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Abstract. In present paper, by proving a new integral identity, using Holder’s inequality and
mathematical analysis, we prove some Hermite-Hadamard type integral inequalities for geomet-
rically quasi-convex functions which give better estimates to those already proven for the right-
side of a Hermite-Hadamard type inequality established for geometrically convex functions in
earlier works. A numerical example is also provided to support our claim. Applications of the
results to special means of positive real numbers are given.
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1. INTRODUCTION

A function g : J € R — R is said to be convex on J if

glol+(l—o)ym)<og()+(1—-0)g(m)
holds for every /,m € J and o € [0, 1]. There are several accomplishments of the role
of convexity towards the field of inequalities and in the other branches of pure and
applied mathematics but one of them is the celebrated Hermite Hadamard inequality,
which is expressed as follows

g(r;w)s : /wg(l)dlsM, (L)
w—r J; 2

where g : ¢ #% J C R — Ris a convex function and r, w € J with r < w. Undeniably,
the inequality (1.1) specifies a necessary and sufficient conditions for a function g to
be convex on the interval [r, w].

The approach of quasi-convex functions speculates the concept of convex func-
tions, that is a function g : / € R — R is quasi-convex on J if the following relaxation
of Jensen’s inequality holds

gl +(1—o)m) <max{g(l),g(m)}
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forO0<o <1.

A large number of papers have been written to provide refinements and general-
izations of the inequalities (1.1) during the past few years by using convexity, quasi-
convexity and their generalizations, see for instance [1-9], [1 1-17] and the references
therein.

Many researchers have tried to generalize the notions of usual convexity and quasi-
convexity in a number of approaches, one of the generalizations of the usual convex-
ity is the geometric convexity which is avowed in the definition below.

Definition 1 ([10]). A function g : J C (0,00) — (0, 00) is said to be geometrically
convex on J if

g(17m'=%) <[g D] [g (m)]'~°
holds for x, y € J and o € [0, 1].

The definition was further generalized by Qi and Xi in [12] as follows.

Definition 2 ([12]). A function g : J C [0,00) — [0,00) is called geometrically
quasi-convex function on J if

g(17m'=%) < sup{g (1), g (m)}
holds for /,m € J and ¢ € [0, 1].
Remark 1. [12]11f g : J € [0,00) — [0, 00) is decreasing and geometrically quasi-

convex on J, then it is quasi-convex on J. If g : J C [0,00) — [0, 00) is increasing
and quasi-convex on J, then it is geometrically quasi-convex on J.

Example 1. The function g () = 1%, € R4 for s € R geometrically quasi-convex
on R4 because for all o € [0, 1], the following inequality holds

ms, §>0
‘g(loml—o)‘s — lscrms(l—o) <
5, s<O.

Some of the main results from [12] for geometrically quasi-convex functions are
given in following theorems.

Theorem 1 ([12]). Let g : J € Ry — R be a differentiable on J° and g/ €

/14
L ([r,w]) forr, w € J° withr < w. If‘g ) is a convex function on [r,w), then

(Inw)g(w)— (Inr)g(r) 1 /w g(l)dl‘

Inw—Inr " Inw—Inr /

=N (rwysup {[g ()] [¢' @)

}, (1.2)
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where
1
N (r,w) =/ rl=owo |In (rl_awa)‘do
0

wlnw—rInr—(w—r)
>
2tmw—mr > =L

whw+rinr4+2—w-—r
Inw—Inr » < 1< w,

w—r—(wlnw—rlnr)
<
Stnw—try > W=L

Theorem 2 ([12]). Let g : J € Ry — R be a differentiable mapping on J° and
q
is a geometrically quasi-convex on

g € L[r,w] for r,w e J° withr < w. If‘g/
[r,w] for g > 1, then

)@ -Gie)_L_ g(l)dl‘

Inw—1Inr Inw—1Inr /

1
< {"qizv (rq"l,wq"l)} T (w7 sup{lg ()] [ )}, (.3)
where N (r,w) is defined in Theorem 1 and
M (r,w) = /1 In(r'~"w7)|do
wlnw2+(:1nr’ F> .
= —(m’l‘r)l)uz:l(;‘;rf, r<l<w,
_wlnwz—i-rlnr, w<l1.
Theorem 3 ([12]). Let g : J € Ry — R be a differentiable on J° and g € L [r,w]
forr,we J° withr <w. If |g ! is a geometrically convex on [r,w] for ¢ > 1 and £

is a real number such that ¢ > £ > 0. Then

)@ le)_L_ g(l)dl‘ E (%)1‘5 (%)
r q-—

Inw—1Inr Inw—1Inr /

<[ ()] T I ()]

where M (r,w) and N (r,w) are defined in Theorem I and Theorem 2.

Q=

glf, a4

sup{‘g/ (r)),

The main objective of the present paper is to provide new Hermite-Hadamard type
inequalities for geometrically quasi-convex functions which provide refinements of
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the results given in [12]. A numerical example is provided to justify our claim. Ap-
plications of our results to special means are presented as well in Section 3.

2. INEQUALITIES FOR GEOMETRICALLY QUASI-CONVEX FUNCTIONS

The following two Lemmas are requisite to authorize our major determinations in
this section:

Lemma 1. Suppose J C R — R be a differentiable on J° and g € L([r,w)), for
r,weJ®andr <w, then

o) _(et)__1_ [*20),,

Inw—1Inr Inw—1Inr l

1 1 1—o 1+o 1—o 1+o0 ’ 1—o 14+o
= - rszln(rZwZ)g(r2w2)do
0

Proof. Let

and

1—0o 1+o

Let! =r 2 w 2 in J; and integrating by parts, we get

J1 ;/w (Inl)g (1) dl
Jrw

zlnw—lnr -

L vl
~ lnw—lnr [(lnw)g(w)—ln(ﬁ)g(\/m)—/ﬂ%)dl]. 2.2)

1—o

1+ . . .
Nowlet/=r 2 w 2 in J> and integrating by parts, we have

Jrw
Jzzlnwﬁ/ (In))g (1) dl
1 NaT
~Inw—lInr {ln(m)g(ﬁ)—(lnr)g(r)—/r #dz]. (2.3)

By adding (2.3) and (2.2), we get required result. O
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Lemma 2. For w > r > 0, we have

E(r,w) = /01 ‘ln(rl_TawHTGng

_lnr+‘i’>lnw’ r<w<l,
lnr-{flnw’ 1<r <w,

5(nw)?+(nr)>+2(nr)(Inw)
4(Inw—Inr) ’

r<l<w,rw<l,

(lnw)2
Inw—Inr’

r<l<w,rw=1

and
1 1—o 1+o 1—o 1+o
n(r,w):= rz w2 ln(r 2w 2 )‘dc
0

2[w—y/rw+/rwh(/rw)—whw]

Inw—Inr ’ r<w<1,
2[—w+/rw—/rwin(v/rw)+whw]
Inw—Inr ’ I<r<w,
212 1 - 1 —
[2+Tw n(«/lrw) JTwtwhw w]’ F<l<wrw<l
nw—Inr
2[winw—w+1] r<l<w,rw=1.

Inw—Inr ’

Proof. The proof can be done by simple computations.

937

0

Theorem 4. Let g : J C Ry — R be a differentiable mapping on J° and g/ €

L{r,w] for r,w € J° with r < w. If )g/‘ is a geometrically quasi-convex on [r,w],

then

bwgl)Goge) _1_ /"2y
Inw—Inr lnw—Inr J, |/
g wl})

< n(';w) (sup{|g/ (Vrw)

+ 20 (uz)’ ) (SUp{ g ()

where 1 (r,w) is defined in Lemma 2.

’

[ (vrw)l}). @4

Proof. From Lemma 1 and using Holder inequality, It is easy to observe that the

following inequality holds
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l)g )= ®)___1_ [*£0) dl‘

Inw—1Inr Inw—Inr [
1 (! 10 14e 1= 140 /[ 1ea 140
<= r2w2ln(r2w2))g(r2w2)‘do
2 Jo
1/1 4o 1-o 4o 1-c
+ = r2w21n<r2w2))
2 Jo
By using the geometric quasi-convexity of ‘ g,‘ on [r,w], we have

¢ (r=7w )| =sup{lg’ (vVrw) L. Ig w1}

g/ (rHTJwI_TU)‘dU. (2.5)

and

’ 140 1—0o ’
g (r 2w ? )‘SSUP{‘g (r)

By using Lemma 2 and the above results, we obtain

1 1l—0c 140 l1—0 140 ’ l1—0 140

rz w2 1n(r2w2)‘g(r2w2)|da
0
/ ’ 1 1—0o 140 1—o 140
§sup”g («/rw)), g (w)“/ rz wz ln(rTwT)‘dg
0
=1(w) (sup[g (vrw)|.[¢ )|}) 6

,‘g/ («/W)’}.

and

1 l1+0 1—0 140 1—0o
rzw?z2 |In(rzw?z ‘
J (5w
1
< sup<|g/ (r)‘ , }g/ (\/m)‘}/ F 32w 5% In (rHTawl_Ta))da
0
=n(w,r) (sup{‘g/ (r) g/ («/rw)‘}) . QD
The inequality (2.4) can be obtained by using (2.6) and (2.7) in (2.5). O

140

g/ (rTwl_Ta)|d0

9’

Theorem 5. Let g : J C Ry — R be a differentiable mapping on J° and g/ €

q
is a geometrically quasi-convex on [r, w]

L[r,w] for r,w € J° withr < w. If‘g/
for g > 1, then

s @ (ne)_L_ * g(l)dl‘

Inw—Inr Inw—Inr /

Q=

£ wl'})]

’

< %%qq;ln(rqzlqul)} o [S(r,w) (SUP{‘g/ (Vrw) !
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+l{qq;1n(wqil,rqzl)}l_q [é(w,r) (Sup{

2

where & (r,w) and n (r,w) are defined in Lemma 2.

Proof. From Lemma 1 and using Holder inequality, we have

(nw)g(w)—(nr)glr) 1 /wg(l)dl‘

Inw—Inr Inw—Inr /

1—0
r 2 w
( 1 o

(l—cr) q(1+0)
2(g—D @ 2(¢—=1)

(/ )

g (rlzaw 20)‘610’

\_/v

q(14+0) g(1—0)

1
140 1—o q
r2(f1 D 2(@=D ln(r 2 w2 )|dcr

x(/o (57

/14 .
By using the geometric quasi-convexity of ‘ g ‘ on [r, w], we obtain

1 1—o 140
‘ln(r 2w 2 )‘
0

< (sup{|¢’ (vrw)

/ —o +o
g (rlTw1 )‘ do

D (7 o

— E(rw) (sup{)g' (vrw)|* q}) 2.10)

’q

and

/1 140 1-o
()
0

fenfe

’ I+0 1—c\ |49
g (r 2w 2 )‘ do

g/(M)‘q})/o )ln(rHTawl_Ta)‘da
:g(w,r)(sup{ q,)g’(m\q}). (2.11)
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Now an application of Lemma 2, gives us the following results
1 q(1—=0) gU+0) l+0 1 —1 q _4q
r2@=D 2D (In (r 2 )‘d(f = n( wq—l)
0 q
/1 g(40)  gU=0) 1o R
7y 2(@—=1) o 2(q—1) ]n(r 2 u) )) =—r’( rq—l),
0
/ ln( = T)‘da=$(r,w)
/ ‘ln( 3 )‘dO'— (w,r).

and

2.12)

(2.13)

(2.14)

(2.15)

A combination of the results (2.9)-(2.15) gives us the required inequality (2.8).

Hence the proof of the theorem is complete.

0

Theorem 6. Let g : J C Ry — R be a differentiable on J° and g € L [r, w] for

/14
row e J®withr <w. If |g | is a geometrically convex on [r,w] forq > 1 and £ is a

real number such that ¢ > £ > 0. Then

)

Inw—1Inr Inw—1Inr

) ) Gl
+[n(w;’—f rZ‘f)]l—a [n(w‘,r‘f) (sup{)g'(r)|q, <

where 1 (r,w) is defined in Lemma 2.

Proof.
(nw)g(w)—(nr)g(r) 1 /w g(l)dl‘

Inw—Inr Inw—Inr /

-
1/11—a+ 1—0 l4o
< - rzuw <r2w2>’
2 Jo
1/114-010 1+o 1-—0o
+ = r2w2‘1n<r2w2>)
2 Jo

1 L y—onu-0) @-00+0)
< — r 2= w 2@-=D
2\Jo

1 t(l—o) £Ld+0)
X r 2 w 2
0

1—0o 1+o0
In(r 2 w2

(nw)g (w)—(nr)g(r) 1 /wga)dl‘ié(g)i
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1 1-3
1 (@—0U+0) (g—0H(1—0) 140 l1-c q
+ = ro2@=0D  2@=D ln(r 2 w2 )‘do
2\Jo
1
1, 4
(+o0) £(—0) ) 140 1-0\ |4
X r- 2z w 2 g(r2w2)|d0 . (2.17)
0

’ q
Now by using the quasi-geometric convexity of ) g ‘ on [r,w] and Lemma 2, we have

1 L(1—0) L(140) 1—¢ 140 ’ -0 140\ |4
r2w21n<r2w2>g(r2w2)d0
0

q

(7t (e e (vrm) [

140 1—0o
1n(rTwT))
V4

1+o 1—o
ln(r 2w 2 )

g (w)(q}), (2.18)

/1 td4+0) £d—0)
r 2 w 2
0

L y—oi-0) @-00+0)
roo2a-D  2@=D
0

_ (%) ,,(ré‘;f,wz%f) (2.20)
In (rHTawl_Ta))da

- (%) p (w0 5). 21

Applying (2.18)-(2.21) in (2.17), we get (2.16). This completes the proof of the
theorem. O

and

1 @—0d+o0) @=HU—0)
r 2@—-1) w 2@—-D
0

Theorem 7. Let g : Ry — R be a geometrically quasi-convex function on [r, w]
and g € L([r,w]). Then

g((rw)%) <! /wg(l)dz

" Inw—Inr /

1
< 3 [sup{g (r).g (Vrw)} +sup{g(vrw),g(w)}]. (2.22)
Proof. 1t is easy to observe that

(rw)d = 3 (59,3 (552),3(157) 1 (157)
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for 0 <o < 1. Since g(/) is geometrically quasi- convex on [r, w], we have

g((rw)%) 5sup{g (r'_T" wHTJ>,g<rl+Towl_To)}. (2.23)
Now we consider the two cases:
Casel
If
l1-0 140 140 1—0o 1l—0 140
sup{g(r 2w 2 ),g(r 2w 2 )}zg(r 2w 2 )
then
1 l1-0 140
g((rw)z)Sg(r 2w 2 ) (2.24)

Integrating (2.24) with respect to o over [0, 1], we obtain

) N A 1 O L e
g((rw)z)flnw—lnrfm [ dl_/o g(r swe )da

< sup{g (Vrw).g(w)}. (225)

/lg(rl?’w‘ﬁ")da :/1g(rlz"w15")da = ! fw gd) 4 (2.26)
0 0 nw—InrJ, [
Case II
If
e (-5 057 g (r5 0 )| = g (5 )
then
g((rw)%) fg(rlTa wl_TU) 2.27)

Integrating (2.27) with respect to o over [0, 1], we get

e 2 [0, [T (5
g((rw) )Slnw—lnr/r le—/o g(r w )do
<sup{g(r).g(Vrw)}. (2.28)

Adding (2.25) and (2.28) and dividing the resulting inequality by 2, we get the in-
equality (2.22). Thus the proof of the theorem is completed. O

Theorem 8. Let g,k : [r,w] C R — R be a geometrically convex function on [r, w]
and gh € L([r,w)), then the following inequality holds

! /w gDy ayar

Inw—Inr /
= 2 [sup e (VPR (V7). £V (0). ) (V7). £ b))
+sup {g (Vrw) h (Vrw).g (rh(vrw).g (Vrw)h(r).g (R ()}]. (229
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_ 1+
Proof. Letl = riaw 2"

and & on [r,w], we have

, 0 <0 <1 and using the geometric quasi-convex of g

2 Yogh) RE
lnw—lnr/m [ dl = ( ) ( ’ )dd
<sup{g(vrw)h(Vrw).g (\/ w), g (Vrw)h(w),gw)hw)}. (2.30)
Similarly, the substitution / = r% wl; 0 <o <1, gives us the following result

2 VT o ()R (1) Ve i4e Lo ito
lnw—lnr/ l dl:/()g(rz W )h(r2 )dc
<sup{g (Vrw)h(Vrw),g(r)h(Vrw).g (Vrw)h(r).g(r)h(r)}. (231

Adding (2.30) and (2.31) and dividing the resulting inequality by 2, we get (2.29).
O

3. APPLICATIONS TO SPECIAL MEANS

Let w > r > 0 and s € R. Consider the following means

G (r.w) = Vrw,

I (r,w)
a, r=uw,
lnz lrnr’ r 7& w,
L(a,b)
r, r=w,
and :
s+1+ s+1]s
[lé)s+1)(u:—r)] ’ S#_lio’
Ly(row) = L(r,w), s=—1,
1(r,w), s =0,

The above means are known as respectively the geometric, the exponential, the log-
arithmic and the generalized logarithmic means of two positive real numbers a and

b.
We now give applications of our results to the above means.



944 M. A. LATIF, SEVER S. DRAGOMIR, AND E. MOMONIAT

Theorem 9. Letw >r >0ands € R.
(D) Ifr <w < 1ands >0, then

lnl(rs+1,ws+1)§ |s 4+ 1|In1 (G (a,b),w) i

(Inw—1Inr)[Lg (rs+1,wst1)]

x{w* (G (a.b) —w) +[G (a.b)]* (G (a.b)—r)}. (3.1)
2) Ifl1 <r <wands < —1, then
|s+1|In1 (G (a,b),w)

(Inw—Inr)[Lg (rs“,wSH)]s

x{[G (a,b)]° (G (a.b)—w) +r° (G (a,b)—r)}. (3.2)
Proof. Letg(l)=1°T1,l eRyands € R, s # —1.If m > [ > 0, then

Inl (rs+l’ws+l) <-

|s 4+ 1|m*, ,s>0
’ o—1 o+1 s
|s+1](m)2, s<O.
Also ,
s ls+1/(Im)2, ,s=0
=<

|s 4+ 1115, s <0.

This shows that the function | g/ ( )) = |s+ 1|l fors € R, s # —1, is geometrically

quasi-convex on R.
Now

Inw—Inr Inw—Inr [ 3-3)

— [Ls (rs—i-l’ws—i—l)]slnl (rs-i-l’ws-i—l),

%W’w) (Sup{)g/ (vrw) »(g’(w)‘}) (3.4)
_ |s + 1] w? [w—ﬂ—i— Mln(M)—wlnw]

Inw—Inr
s+ 1w’ (Vrw—w)In! (Vrw,w)

Inw—Inr

bwg@)-tngn)___L_ ("5,

and

%n(w,r) (SUP{ g (r) ,‘g/ (m’}) (3.5)
_ |s +1] (rw)? [r—rw+ /rwln (y/rw) —rinr]

Inw—1Inr
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s+ 1| (rw)2 (Vrw—r)Inl (Vrw,r)

Inw—Inr

Substituting (3.3), (3.4) and (3.5) in Theorem 4, we get (3.1). The inequality (3.2)
can be obtained in similar way.

0

The following numerical example illustrates that our results provide refinements

of the results given in [

1.

For the geometrically quasi-convex function g (x) = x3, x € R4, the following
table is prepared using mathematica.

Function Error Bound of Theorem 4 | Error Bound of Theorem 1
gx)=x3a=2b=2% 0.363473 0.418996
gx)=x3a=3b=2 10.4408 11.6002
gx)=x’a=5b=3 0.389078 1.60745

Similarly we can make tables for comparison of the results given in Theorem 2
and Theorem 3 with those given in Theorem 5 and Theorem 6 respectively.
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