 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1939 0.0000 0.1927 0.0000 25,26 Single,Stat 4 

LandOcean.60S.30S 75W.30W 1976 0.26 0.002 0.010 0.100 0.045 0.100 0.010 0.010 0.010 0.010 1945 0.0007 0.6361 0.0026 25,26 Single,Stat 6 

LandOcean.60N.90N 75W.30W 1922 1.55 -0.026 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1922 0.0000 0.0058 0.0000 25,26 Single,Stat 6 

LandOcean.60N.90N 75W.30W 1997 1.24 0.046 0.027 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1994 0.0004 0.1364 0.0000 25,26 Single,Stat 5 

LandOcean.90S.60S 75W.30W 1980 0.68 0.003 0.010 0.100 0.010 0.023 0.010 0.010 0.010 0.010 1926 0.0009 0.7271 0.0000 25,25 Single,Stat 4 

LandOcean.00N.30N 30W.15E 1978 0.34 -0.003 0.010 0.100 0.027 0.100 0.010 0.010 0.010 0.010 1986 0.0093 0.8138 0.0004 25,26 Single,Stat 4 

LandOcean.00N.30N 30W.15E 1994 0.33 0.014 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1994 0.0212 0.3240 0.0560 20,20 Single,Stat 0 

LandOcean.30S.00N 30W.15E 1919 0.33 0.006 0.010 0.100 0.062 0.100 0.010 0.010 0.010 0.010 1911 0.0017 0.1474 0.0045 26,26 Single,Stat 4 

LandOcean.30S.00N 30W.15E 1967 0.27 -0.011 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1945 0.0628 0.4300 0.1346 26,26 Single,Stat 0 

LandOcean.30S.00N 30W.15E 1982 0.31 0.011 0.010 0.100 0.100 0.100 0.010 0.010 0.100 0.010 1982 0.0188 0.4149 0.0561 11,20 Multiple,Stat 0 

LandOcean.30N.60N 30W.15E 1925 0.30 0.003 0.010 0.100 0.048 0.100 0.010 0.010 0.010 0.010 1900 0.0026 0.4037 0.0034 25,26 Single,Stat 4 

LandOcean.30N.60N 30W.15E 1961 -0.46 0.007 0.017 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1961 0.0000 0.1096 0.0000 25,26 Single,Stat 6 

LandOcean.30N.60N 30W.15E 1994 0.49 -0.010 0.010 0.100 0.029 0.100 1.000 0.050 0.010 0.010 1994 0.0000 0.1970 0.0001 22,20 Single,Stat 5 

LandOcean.60S.30S 30W.15E 1968 0.53 0.002 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1967 0.0000 0.4359 0.0000 25,26 Single,Stat 4 

LandOcean.60N.90N 30W.15E 1921 0.62 -0.010 0.010 0.100 0.010 0.072 0.010 0.010 0.010 0.010 1960 0.0000 0.0438 0.0000 25,26 Single,Stat 4 

LandOcean.60N.90N 30W.15E 2001 1.08 0.015 0.010 0.100 0.010 0.014 1.000 0.010 0.010 0.010 1976 0.0000 0.5600 0.0000 22,25 Single,Stat 4 

LandOcean.90S.60S 30W.15E 1973 0.65 -0.014 0.017 0.100 0.046 0.100 0.010 0.010 0.010 0.010 1973 0.0000 0.0024 0.0000 25,26 Single,Stat 6 

LandOcean.00N.30N 15E.60E 1902 -0.26 0.001 0.024 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1913 0.0106 0.8472 0.0363 20,20 Single,Stat 4 

LandOcean.00N.30N 15E.60E 1923 0.30 -0.005 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1942 0.0035 0.5239 0.0003 25,26 Single,Stat 4 

LandOcean.00N.30N 15E.60E 1978 0.20 0.009 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1942 0.0649 0.2790 0.0022 25,26 Single,Stat 4 
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LandOcean.00N.30N 15E.60E 1997 0.33 0.010 0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.010 1994 0.0168 0.4237 0.0309 20,20 Single,Stat 4 

LandOcean.30S.00N 15E.60E 1976 0.25 0.006 0.010 0.100 0.010 0.096 0.010 0.010 0.010 0.010 1903 0.0088 0.3657 0.0000 25,26 Single,Stat 4 

LandOcean.30S.00N 15E.60E 1997 0.10 0.005 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2002 0.3130 0.5860 0.4388 20,20 Single,Stat 0 

LandOcean.30N.60N 15E.60E 1933 0.10 0.001 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1988 0.4847 0.7868 0.7699 26,26 Single,Stat 0 

LandOcean.30N.60N 15E.60E 1997 0.73 0.015 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1997 0.0019 0.4524 0.0000 25,26 Single,Stat 4 

LandOcean.60S.30S 15E.60E 1929 0.31 -0.010 0.046 0.100 0.030 0.045 1.000 1.000 0.100 0.050 1905 0.1530 0.8310 0.0773 13,22 Multiple,Stat 0 

LandOcean.60S.30S 15E.60E 1936 0.30 0.008 0.100 0.100 0.066 0.100 0.050 0.010 0.010 0.010 1944 0.0509 0.8399 0.0342 20,20 Single,Stat 4 

LandOcean.60S.30S 15E.60E 1976 0.23 0.009 0.052 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1963 0.1370 0.7540 0.0196 18,20 Single,Stat 4 

LandOcean.60S.30S 15E.60E 1984 0.17 -0.007 0.024 0.100 0.068 0.100 0.050 0.010 1.000 1.000 2001 0.0804 0.7210 0.0344 11,11 
Single, Non-
stationary 

4 

LandOcean.60N.90N 15E.60E 1919 0.68 -0.003 0.010 0.100 0.053 0.100 0.010 0.010 0.010 0.010 1962 0.0104 0.7318 0.0076 26,26 Single,Stat 4 

LandOcean.60N.90N 15E.60E 1999 0.88 0.038 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1962 0.0307 0.3613 0.0000 25,26 Single,Stat 4 

LandOcean.90S.60S 15E.60E 1935 0.14 0.004 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2001 0.2290 0.2360 0.3258 26,26 Single,Stat 0 

LandOcean.00N.30N 60E.105E 1935 0.18 -0.001 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1902 0.0141 0.6701 0.0468 26,26 Single,Stat 4 

LandOcean.00N.30N 60E.105E 1976 0.22 0.005 0.010 0.100 0.022 0.100 0.010 0.010 0.010 0.010 1946 0.0208 0.4544 0.0066 25,26 Single,Stat 4 

LandOcean.00N.30N 60E.105E 1997 0.22 -0.001 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1997 0.0366 0.9344 0.1010 20,20 Single,Stat 0 

LandOcean.30S.00N 60E.105E 1976 0.28 0.006 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1945 0.0036 0.3583 0.0000 25,26 Single,Stat 4 

LandOcean.30S.00N 60E.105E 2000 0.10 0.012 0.010 0.100 0.086 0.100 0.010 0.010 0.010 0.010 1991 0.2466 0.1995 0.0710 20,20 Single,Stat 2 

LandOcean.30N.60N 60E.105E 1912 0.28 -0.006 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1926 0.0753 0.3877 0.0348 26,26 Single,Stat 4 

LandOcean.30N.60N 60E.105E 1976 0.40 0.016 0.010 0.100 0.019 0.100 0.010 0.010 0.010 0.010 1976 0.0633 0.3043 0.0015 25,26 Single,Stat 4 

LandOcean.30N.60N 60E.105E 1996 0.71 -0.031 0.010 0.100 0.100 0.100 0.100 0.010 0.010 0.010 1996 0.0067 0.1849 0.0165 20,20 Single,Stat 4 

LandOcean.60S.30S 60E.105E 1897 -0.24 -0.001 0.010 0.100 0.100 0.100 0.100 0.050 0.010 0.010 1913 0.0064 0.9090 0.0175 23,20 Single,Stat 4 

LandOcean.60S.30S 60E.105E 1925 -0.39 0.018 0.022 0.100 0.015 0.100 1.000 0.010 0.010 0.010 1913 0.0033 0.4736 0.0010 18,20 Single,Stat 4 

LandOcean.60S.30S 60E.105E 1932 0.49 -0.021 0.033 0.100 0.010 0.100 1.000 0.100 0.050 0.010 1941 0.0005 0.5351 0.0000 22,23 Single,Stat 4 

LandOcean.60S.30S 60E.105E 1975 0.42 0.008 0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.010 1974 0.0000 0.0059 0.0000 22,26 Single,Stat 6 

LandOcean.60N.90N 60E.105E 1919 0.80 -0.013 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1919 0.0097 0.2628 0.0027 25,26 Single,Stat 4 

LandOcean.60N.90N 60E.105E 1987 0.65 0.041 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1963 0.0874 0.0490 0.0003 25,26 Single,Stat 4 

LandOcean.90S.60S 60E.105E 1999 0.37 -0.006 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1991 0.1190 0.8039 0.0587 26,26 Single,Stat 1 
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Land.00N.30N 105E.150E 1936 0.25 -0.006 0.010 0.100 0.079 0.100 0.010 0.010 0.010 0.010 1936 0.0020 0.0224 0.0015 26,26 Single,Stat 5 

Land.00N.30N 105E.150E 1986 0.37 -0.003 0.033 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1976 0.0099 0.8776 0.0008 25,26 Single,Stat 4 

Land.00N.30N 105E.150E 1997 0.41 0.001 0.013 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1997 0.0104 0.9493 0.0282 2,2 Single, N/A 4 

Land.30S.00N 105E.150E 1909 0.29 0.008 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1909 0.0137 0.1882 0.0416 26,26 Single,Stat 4 

Land.30S.00N 105E.150E 1956 0.21 0.002 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1916 0.0726 0.7682 0.0617 26,26 Single,Stat 0 

Land.30S.00N 105E.150E 1978 0.32 -0.001 0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.010 1997 0.0247 0.9415 0.0777 20,20 Single,Stat 0 

Land.30S.00N 105E.150E 2001 0.15 0.016 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2010 0.3840 0.4130 0.2588 20,20 Single,Stat 0 

Land.30N.60N 105E.150E 1918 0.24 -0.000 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1951 0.1250 0.9710 0.2328 26,26 Single,Stat 0 

Land.30N.60N 105E.150E 1987 0.80 0.007 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1987 0.0000 0.4830 0.0000 25,26 Single,Stat 4 

Land.60S.30S 105E.150E 1971 0.35 0.007 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1942 0.0027 0.2100 0.0000 25,26 Single,Stat 4 

Land.60S.30S 105E.150E 2004 0.15 0.041 0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.010 1983 0.4190 0.1404 0.0128 21,20 Single,Stat 4 

Land.60N.90N 105E.150E 1987 0.52 0.027 0.010 0.100 0.010 0.052 0.010 0.010 0.010 0.010 1949 0.1223 0.1617 0.0004 25,26 Single,Stat 5 

Land.90S.60S 105E.150E 2006 0.78 -0.062 0.033 0.100 0.079 0.100 0.010 0.010 0.010 0.010 1992 0.0068 0.2616 0.0014 26,26 Single,Stat 4 

Land.30S.00N 150E.165W 1972 0.36 -0.001 0.010 0.100 0.010 0.053 0.010 0.010 0.010 0.010 1901 0.0006 0.9149 0.0000 25,26 Single,Stat 4 

Land.30S.00N 150E.165W 1994 0.33 0.010 0.010 0.100 0.100 0.100 0.050 0.010 0.010 0.010 1994 0.0020 0.2481 0.0030 20,20 Single,Stat 4 

Land.30N.60N 150E.165W 1988 0.40 0.022 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1916 0.0802 0.0938 0.0000 25,26 Single,Stat 4 

Land.60S.30S 150E.165W 1969 0.44 -0.008 0.010 0.100 0.039 0.100 0.010 0.010 0.010 0.010 1969 0.0007 0.2673 0.0007 25,26 Single,Stat 4 

Land.60S.30S 150E.165W 1997 0.43 0.001 0.036 0.100 0.100 0.100 0.050 0.010 0.050 0.010 1997 0.0069 0.9129 0.0104 20,20 Single,Stat 4 

Land.60N.90N 150E.165W 1920 0.82 0.021 0.014 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1920 0.0011 0.0251 0.0036 26,26 Single,Stat 5 

Land.60N.90N 150E.165W 1999 0.86 0.036 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1963 0.0220 0.3429 0.0000 25,26 Single,Stat 4 

Land.90S.60S 150E.165W 2006 0.96 0.002 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 2006 0.0020 0.9677 0.0000 25,26 Single,Stat 4 

Land.00N.30N 165W.120W 1933 0.50 -0.016 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1939 0.0014 0.0744 0.0057 26,26 Single,Stat 4 

Land.00N.30N 165W.120W 1958 0.37 0.018 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1956 0.0048 0.0262 0.0132 26,26 Single,Stat 4 

Land.30N.60N 165W.120W 1976 0.31 0.005 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1947 0.1550 0.5280 0.0606 26,26 Single,Stat 1 

Land.60N.90N 165W.120W 1910 1.24 -0.005 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1944 0.0018 0.7890 0.0009 25,26 Single,Stat 4 

Land.60N.90N 165W.120W 1975 0.88 0.027 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1944 0.0110 0.0408 0.0002 25,26 Single,Stat 4 

Land.90S.60S 165W.120W 1987 0.68 0.012 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1987 0.0022 0.3371 0.0000 25,26 Single,Stat 4 

Land.00N.30N 120W.75W 1989 0.31 0.010 0.010 0.100 0.010 0.075 0.010 0.010 0.010 0.010 1965 0.0007 0.0723 0.0000 25,26 Single,Stat 6 
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Land.30S.00N 120W.75W 1978 0.64 0.006 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1905 0.0011 0.4555 0.0000 25,26 Single,Stat 4 

Land.30N.60N 120W.75W 1920 0.28 -0.012 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1946 0.1228 0.0683 0.0064 25,26 Single,Stat 5 

Land.30N.60N 120W.75W 1997 1.06 -0.039 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1997 0.0002 0.1150 0.0002 25,26 Single,Stat 4 

Land.60N.90N 120W.75W 1922 0.65 -0.015 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1954 0.0260 0.1530 0.0048 25,26 Single,Stat 4 

Land.60N.90N 120W.75W 1993 0.93 0.034 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1971 0.0286 0.2547 0.0001 25,26 Single,Stat 4 

Land.90S.60S 120W.75W 1987 1.03 -0.004 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1987 0.0000 0.7330 0.0000 25,26 Single,Stat 4 

Land.00N.30N 75W.30W 1925 0.19 -0.002 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1884 0.0996 0.6480 0.1812 26,26 Single,Stat 0 

Land.00N.30N 75W.30W 1986 0.23 0.015 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1976 0.0327 0.0112 0.0000 25,26 Single,Stat 6 

Land.30S.00N 75W.30W 1908 -0.28 0.011 0.010 0.100 0.012 0.100 0.050 0.010 0.010 0.010 1915 0.0055 0.0655 0.0046 19,20 Single,Stat 4 

Land.30S.00N 75W.30W 1938 0.29 -0.000 0.010 0.100 0.099 0.100 0.010 0.010 0.010 0.010 1925 0.0098 0.9889 0.0311 26,26 Single,Stat 4 

Land.30S.00N 75W.30W 1976 0.19 0.015 0.010 0.100 0.030 0.100 0.010 0.010 0.010 0.010 1976 0.1130 0.1410 0.0055 19,20 Single,Stat 6 

Land.30S.00N 75W.30W 1993 0.14 -0.009 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2006 0.2140 0.3741 0.2640 20,20 Single,Stat 1 

Land.30N.60N 75W.30W 1929 0.48 -0.013 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1961 0.0196 0.0389 0.0020 25,26 Single,Stat 4 

Land.30N.60N 75W.30W 1997 1.07 0.003 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1997 0.0011 0.9093 0.0000 25,26 Single,Stat 4 

Land.60S.30S 75W.30W 1931 0.36 -0.005 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1942 0.0007 0.1891 0.0023 26,26 Single,Stat 4 

Land.60S.30S 75W.30W 1976 0.27 0.005 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1945 0.0130 0.2391 0.0134 26,26 Single,Stat 4 

Land.60N.90N 75W.30W 1922 1.62 -0.030 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1925 0.0000 0.0025 0.0000 25,26 Single,Stat 6 

Land.60N.90N 75W.30W 1997 1.29 0.042 0.025 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1994 0.0003 0.1783 0.0000 25,26 Single,Stat 5 

Land.90S.60S 75W.30W 1967 0.57 -0.014 0.100 0.100 0.031 0.100 0.010 0.010 0.010 0.010 1967 0.0003 0.2481 0.0001 25,26 Single,Stat 4 

Land.90S.60S 75W.30W 1987 0.53 0.022 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1980 0.0356 0.2600 0.0863 20,20 Single,Stat 0 

Land.00N.30N 30W.15E 1978 0.42 0.010 0.100 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1915 0.0163 0.5298 0.0000 25,26 Single,Stat 5 

Land.00N.30N 30W.15E 1995 0.37 0.005 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1995 0.0273 0.7433 0.0826 20,20 Single,Stat 0 

Land.30N.60N 30W.15E 1892 0.70 0.048 0.010 0.100 0.023 0.054 0.010 0.010 0.010 0.010 1891 0.0002 0.0477 0.0004 25,26 Single,Stat 5 

Land.30N.60N 30W.15E 1986 0.41 0.016 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1961 0.0056 0.0429 0.0000 25,26 Single,Stat 6 

Land.60N.90N 30W.15E 1921 0.95 -0.021 0.010 0.100 0.010 0.087 0.010 0.010 0.010 0.010 1921 0.0000 0.0030 0.0000 25,26 Single,Stat 5 

Land.60N.90N 30W.15E 2000 1.23 0.020 0.010 0.100 0.010 0.013 1.000 0.010 0.010 0.010 1965 0.0000 0.5150 0.0000 22,25 Single,Stat 4 

Land.00N.30N 15E.60E 1902 -0.29 -0.002 0.021 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1902 0.0113 0.8464 0.0348 20,20 Single,Stat 4 

Land.00N.30N 15E.60E 1923 0.26 -0.000 0.010 0.100 0.042 0.029 0.010 0.010 0.010 0.010 1942 0.0243 0.9630 0.0101 25,25 Single,Stat 4 



260 
 

Land.00N.30N 15E.60E 1994 0.41 0.026 0.010 0.100 0.010 0.023 0.050 0.010 0.010 0.010 1973 0.0008 0.0035 0.0000 25,25 Single,Stat 6 

Land.30S.00N 15E.60E 1982 0.25 0.011 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1982 0.0024 0.0047 0.0000 25,26 Single,Stat 6 

Land.30N.60N 15E.60E 1933 0.08 0.002 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1988 0.5990 0.6444 0.8045 26,26 Single,Stat 0 

Land.30N.60N 15E.60E 1997 0.74 0.014 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1997 0.0031 0.5017 0.0000 25,26 Single,Stat 4 

Land.60S.30S 15E.60E 1901 -0.98 0.038 0.010 0.100 0.075 0.100 1.000 1.000 1.000 0.050 1901 0.0000 0.0107 0.0000 11,20 Multiple,Stat 4 

Land.60S.30S 15E.60E 1917 0.14 -0.030 0.010 0.100 0.023 0.100 0.010 0.010 0.010 0.010 1914 0.3524 0.0541 0.0015 25,26 Single,Stat 6 

Land.60S.30S 15E.60E 1982 0.43 -0.014 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1982 0.0068 0.3622 0.0056 26,26 Single,Stat 5 

Land.60S.30S 15E.60E 1997 0.44 0.017 0.010 0.100 0.100 0.100 0.050 0.050 0.100 0.050 1997 0.0068 0.3241 0.0182 11,20 Multiple,Stat 4 

Land.60N.90N 15E.60E 1987 0.48 0.024 0.010 0.100 0.058 0.100 0.010 0.010 0.010 0.010 1962 0.1759 0.2367 0.0029 26,26 Single,Stat 5 

Land.00N.30N 60E.105E 1937 0.20 -0.006 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1902 0.0210 0.0635 0.0340 26,26 Single,Stat 5 

Land.00N.30N 60E.105E 1978 0.25 0.005 0.010 0.100 0.028 0.100 0.010 0.010 0.010 0.010 1976 0.0252 0.5253 0.0072 25,26 Single,Stat 4 

Land.00N.30N 60E.105E 1997 0.32 0.002 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2008 0.0159 0.8841 0.0468 20,20 Single,Stat 4 

Land.30S.00N 60E.105E 1967 0.18 0.007 0.017 0.100 0.048 0.100 0.010 0.010 0.010 0.010 1889 0.1660 0.5240 0.0140 25,26 Single,Stat 4 

Land.30S.00N 60E.105E 1986 0.20 0.002 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1977 0.1346 0.8590 0.3124 20,20 Single,Stat 0 

Land.30N.60N 60E.105E 1912 0.28 -0.006 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1926 0.0753 0.3877 0.0348 26,26 Single,Stat 4 

Land.30N.60N 60E.105E 1976 0.40 0.016 0.010 0.100 0.019 0.100 0.010 0.010 0.010 0.010 1976 0.0633 0.3043 0.0015 25,26 Single,Stat 4 

Land.30N.60N 60E.105E 1996 0.71 -0.031 0.010 0.100 0.100 0.100 0.100 0.010 0.010 0.010 1996 0.0067 0.1849 0.0165 20,20 Single,Stat 4 

Land.60N.90N 60E.105E 1919 0.82 -0.025 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1945 0.0141 0.0469 0.0009 25,26 Single,Stat 4 

Land.60N.90N 60E.105E 1980 0.84 0.035 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1980 0.0276 0.0392 0.0004 25,26 Single,Stat 4 

Land.90S.60S 60E.105E 2001 0.62 -0.019 0.100 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2001 0.0166 0.5435 0.0026 26,26 Single,Stat 4 

Ocean.00N.30N 105E.150E 1900 -0.40 -0.011 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1900 0.0002 0.1209 0.0008 26,26 Single,Stat 4 

Ocean.00N.30N 105E.150E 1940 0.30 -0.006 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1940 0.0000 0.0681 0.0001 26,26 Single,Stat 4 

Ocean.00N.30N 105E.150E 1977 0.20 0.011 0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1946 0.0165 0.0794 0.0004 19,20 Single,Stat 4 

Ocean.00N.30N 105E.150E 1997 0.35 -0.010 0.010 0.100 0.100 0.100 0.100 0.050 0.010 0.050 1997 0.0002 0.2172 0.0009 20,20 Single,Stat 4 

Ocean.30S.00N 105E.150E 1968 0.21 0.009 0.010 0.100 0.010 0.083 0.010 0.010 0.010 0.010 1900 0.0511 0.1404 0.0001 25,26 Single,Stat 4 

Ocean.30S.00N 105E.150E 1994 0.10 0.000 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1977 0.4310 0.9710 0.7081 20,20 Single,Stat 0 

Ocean.30N.60N 105E.150E 1988 0.54 0.009 0.010 0.100 0.010 0.019 0.010 0.010 0.010 0.010 1988 0.0002 0.3034 0.0000 25,25 Single,Stat 4 

Ocean.60S.30N 105E.150E 1975 0.40 0.006 0.010 0.100 0.010 0.010 0.050 0.010 0.010 0.010 1923 0.0000 0.0530 0.0000 25,25 Single,Stat 6 
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Ocean.60N.90N 105E.150E 1980 0.31 0.012 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1954 0.3070 0.5520 0.0783 26,26 Single,Stat 0 

Ocean.60N.90N 105E.150E 2004 1.42 -0.038 0.010 0.100 0.071 0.100 0.050 0.010 0.010 0.010 2004 0.0108 0.6137 0.0145 20,20 Single,Stat 4 

Ocean.90S.60S 105E.150E 1970 0.69 -0.006 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1970 0.0000 0.1171 0.0000 25,26 Single,Stat 4 

Ocean.00N.30N 150E.165W 1939 0.39 0.002 0.010 0.100 0.018 0.100 0.010 0.010 0.010 0.010 1939 0.0000 0.2770 0.0000 25,26 Single,Stat 4 

Ocean.00N.30N 150E.165W 1993 0.20 0.011 0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1970 0.0208 0.0712 0.0000 25,26 Single,Stat 6 

Ocean.30S.00N 150E.165W 1941 0.48 -0.008 0.033 0.100 0.010 0.094 0.010 0.010 0.010 0.010 1939 0.0000 0.0804 0.0000 25,26 Single,Stat 7 

Ocean.30S.00N 150E.165W 1968 0.25 0.013 0.024 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1946 0.0005 0.0036 0.0000 19,20 Single,Stat 5 

Ocean.30S.00N 150E.165W 1994 0.20 0.009 0.010 0.100 0.023 0.100 0.010 0.010 0.010 0.010 1994 0.0048 0.1191 0.0017 18,20 Single,Stat 6 

Ocean.30N.60N 150E.165W 1896 -0.67 -0.023 0.014 0.100 0.034 0.100 0.050 0.010 0.050 0.010 1894 0.0001 0.1186 0.0002 25,26 Single,Stat 4 

Ocean.30N.60N 150E.165W 1941 0.37 -0.005 0.010 0.100 0.036 0.100 0.010 0.010 0.010 0.010 1941 0.0004 0.1568 0.0003 25,26 Single,Stat 4 

Ocean.30N.60N 150E.165W 1998 0.35 0.005 0.100 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1988 0.0765 0.8773 0.0059 25,26 Single,Stat 4 

Ocean.30N.60N 150E.165W 2007 0.27 0.001 0.010 0.100 0.100 0.100 0.100 0.050 0.010 0.050 2010 0.0533 0.9853 0.1177 0,0 Single, N/A 0 

Ocean.60S.30N 150E.165W 1969 0.26 0.004 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1934 0.0047 0.2202 0.0002 25,26 Single,Stat 4 

Ocean.60N.90N 150E.165W 1976 0.35 0.009 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1962 0.1630 0.5562 0.0258 26,26 Single,Stat 4 

Ocean.60N.90N 150E.165W 2001 0.85 -0.002 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 2001 0.0482 0.9716 0.0722 20,20 Single,Stat 0 

Ocean.90S.60S 150E.165W 1919 -0.15 0.004 0.029 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1957 0.0212 0.0900 0.0084 26,26 Single,Stat 4 

Ocean.90S.60S 150E.165W 1969 0.32 0.001 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1992 0.0124 0.8194 0.0381 26,26 Single,Stat 4 

Ocean.00N.30N 165W.120W 1935 0.23 0.003 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1976 0.0537 0.3855 0.1451 26,26 Single,Stat 2 

Ocean.30S.00N 165W.120W 1981 0.30 0.003 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1906 0.0065 0.4970 0.0001 25,26 Single,Stat 4 

Ocean.30N.60N 165W.120W 1902 -0.65 -0.001 0.010 0.100 0.070 0.100 0.050 0.010 0.010 0.010 1902 0.0048 0.9816 0.0077 20,20 Single,Stat 4 

Ocean.30N.60N 165W.120W 1916 0.70 0.011 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1916 0.0000 0.5703 0.0000 25,26 Single,Stat 6 

Ocean.60S.30N 165W.120W 1989 0.28 0.006 0.010 0.100 0.010 0.081 0.010 0.010 0.010 0.010 1906 0.0066 0.3241 0.0000 25,26 Single,Stat 4 

Ocean.60N.90N 165W.120W 1918 0.93 0.009 0.010 0.100 0.064 0.100 0.010 0.010 0.010 0.010 1901 0.0031 0.4791 0.0096 26,26 Single,Stat 4 

Ocean.60N.90N 165W.120W 1992 0.94 0.039 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1963 0.0096 0.1089 0.0000 25,26 Single,Stat 4 

Ocean.90S.60S 165W.120W 1907 -0.27 0.001 0.016 0.100 0.028 0.100 0.050 0.050 0.010 0.010 1971 0.0011 0.8741 0.0002 25,26 Single,Stat 4 

Ocean.90S.60S 165W.120W 1979 0.29 -0.001 0.010 0.100 0.035 0.100 0.010 0.010 0.010 0.010 1986 0.0021 0.7794 0.0025 25,26 Single,Stat 4 

Ocean.00N.30N 120W.75W 1981 0.24 0.002 0.010 0.100 0.017 0.100 0.010 0.010 0.010 0.010 1905 0.0408 0.6934 0.0075 25,26 Single,Stat 4 

Ocean.30S.00N 120W.75W 1976 0.62 -0.003 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1975 0.0001 0.6500 0.0000 25,26 Single,Stat 4 
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Ocean.30N.60N 120W.75W 1929 0.32 -0.007 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1961 0.0987 0.2421 0.0711 26,26 Single,Stat 0 

Ocean.30N.60N 120W.75W 1997 1.16 -0.019 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1997 0.0005 0.5073 0.0001 25,26 Single,Stat 4 

Ocean.60S.30N 120W.75W 1890 -0.34 0.028 0.036 0.100 0.010 0.010 0.050 0.050 0.010 0.010 1937 0.0175 0.2141 0.0000 25,25 Single,Stat 4 

Ocean.60S.30N 120W.75W 1978 0.43 -0.005 0.010 0.100 0.010 0.016 0.010 0.010 0.010 0.010 1937 0.0000 0.1810 0.0000 25,25 Single,Stat 4 

Ocean.60N.90N 120W.75W 1926 0.47 -0.004 0.010 0.100 0.047 0.100 0.010 0.010 0.010 0.010 1960 0.0252 0.5926 0.0389 25,26 Single,Stat 4 

Ocean.60N.90N 120W.75W 1994 1.01 0.053 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1993 0.0064 0.0572 0.0000 25,26 Single,Stat 4 

Ocean.90S.60S 120W.75W 1905 -0.09 0.013 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1956 0.2228 0.0038 0.0001 25,26 Single,Stat 5 

Ocean.90S.60S 120W.75W 1969 0.71 -0.031 0.065 0.100 0.010 0.100 0.050 0.010 0.050 0.050 1969 0.0000 0.0282 0.0000 25,26 Single,Stat 4 

Ocean.90S.60S 120W.75W 1982 0.81 0.033 0.010 0.100 0.019 0.100 0.100 0.010 0.050 0.010 1982 0.0000 0.1230 0.0001 21,20 Single,Stat 4 

Ocean.00N.30N 75W.30W 1903 -0.27 0.008 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1914 0.0135 0.3274 0.0369 20,20 Single,Stat 4 

Ocean.00N.30N 75W.30W 1925 0.41 -0.003 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1939 0.0001 0.6160 0.0000 25,26 Single,Stat 4 

Ocean.00N.30N 75W.30W 1977 0.08 0.007 0.021 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1970 0.4260 0.2560 0.1318 26,26 Single,Stat 0 

Ocean.00N.30N 75W.30W 2002 0.32 -0.006 0.010 0.100 0.045 0.100 0.100 0.010 0.050 0.010 1994 0.0134 0.6690 0.0233 18,20 Single,Stat 4 

Ocean.30S.00N 75W.30W 1902 -0.28 0.012 0.052 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1902 0.0010 0.0243 0.0000 19,20 Single,Stat 6 

Ocean.30S.00N 75W.30W 1938 0.23 -0.011 0.010 0.100 0.100 0.100 0.010 0.010 0.050 0.010 1938 0.0112 0.0281 0.0093 26,26 Single,Stat 5 

Ocean.30S.00N 75W.30W 1968 0.27 0.004 0.019 0.100 0.027 0.100 0.050 0.010 0.010 0.010 1946 0.0438 0.7518 0.0295 18,20 Single,Stat 4 

Ocean.30S.00N 75W.30W 1982 0.26 -0.013 0.051 0.100 0.100 0.100 0.010 0.010 1.000 0.050 1982 0.0176 0.2925 0.0360 11,20 Multiple,Stat 4 

Ocean.30S.00N 75W.30W 1997 0.30 0.009 0.023 0.100 0.100 0.100 0.050 0.010 0.010 0.010 1997 0.0052 0.3919 0.0156 20,20 Single,Stat 4 

Ocean.30N.60N 75W.30W 1926 0.54 0.003 0.010 0.100 0.010 0.100 0.100 0.010 0.050 0.050 1926 0.0000 0.6308 0.0000 22,26 Single,Stat 4 

Ocean.30N.60N 75W.30W 1955 -0.38 0.001 0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1961 0.0002 0.8518 0.0004 25,26 Single,Stat 4 

Ocean.30N.60N 75W.30W 1997 0.60 0.006 0.010 0.100 0.010 0.100 1.000 0.050 0.010 0.010 1997 0.0000 0.5330 0.0000 22,26 Single,Stat 4 

Ocean.60S.30N 75W.30W 1939 0.42 -0.000 0.018 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1939 0.0000 0.9690 0.0000 25,26 Single,Stat 5 

Ocean.60S.30N 75W.30W 1967 0.27 0.011 0.067 0.100 0.035 0.100 1.000 0.050 1.000 0.050 1957 0.0650 0.6300 0.0105 9,20 Multiple,Stat 4 

Ocean.60S.30N 75W.30W 1976 0.12 -0.003 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1983 0.1616 0.8582 0.1135 20,20 Single,Stat 2 

Ocean.60N.90N 75W.30W 1922 1.44 -0.019 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1922 0.0000 0.0267 0.0000 25,26 Single,Stat 6 

Ocean.60N.90N 75W.30W 1997 1.17 0.051 0.033 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1994 0.0008 0.0921 0.0000 25,26 Single,Stat 5 

Ocean.90S.60S 75W.30W 1967 0.63 0.014 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1935 0.0030 0.0427 0.0000 25,26 Single,Stat 4 

Ocean.00N.30N 30W.15E 1902 -0.40 0.007 0.018 0.100 0.100 0.100 0.050 0.010 0.010 0.010 1902 0.0022 0.4553 0.0074 20,20 Single,Stat 4 
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Ocean.00N.30N 30W.15E 1925 0.38 -0.009 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1936 0.0007 0.2037 0.0000 25,26 Single,Stat 4 

Ocean.00N.30N 30W.15E 1978 0.32 -0.005 0.036 0.100 0.098 0.100 0.010 0.010 0.010 0.010 1945 0.0164 0.6939 0.0110 26,26 Single,Stat 4 

Ocean.00N.30N 30W.15E 1994 0.30 0.015 0.010 0.100 0.100 0.100 0.050 0.050 0.010 0.010 2009 0.0375 0.2893 0.0854 20,20 Single,Stat 0 

Ocean.30S.00N 30W.15E 1919 0.33 0.006 0.010 0.100 0.062 0.100 0.010 0.010 0.010 0.010 1911 0.0017 0.1474 0.0045 26,26 Single,Stat 4 

Ocean.30S.00N 30W.15E 1967 0.27 -0.011 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1945 0.0628 0.4300 0.1346 26,26 Single,Stat 0 

Ocean.30S.00N 30W.15E 1982 0.31 0.011 0.010 0.100 0.100 0.100 0.010 0.010 0.100 0.010 1982 0.0188 0.4149 0.0561 11,20 Multiple,Stat 0 

Ocean.30N.60N 30W.15E 1930 0.37 -0.003 0.010 0.100 0.026 0.100 0.010 0.010 0.010 0.010 1900 0.0003 0.5108 0.0011 25,26 Single,Stat 4 

Ocean.30N.60N 30W.15E 1961 -0.38 0.010 0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1968 0.0001 0.0417 0.0001 25,26 Single,Stat 6 

Ocean.30N.60N 30W.15E 1994 0.51 -0.009 0.010 0.100 0.022 0.100 1.000 0.050 0.010 0.010 1994 0.0000 0.2420 0.0000 22,20 Single,Stat 5 

Ocean.60S.30N 30W.15E 1968 0.53 0.002 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1967 0.0000 0.4359 0.0000 25,26 Single,Stat 4 

Ocean.60N.90N 30W.15E 1922 0.53 -0.005 0.010 0.100 0.058 0.100 0.010 0.010 0.010 0.010 1923 0.0001 0.3950 0.0006 26,26 Single,Stat 4 

Ocean.60N.90N 30W.15E 1961 -0.56 0.015 0.023 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1965 0.0000 0.0082 0.0000 25,26 Single,Stat 6 

Ocean.60N.90N 30W.15E 2001 0.72 0.001 0.010 0.100 0.010 0.100 1.000 0.050 0.010 0.010 2001 0.0002 0.9424 0.0000 22,20 Single,Stat 5 

Ocean.90S.60S 30W.15E 1972 0.80 -0.014 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1973 0.0000 0.0026 0.0000 25,26 Single,Stat 6 

Ocean.00N.30N 15E.60E 1934 0.32 -0.002 0.010 0.100 0.024 0.100 0.010 0.010 0.010 0.010 1913 0.0003 0.5535 0.0008 25,26 Single,Stat 4 

Ocean.00N.30N 15E.60E 1968 0.18 0.005 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1945 0.0732 0.3951 0.0976 26,26 Single,Stat 0 

Ocean.00N.30N 15E.60E 1996 0.23 0.003 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1996 0.0329 0.7715 0.0503 20,20 Single,Stat 0 

Ocean.30S.00N 15E.60E 1968 0.31 0.007 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1903 0.0008 0.1488 0.0000 25,26 Single,Stat 4 

Ocean.30S.00N 15E.60E 1997 0.02 0.014 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1992 0.8141 0.1098 0.1590 20,20 Single,Stat 2 

Ocean.30N.60N 15E.60E 1933 0.18 -0.003 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1913 0.1130 0.4270 0.1712 26,26 Single,Stat 0 

Ocean.30N.60N 15E.60E 1997 0.70 0.018 0.010 0.100 0.010 0.100 0.050 0.010 0.010 0.010 1993 0.0002 0.2616 0.0000 25,26 Single,Stat 4 

Ocean.60S.30N 15E.60E 1911 0.44 -0.003 0.092 0.100 0.046 0.100 1.000 0.050 1.000 0.050 1905 0.0012 0.7130 0.0039 13,20 Multiple,Stat 4 

Ocean.60S.30N 15E.60E 1933 0.55 0.008 0.010 0.100 0.010 0.100 0.100 0.010 0.010 0.010 1929 0.0001 0.3780 0.0002 22,26 Single,Stat 4 

Ocean.60S.30N 15E.60E 1970 0.15 0.018 0.069 0.100 0.043 0.100 0.050 0.010 0.010 0.010 1963 0.2600 0.2420 0.0222 19,20 Single,Stat 6 

Ocean.60S.30N 15E.60E 1983 0.16 -0.015 0.010 0.100 0.010 0.100 0.050 0.010 0.050 0.050 2001 0.0515 0.1310 0.0027 18,20 Single,Stat 5 

Ocean.60N.90N 15E.60E 1919 0.78 -0.006 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1961 0.0005 0.4978 0.0001 25,26 Single,Stat 4 

Ocean.60N.90N 15E.60E 1999 0.85 0.052 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1962 0.0105 0.1205 0.0000 25,26 Single,Stat 4 

Ocean.90S.60S 15E.60E 1937 0.35 0.004 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1935 0.0042 0.2412 0.0143 26,26 Single,Stat 6 
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Ocean.00N.30N 60E.105E 1939 0.20 0.001 0.010 0.100 0.080 0.100 0.010 0.010 0.010 0.010 1911 0.0094 0.8607 0.0147 26,26 Single,Stat 4 

Ocean.00N.30N 60E.105E 1976 0.28 0.002 0.010 0.100 0.016 0.100 0.010 0.010 0.010 0.010 1956 0.0121 0.8437 0.0123 19,20 Single,Stat 4 

Ocean.00N.30N 60E.105E 1996 0.17 0.002 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1996 0.0920 0.7920 0.2105 20,20 Single,Stat 0 

Ocean.30S.00N 60E.105E 1976 0.28 0.006 0.010 0.100 0.010 0.100 0.010 0.010 0.010 0.010 1945 0.0037 0.3669 0.0000 25,26 Single,Stat 4 

Ocean.30S.00N 60E.105E 2000 0.11 0.012 0.010 0.100 0.082 0.100 0.010 0.010 0.010 0.010 1991 0.2402 0.1945 0.0667 20,20 Single,Stat 2 

Ocean.60S.30N 60E.105E 1897 -0.24 -0.001 0.010 0.100 0.100 0.100 0.100 0.050 0.010 0.010 1913 0.0064 0.9090 0.0175 23,20 Single,Stat 4 

Ocean.60S.30N 60E.105E 1925 -0.39 0.018 0.022 0.100 0.015 0.100 1.000 0.010 0.010 0.010 1913 0.0033 0.4736 0.0010 18,20 Single,Stat 4 

Ocean.60S.30N 60E.105E 1932 0.49 -0.021 0.033 0.100 0.010 0.100 1.000 0.100 0.050 0.010 1941 0.0005 0.5351 0.0000 22,23 Single,Stat 4 

Ocean.60S.30N 60E.105E 1975 0.42 0.008 0.010 0.100 0.010 0.100 1.000 0.010 0.010 0.010 1974 0.0000 0.0059 0.0000 22,26 Single,Stat 6 

Ocean.60N.90N 60E.105E 1919 0.92 0.012 0.010 0.100 0.091 0.100 0.010 0.010 0.010 0.010 1962 0.0019 0.2634 0.0068 26,26 Single,Stat 4 

Ocean.60N.90N 60E.105E 2004 1.96 -0.048 0.010 0.100 0.010 0.025 0.010 0.010 0.010 0.010 1962 0.0009 0.5895 0.0000 25,25 Single,Stat 4 

Ocean.90S.60S 60E.105E 1896 -0.20 0.004 0.021 0.100 0.100 0.100 1.000 0.050 0.010 0.010 1897 0.0116 0.6452 0.0353 2,2 Single, N/A 4 

Ocean.90S.60S 60E.105E 1908 0.26 -0.010 0.010 0.100 0.010 0.100 1.000 0.100 0.050 0.010 1926 0.0010 0.2990 0.0001 21,23 Single,Stat 4 

Ocean.90S.60S 60E.105E 1936 0.32 0.008 0.010 0.100 0.100 0.100 0.010 0.010 0.010 0.010 1991 0.1202 0.5040 0.2776 26,26 Single,Stat 0 
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Table A5.1.34 RCP2.6 Mean/median return intervals for statistically significant (ANCOVA p <=0.05) shift-like regime changes in each zone 
from an ensemble of 25 global climate models. 

1850 to 

1950 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 182 182 114 136 119 195 

Ocean 124 94 101 97 76 182 

Land/Ocean 144 124 97 101 78 227 

 

1951 to 

1975 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 84 61 84 61 96 135 

Ocean 68 48 68 68 48 75 

Land/Ocean 61 68 96 61 48 68 

 

1976 to 

2040 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 26 28 25 30 30 46 

Ocean 25 21 25 24 23 41 

Land/Ocean 25 22 25 29 22 43 

 

2041 to 

2100 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 162 231 180 231 180 203 

Ocean 90 62 116 231 52 108 

Land/Ocean 108 180 135 231 52 147 

 

1850 to 

2100 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 68 71 61 69 69 103 

Ocean 56 44 55 58 42 81 

Land/Ocean 59 56 57 63 42 92 
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Table A5.1.35 RCP8.5 Mean return intervals for significant (ANCOVA p<=0.05 or CPindex=0) shift-like regime changes in each zone from an 
ensemble of 28 global climate models.. 

1850 to 

1950 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 130 114 88 105 88 160 

Ocean 76 51 74 70 43 83 

Land/Ocean 80 72 76 78 42 114 

 

1951 to 

1975 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 68 56 68 52 96 113 

Ocean 48 45 56 61 38 61 

Land/Ocean 42 68 75 56 40 56 

 

1976 to 

2040 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

21/21 22 22 24 27 23 34 

21/21 20 17 22 22 20 31 

18/18 18 19 20 23 20 28 

  

2041 to 

2100 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 25 29 27 25 26 23 

Ocean 18 18 27 27 20 25 

Land/Ocean 22 23 28 26 20 25 

 

1850 to 

2100 

60N.90N 30N.60N 00N.30N 30S.00N 60S.30S 90S.60S 

Land 38 39 39 40 38 46 

Ocean 30 25 35 35 26 40 

Land/Ocean 30 32 35 36 27 41 
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Table A5.1.36; matching. Table A5.1.32. Results of the main findings, break years, shifts and diagnostics for NCDC observed zonal annual average temperatures from the MSBV (adapted 
from Ricketts 2015.) The bivariate test shows the first changed year, the internal shift and change of trend at that time. The unit root tests show the statistical significance of each test 
under two conditions. The A column shows the test applied to the segment of data containing a change-point and, the B column shows the same test on the residuals after the implicit 
shift and trend-changes are removed. The exogenous year for the ZA test and its time difference from the MSBV change-point are also shown. ANOVA tests are provided for the 
significance of a change of trend, and independently a change of intercept where the time is relative to the year of change (both should be considered in the context of the ANCOVA). The 
ANCOVA tests the two segment regression at the change-point against the single regression and is equivalent to a Chow test. The segment classification is as per Table A4.1.29. Pink fill 
indicates a finding of stationarity or exogenous change. Red text indicates findings for which the false determination rate exceeds 5% and which were ignores in classifying the change-
points. Green shading indicates probabilities of 5% or less. 

Zone  Bivariate KPSS ADF Zivot-Andrews(ZA) ANOVA/ANVOVA Segment Classification 

    

Level Trend   Change Year 

Level 
Change 

Trend 
Change 

Level or 
Trend 

Change  

    ANOVA ANOVA 
ANCOV

A 

 Year 0C 0C/Year Pr Pr Pr Pr Pr Pr Pr Pr Year  Pr Pr Pr Code Class 

        A B A B A B A B             

land.60N.90N 1920 0.61 -0.0056 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.05 1949 29 0.44 0.00 0.00 25,26 Single, Stat 

land.60N.90N 1988 0.56 0.0373 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1963 -25 0.00 <0.01 <0.01 25,26 Single, Stat 

land.30N.60N 1894 0.16 -0.0134 0.01 0.10 0.10 0.10 0.05 0.01 0.05 0.01 1902 8 0.34 0.11 0.07 20,20 Single, Stat 

land.30N.60N 1921 0.28 0.0005 0.01 0.10 0.04 0.10 0.01 0.01 0.01 0.01 1913 -8 0.94 0.02 0.01 25,26 Single, Stat 

land.30N.60N 1981 0.27 0.0162 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1963 -18 0.29 0.00 0.03 25,26 Single, Stat 

land.30N.60N 1997 0.54 -0.0195 0.01 0.10 0.10 0.10 0.10 0.01 0.01 0.01 1997 0 0.31 0.01 0.00 20,20 Single, Stat 

land.00N.30N 1903 -0.36 0.0006 0.01 0.10 0.10 0.10 0.05 0.01 0.01 0.01 1902 -1 0.90 <0.01 <0.01 20,20 Single, Stat 

land.00N.30N 1926 0.16 -0.0041 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1942 16 0.42 0.01 0.02 25,26 Single, Stat 

land.00N.30N 1979 0.16 0.0101 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1977 -2 0.17 0.00 0.02 25,26 Single, Stat 

land.00N.30N 1998 0.3 0.0006 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1997 -1 0.96 0.03 0.01 20,20 Single, Stat 

land.30S.00N 1937 0.33 -0.0092 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1939 2 0.11 0.00 <0.01 25,26 Single, Stat 

land.30S.00N 1957 0.26 0.0131 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1957 0 0.09 0.01 0.00 20,20 Single, Stat 

land.30S.00N 1979 0.2 0.0091 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1976 -3 0.20 0.05 0.01 20,20 Single, Stat 

land.30S.00N 2002 0.17 -0.0086 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 2010 8 0.43 0.23 0.04 20,20 Single, Stat 

land.60S.30S 1938 0.09 0.0011 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1902 -36 0.67 0.26 0.12 26,26 Single, Stat 
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land.60S.30S 1977 0.28 0.0005 0.01 0.10 0.03 0.10 0.01 0.01 0.01 0.05 1976 -1 0.91 0.00 0.00 25,26 Single, Stat 

land.60S.30S 2003 0.07 0.0225 0.01 0.10 0.04 0.10 0.05 0.01 0.01 0.01 1991 -12 0.10 0.05 0.06 18,20 Single, Stat 

land.60S.60N 1921 0.1 0.0031 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1902 -19 0.65 0.16 0.15 20,20 Single, Stat 

land.60S.60N 1938 0.12 -0.0038 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1944 6 0.60 0.08 0.07 20,20 Single, Stat 

land.60S.60N 1979 0.22 0.015 0.01 0.10 0.01 0.10 0.05 0.01 0.01 0.01 1976 -3 0.04 <0.01 0.00 25,26 Single, Stat 

land.60S.60N 1997 0.29 -0.0065 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1997 0 0.47 0.01 0.00 20,20 Single, Stat 

land.20N.90N 1921 0.23 -0.003 0.01 0.10 0.02 0.10 0.01 0.01 0.01 0.01 1963 42 0.34 0.00 0.00 25,26 Single, Stat 

land.20N.90N 1988 0.47 0.0008 0.01 0.10 0.01 0.10 0.05 0.01 0.01 0.01 1963 -25 0.98 0.00 0.01 25,26 Single, Stat 

land.20N.90N 1998 0.42 0.004 0.01 0.10 0.09 0.10 0.10 0.01 0.05 0.01 1997 -1 0.86 0.02 0.01 2,2 Single, N/A 

land.20S.20N 1904 -0.17 0.0021 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1903 -1 0.57 0.01 0.00 20,20 Single, Stat 

land.20S.20N 1926 0.22 0.0046 0.01 0.10 0.03 0.10 0.05 0.01 0.01 0.01 1939 13 0.30 0.00 0.00 19,20 Single, Stat 

land.20S.20N 1957 0.13 -0.0004 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1942 -15 0.94 0.27 0.12 20,20 Single, Stat 

land.20S.20N 1979 0.19 0.0106 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1976 -3 0.23 0.06 0.02 20,20 Single, Stat 

land.20S.20N 1997 0.12 0.0022 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 2001 4 0.82 0.45 0.18 20,20 Single, Stat 

land.90S.20S 1926 0.24 -0.0014 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1943 17 0.76 0.03 0.01 26,26 Single, Stat 

land.90S.20S 1957 0.23 0.0014 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1957 0 0.85 0.04 0.02 20,20 Single, Stat 

land.90S.20S 1977 0.26 0.0071 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1976 -1 0.35 0.03 0.00 20,20 Single, Stat 

land.90S.20S 2002 0.15 0.0083 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 2010 8 0.48 0.10 0.08 20,20 Single, Stat 

land.00N.90N 1921 0.25 -0.0019 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1936 15 0.46 0.00 0.00 25,26 Single, Stat 

land.00N.90N 1980 0.2 0.019 0.01 0.10 0.01 0.10 0.05 0.01 0.01 0.01 1963 -17 0.05 <0.01 0.00 25,26 Single, Stat 

land.00N.90N 1997 0.32 -0.0074 0.01 0.10 0.10 0.10 0.05 0.01 0.01 0.01 1997 0 0.54 0.03 0.01 20,20 Single, Stat 

land.90S.00N 1937 0.32 -0.0095 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1939 2 0.09 0.00 <0.01 25,26 Single, Stat 

land.90S.00N 1957 0.24 0.0141 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1957 0 0.06 0.01 0.00 20,20 Single, Stat 

land.90S.00N 1979 0.19 0.007 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1976 -3 0.28 0.05 0.01 20,20 Single, Stat 

land.90S.00N 2002 0.14 -0.0036 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 2010 8 0.71 0.23 0.07 20,20 Single, Stat 

land.90S.90N 1925 0.18 0 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1936 11 0.99 0.01 0.00 26,26 Single, Stat 

land.90S.90N 1980 0.2 0.015 0.01 0.10 0.01 0.10 0.05 0.01 0.01 0.01 1963 -17 0.07 <0.01 0.00 25,26 Single, Stat 

land.90S.90N 1997 0.25 -0.0042 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1997 0 0.67 0.05 0.01 20,20 Single, Stat 
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land_ocean.60N.90N 1920 0.58 0.0023 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1919 -1 0.66 0.00 <0.01 25,26 Single, Stat 

land_ocean.60N.90N 1988 0.53 0.0115 0.03 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1963 -25 0.63 0.00 0.01 25,26 Single, Stat 

land_ocean.60N.90N 2002 0.34 0.0105 0.01 0.10 0.10 0.10 0.05 0.01 0.01 0.01 2001 -1 0.73 0.31 0.11 2,2 Single, N/A 

land_ocean.30N.60N 1921 0.34 0.0011 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1920 -1 0.62 <0.01 <0.01 25,26 Single, Stat 

land_ocean.30N.60N 1988 0.37 -0.0141 0.04 0.10 0.03 0.10 0.01 0.01 0.01 0.01 1963 -25 0.51 0.00 0.00 25,26 Single, Stat 

land_ocean.30N.60N 1997 0.43 0.0188 0.01 0.10 0.10 0.10 0.10 0.01 0.10 0.01 1996 -1 0.34 0.00 0.00 2,2 Single, N/A 

land_ocean.00N.30N 1904 -0.23 0.0033 0.01 0.10 0.10 0.10 0.01 0.01 0.10 0.01 1906 2 0.54 0.01 0.00 11,20 Multiple, Stat 

land_ocean.00N.30N 1926 0.25 -0.0025 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1942 16 0.59 <0.01 0.00 25,26 Single, Stat 

land_ocean.00N.30N 1979 0.11 0.0075 0.01 0.10 0.05 0.10 0.01 0.01 0.01 0.01 1970 -9 0.24 0.01 0.04 25,26 Single, Stat 

land_ocean.00N.30N 1997 0.14 -0.0022 0.01 0.10 0.10 0.10 0.01 0.01 0.05 0.05 1986 -11 0.76 0.19 0.05 20,20 Single, Stat 

land_ocean.30S.00N 1937 0.16 0.0044 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1902 -35 0.04 0.00 0.00 25,26 Single, Stat 

land_ocean.30S.00N 1979 0.18 0.0044 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1945 -34 0.49 0.00 0.01 25,26 Single, Stat 

land_ocean.30S.00N 1997 0.11 -0.0042 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.05 2001 4 0.52 0.23 0.05 20,20 Single, Stat 

land_ocean.60S.30S 1887 -0.19 0.0168 0.01 0.10 0.01 0.10 >0.1 0.01 >0.1 0.01 1913 26 0.36 <0.01 0.00 13,20 Multiple, Stat 

land_ocean.60S.30S 1937 0.24 0.0015 0.01 0.10 0.01 0.10 >0.1 0.01 >0.1 0.01 1931 -6 0.48 <0.01 <0.01 13,26 Multiple, Stat 

land_ocean.60S.30S 1968 0.09 0.0174 0.01 0.10 0.02 0.10 0.10 0.01 >0.1 0.05 1962 -6 0.08 0.00 0.01 12,20 Single, Stat 

land_ocean.60S.30S 1977 0.05 -0.0176 0.01 0.10 0.02 0.10 >0.1 0.01 >0.1 0.01 1981 4 0.01 0.00 0.00 0,2 Single, N/A 

land_ocean.60S.30S 1996 0.1 0.0014 0.01 0.10 0.10 0.10 >0.1 0.01 >0.1 0.01 1995 -1 0.61 0.00 0.00 11,20 Multiple, Stat 

land_ocean.60S.60N 1903 -0.14 -0.0041 0.01 0.10 0.08 0.10 0.10 0.01 >0.1 0.01 1894 -9 0.57 0.01 0.01 11,20 Multiple, Stat 

land_ocean.60S.60N 1914 0.2 0.0023 0.02 0.10 0.10 0.10 >0.1 0.01 >0.1 0.01 1913 -1 0.79 0.01 0.00 2,2 Single, N/A 

land_ocean.60S.60N 1925 0.1 0.0092 0.01 0.10 0.10 0.10 0.01 0.01 0.05 0.01 1915 -10 0.26 0.11 0.02 2,2 Single, N/A 

land_ocean.60S.60N 1937 0.11 -0.0048 0.01 0.10 0.10 0.10 0.05 0.01 0.01 0.01 1945 8 0.53 0.01 0.03 20,20 Single, Stat 

land_ocean.60S.60N 1979 0.14 0.0091 0.01 0.10 0.01 0.04 0.05 >0.1 0.01 >0.1 1945 -34 0.04 <0.01 0.00 25,13 Single, Non-Stat 

land_ocean.60S.60N 1997 0.17 -0.0054 0.01 0.10 0.10 0.10 0.01 0.01 0.05 0.05 1996 -1 0.25 0.00 0.00 20,20 Single, Stat 

land_ocean.20N.90N 1925 0.33 0.0003 0.01 0.10 0.01 0.10 0.01 0.01 0.01 >0.1 1920 -5 0.85 <0.01 <0.01 25,17 Non-Stat 

land_ocean.20N.90N 1988 0.29 0.0079 0.01 0.10 0.01 0.10 0.10 >0.1 0.01 0.10 1963 -25 0.63 <0.01 0.01 22,14 Single, Non-Stat 

land_ocean.20N.90N 1998 0.28 0.0004 0.01 0.10 0.07 0.10 >0.1 0.10 >0.1 >0.1 1996 -2 0.97 0.01 0.00 2,2 Single, N/A 

land_ocean.20S.20N 1936 0.21 0.0027 0.01 0.10 0.01 0.10 0.01 0.05 0.01 0.10 1925 -11 0.25 0.00 0.00 25,17 Non-Stat 
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land_ocean.20S.20N 1979 0.18 0.0067 0.01 0.10 0.02 0.10 0.01 0.01 0.01 0.05 1945 -34 0.35 0.00 0.01 25,26 Single, Stat 

land_ocean.20S.20N 1997 0.1 -0.0044 0.01 0.10 0.10 0.10 0.01 0.01 0.05 0.01 2001 4 0.59 0.44 0.14 20,20 Single, Stat 

land_ocean.90S.20S 1887 -0.17 0.0121 0.01 0.10 0.01 0.10 >0.1 0.01 0.05 0.01 1911 24 0.40 <0.01 0.00 22,20 Single, Stat 

land_ocean.90S.20S 1937 0.23 -0.0001 0.01 0.10 0.01 0.10 0.10 0.01 >0.1 0.01 1931 -6 0.96 <0.01 <0.01 13,26 Multiple, Stat 

land_ocean.90S.20S 1969 0.19 0.0046 0.01 0.10 0.01 0.10 >0.1 0.01 >0.1 0.01 1945 -24 0.71 0.00 0.01 12,20 Single, Stat 

land_ocean.90S.20S 1977 0.08 -0.0013 0.01 0.10 0.10 0.01 >0.1 0.05 0.10 0.01 1976 -1 0.85 0.03 0.03 2,0 Single, Stat 

land_ocean.90S.20S 1997 0.1 -0.0003 0.01 0.10 0.10 0.10 >0.1 0.01 >0.1 0.01 1995 -2 0.89 0.00 0.00 11,20 Multiple, Stat 

land_ocean.00N.90N 1925 0.31 0.0034 0.01 0.10 0.01 0.10 0.01 0.05 0.01 0.05 1923 -2 0.03 <0.01 <0.01 25,26 Single, Stat 

land_ocean.00N.90N 1987 0.22 0.005 0.01 0.10 0.01 0.10 0.05 0.01 0.01 0.01 1963 -24 0.70 <0.01 0.01 25,26 Single, Stat 

land_ocean.00N.90N 1997 0.22 0.0031 0.01 0.10 0.08 0.10 0.10 0.01 0.05 0.01 1996 -1 0.77 0.01 0.00 2,2 Single, N/A 

land_ocean.90S.00N 1890 -0.12 0.0143 0.02 0.10 0.01 0.01 >0.1 >0.1 0.01 0.05 1911 21 0.11 <0.01 0.00 22,22 Single, Stat 

land_ocean.90S.00N 1937 0.2 -0.001 0.01 0.10 0.03 0.10 0.05 0.01 0.10 0.01 1911 -26 0.60 <0.01 <0.01 16,26 Multiple, Stat 

land_ocean.90S.00N 1969 0.18 -0.0005 0.01 0.10 0.02 0.10 0.05 0.10 0.05 0.10 1945 -24 0.96 0.01 0.02 18,14 Single, Non-Stat 

land_ocean.90S.00N 1979 0.12 0.0058 0.01 0.10 0.10 0.10 0.01 >0.1 0.01 >0.1 1976 -3 0.48 0.10 0.02 2,2 Single, N/A 

land_ocean.90S.00N 1997 0.11 -0.0032 0.01 0.10 0.10 0.10 0.01 0.05 0.05 0.05 1996 -1 0.38 0.02 0.00 20,20 Single, Stat 

land_ocean.90S.90N 1930 0.25 0.0032 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1913 -17 0.02 <0.01 <0.01 25,26 Single, Stat 

land_ocean.90S.90N 1979 0.12 0.0089 0.01 0.10 0.01 0.10 0.05 0.01 0.01 0.01 1945 -34 0.04 <0.01 0.00 25,26 Single, Stat 

land_ocean.90S.90N 1997 0.16 -0.0049 0.01 0.10 0.10 0.10 0.05 0.01 0.01 0.01 1996 -1 0.29 0.01 0.00 20,20 Single, Stat 

ocean.60N.90N 1926 0.4 0.002 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1925 -1 0.24 <0.01 <0.01 25,26 Single, Stat 

ocean.60N.90N 2000 0.48 0.0249 0.01 0.10 0.01 0.10 >0.1 0.01 0.01 0.01 1981 -19 0.01 <0.01 <0.01 22,26 Single, Stat 

ocean.30N.60N 1902 -0.34 0.0031 0.01 0.10 0.04 0.10 0.10 0.01 0.10 0.01 1901 -1 0.62 <0.01 <0.01 9,20 Multiple, Stat 

ocean.30N.60N 1915 0.21 0.0135 0.01 0.10 0.10 0.10 0.05 0.05 0.10 0.10 1914 -1 0.06 0.00 <0.01 2,2 Single, N/A 

ocean.30N.60N 1930 0.13 -0.0113 0.01 0.10 0.02 0.10 0.01 0.01 0.10 0.01 1938 8 0.10 0.00 0.01 9,20 Multiple, Stat 

ocean.30N.60N 1964 -0.18 -0.0063 0.01 0.10 0.02 0.10 0.01 0.01 0.01 0.05 1963 -1 0.09 0.00 0.00 25,26 Single, Stat 

ocean.30N.60N 1989 0.28 0.0068 0.02 0.10 0.01 0.10 >0.1 0.01 0.05 >0.1 1988 -1 0.62 0.00 0.00 18,11 Single, Non-Stat 

ocean.30N.60N 1998 0.21 0.0074 0.01 0.10 0.10 0.10 0.05 0.01 0.10 >0.1 1993 -5 0.59 0.03 0.01 2,2 Single, N/A 

ocean.00N.30N 1907 -0.23 0.01 0.01 0.10 0.10 0.10 0.01 0.01 0.10 >0.1 1906 -1 0.13 0.02 0.00 11,11 Single, Non-Stat 

ocean.00N.30N 1926 0.24 -0.0061 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.05 1945 19 0.28 <0.01 0.00 25,26 Single, Stat 
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ocean.00N.30N 1987 0.15 0.0051 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.01 1969 -18 0.12 0.00 0.00 25,26 Single, Stat 

ocean.30S.00N 1937 0.15 0.0029 0.01 0.10 0.02 0.10 0.01 0.01 0.01 0.10 1911 -26 0.18 0.01 0.00 25,17 Non-Stat 

ocean.30S.00N 1979 0.18 0.0036 0.01 0.10 0.01 0.10 0.01 0.01 0.01 0.10 1945 -34 0.58 0.01 0.01 25,17 Non-Stat 

ocean.30S.00N 1997 0.13 -0.0056 0.01 0.10 0.10 0.10 0.01 0.01 0.05 0.01 2001 4 0.36 0.09 0.02 20,20 Single, Stat 

ocean.60S.30S 1887 -0.2 0.0171 0.01 0.10 0.01 0.10 >0.1 0.01 >0.1 0.01 1913 26 0.37 <0.01 0.00 13,20 Multiple, Stat 

ocean.60S.30S 1937 0.24 0.0029 0.01 0.10 0.01 0.10 >0.1 0.01 >0.1 0.05 1931 -6 0.15 <0.01 <0.01 13,26 Multiple, Stat 

ocean.60S.30S 1970 0.14 0.0111 0.01 0.10 0.03 0.10 0.10 0.01 >0.1 0.10 1962 -8 0.46 0.00 0.03 12,11 Non-Stat 

ocean.60S.30S 1977 0.05 -0.0122 0.01 0.10 0.08 0.10 >0.1 0.01 >0.1 0.05 1981 4 0.15 0.02 0.02 2,2 Single, N/A 

ocean.60S.30S 1996 0.11 0.0001 0.01 0.10 0.10 0.10 >0.1 0.01 >0.1 0.10 1995 -1 0.97 0.00 0.00 11,11 Single, Non-Stat 

ocean.60S.60N 1890 -0.14 0.008 0.02 0.10 0.01 0.10 >0.1 0.01 >0.1 0.01 1913 23 0.45 0.00 0.02 12,20 Single, Stat 

ocean.60S.60N 1930 0.22 0.0011 0.01 0.10 0.02 0.10 0.01 0.01 >0.1 0.01 1913 -17 0.54 <0.01 <0.01 16,26 Multiple, Stat 

ocean.60S.60N 1977 0.11 -0.0017 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1945 -32 0.87 0.07 0.10 20,20 Single, Stat 

ocean.60S.60N 1987 0.1 0.0013 0.01 0.10 0.10 0.10 0.01 0.01 >0.1 0.01 1986 -1 0.85 0.08 0.02 2,2 Single, N/A 

ocean.60S.60N 1997 0.14 0.0013 0.01 0.10 0.10 0.10 0.05 0.01 >0.1 0.01 1996 -1 0.85 0.01 0.00 2,2 Single, N/A 

ocean.20N.90N 1902 -0.21 -0.0035 0.01 0.10 0.04 0.10 0.10 0.01 >0.1 0.01 1901 -1 0.51 <0.01 <0.01 9,20 Multiple, Stat 

ocean.20N.90N 1915 0.14 0.0245 0.01 0.10 0.02 0.04 >0.1 0.01 >0.1 0.01 1907 -8 0.00 0.00 <0.01 0,0 Single, N/A 

ocean.20N.90N 1930 0.13 -0.0154 0.01 0.10 0.01 0.01 >0.1 0.01 0.10 0.01 1945 15 0.00 <0.01 <0.01 12,18 Multiple, Stat 

ocean.20N.90N 1964 -0.16 -0.0036 0.01 0.10 0.02 0.04 0.01 >0.1 0.05 >0.1 1963 -1 0.18 0.00 0.00 19,13 Single, Non-Stat 

ocean.20N.90N 1988 0.2 0.0056 0.01 0.10 0.02 0.10 >0.1 0.01 >0.1 0.05 1987 -1 0.60 0.00 0.00 9,20 Multiple, Stat 

ocean.20N.90N 1997 0.2 0.0067 0.01 0.10 0.09 0.10 0.10 0.01 >0.1 >0.1 1993 -4 0.51 0.01 0.00 2,2 Single, N/A 

ocean.20S.20N 1926 0.26 0.006 0.01 0.10 0.03 0.10 0.01 >0.1 0.01 >0.1 1924 -2 0.01 0.00 <0.01 25,14 Single, Non-Stat 

ocean.20S.20N 1979 0.16 0.0049 0.01 0.10 0.03 0.10 0.01 0.10 0.01 >0.1 1945 -34 0.48 0.01 0.03 25,14 Single, Non-Stat 

ocean.20S.20N 1997 0.1 -0.0064 0.01 0.10 0.10 0.01 0.01 >0.1 0.05 0.10 2001 4 0.43 0.40 0.11 20,9 Single, Stat 

ocean.90S.20S 1887 -0.18 0.013 0.01 0.10 0.01 0.10 >0.1 0.01 >0.1 0.05 1911 24 0.39 <0.01 0.00 13,20 Multiple, Stat 

ocean.90S.20S 1937 0.25 -0.0001 0.01 0.10 0.01 0.10 >0.1 0.01 >0.1 0.01 1933 -4 0.98 <0.01 <0.01 13,26 Multiple, Stat 

ocean.90S.20S 1969 0.17 0.0121 0.01 0.10 0.01 0.10 >0.1 0.01 >0.1 >0.1 1944 -25 0.32 <0.01 0.01 12,11 Non-Stat 

ocean.90S.20S 1977 0.04 -0.0096 0.01 0.10 0.07 0.10 >0.1 0.01 >0.1 0.10 1987 10 0.12 0.02 0.02 2,2 Single, N/A 

ocean.90S.20S 1996 0.11 -0.0002 0.01 0.10 0.10 0.01 >0.1 >0.1 >0.1 0.05 1995 -1 0.92 0.00 0.00 11,18 Single, Non-Stat 
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ocean.00N.90N 1903 -0.25 0.0106 0.01 0.10 0.02 0.10 >0.1 0.01 >0.1 0.05 1906 3 0.01 <0.01 <0.01 12,20 Single, Stat 

ocean.00N.90N 1926 0.27 -0.0079 0.01 0.10 0.01 0.10 0.10 0.05 0.01 0.10 1945 19 0.01 <0.01 <0.01 22,17 Single, Non-Stat 

ocean.00N.90N 1987 0.13 0.0071 0.04 0.10 0.02 0.10 0.01 0.01 0.05 0.01 1969 -18 0.50 0.00 0.04 25,26 Single, Stat 

ocean.00N.90N 1997 0.13 0.0001 0.01 0.10 0.10 0.10 0.05 0.01 >0.1 0.01 1996 -1 0.99 0.07 0.03 2,2 Single, N/A 

ocean.90S.00N 1890 -0.12 0.0161 0.02 0.10 0.01 0.01 >0.1 >0.1 0.01 0.10 1911 21 0.07 <0.01 0.00 22,13 Single, Non-Stat 

ocean.90S.00N 1937 0.2 -0.0023 0.01 0.10 0.04 0.10 0.05 0.01 >0.1 0.05 1911 -26 0.25 <0.01 <0.01 16,26 Multiple, Stat 

ocean.90S.00N 1969 0.18 0.0025 0.02 0.10 0.01 0.10 0.10 0.05 0.05 >0.1 1945 -24 0.82 0.00 0.01 21,11 Single, Stat 

ocean.90S.00N 1979 0.1 0.0027 0.01 0.10 0.10 0.10 0.01 >0.1 0.05 >0.1 1976 -3 0.70 0.09 0.02 2,2 Single, N/A 

ocean.90S.00N 1997 0.12 -0.0044 0.01 0.10 0.10 0.10 0.01 0.10 0.05 >0.1 1996 -1 0.16 0.00 0.00 20,11 Single, Non-Stat 

ocean.90S.90N 1890 -0.13 0.0083 0.01 0.10 0.01 0.01 >0.1 >0.1 >0.1 0.10 1913 23 0.43 0.00 0.02 12,12 Non-Stat 

ocean.90S.90N 1930 0.22 0.001 0.01 0.10 0.02 0.10 0.05 0.01 >0.1 0.05 1913 -17 0.56 <0.01 <0.01 16,26 Multiple, Stat 

ocean.90S.90N 1977 0.11 -0.0017 0.01 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1945 -32 0.87 0.07 0.10 20,20 Single, Stat 

ocean.90S.90N 1987 0.1 0.0021 0.01 0.10 0.10 0.10 0.05 0.01 >0.1 >0.1 1986 -1 0.77 0.07 0.02 2,2 Single, N/A 

ocean.90S.90N 1997 0.14 0.0011 0.01 0.10 0.10 0.10 0.05 0.01 >0.1 0.10 1996 -1 0.88 0.01 0.00 2,2 Single, N/A 
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Appendix 5.2: Additional figures  
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Figure A5.1.54: Pre-industrial Control ensemble Internal shifts (left) and change of internal trend (right) for all significant change-points (ANCOVA p<=0.05). 
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Figure A5.1.55: RCP2.6 ensemble, Internal shifts (left) and change of internal trend (right) for all significant change-points (ANCOVA p<=0.05)
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Figure A5.1.56: RCP8.5 ensemble, Internal shifts (left) and change of internal trend (right) for all significant change-points (ANCOVA p<=0.0.5) 
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Appendix 6.1: Quadrant correlations of climate models 
Table A6.1.37: Sample shift correlations for Africa and for Northern Pacific Ocean. Note considerably higher 
correlation indices North relative to South for Africa 

AFRICA 

Model 
AFRIC
A 

AFRICA
N 

AFRICA
NE 

AFRICAN
W 

AFRICA 
S 

AFRICA
SE 

AFRICAS
W 

Mean 
Rank 

Over
all 

ACCESS1-0 0.53  0.53  0.80  0.29  0.16  0.13  0.09    

ACCESS1-3 0.40  0.47  0.29  0.31  0.03  0.15  0.00    

bcc-csm1-1 0.47  0.47  0.05  0.50  0.11  0.05  0.09    

bcc-csm1-1-m 0.17  0.11  0.03  0.12  0.00  0.04  0.00    

BNU-ESM 0.30  0.30  0.05  0.32  0.00  0.02  0.00    

CanESM2 0.01  0.01  0.03  0.00  0.01  0.09  0.00    

CESM1-BGC 0.26  0.26  0.15  0.15  0.06  0.07  0.03    

CESM1-CAM5 0.62  0.64  0.35  0.55  0.17  0.33  0.07    

IPSL-CM5A-LR 0.52  0.51  0.82  0.36  0.16  0.08  0.18    

IPSL-CM5A-MR 0.46  0.31  0.04  0.37  0.02  0.07  0.00    

IPSL-CM5B-LR 0.30  0.35  0.45  0.15  0.01  0.07  0.00    

MIROC5 0.06  0.13  0.32  0.04  0.00  0.00  0.00    

MIROC-ESM 0.17  0.04  0.02  0.04  0.00  0.00  0.00    

MIROC-ESM-
CHEM 

0.32  0.40  0.13  0.29  0.01  0.00  0.00    

MPI-ESM-LR 0.17  0.07  0.19  0.01  0.15  0.35  0.06    

MPI-ESM-MR 0.68  0.70  0.49  0.62  0.08  0.06  0.05    

MRI-CGCM3 0.24  0.16  0.01  0.15  0.00  0.04  0.00    

NorESM1-M 0.29  0.27  0.34  0.16  0.23  0.07  0.24    

NorESM1-ME 0.26  0.17  0.22  0.02  0.04  0.06  0.00    

 

Ranks 
AFRIC
A 

AFRICA
N 

AFRICA
NE 

AFRICAN
W 

AFRICA
S 

AFRICA
SE 

AFRICASW  

ACCESS1-0 3 3 2 9 4 4 3 3.6 3 

ACCESS1-3 7 6 8 7 10 3 10 5.6 6 

bcc-csm1-1 5 5 13 3 6 13 4 6.6 7 

bcc-csm1-1-m 15 16 16 14 16 15 18 12.6 19 

BNU-ESM 9 10 14 6 15 16 12 9.6 12 

CanESM2 19 19 17 19 13 5 19 12 16 

CESM1-BGC 12 12 11 13 8 8 8 8 11 

CESM1-CAM5 2 2 5 2 2 2 5 2.8 1 

IPSL-CM5A-LR 4 4 1 5 3 6 2 2.8 1 

IPSL-CM5A-MR 6 9 15 4 11 10 9 7.6 9 

IPSL-CM5B-LR 10 8 4 12 12 7 15 7.6 9 

MIROC5 18 15 7 16 18 19 14 11.2 15 
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MIROC-ESM 17 18 18 15 19 17 11 12.2 17 

MIROC-ESM-
CHEM 

8 7 12 8 14 18 13 10.2 13 

MPI-ESM-LR 16 17 10 18 5 1 6 7 8 

MPI-ESM-MR 1 1 3 1 7 11 7 4.4 4 

MRI-CGCM3 14 14 19 11 17 14 17 12.2 17 

NorESM1-M 11 11 6 10 1 9 1 5.2 5 

NorESM1-ME 13 13 9 17 9 12 16 10.8 14 

  

North Pacific 

Model NPAC NEPA
C 

NEPAC
N 

NEPAC
S 

NWPA
C 

NWPAC
N 

NWPAC
S 

Mean 
Rank 

Overal
l 

ACCESS1-0 0.28 0.03 0.04 0.02 0.50 0.67 0.23   

ACCESS1-3 0.00 0.04 0.02 0.02 0.00 0.00 0.00   

bcc-csm1-1 0.22 0.00 0.03 0.01 0.34 0.45 0.03   

bcc-csm1-1-m 0.03 
 

0.00 0.04 0.01 0.04 0.04 0.01   

BNU-ESM 0.16 0.04 0.00 0.00 0.11 0.01 0.21   

CanESM2 0.24 0.08 0.01 0.15 0.29 0.56 0.09   

CESM1-BGC 0.11 0.07 0.00 0.16 0.07 0.01 0.14   

CESM1-CAM5 0.19 0.04 0.03 0.02 0.29 0.26 0.19   

IPSL-CM5A-LR 0.14 0.02 0.01 0.03 0.23 0.13 0.08   

IPSL-CM5A-MR 0.16 0.07 0.01 0.04 0.30 0.49 0.14   

IPSL-CM5B-LR 0.07 0.00 0.07 0.04 0.01 0.00 0.00   

MIROC5 0.06 0.03 0.03 0.01 0.14 0.30 0.02   

MIROC-ESM 0.22 0.00 0.01 0.01 0.40 0.17 0.27   

MIROC-ESM-
CHEM 

0.00 0.00 0.01 0.00 0.01 0.05 0.00   

MPI-ESM-LR 0.07 0.05 0.06 0.01 0.06 0.02 0.03   

MPI-ESM-MR 0.21 0.05 0.05 0.04 0.48 0.42 0.24   

MRI-CGCM3 0.00 0.01 0.04 0.00 0.06 0.00 0.05   

NorESM1-M 0.19 0.01 0.00 0.01 0.28 0.29 0.08   

NorESM1-ME 0.08 0.00 0.01 0.00 0.08 0.23 0.00   

 

Ranks NPAC NEPA
C 

NEPAC
N 

NEPAC
S 

NWPA
C 

NWPAC
N 

NWPAC
S 

  

ACCESS1-0 1 9 6 7 1 1 3 3.4 2 

ACCESS1-3 19 8 10 8 19 19 16 10.6 16 

bcc-csm1-1 4 17 7 13 4 4 12 7.2 7 

bcc-csm1-1-m 16 15 4 15 16 13 15 9.4 13 

BNU-ESM 9 6 17 16 11 16 4 10.6 16 

CanESM2 2 1 14 2 7 2 8 5.2 3 

CESM1-BGC 11 2 19 1 13 15 7 8.4 12 

CESM1-CAM5 7 7 9 9 6 8 5 6.2 5 

IPSL-CM5A-LR 10 11 15 6 9 11 9 8.2 11 

IPSL-CM5A-MR 8 3 13 4 5 3 6 5.2 3 

IPSL-CM5B-LR 13 19 1 3 18 17 17 7.6 8 

MIROC5 15 10 8 12 10 6 14 8 10 
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MIROC-ESM 3 16 11 11 3 10 1 6.6 6 

MIROC-ESM-
CHEM 

17 18 12 19 17 12 19 12.4 19 

MPI-ESM-LR 14 5 2 10 15 14 13 7.8 9 

MPI-ESM-MR 5 4 3 5 2 5 2 3 1 

MRI-CGCM3 18 12 5 18 14 18 11 10.4 15 

NorESM1-M 6 13 18 14 8 7 10 9.8 14 

NorESM1-ME 12 14 16 17 12 9 18 12 18 

 

  



280 
 

Table A6.1.38: Preferred model, best and worst quadrants in each case for five continents and five ocean basins. 

Region GCM Worst R2 Best R2 Whole 

Continent  

R2 

Comments 

Africa CESM1-CAM5 0.07 (SW) 0.35(NE) 0.62 Correlation in North 

greater than South 

Australia NorESM1-M 0.01 (NE) 0.19 (SE) 0.17 NE and SW bad, others 

not much better 

Eurasia ACCESS1-0 0.01 (NE) 0.60 (NW) 0.56 NE uncorrelated 

Indian IPSL-CM5A-MR 0.0 (NE) 0.75 (SE)  0.56 NE uncorrelated, NW 

0.22 

N America bcc-csm1-1 0.02 (NW) 0.41 (NE) 0.41 SE and SW 0.13 

N Atlantic bcc-csm1-1-m 0.04 (NE) 0.56 (SW) 0.71 Combined East 0.34, 

Combined West 0.74, 

West much higher than 

East 

S America IPSL-CM5A-MR 0.05 (SE) 0.22 (NW) 0.45 West higher than East 

S Atlantic CanESM2 0.0 (NW) 0.47 (SE) 0.18 South higher than North 

N Pacific MPI-ESM-MR 0.04 (SE) 0.42 (NW) 0.21 No correlation East and 

moderate Westward 

S Pacific bcc-csm1-1-m 0.01 (NE) 0.44 (SW) 0.18 No correlation East and 

moderate Westward 
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Table A6.1.39: Ocean basin and land masses. Shown are the lowest and highest correlation coefficients (observed 
vs model) for the best performing model given the spatially averaged signal from each land mass or ocean basin. 
Also shown are the correlation coefficients for spatially averages quadrants from within the same entities.    

Region GCM Worst  
Sector 
R2 

Best 
Sector R2 

Whole 
Continent  
R2 

Comments 

Africa CESM1-
CAM5 

0.07 
(SW) 

0.35 (NE) 0.62 North greater than South 

Australia NorESM1-
M 

0.01 
(NE) 

0.19 (SE) 0.17 NE and SW bad, others not 
much better 

Eurasia ACCESS1-0 0.01 
(NE) 

0.60 
(NW) 

0.56 NE bad 

Indian IPSL-CM5A-
MR 

0.0 (NE) 0.75 (SE)  0.56 NE uncorrelated, NW 0.22 
Area of Gyre is high 
correlation especially East 

N 
America 

bcc-csm1-1 
 

0.02 
(NW) 

0.41 (NE) 0.41 SE and SW 0.13 

N 
Atlantic 

bcc-csm1-1-
m 

0.04 
(NE) 

0.56 
(SW) 

0.71 East 0.34, West 0.74, West 
much higher than East 

S 
America 

IPSL-CM5A-
MR 

0.05 
(SE) 

0.22 
(NW) 

0.45 West higher than East 

S Atlantic CanESM2 0.0 
(NW) 

0.47 (SE) 0.18 South higher than North 

N Pacific MPI-ESM-
MR 

0.04 
(SE) 

0.42 
(NW) 

0.21 No correlation East and 
moderate Westward 

S Pacific bcc-csm1-1-
m 

0.01 
(NE) 

0.44 
(SW) 

0.18 No correlation East and 
moderate Westward 
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Appendix 6.2: Initialisation of climate models 

 

’ 

How initialisation of a global climate model may affect a spatial analysis 

Global climate models are not initialised in such a way that their internal circulation states can be 
expected to represent the observed ones at any specific time. They most certainly do, none the 
less, form modelled internal circulation states. The zonal analysis of models shows that some 
sort of consensus of temperature variations in zonal and global temperature averages can be 
extracted and found to align with observations. The findings of this work to this point suggest 
that there are multiple circulation systems that interact with the atmosphere and each other. 
The model-based zonal results therefore suggest either that a consensus of models form similar 
configurations; or that there are multiple circulation configurations which can affect large scale 
temperatures similarly so that the consensus is one of outcome, and an inference of similarity of 
mechanisms is not sustained. Published patterns of modelled PDO and similar indices suggest 
that the models overall do evolved reasonable models of individual ocean circulation systems 
but little is published on the interactions between such systems. Several authors have presented 
evidence that observed systems interact so that their state changes tend to coordinate or self 
organise (Tsonis et al., 2007, Wang et al., 2009, Tsonis and Swanson, 2012).  
 
A global climate model is initialised with set boundary conditions including a “pre-industrial 
atmosphere” and then run for hundreds to thousands of model years (“spun-up”) until it is 
judged to be stable and then it is switched from a stable atmosphere to an estimate of the 
observed atmosphere. To explore possible futures, projected future atmospheres representing 
various outcomes are prescribed at the end of the observational period. A “RIP” code designates 
runs from a single climate model that share a common ancestry. 
 
r = “realization”: simulations started from equally likely initial conditions – often branching from 
the same spin-up at different times 
 
i = “initialization”: different initialization procedures  
 
p = “physics”: ensemble members or simulations forced by slightly modified parameterizations 
 
E.g R1I1P1 means realization 1, initialization method 1, physics 1. 
 
Switching to observed conditions does not involve any matching with observations at this time.  
While the model runs with a prescribed atmosphere, this dictates the amount of heat retained in 
the model atmosphere. This heat must eventually find its way out to space, but it first interacts 
with the Earth surface and must be distributed based on the internal state the model has 
evolved and continues to evolve. Internal circulation systems must therefore distribute heat 
according to their own states, and under the hypothesis of interaction with forcing, will each 
evolve under this action, possibly constrained by other sub-systems.  

Box A6.2.1: How initialisation of a global climate model may affect a spatial analysis 
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Samples of patterns of surface covariation as a function of GMST 

 

Figure A6.2.57: Three sample GCM EOT plots compared to observations (top). These demonstrate differences 
between observations and models in the covariation between GMST and surface temperatures at grid-scale. In 
particular East and West tropical Pacific regions do not co-vary, and yet this result and the Quadrant correlation 
both suggest they do. 
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Empirical Orthogonal Teleconnections (EOT) are conceptually simple. The first mode is 

computed by computing a time-series of the average signal over an area of interest, and then 

performing a correlation analysis between that and the spatial data. Higher modes then use 

the R2 value to remove a correlation weighted part of the signal, then produce a new time-

series from the means of the remnant and repeat. These are the R2 values returned from a 

sample of climate models when tested against the signal over the Pacific. That is, how does the 

surface of the planet co-vary with the mean temperature of the Pacific? The observational 

data is the top pane, and shows that in fact the mean Pacific signal is more correlated with the 

Northern Indian. The basin itself shows quite confined regions of variability. The models tend 

to show covariation across the Tropical Pacific which is not observed. 

The second EOT is IPSL-CM5A-LR which was the model selected for further analysis. All three 

models show more connectivity between the West and the East sides of the Pacific ocean, and 

this is typical across the range of models. 
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Sample patterns of the Pacific Decadal Oscillation for 41 GCMs, taken from the 

literature 

 

Figure A6.2.58: Figure and caption from (Eyring et al., 2016, their Figure 8) “The PDO as simulated by 41 CMIP5 
models (individual panels labelled by model name) and observations (upper left panel) for the historical period 
1900–2005. These patterns show the global SST anomalies (_C) associated with a one standard deviation change 
in the normalized principal component (PC) time series. The percent variance accounted by the PDO is given in the 
upper right of each panel. The PDO is defined as the leading empirical orthogonal function of monthly SST 
anomalies (minus the global mean SST) over the North Pacific (20–70_ N, 110_ E–100_ W). The global patterns 
(_C) are formed by regressing monthly SST anomalies at each grid point onto the PC time series. Most CMIP5 
models show realistic patterns in the North Pacific. However, linkages with the tropics and the tropical Pacific in 
particular, vary across models. The lack of a strong tropical expression of the PDO is a major shortcoming in many 
CMIP5 models (Flato et al., 2013). Figure produced with namelist_CVDP.xml.” 
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Appendix 6.3: “Hotspots”, Patterns of change-point frequencies 

1880-2016 

A comparison of the numbers of shift-like change-points over the period of observations for 

observations (GISSTEM3 obtained from NCDC) and a selection of climate models. These 

illustrate the variation across climate models in the locations of step-like changes. 
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