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ABSTRACT 

 

Brain signal analysis has a crucial role in the investigation of the neuronal activity for 

diagnosis of brain diseases and disorders. The electroencephalogram (EEG) is the most 

efficient biomarker for the analysis of brain signal that assists in the diagnosis of brain 

disorder medication and also plays an essential role in all the neurosurgery related to the 

brain. EEG findings illustrate the meticulous condition, and clinical content of the brain 

dysfunctions, and has an undisputed importance role in the detection of epilepsy condition 

and sleep disorders and dysfunctions allied to alcohol. The clinicians visually study the EEG 

recording to determine the manifestation of abnormalities in the brain. The visual EEG 

assessment is tiresome, fallible, and also high-priced. In this dissertation, a number of 

frameworks have been developed for the analysis and classification of EEG signals by 

addressing three different domains named: Epilepsy, Sleep staging, and Alcohol Use 

Disorder.   

Epilepsy is a non-contagious chronic disease of the brain that affects around 65 million 

people worldwide. The sudden onset tendency of the epileptic attacks vulnerable their 

sufferers to injuries. It is also challenging for the clinical staff to detect the epileptic-seizure 

activity early enough for determining the semiology associated with the seizure onset. For 

that reason, automated techniques that can accurately detect the epilepsy from EEG are of 

great importance to epileptic patients and especially to those patients who are resistive to 

therapies and medications. In this dissertation, four different techniques (named Weighted 

Visibility Network, Weighted Horizontal Visibility Network, Weighted Complex Network, 

and New Weighted Complex Network) have been developed for the automated identification 

of epileptic activity from the EEG signals. Most of the developed schemes attained 100% 

classification outcomes in their experimental evaluation for the identification of seizure 

activity from non-seizure activity.   

A sleep disorder can increase the menace of seizure incidence or severity, cognitive tasks 

impairments, mood deviation, diminution in the functionality of the immune system and 

other brain anomalies such as insomnia, sleep apnoea, etc. Hence, sleep staging is essential 

to discriminate among distinct sleep stages for the diagnosis of sleep and its disorders. EEG 
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provides vital and inimitable information regarding the sleeping brain. The study of EEG has 

documented deformities in sleep patterns. This research has developed an innovative graph-

theory based framework named weighted visibility network for sleep staging from EEG 

signals. The developed framework in this thesis, outperforms with 97.93% overall 

classification accuracy for categorizing distinct sleep states  

Alcoholism causes memory issues as well as motor skill defects by affecting the different 

portions of the brain. Excessive use of alcohol can cause sudden cardiac death and 

cardiomyopathy. Also, alcohol use disorder leads to respiratory infections, Vision 

impairment, liver damage, and cancer, etc. Research study demonstrates the use of EEG for 

diagnosis the patient with a high menace of developmental impediments with alcohol. In this 

current Ph.D. project, I developed a weighted graph-based technique that analyses EEG to 

distinguish between alcoholic subject and non-alcoholic person. The promising classification 

outcome demonstrates the effectiveness of the proposed technique. 
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CHAPTER 1 

               INTRODUCTION 

 

The brain has been recognized as an incredibly intricate phenomenon in the world. The brain 

comprises approximately 100 billion neurons with the interconnection of 100,000 km or 

larger in addition to the storing capacity of around 1.25 × 1012 bytes (Hofman 2012). It is the 

core controller of the body by sending and receiving the information in the form of electrical 

signals termed action potentials. The primary challenge is to use this information to advance 

an improved understanding of serious disorders related to the brain like Alzheimer, strokes, 

epilepsy, dementia, and Brain tumors, etc. According to the World Health Organization, 

approximately 2 million Australians are suffered from a brain disorder. The pattern of the 

action potentials is fluctuating in brain disorders, and it can be best intelligible with the 

assistance of Electroencephalogram (EEG). EEG is the core authorized biomarker that aids 

to enhance the understanding of mental condition and behavior, to preclude or diagnose any 

abnormal condition that occurs.  

The human brain responds to every single stimulus by generating action potential or 

electrical signals. Due to high temporal and spatial resolution, the EEG is an efficient tool to 

translate the brain signals into neuroscience text. This neuroscience text depicts the 

meticulous condition and clinical content of the brain functioning. In addition to this, EEG is 

non-invasive, easy to use and have cost-effective set-up in the research lab also. As a result, 

it is favorite amongst researcher and clinicians. Consequently, EEG is becoming the most 

imperative tool which assists in the diagnosis and ministration of brain abnormalities and 

disorders. The clinicians visually examine the EEG recording to discover the presence of 

abnormalities in the brain (Siuly & Zhang 2016). The visual EEG inspection is tiresome and 

fallible. Moreover, finding traces of abnormal activity by experts’ neurologist through visual 

examination of EEG is a challenging issue and cannot be considered as a very reliable 

procedure (Siuly, Li & Zhang 2016). In addition to this, EEG analysis not only assists in the 

diagnosis of management the anti- disorder medication but also plays a crucial role in all the 

neuro-surgery related to the brain. As a result, there is continuously an obligatory of 
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automated EEG analysis and classification technique that assist the clinicians for the 

diagnosis of brain abnormalities and also reduce cost and time. Due to the limitations of the 

traditional approaches for the analysis and processing of EEG data to detect abnormalities, 

this research work proposes graph-theory based techniques for the analysis and classification 

of EEG signals to detect abnormalities. The main focal point of this dissertation is epilepsy 

detection. In addition to this, sleep stage classification and Alcohol use syndrome are also 

considered for EEG signal analysis. 

The proposed techniques explore the hidden dynamics of different EEG signals under 

diverse circumstances and effectively extricate dissimilar class of EEG signals. The research 

in this dissertation work can facilitate the neuro-clinicians to fetch valuable knowledge about 

brain fettle for the diagnosis of brain deformities.    

1.1 Research Motivation  

A key focus of this research work is epilepsy detection. Epilepsy has been recognized as 

one of the most chronic brain dysfunction among neurological diseases (Siuly et al. 2019). 

When there is a manifestation of more than two seizure attack concurrently, then epilepsy is 

declared. Around 50 million population at the world level are suffered from this epilepsy 

syndrome (Alcin et al. 2016). According to WHO, the epilepsy occurrence rate per year is 

2.4 million, and it can affect any age group. The premature death rate of epileptic patients is 

two to three times higher than the normal healthy person (Acharya et al. 2012). According to 

the Australian Bureau of Statistics, more than 250,000 Australians at present have epilepsy.  

  EEG is the extensively examining tool for diagnosing disorders, treatment, and 

therapy planning related to epilepsy disorder. EEG data are complex as well as high-

dimension in nature. Some clinics archives the EEG data on the paper. A half-an-hour EEG 

recording consumes around one cubic foot of paper (Alarcon et al. 1995).  The development 

of digital recording system has overcome the paper recording issues of EEG and also 

provided the ambulatory recording facilities. Lamentably, the digital and ambulatory systems 

have introduced new challenges to the clinicians by introducing a large amount of data. In 

order to detect epilepsy, the clinicians have to visually examine the EEG recording of great 

length (Hassan, Siuly & Zhang 2016).  The visual EEG inspection is tiresome, fallible and 

even not cost effective because the cost of studying the EEG is high. In addition to this, 
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finding traces of seizure activity by experts’ neurologist through visual examination of EEG 

cannot be considered as a very reliable procedure. As a result, there are necessities of 

automated seizure detection techniques that assist the clinicians for the diagnosis of epilepsy 

by computer-based analysis of EEG and also reduce high cost, fallacy and long haul of 

examination. This research study has also considered two other brain disorder research 

problems related to EEG analysis and classification named sleep staging and classifying 

alcoholism dependent EEG signals from normal EEG.  

Sleep staging classification is currently an urgent and emerging research area in the 

healthcare community. Sleep is an intricate process that is directly affecting the several brain 

functions. The role of sleep is not completely acknowledged so far. Sleep disorders are a 

great and under-cognized problem that are untreated at the worldwide. A large number of 

population in the world is affected by Sleep disorders. Sleep stages identification helps in the 

diagnosis of sleep disorders such as Insomnia, sleep apnea, Parasomnias, Narcolepsy, Sleep 

Hypoventilation, Bruxism, and restless legs syndrome, etc. (Saper et al. 2010). Therefore, 

WHO, the American Psychiatric Association and some professional sleep societies are 

actively engaged in the research of sleep disorder classification system (Morin & Espie 

2012). WHO predicted that more than 100 million population have Obstructive Sleep Apnea 

and 936 million suffer from sleep apnea. According to the Australian Bureau of Statistics, 

the population around 9% of Australian adults are diagnosis for sleep disorders. Sleep 

deprivation also leads to strokes, cardiovascular disease, and other neurological syndromes, 

for example, Alzheimer’s, migraine and Parkinson’s, etc. EEG signals are visually analyzed 

by the specialists to recognize the sleep patterns. On the basis visual interpretation of EEG 

sleep pattern, the expert classifies it into their appropriate sleep staging. Each stage is 

concomitant to particular waves of the brain and neuronal activity. The manual staging of 

sleep data from EEG signals is laborious, susceptible to error and resource-intensive. 

The alcohol use disorders (AUDs) is one of brain phenotype, which not only deteriorates 

the brain but also develops the cerebral and mobility impairments (Oscar-Berman & 

Marinkovic 2007). Alcohol consumption syndrome is the utmost ubiquitous disorders in the 

communal (Acharya et al. 2012).  WHO proclaimed that AUDs is the third most risk factor 

for the contribution of other diseases (named cancer, neuropsychiatric diseases, Dementia, 

cardiovascular disease, Cirrhosis, infectious diseases, depression, pancreas disease, etc.) and 
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consequences in 2.5 million deaths per year ("Alcohol" 2020). EEG signals are one of the 

promising measure that is used for the detection of alcohol use disorders. Therefore, EEG 

signals classification and analysis techniques are used to identify the alcoholic subject from 

normal in order to determine AUDs. 

Innumerable approaches have been anticipated for EEG analysis and classification for 

epilepsy detection, sleep staging classification and alcoholism detection from EEG signals.  

However, the existing techniques do not fulfill the gap between non-linear EEG and their 

underlying dynamical behavior. Moreover, the adoption rate and research development in 

this field are still hindered by some fundamental problems inherent within the big data 

paradigm. Furthermore, brain abnormality detection comprises of visual inspection of long-

term EEG recording of several days by the expert neurologist. The non-stationary and 

complex nature of EEG signals make this task more error-prone, time-consuming and even 

expensive. All of these points motivate us to introduce a new graph theory-based framework 

for the analysis of big brain EEG data. The graph-theory based approaches characterize a 

hidden sight of brain activity and brain-behavior mapping. The graph theory not even helps 

to understand the underlying dynamics of EEG signals at microscopic, mesoscopic, and 

macroscopic level but also provides the correlation among them. 

The proposed methods in this research work pave the way in the field of automated EEG 

signals analysis based on graph theory. The automated EEG analysis techniques developed 

in this dissertation will diminish the endeavor of human supervision and render the EEG 

analysis task more effectively.  

1.2  Problem Statement and Solution 

The information regarding the neurological disorders can only be evaluated by 

extracting functional condition of the brain. This research study aims to analyze the EEG 

signals in order to find the following research problems. 

Problem 1. It is always a challenging issue for the researchers and neurologist to 

detect Epilepsy automatically from EEG signals. EEG comprises vast information about the 

functional state of the brain. Moreover, at present still, the EEG is manually investigated by 

the expert clinicians to discover the Epilepsy smidgeons. Epileptic patients have a greater 
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risk of other complications such as Bleeding into the brain, Brain tumors, Cerebral palsy, 

Alzheimer's disease (in the later stage of life) and Autism disorder, etc.  

Solution. This research study develops several graph theory based new algorithms 

for automated detection and classification of Epileptic seizure from EEG signals.  

Problem 2. Presently the diagnosis from Big Brain Signals Data (EEG) is an onerous 

challenge for current medical discipline because they are the humongous quantity of 

information (great in size and dimension). Investigating these unmitigated volumes of data 

still consider a big challenge for the reason that of its complex diversity and visibility as well 

richness in context. The brain signals are an imperative epitomize of brain information, as a 

result, BBSD processing is indispensable.   

Solution. This research introduces a framework for analyzing the humongous 

quantity of information (BBSD) generated from the brain that can assist in the development 

of intelligent decisions system for identification of anomalies.  

Problem 3. Sleep staging classification is currently an exigent and emerging arena of 

research in the health communal. Sleep stages identification helps in the diagnosis of sleep 

disorders like Insomnia, Snoring, Obstructive Sleep Apnoea, Sleep Hypoventilation, 

Bruxism, and Narcolepsy, etc. The manual analysis of sleep EEG signals is error-prone and 

resource-intensive. These limitations lead to the development of automated sleep stages 

classification system for EEG signals. 

Solution. This research work developed an effective algorithm to analysis and 

identifies different sleep stages from the EEG signal and automatic classification of sleep 

stages. 

Problem 4. Alcoholism dependency is an acute syndrome which shows its impact on 

the neurons functionality in the central nervous system and also on the behavior of the 

affected person 

Solution. In this research study, a graph-theory based framework is developed which 

helps to differentiate between alcoholism dependent EEG signals and non-alcoholic EEG 

signal. 



6 
 

 

 

 

 

1.3 Research Objectives  

The key impetus of this thesis is to explore graph theory based EEG signals analysis for the 

detection or classification of brain abnormalities. Three categories of EEG signals are used 

for analysis named epileptic EEG data, sleep stage database and alcoholic EEG signals that 

are publically online presented. The performance of the newly developed methods is 

scrutinized with the existing methods in the specified domains of EEG signals. The objectives 

of this dissertation are summarized as follows: 

1. To develop graph-theory based techniques for epilepsy detection. 

2. To explore the feasibility of weight in the graph approach for the identification of 

brain anomalies (epilepsy, alcohol use disorders and sleep staging classification) from 

EEG signals.  

3. To study the state-of-the-art in EEG signals analysis for the detection of brain 

disorders and enhance the performance.  

4. Build up a new approach to extract informative EEG brain signal features from the 

complex network which can provide valuable information regarding EEG brain 

signals. 

5.  To identify the complex network features that can effectively distinguish epileptic 

from non-epileptic section of EEG, alcoholic from non-alcoholic EEG and awake 

from sleep section EEG signals.  

6. To develop an automated EEG analysis and classification techniques for 

abnormalities detection form EEG. 

 

1.4  Dissertation contribution 

The dissertation contributions are demonstrated in the following points: 

1. Investigate the EEG signals of epileptic seizure activity by developing weighted    

     network frameworks. 

2. Explore the network topologies or statistical parameters from different EEGs  
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3. Develop a weighted graph based framework to identifying distinct sleep stages from   

     an EEG channel.  

4. Identifying the epileptic EEGs and alcoholic EEGs with the help of one technique. 

The Brief information regarding the contribution points are discussed below: 

1. Investigate the EEG signals of epileptic seizure activity by developing weighted 

network frameworks 

Firstly, a Weighted_Complex_ Network Based Framework (WCNBF) is developed 

to detect epileptic seizure from distinct EEG signals. The framework is tested on the 

benchmark epileptic EEG database with 5 discrete types of EEG signals and achieved 

100% accuracy performance for classifying the EEGs of seizure and healthy subjects. 

Secondly, Weighted Visibility Network Based Framework (WVNBF) is developed 

to identifying epilepsy from EEG signals. In WVNBF, the link weight technique 

helps to identify the instant fluctuation associated with seizure activity. The WVNBF 

accomplishes higher performance of classification accuracy for different test-

problems allied to distinct EEG signals. The WCNBF and WVNBF has the limitation 

of dependency on the selection criteria for constructing the links amongst vertices. 

This limitation is overcome by developing the new weighted complex network 

(NWCN) technique. The NWCN technique is tested on Bonn university Epilepsy data 

as well as on the focal EEG signals (Bern-Barcelona database) and achieved 99% 

accuracy for Bern-Barcelona database and 100% for Bonn University database.  

2. Explore the network topologies or statistical parameters from different EEGs  

This research study has used different network parameters such as modularity, 

average degree and average weighted degree to explore the three different fields: 

Epileptic EEGs, Sleep EEGs and Alcoholic EEGs. In addition, a new parameter is 

also developed named “Edge Weight Fluctuation (EWF)”. This study discussed the 

changes explored in these parameters corresponds to distinct EEGs states such as the 

average weighted degree start increases during epileptic activity, modularity has high 

value in the period of awake as compared to different sleep states.    

3.  Develop a weighted graph based framework to identifying distinct sleep stages 

from an EEG channels 



8 
 

This study developed weighted graph based framework for classifying different sleep 

stages. Simulation analysis was executed by using Lorenz-series and Rossler-series, 

to check the noise robustness of the developed technique. The experimental finding 

proves that weighted graph are the competent tool for the evaluation of sleep quality 

from EEGs. It is also noticed that the modularity and AWD are high during awake 

and low during different sleep states (S1 to S4). 

4. Identifying the epileptic EEGs and alcoholic EEGs with the help of one 

technique.  

The study developed one single technique named weighted horizontal visibility 

network (WHVN), which can effectively detect the epilepsy as well as helpful to 

differentiate the EEGs of alcoholic subjects from non-alcoholic subjects. The 10-fold 

cross-validation approved the effectiveness of the developed technique with different 

classifiers.  

 

1.5  Dissertation Framework 

This treatise comprises of total nine chapters. Each chapter has its own significant role in this 

research work. Figure 1-1 illustrates the overall structure of the thesis. Brief information 

about each chapter are discussed below: 

 Chapter 2 presents the fundamental knowledge related to human brain system and 

EEG signals, which is essential to comprehend the research work in this treatise. 

Subsequently, this chapter also provides some important concepts concomitant to epilepsy 

disorder, EEG sleep pattern and its classification as well as alcohol disorders that use are 

mandatory for this research study. The broad information about the specific topic can be 

obtained from the related references.   

 Chapter 3 covered the pertinent literature as well as state-of-art about various existing 

EEG signals analysis and classification techniques. Each existing method has a rich body of 

content associated with it. It is out of scope for this dissertation to describe every technique 

in great length. This primary goal of this chapter is to provide brief information for the 

guidance. The detail information about them is available in the relevant references.   
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Figure 1-1: Illustration of the overall structure of the Dissertation 
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Chapter 4 is the first experimental part of this dissertation. This chapter introduce a 

new approach for automated detection of epilepsy syndrome from EEG with the help of graph 

theory. This chapter presents an innovative edge weight method for visibility graph in the 

discovery of epilepsy from EEG. This research study was the first in the field of epilepsy 

detection, to introduce the idea of edge weight and average weighted degree (as feature set) 

in the visibility graph. The proposed algorithm is 100% effective for classifying epileptic 

EEG signals from the non-seizure EEG. This research study also investigated the effect of 

segmentation and non-segmentation of EEG signals in epilepsy detection when the complex 

network-based approach is used with edge strength. The exhaustive valuation is based on the 

experimental performance of different classification problems or test cases. The 10-fold cross 

validation is implemented with the help of Support vector machine (SVM) and Discriminant 

Analysis (DA) families of classifiers.  

  Chapter 5 introduce the idea of community detection as a statistical parameter for 

epileptic seizure detection from EEG with the help of the visibility graph. In addition to this, 

a new edge weight algorithm is also developed for the visibility graph. The Weighted 

Visibility Network Based Framework (WVNBF) developed in this chapter helps to 

distinguishing different EEG signals. According to WVNBF, the first step is to transform the 

EEG signals to weighted visibility network (WVN). In the second step, the two graphical 

parameters named modularity and average weighted degree are excavated from the WVN. 

These parameters helps to characterize the EEG signals based graph effectively. In the third 

step, these features are evaluated by employing two popular supervised classification 

methods: SVM and KNN classification. The classification task is performed on five different 

sets of EEG signals. The higher classification outcomes exhibits that the developed 

methodology is effective as well as promising for epilepsy detection.  

 Chapter 6 describe the new idea of an effective data analysis framework for Big Brain 

Signals Data in biomedical signal processing. In this research work, a new graph theory based 

idea is proposed by introducing weight mechanism on the horizontal visibility graph for EEG 

signals analysis and named as 'weighted horizontal visibility network (WHVN)’. This 

method is developed to discover the hidden patterns from big time-varying EEG signal data. 

Two graph theory based measures named: Average Weighted Degree, and Average degree 
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are extracted from WHVN. Different machine learning classifiers: naive bayes, SVM with 

different kernel functions i.e. linear, rbf and polynomial kernel, discriminant analysis with 

linear and quadratic discriminant were used to evaluate the performance by using 10-fold 

cross-validation. The WHVN framework is verified on two different benchmark EEG signal 

database: epilepsy related EEG database and alcoholic related EEG database. 

Chapter 7 focuses on the sleep stage classification with the help of weighted graph 

based approach. The main aim of this investigational research is to study the significance of 

edge strength approach in multi-category classification problem as sleep-stage classification 

is a multi-category classification. The noise-robustness validation of the proposed research 

is evaluated by performing the simulation analysis of two disparate time-series named: 

Lorenz time-series and Rossler time-series.  

Chapter 8 present the new idea for mapping the time-series EEG signals into a 

complex network. In addition to this, a new feature is also developed named fluctuation 

difference for extracting the indispensable information from EEG signals to attain the high-

performance results in epilepsy detection. Two different kinds of epileptic benchmark EEG 

databases named Bern-Barcelona EEG database and Bonn University EEG database are used. 

Simulation analysis is performed on the two variant chaotic signals named as Henon map 

and Logistic map. ANOVA test is also conducted to validate the statistical significance of 

the proposed methodology.  

Chapter 9 summarized the conclusion with inclusive results. Furthermore, it presents 

the auxiliary findings on the basis of the information demonstrated from this research. In 

addition this, the outlook about the future focus of this research is also discussed.   
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CHAPTER 2 

BACKGROUND ENLIGHTENMENT  

 

This dissertation aimed to develop different techniques that can efficiently perform the 

classification of distinct EEG signals and assist in the development of a computerized 

detection system for the diagnosis of brain abnormalities. For the development of an efficient 

automated system for EEG data classification, it is essential that we should have proper 

information about EEG signals. For that reason, this chapter presents general and important 

information about how EEG signals are generated and why they are significant in the 

diagnosis of brain maladies. This chapter is schematized as Section 2.1 comprise the 

information about the anatomy of the human brain. Section 2.2 explore about brain’s 

communication system. Section 2.3 elaborates on the electroencephalogram (EEG). In the 

section, 2.4 information about Epilepsy and EEG’s importance in Epilepsy diagnosis are 

covered. Section 2.5 comprehend Sleep stage classification and EEG in sleep staging. Section 

2.6 has brief information about alcohol use disorder. The significance of the automated 

detection system for the diagnosis of abnormal brain conditions is presented in section 2.7. 

The whole chapter is concluded in summary at the end. 

2.1  Anatomy Of Human Brain 

The Human brain is one of the splendid and mystifies marvels of creation. It is an amazingly 

complex phenomenon with three-pound mass (weight) and administers all our body functions 

from breathing to intelligence, cognitive to heartbeats, etc. Nedergaard & Goldman 2016. A 

better cognizance about its working mechanism will enable neuroscientist to comprehend the 

mental state and assist in preventing or diagnosis any brain anomalies that occur.  Protectively 

enclosed by the skull, the brain is comprised of brainstem, cerebellum, and cerebrum. Figure 

2-1(a) illustrates the brain parcellation (Miller, 2011).  

Brainstem: Brainstem is elementary and primitive part of the brain. The brainstem is 

responsible for connecting the cerebrum to the spinal cord. Being present at the bottom 
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section of the brain, it acts as a primary portion to process the coming signals (Goldstein & 

Naglieri 2011). It controls and synchronizes the homeostatic functions, blood pressure, 

circadian rhythm, heart rate, visceral functions, etc. Brainstem abnormalities lead to Central 

Sleep Apnea, Weber's syndrome, Raymond-Cestan syndrome, Wallenberg syndrome, Brain 

Stem Seizures, brain stem infarction, etc. (Hurley et al. 2010). 

 

 Figure 2-1: Illustration of the brain parcellation (Miller, 2011). 

  

Cerebellum: Cerebellum is also known as the “little brain” as well as the 2nd largest portion 

of the brain. It is allied to other important parts named as the spinal cord, diverse cerebral 

and brainstem, etc. (Roostaei et al. 2014). The circuitry of the cerebellum plays a vital role 

in motor learning and its control, balance maintenance, cognitive functions, vision and other 

functions like processing of the language, thinking, etc. By weight, it is 10% of the cerebrum 

and comprises of around 80% of the total neurons present in the brain (Herculano-Houzel 

2009). Cerebellum disorders are stroke, Ataxia, cerebral palsy linked epilepsy, and sleep 

disorders are commonly present among people with cerebellum maladies.  

Cerebrum: The cerebrum has been acknowledged as greatest in size and principle portion of 

the brain. Its major functions are senses, thoughts, emotional responses, and movements’ 

control. The cerebrum encompasses: left as well as right hemispheres known as cerebral 

hemispheres, deep gray nuclei, and diencephalon (Haines & Mihailoff 2018). Both 

hemispheres seem similar but perform different functions. Each cerebral hemispheres is 

responsible for controlling the opposite area of the body, i.e. if a brain tumor happens to the 
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left hemisphere then its effect will be shown on the left arms or left parts of the body.  Each 

hemisphere have different  

     

                                  (a)                                                                                           (b) 

Figure 2-2: Illustration of the surfaces of cerebrum into lobes (a) Lateral view (b) Medial view (Miller, 2011). 

 

fissures that parcellated it into the following 5 lobes (Miller, 2011) and figure 2-2(b) 

illustrates these three lobes: 

i. Frontal Lobe: This part is responsible for Broca's area functions like speaking as 

well as writing; motor strip functions like body movements; intelligence and 

emotions, etc. 

ii. Parietal Lobe: This lobe performs the functions like spatial as well as visual 

perceptual; hearing; language interpretation; sensory strips like a sensation of 

temperature, physical sensation or hurts, etc. 

iii. Occipital Lobe: This lobe is the controller of Brodmann area 17 and controls the 

visual interpretations like color, lightening, etc.  

iv. Temporal Lobe: This lobe operates the functioning Wernicke's area like language 

development; auditory perception, and memory, etc.  

v. Limbic lobe: The circuitry of the limbic lobe is connected with complex functions 

like memory; understanding and behavior etc.   
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Cerebrum dysfunctioning results in Idiopathic occipital epilepsy, Frontotemporal 

dementia, Parietal lobe epilepsy, Alzheimer's disease, Temporal lobe epilepsy, Limbic 

epilepsy, etc.  

2.2  Brain’s Communication System 

The human brain is comprised of two categories of cells named as glial cells and neurons 

(also known as nerve cells). Glial cells are responsible for the protection, nourishing, and 

structural support of the nerve cells. Whereas, neurons are responsible for information 

transmission in the brain.  

The nerve cells convey information via a concomitance of two types of signals: Electrical 

and Chemical. The neurons are of different shapes and sizes but have four common 

constituents named as an axon, soma, synaptic terminals, and dendrites. The important part 

of soma is the cell nucleus which is responsible for RNA (Ribonucleic acid: important in 

many biological roles) production. Dendrites play a source of receiving chemical input by 

other neurons. Synaptic terminals are the tiny gap through which neurons transmit signals to 

each other. The communication of information by the neurons to other cells is possible by 

axons. Neurons communicate with each other in order to maintain the general, all-inclusive 

state of the brain.  

Our memories and thinking are the after-effects of the occurrence of the patterns 

associated with electrical as well as chemical actions in the brain. The action or message 

communication is only possible between two neurons when their input wire (dendrite) and 

output wire (the axon) interact at particular intersections (named as synapses). Figure 2-3 

illustrates the simple view of how communication occurs among neurons (Darbas & 

Lohrengel 2018).  

Chemical signals known as neurotransmitters are transformed into electrical signals. 

Figure 2-4 illustrates how the sodium ion with positive-charge passes into the neuron with 

the help of voltage-gated-sodium-channels present in the membrane of the cell body and axon 

terminal. Afterward, it rapidly generates (in ms) Action Potential (AP) to the axon terminal 

(Lovinger 2008).  

The action potential when terminating at excitatory synapse then results in an Excitatory 

Postsynaptic Potential (EPSP) and when ending at inhibitory synapse then producing 
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Inhibitory Postsynaptic Potential (IPSP) (Sanei & Chambers 2013). Action potentials are 

instigated by different kind of stimuli like pressure, sound vibration, temperature, etc. The 

AP is only generated when stimuli exceed a certain threshold level. Basically, this AP is 

known as the information communicated by nerve cells. 

 

 

Figure 2-3: Illustration of the communication among two neurons through synapse (Darbas & Lohrengel 

2018). 

 

 Figure 2-4: Illustration of the Action potential (Lovinger 2008). 

The above discussion clearly demonstrates that by measuring the electric-activity of the 

brain, it is easy to uncover the working mechanism of the brain, the state of mind and 

diagnosis or treated various brain disorders.  
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2.3 The Electroencephalogram (EEG) 

The Electroencephalogram (EEG) is an electrophysiology technique that records (graphical 

display) the time-varying electrical activity (signals) present in the brain by attaching the 

electrodes to the human scalp.  

 

2.3.1 Origin Of EEG 

Richard Caton, a British scientist, is the first person who registered the electrical signals 

of the brain of a living creature (animals) by placing two electrodes on its scalp and recorded 

with the help sensitive galvanometer in 1875. Hans Berger, a German physician, was the 

pioneer of recording the human EEG. In 1924, he captured the EEG of the human scalp with 

the help of Siemens double coil galvanometer (Sanei 2013). Figure 2-5 illustrates the EEG 

recording attempt by Hans Berger.  

 

 

      (a)  Hans Berger EEG Lab                     (b) EEG recording attempt        (c) Early EEG recording by Berger 

 

Figure 2-5:  EEG recording attempt by Hans Berger in 1920s (Sanei 2013). 

 

 

2.3.2 EEG Recording 

The EER recording system is comprised of the following units: 
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i. EEG Electrodes: Metal disc attached to the human scalp in particular positions in 

order to record the brain activities or waves; 

ii. Amplifiers: The amplitude range of the human scalp when measured by electrodes 

are 10 to 100 µV, and the amplifiers are required to intensification the level of the 

signals;  

iii. Filters: The EEG signals necessitates filters to attenuate the effect of noises. 

High-pass, low-pass, and notch filter are mainly used; 

iv. Recording Unit: It is used to maintain the permanent recording of EEG signals. 

Initially the EEG recording was captured on the papers, but currently, digital EEG 

is considered as a promising tool to capture the EEG signals because it eases the 

paper storage problems.    

The EEG signals are worked as a signature of the brain’s neuronal activities. The EEG 

signals are collected with the help of multiple-electrode placing in the interior of the brain, 

from the scalp and from the cortex. The neuronal activity captured by the EEG is the 

summation of EPSPs and IPSPs generated by a large number of pyramidal neurons that are 

present near each capturing electrodes (Ebersole 2003). Figure 2-6 illustrates how the 

electrodes are aligned into the six regions over the scalp (Ahani et al. 2014). The naming of 

each electrode is comprised of two integrant: the region and location of the brain. E.g., FZ 

represents the Midline Frontal, and the even number symbolize the location of the right 

hemisphere and odd number denote the location of the left hemisphere. The detail 

information about EEG electrodes standards and naming is available in (Duffy et al. 2011).     

The EEG signals are captured in different formats. The signals that are captured from the 

scalp with the help of scalp electrodes are termed as EEG, from the inside of the human brain 

with the help of subdural electrodes are named as intracranial EEG (iEEG) and from the 

cortex by using cortical electrodes are labeled as electrocorticogram (ECoG). 

Various configurations are proposed for electrode localization like 10-20, 10-10, and 10-

5 international system, but 10-20 are recognized as the most used and common system 

(Jurcak, Tsuzuki & Dan 2007). Figure 2-7 illustrates the standard 10-20 and 10-10 electrode 

placement system (Duffy et al. 2011). An EEG channel represents the pair of the electrode 

with waveform characterizes the potential  
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 Figure 2-6: Illustration about how the electrodes are aligned into the six regions over the scalp (Miller, 2011). 

 

difference among them. EEG is monitored via montage whereas the montage is the 

arrangement of the EEG channels in an ordered and logical manner.  A number of diversity 

exist for montages in different labs of EEGs. But the most common montages are a bipolar 

montage, referential montage, average reference montage and Laplacian montage (Epstein 

1992).    

     

 

 Figure 2-7: Illustration of the standard 10-20 and 10-10 electrode placement system with black circle 

illustrate the 10-20 electrode placement system and open circle illustrate the 10-10 electrode placement 

system (Duffy et al. 2011). 

 

2.3.3 EEG Evaluation 

 

The above-mentioned sections clearly depict that the EEG signals provide essential and 

distinctive information about brain activity by recording the characteristics of underlying 
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neuronal activity. EEG finding plays a mainstay role in the diagnostic exploration and clinical 

evaluation of numerous medical problems. Following are the examples of few (Adelman 

1987; Teplan 2002):  

i. To monitor the coma or stupor, alertness, and death due to brain reasons.; 

ii.  Localizing the area that is damaged due to stroke, brain tumour and injuries in the 

head. 

iii. To generate the bio-feedback situations. 

iv. For servo-control of general anaesthesia.  

v. To monitor or measure cognitive engagement. 

vi. For monitor and measuring brain growth or development. 

vii. To identify brain disorders 

viii. For investigating the sleep physiology and maladies.   

ix. To test the effects of epileptic drugs and convulsive drugs. 

x. For alcohol effect on brain etc.   

 Generally, the clinicians visually examine the EEG recording to investigate the 

medical conditions. The visual EEG inspection is tiresome, fallible and even not cost effective 

because the cost of studying the EEG is high. As a result, there is continuously an obligatory 

of computerized EEG analysis techniques that assist the clinicians for the diagnosis of various 

medical conditions and also reduce cost and time (Adeli, Ghosh-Dastidar & Dadmehr 2007). 

The various brain disorders and its states are diagnose from EEG by the clinical experts on the 

basis of brain rhythms or brain waves, which is well explained in the next section. 

2.3.4 EEG of Brainwaves  

The visual analysis of the EEG includes the inspection of the presence of symmetry, the 

amplitude of the signal, morphology as well as continuity or discontinuity in the EEG signals, 

etc. The neurophysiological mechanisms of the brain are depicted with the help of brain 

waves. Figure 2-8 illustrates the different brain waves which have been taken from 

(Georgieva et al. 2014). Brain rhythms denote the distinctive patterns of massive neuronal 

activity and are represented in the following different frequency bands (Tatum 2014): 
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i. Infraslow:  This EEG activity has a frequency range from 0.0 - 0.5 Hz.  It is 

generally detected in the neonatal EEG, before and in the duration of epileptic 

activity. In addition, it is also observed in arousal and sleep duration. It arises in the 

non-neuronal networks named as glial networks. Evidence proved that it plays a 

crucial part in numerous physiological and pathological medical states (Schomer & 

Da Silva 2012). 

ii. Delta: This EEG activity involves the frequency scale from 0.5 - 3.5 Hz. It is 

observed in a deep sleep, posterior slow wave of youth, elderly people and in infants. 

It is dominant in case of learning inability, severe attention deficit hyperactivity 

disorder, injuries in the brain, problem in thinking, etc. (Abhang, Gawali & Mehrotra 

2016).  

iii. Theta: This EEG activity has a frequency scale from> 3.5 𝑡𝑜 < 8.0. It is associated 

with the drowsiness, creativity, emotional feeling, sensation and memory. It is more 

observed during anxiety, behavioral inhibition etc. It is mainly presents in children 

and elderly people. Too much theta waves leads to attention deficit hyperactivity 

disorder, depression and hyperactivity etc. (Corsi-Cabrera et al. 2000). 

iv. Alpha: This EEG activity comprises the frequency scale from 8 - 13 Hz. It was first 

detected in occipital cortex of the brain during relaxing and closed eyes states of the 

subject. However, recent research has found the presence of alpha in various 

awakening tasks in different regions of the brain. It is associated with momentary 

memory storage and cognitive processes (Adelman 1987). A 10 Hertz rhythm 

observed in the precentral cortex during the rest state is known as mu rhythm 

whereas, if it is observed from the superior temporal lobe then termed as tau rhythm 

(Luster, Petersen & Garcia-Rill 2015). Alpha rhythm is also known as posterior 

dominant rhythm.  

v. Beta: This EEG activity is associated with the frequency scale from 13 - 30 Hz. This 

activity detected in the frontal regions of the brain. It is further partitioned into two 

bands named: low beta with a frequency scale from 13 - 21 Hz and high beta with a 

frequency scale from 21 - 30 Hz. The beta activity provides information about 

alertness, concentrating, anxiety, or subject under medications and also helps in 

decision making, etc. (Kaufman 2007).  
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Figure 2-8: Illustration of different brain waves that are commonly used for analysis (Georgieva et 

al. 2014). 

 

vi. Gamma: This EEG activity has a frequency from 30 - 80 Hz. It is important for 

voluntary motor activities, learning, and information processing (memory). Low 

level of gamma activity is generally observed in brain disabilities or learning issues 

(Jia & Kohn 2011).  

vii. High-Frequency Oscillations: This EEG activity has a frequency >80 Hz. It is 

further sub-divided into ripples with a frequency scale from 80 - 250 Hz and fast 

ripples with a frequency scale from 250 - 600 Hz. The EEG activity with frequency 

from 600 - 1000 Hz are known as very fast ripples (Zijlmans et al. 2012). 

Different types of anomalous patterns of the EEG signals are representing the 

abnormalities in the brain. Below are the examples of a few abnormal waves (Aminoff 2012),   

(McGrogan 1999): 

 Slow waves: Any rhythm that is slower than the normal waves or rhythm is 

considered an abnormality. 
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 Spikes or Sharp waves: These waves are very fast in nature and resemble in 

appearance but have different durations. Spikes are lasting for < 70ms whereas, 

sharp waves have the duration of 70 to 200ms.  

 Spikes and wave: This activity is the combination of the above two 

abnormalities. This abnormal patterns usually occurs repetitively at a rate of 

around 3 Hz. 

 Depression: This pattern is associated with the duration in which the amplitude 

of the signal decreases. 

 Burst-Suppression: This pattern is described as a burst of high voltage as well as 

mixed-frequency EEG activity parted by interims of marked quiescence for few 

seconds or sometimes for several minutes.     

 The instabilities in the pattern of brainwaves lead to serious health issues like epilepsy, 

bipolar disorder, sleep problems, insomnia, Attention deficit hyperactivity disorder and 

migraines, etc. Clinicians and researchers are identified the brain-waves patterns to 

understand the neurological conditions using EEG. This thesis focuses on three brain research 

problems using EEG signals. The main focus is on automated Epilepsy detection by 

classifying different categories of EEG signals. In addition, sleep stage classification and 

Alcoholic data classification using EEG signals are also considered. Below is the brief 

information about these three medical problems  

2.4  Epilepsy 

Epilepsy is one of the most chronic brain syndrome recorded since 2000 BC. Circa 65 million 

people at the world level have epilepsy, and 80% are living in developing countries (Epilepsy 

Action Australia, 2018). World health organization anticipated that epilepsy occurrence rate 

per year is 2.4 million, and it can affect any age group. The premature death rate of a person 

with epilepsy is two to three times higher in comparatively normal healthy person (Acharya 

et al. 2013). Epilepsy happens with an incidence of 68.8/100,000 person-years and the age-

adjusted incidence because of the epileptic seizure is approximately 44/100,000 person-years 

(Ramgopal et al. 2014). According to Epilepsy foundation Australia, Epilepsy is a serious 

neurological condition that comes under the list of top five causes of avoidable mortality in 
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the age-group of 5 to 29 ("Sudden Unexpected Death in Epilepsy (SUDEP) | Epilepsy 

Foundation" 2020).  

 Epilepsy is the state of perennial unprovoked seizure attacks. When there is a 

manifestation of more than two seizure attack concurrently, then epilepsy is declared (Fisher 

et al. 2014). “Seizure” is a paroxysmal malfunction of the neurological activity precipitate 

due to the immoderate hypersynchronous of the neurons present in the brain. Seizure 

commencement is described by two contemporaneous events (Rossignol, Carmant & Lacaille 

2016): 

 Bursts with high-frequency of dendritic potentials; 

 Abnormal hyper synchronization in the high population of excitable cells of the 

neural region present in the cortex. 

Etiologically, the epilepsy is categorized into the following groups (Shorvon 2011): 

 Idiopathic Epilepsy: This epilepsy is thought to have a genetic origin with no 

neuroanatomic or neuropathological anomaly; 

  Symptomatic Epilepsy: Epilepsy with acquired conditions and associated with 

neuropathological or neuroanatomic abnormalities; 

 Cryptogenic Epilepsy: An epileptic condition in which the cause of the 

abnormality is not clear or identified; 

 Provoked Epilepsy: This epilepsy occurs due to certain factors of the 

environment or specific system. 

Epilepsy is menacing brain dysfunction which increases the occurrence risk of other 

maladies like Dementia, Cardiovascular Disorders, Depression, Sleep Disorder, Migraine, 

Cognitive Impairment, Mental Decline (in the chronic condition), Brain tumors, etc. and 

effect other body parts and Pregnancy as well (Ghosh-Dastidar, Adeli & Dadmehr 2008). 

Epilepsy can affect anybody irrespective of person’s age, intellect, gender, cultural or social 

differences whereas it is scrutinized that the prevalence of epilepsy is on the peak during the 

early stage of childhood and also high in the late stage of life (Sheoran & Saini 2014). Hence 

it is very crucial to detect and properly classify the kind of epileptic seizure so that (Smith 

2005): 
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 Proper pharmacological diagnosis can be provided; 

 Optimal guidance about prediction and recurrence risk will be easily possible; 

 The indication about auxiliary paraclinical treatment will be ease; 

 The indication for non-pharmacological diagnosis (like surgical treatment, diet, 

etc.); 

 Guidance on symptoms of genetic diagnosing can be provided.  

 

2.4.1 EEG in Epilepsy Diagnosis 

EEG disclose the manifestation of electrical discharges of the human brain. EEG reveals the 

patterns of different brainwaves that are associated with different kinds of epileptic seizures. 

It helps to identify the location of epileptic discharge. The EEG activity with frequency range 

>100 is termed as ripples are considered as a marker for the epileptic discharges. EEG has 

been recognized as one of the best medical tests which assist in epilepsy diagnosis as 

compared to other biomarker tools (Computerized tomography scan, Magnetic resonance 

imaging, Functional Magnetic resonance imaging, etc.) because EEG data exhibit high 

temporal and spatial resolution. Also, the epileptiform seizure activity can be clearly 

observed in the EEG of the epileptic patient even in the dearth of an epileptic-seizure attack 

(Siuly, Li & Zhang, 2016). In the cases of having uncertainty in the diagnosis of epilepsy or 

the reason behind paroxysmal spells is unclear, then EEG recording is contemplated as the 

most accurate and promising diagnosis test. EEG helps in the diagnosis of epilepsy by (Smith 

2005): 

 Analysis of paroxysmal neurological activities; 

 Differentiation among parasomnias disorder and nocturnal epilepsy; 

 Characterization of epilepsy type; 

 Quantification of inter-ictal epileptiform discharges (IED) frequency and the 

severity of the epileptic seizure; 

 Evaluating the epileptic subject for neurosurgical treatment to control the 

epileptic seizure.  
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EEG signals observed two categories of anomalous activity in case of epilepsy: ictal 

activity (during the seizure) and inter-ictal activity (between the epileptic seizures). Spiking 

is observed as a common form of abnormality in the inter-ictal state. These spiking features 

are present in the majority of epileptic patients, whereas, in the case of non-epileptic patients, 

this feature is shown in very less number of people. This is the reason behind, inter-ictal 

spikes are considered as crucial for an epilepsy diagnosis. During ictal state, a very different 

pattern of EEG signals is seen with rhythmical waveform (Hughes 1994). Figure 2-9 

illustrates the common patterns of EEG signals which are observed at the start of an epileptic 

seizure in epilepsy patient (Fisher, Scharfman & Decurtis 2014). Figure 2-10 illustrate the 

EEG patterns of recording during the inter-ictal discharges and seizure onset (Fisher, 

Scharfman & Decurtis 2014). 

 

 

 

 

 

 

Figure 2-9: Illustration of common patterns of EEG signals at the start of an epileptic seizure in epilepsy 

patient (Fisher, Scharfman & Decurtis 2014). 

 

2.5 Sleep Stage Classification 

Sleep is a state of reversible behavioural with reducing perceptual engagement and 

unresponsiveness to the external stimulation or environment accompanied by convoluted and 

anticipated physiological changes (Keenan & Hirshkowitz 2011). We will spend 

approximately 27 years of our lifetime sleeping. Sleep influence human being in several ways 

like help in improving the memory recall, regulating the metabolism and reducing the mental 

fatigue, etc. Figure 2-11 illustrates how the sleep and wakefulness cycle is controlled by the 
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brain neurotransmitters (Peplow 2013). Any disorder that includes sleep disruption or affects 

the sleep pattern is known as a sleep disorder.  

 

   

 

Figure 2-10: Illustration of EEG patterns of recording during inter-ictal discharges and seizure onset (Fisher, 

Scharfman & Decurtis 2014). 

Sleep disorders comprise a wide range of maladies like insomnia, sleep-related movement 

disorders, sleep hypoventilation, sleep-related breathing disorders , narcolepsy, obstructive 

sleep apnoea and numerous other disorders (Ohayon 2011). International Classification of 

Sleep Disorders (ICSD) has sorted 80 sleep disorders into eight classes (Thorpy 2015).   

It is anticipated by the world health organization that more than 100 million population in the 

world are suffered from obstructive sleep apnoea disorder (Benjafield et al, 2018). 3 million 

people at the world level have Narcolepsy (Anon 2019). Sleep disorder has an economic 

impact on Australia with a cost of $5.1 billion each year (Hillman & Lack 2013). Therefore, 

sleep study has drawn the attention of clinicians as well as researchers. Sleep is a 

heterogeneous state as it is a continuum of distinct states. For that reason, sleep staging is 

essential to discriminate between distinct sleep stages in order to ease an understanding of 

symptoms that facilitate for appropriate diagnosis of sleep and its disorders (Koella 1974). 



28 
 

 

 Figure 2-11: Illustration of sleep and wakefulness cycle that is regulated by brain neurotransmitters (Peplow 

2013). 

 

2.5.1 Sleep States 

Sleep is categorized into two phases (Brezinova 1976; Zielinski, McKenna & McCarley, 

2016): 

 Rapid Eye Movement (REM); 

 Non-Rapid Eye Movement (NREM). 

REM phase of sleep occurs around 70 to 90 minutes after falling asleep. When we enter 

into REM phase, the breathing becomes irregular and rapid, the eyes start jerking rapidly 

behind the closed eyelid, the limbic muscles behaves temporary paralyzed, heartbeat rises, 
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and blood pressure also increases, etc. REM involve the presence of low voltage and mixed 

frequency brain waves.  

NREM phases include four stages: Stage 1, Stage 2, Stage 3 and Stage 4.  

 Stage 1: It is also known as light sleep. The eye movement and muscle activities slow 

during this stage. During the initial cycle, it lasts from 1 to 7 mins; 

 Stage 2:  During this stage, the eye movements are stopped, and brain waves are also 

slower with an occasionally short burst of K complex or sleep spindles; 

 Stage 3: There is an appearance of very slow waves known as delta waves 

interspersed with small and fast waves; 

 Stage 4: During this stage, delta brain activity is present exclusively. 

When sleep stages 3 and 4 are combined together then known as deep sleep. It is hard to 

wake up during deep sleep. Normally, a complete sleep cycle is of period or epoch of 90-110 

mins. The first cycles of the sleep comprised comparatively short REM epochs and longer 

epochs of deep sleep. By the progress of night, REM epoch length increases and deep sleep 

decreases in length. At morning, Stage 1, 2, and REM are dominating (Zielinski, McKenna 

& McCarley, 2016. Sleep stages determination is essential in the clinical diagnosis and 

treatment sleep disorders (Zielinski, McKenna & McCarley, 2016). Figure 2-12: illustrates 

the different sleep stage cycle of 8-hour sleep with the repeating cycle of 90 mins (Peplow 

2013). According to Rechtschaffen and Kales (R&K), sleep scoring benchmarks included 

REM, Stage 1, Stage 2, Stage 3, Stage 4, wakefulness sleep stages (Rechtschaffen 1968). 

Whereas, American Academy of Sleep Medicine (AASM) sleep scoring benchmarks 

involved W, stages N1, stage N2, stage N3, and R where N means Non-Rapid Eye Movement 

(Iber et al., 2007). Some researchers combine Stage 3 and Stage 4 as they discovered no 

major difference among them (Morgenthaler et al. 2008).    

2.5.2 EEG Role in Sleep Staging 

The frequency bands of the EEG manifest the important information about how cells, 

neurons and different regions of the brain regulate the distinct sleep states, wakefulness and 

also display anomalies due to associated pathologies (Zielinski, McKenna & McCarley, 

2016).  Figure 2-13 illustrates why EEG is considered as the best for sleep analysis as the 

sleep changes are easily recognizable in EEG. As we can see from Figure 2-13. that how 
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different molecules and pathogens affect sleep regulatory molecules which in turn acts on 

neurotransmitters. The neurotransmitters change the ion channels that induce the fluctuations 

in EPSPs and IPSPs. These fluctuations are easily recognizable in the cortical EEG. Figure 

2-14 illustrates different EEG activity associated with sleep stages (Zielinski, McKenna & 

McCarley, 2016). 

 

Figure 2-12: Illustration of 8-hour sleep with different sleep stages in repeating a cycle of 90 mins 

(Peplow 2013). 

 

2.6 Alcoholism Detection 

Alcoholism is defined as a state of drinking alcohol with the consequences of harming life in 

all aspects or compulsive alcohol usage. Alcoholism is also termed as alcohol use disorder 

(AUD). AUD not only affects the brain and body of the person but create problems in his/her 

social life. AUD leads to various detrimental consequences such as cognitive dysfunction, 

damage to brain cells, vision loss, depression, Wernicke-Korsakoff syndrome, cancer in the 

gastrointestinal (GI) tract, damage to cardiovascular as well as to immune and other systems, 

etc. Each year 2.5 million people died due to harmful alcohol intake at worldwide (Clapp, 

Wackernah & Minnick 2014).  According to the Australian Bureau of statistics, the clinicians 

certified the mortality due to alcohol-induced is 70% in 2017 (Australian Bureau of Statistics 
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2017). The way by which alcohol caused harmful effects on the brain is still a wide and 

current interest in alcohol use research. 

 

 

Figure 2-13: Illustration of how sleep regulatory molecules directly affect the neurotransmitters which in turn 

alter the sleep, and the changes are recognizable in EEG activity (Zielinski, McKenna & McCarley, 2016. 
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Figure 2-14: Illustration of different EEG activity associated with sleep stages 

(Zielinski, McKenna & McCarley, 2016). 
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2.6.1 EEG Role In Alcohol Use Disorder 

The research study reported that there is a manifestation of increases in the theta and gamma 

activity of EEG during heavy alcohol consumption. While the low intake of alcohol 

represents variation in the alpha band (Jiajie et al. 2018). P3 components in EEG analysis 

performed as a useful biomarker for diagnosis the subject with a high risk of developing 

complications with alcohol (Plawecki et al. 2018). EEG is a promising biomarker tool for 

alcohol use research because the following affect of alcohol has been observed in the EEG 

of the alcoholic subject (Hershey 2019): 

 Amplification in the components of frontal negative occipital brain waves; 

 The amplitude of the P300 manifest reduction in alcoholic person as compared to 

non-alcoholic; 

  The reduction in the excitability of pre-frontal cortical (PFC); 

 Error-related negativity component of an event-related potential in an alcoholic 

person, manifest the amplitude reduction; 

  Alcohol consumption exhibits a great change in the EEG of all the brain waves 

(alpha, beta, gamma, and theta) as well as in saccadic inhibition.  

 

2.7  Automated EEG Analysis 

Generally, the clinicians visually examine the EEG recording for epilepsy detection, for 

evaluation of the sleep stage to identify the sleep disorders and for the detection of alcohol 

use disorder. The non-stationary and complex nature of EEG signals make this task more 

error-prone, time-consuming and even expensive. The visual EEG inspection by the experts 

or neurologist is tiresome, fallible and even not cost effective because the cost of studying 

the EEG is high. Finding traces of seizure activity by experts’ neurologist through visual 

examination of EEG is a challenging issue and cannot be considered as a very reliable 

procedure (Siuly, Wang & Zhang 2016). In addition to this, EEG analysis not only assisting 

in the diagnosis of brain disorders medication but also plays a crucial role in all the neuro-

surgery related to the brain. If the EEG analysis data is reduced by the automated analysis 

systems, then more number of patients can be diagnosed effectively by the neurologist. M. 

Salinsky has described in his report of 83 patients are analyzed for seizure detection. The 
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computerized detection system not only analyzed 22% of the seizures but also helps in saving 

or reduction of 1.3 days of hospital days for each admittance (Salinsky 1997). By considering 

the above information, this thesis developed a different automated framework for EEG 

signals analysis for different brain disorders.  

2.8  Summary 

This chapter has established the necessity of Epilepsy detection, sleep stage classification, 

and alcohol use disorder detection. In addition, it also explores the importance of EEG in 

different brain disorders identifications. Brief information about various important aspects 

has been covered, such as: how different brain constituents are working and responsible for 

various abnormalities, how neurons communicate with each other to maintain the generally 

all-inclusive state of the brain; EEG as a mainstay role in the diagnostic and clinical 

exploration of numerous medical problems; brain waves depict neurophysiological 

mechanisms of the brain; why it is very crucial to detect and properly classify the kind of 

epileptic seizure; the way by which EEG assists in the diagnosis of epilepsy. Furthermore, 

the influence of sleep on a human being; how neurotransmitters superintend sleep and wake 

cycle and how EEG manifest the important information about the distinct sleep states. 

Additionally, a concise sight is drawn upon AUD; why EEG is a promising biomarker tool 

for alcohol consumption research. In conclusion, the significance of computerized detection 

system for the diagnosis of brain abnormalities has discussed.  

The next chapter will explore existing EEG analysis techniques as well as classification 

with the state-of-the-art and their limitations for clinical diagnosis. 
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CHAPTER 3 

              EXISTING TECHNIQUES FOR THE ANALYSIS AND 

CLASSIFICATION OF EEG SIGNALS 

 

This chapter provides brief information about various EEG analysis and classification techniques. 

EEG analysis and classification is an important part for the diagnosis of brain disorders as EEG 

patterns are the real replication of the electrophysiological state of the brain at a particular time 

frame. As the primary research focus of this research study is on epilepsy detection, therefore, in 

this chapter, the various epilepsy detection techniques based on the different approaches of EEG 

signals analysis and classification are also discussed.  

3.1 EEG signal analysis techniques 

EEG analysis can be categorized into four domains: Time Based Analysis; Frequency Based 

Analysis; Time-Frequency Based Analysis, and Analysis by non-linear methods. Below is the brief 

introduction about the above four EEG analysis domains. 

3.1.1 EEG analysis based upon Time domain 

A time-domain approach based upon the analysis of EEG signals on particular time window by 

considering time as the variable of EEG signal. The time domain analysis comprises two main 

technique named Linear Prediction (LP) and Component Analysis (CA). 

3.1.1.1 Linear Prediction: The linear prediction is a technique is used to compute the set of 

coefficients that will define the behavior of EEG signal by linear time-invariant (Pradhan & Dutt 

1994). The linear prediction is a technique where the imminent outputs 𝑦 ̂(𝑖) is the linear 

combination of input 𝑥(𝑖) and previous outputs 𝑦(𝑖 − 1), 𝑦(𝑖 − 2), … . . , 𝑦(𝑖 − 𝑝) .  

              𝑦 ̂(𝑖) = ∑ 𝑛(𝑗)𝑦(𝑖 − 𝑗)𝑝
𝑗=1 + ∑ 𝑗(𝑗)𝑥(𝑖 − 𝑗)  .𝑁

𝑗=0                                                               (1) 
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In the equation (1) n and k represent the predictor coefficients. In EEG signal processing, the n 

predictor coefficients are generally considered zero and the imminent outputs 𝑦 ̂(𝑖) is completely 

depend upon previous output i.e : 

                                                      𝑦 ̂(𝑖) = ∑ 𝑗(𝑗)𝑥(𝑖 − 𝑗)   .𝑁
𝑗=0                                                    (2) 

 

3.1.1.2 Component Analysis (CA): CA is an unsupervised method that reduces the high 

dimensional data into feature sets. Principal Component Analysis (PCA), Independent Component 

Analysis (ICA) and Linear Discriminant Analysis (LDA) are the approaches based upon CA. 

Principal Component Analysis: Karl Pearson developed PCA in 1901. Principal Component 

Analysis is a dimension –reduction technique which is based upon orthogonal transformation and 

reduces the high dimensional data into Eigenvector and also very successful in the EEG signal 

analysis (Ghosh-Dastidar, Adeli & Dadmehr 2008; Sheoran & Saini 2014). The principal 

components decomposition of Y can be defined as: 

                                                                 𝑇 = 𝑌𝑊  .                                                                    (3) 

 

In the equation (3), Y denotes the data matrix with zero empirical mean and W is the matrix of the 

principal component of Y and the columns of W are the eigenvectors of 𝑌𝑇𝑌.  

Independent Component Analysis: In ICA, the multivariate signal is disintegrated into sub-

constituent whereas these sub-constituent are non-Gaussian signals and not dependent on each 

other. ICA is used to find the hidden features presents in the EEG signals. The ICA transform is 

defined as:  

                                                                    ℎ = 𝑊𝑥  .                                                                            (4) 

in the equation (4), h denotes the sets of hidden components, or independent constituent and x 

signify the set of the observed data or original signal. W is missing matrix (Hyvärinen & Oja 2000). 

Linear Discriminant Analysis: Similar to PCA, LDA is also used for dimensional reduction. 

LDA method is supervised in nature. It is based upon the linear combination of parameters that 
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describe the data adequately. LDA is used in the case when the dimensions are based on 

independent variables for each and every observation. 

3.1.2 EEG analysis based upon Frequency-domain 

In the frequency domain, the hidden information of the EEG signals can be elaborated by 

decomposing the signals into pure sinusoidal waves with different frequency ranges. A frequency-

domain approach based upon the analysis of EEG signals on frequency spectral estimation of 

statistical and Fourier Transform (FT) methods. The Spectral analysis is further classified into two 

parts named: Non-Parametric approach and the parametric approach. 

3.1.2.1 Non-Parametric approach: In this approach, firstly the auto-correlation from the EEG 

signals are computed. Afterward, the FT is applied to the extracted auto-correlated data in order to 

extract the power spectrum density. The Welch method (Welch 1967) is considered as one of the 

best methods for extraction the Power Spectrum Density. Welch method include the 

decomposition of EEG signals into overlapping epoch sections. Afterward, the data window is 

applied to each section for calculation periodogram, and then the averaged of the periodogram is 

used to evaluate the Power Spectral Density.   

3.1.2.2 Parametric approach: The parametric approach provides improved frequency resolution 

in comparison to the non-parametric approach. The parametric approach assumes apriori 

information about some parameters can help to characterize the EEG signals properly. The prior 

information can be useful to calculate the desired Power Spectral Density. During the parametric 

approach, it is supposed that the EEG signals are a stationary and random process. These stationary 

signal are considered as the output of a filter with white noise as input. After that, the parameters 

correspond to that filter are evaluated. There are various techniques to compute the filter 

parameters on the basis of the model used as a filter. The three best model are the Moving Average 

model, the Auto-Regressive model, and the Auto-Regressive Moving Average model (Ubeylı & 

Guler 2004).  

3.1.3 EEG analysis based upon Time-Frequency domain 

The Time-Frequency domain provides information about both the time and frequency mechanisms 

of the signal concurrently (Tzallas, Tsipouras & Fotiadis 2007). This technique is based upon the 

stationary principle and as a result window process is essential in the pre-processing stage. The 
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Time-Frequency domain can be categorized as (1) Wavelet transform; and (2) Hilbert–Huang 

Transform (HHT). 

3.1.3.1 Wavelet transform: Wavelet transform (WT) is a spectral estimation method in which a 

function is represented as an infinite sequence of wavelets. A wavelet is defined as a small 

waveform with determinate energy and duration. In Wavelet transform, the primary function 

named mother wavelet is evaluated continuously along the time scale to achieve the wavelet 

coefficients. The wavelet coefficients provide information about the signal in both the time and 

frequency frame. In the Wavelet transform, the signal is decomposed into sub-bands, and relevant 

features are extracted from that subbands (Unser & Aldroubi 1996). The procedure is continued 

for the number of levels until the required results not achieved. The wavelet transform is of three 

kinds: Discrete Wavelet Transform, Continuous Wavelet Transform and Wavelet Packet 

Decomposition (WPD). Figure 3-1. illustrates the wavelet packet decomposition up to level 2. In 

the Fig.1, a1 denotes the approximation coefficients, and d1 symbolizes the detail coefficients at 

level 1 of WPD. Similarly, aa2, da2, ad2, and dd2 signifies level 2 WPD. 

 

 

 

 

 

 

 

  

 

3.1.3.2 Hilbert–Huang Transform (HHT) 

In Hilbert–Huang Transformation, there is decomposition of EEG signals into Intrinsic Mode 

Functions (IMFs) so that instantaneous frequency of the data can be achieved. In EEG signal 

 

EEG Signal 

  d1    a1 

da2 aa2 ad2 dd2 

Figure 3-1: Wavelet packet decomposition upto level 2. 



38 
 

analysis, IMFs is firstly extracted with the help of Empirical Mode Decomposition (EMD) 

afterward, Hilbert Transform is executed to every IMFs in order to achieve the instantaneous 

frequencies and amplitudes. Then, with the help of Hilbert-weighted frequency, the EEG signals 

are classified. EMD is the vital part of HHT as EMD can decompose the complex EEG signals 

into a fixed and small number of sub-parts (Oweis & Abdulhay 2011).  

3.1.4 Non-linear methods of EEG analysis: Non-linear approaches are used in the analysis of 

EEG in order to characterize the complexity and fractal nature of EEG signals which cannot be 

described by the linear analysis (Müller, Jung & Ahammer 2017). Nonlinear methods are the more 

promising approach for describing the EEG signals as it can identify the non-linear coupling and 

phase locking within the harmonic of the same scale of frequencies. Below is the brief information 

about various non-linear parameters that are used in the analysis of EEG signals. 

3.1.4.1 Higher Order Spectra (HOS): HOS is one of the promising non-linear technique for EEG 

signals analysis. HOS is basically a higher orders measures of the EEG signals. HOS can detect 

anomalies form EEG signals by identifying the non-linearity, nonstationary, non-Gaussian nature 

and phase locking among the harmonic constituents of the EEG signal. HOS is also termed as 

polyspectra. It can provide the spectral information about the higher order statistics. The HOS of 

Gaussian signals has zero statistical value (Acharya, Sree & Suri 2011). Therefore, HOS is a 

powerful noise immunity tool in the case of Gaussian noise. In addition to this, HOS is also 

preserving the phase characteristics of the EEG signals. Normalized bispectral entropy, normalized 

bispectral squared entropy, Mean bispectrum magnitude, and bispectrum phase entropy are the 

name of some HOS based parameters which can be extracted from bispectral for EEG signal 

analysis.    

3.1.4.2 Higher-order cumulants: The cumulants are a set of measures that are the alternative to 

the moment’s distribution. The third order cumulant (third central moment) and higher order 

cumulants play an vital role in the analysis of the EEG signal (Yao  2000).  

3.1.4.3 Recurrence Plot: Recurrence Plot (RP) is a graphical representation of the recurrences of 

the phase states in two-dimensional space. RP is useful in the analysis of EEG signals by 

identifying the hidden periodicities which are difficult to recognize in the different domains of 

EEG signals. It also helps to depict the non-stationary and non-linear character of EEG signals by 

visualizing the periodic behavior of EEG signals in the phase space trajectory. The RP illustrates 
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the sets of pairs of times at which the EEG signal trajectory is at a similar place (Eckmann, 

Kamphorst & Ruelle 1987).  

3.1.4.4 Recurrence Period Density Entropy (RPDE):  In order to determine the periodicity of 

the EEG signal, the RPDE technique is advantageous. It is used to measure the periodicity of the 

EEG signal in the phase space without requiring any prior information about linear, Gaussian and 

dynamical aspects of EEG signals. RPDE is the illustration of non-linearity, non-Gaussianity and 

non-deterministic nature of the EEG signal (Little et al. 2006).  

3.1.4.5 Recurrence Quantification Analysis: This technique is used to evaluate that how many 

times and how long the recurrences of EEG signals takes place in its phase-space. It is used to 

measure the complexity of the system. The Recurrence Quantification Analysis (RQA) is basically 

used to illustrate and measure the small-scale structural presentation of recurrence plots of EEG 

signals (Bhui & Senroy 2016). Mean diagonal line length, recurrence rate, longest diagonal line, 

determinism, longest vertical line, entropy, recurrence time, laminarity, and trapping time are the 

names of few parameters which are used to evaluates the RQA of EEG signals. 

3.1.4.6 Approximate Entropy: Steven Pincus developed the idea of Approximate Entropy 

(ApEn) (Pincus 1991). It is a measure which is used to determine how regular and complex is the 

EEG signal are. For irregular and complex EEG signals, the ApEn measure high value. ApEn is 

an efficient tool for noisy and short data sample length with low computational cost. If XN  is a 

sequence consisting of N dimensions and Cl (r) represents the occurrence of repetitive patterns 

with length l. Then approximate entropy of XN, for a pattern of length l and similarity measure r is 

defined as: 

                                     𝐴𝑝𝐸𝑛(𝑋𝑁, 𝑙, 𝑟) = ln ⌊
𝐶𝑙(𝑟)

𝐶𝑙+1 (𝑟)
⌋    .                                                                    (5) 

 

 3.1.4.7 Sample Entropy: Sample Entropy is the extension and modified version of ApEn. It is a 

regularity or complexity measurement. It is used to measure the complexity of EEG signals 

(Richman & Moorman 2000). Sample Entropy includes the observation of patterns in EEG signals 

to check the degree of complexity in that. It does not count the measurement of the self-similar 
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pattern. It has the main advantage over ApEn is that it is not restricted to sample length. During 

seizure activity, the sample entropy of EEG signals starts decreases.  

3.1.4.8 Multiscale entropy: Multiscale entropy method is used to measure the complexity of EEG 

signals of finite length (Costa, Goldberger & Peng 2005). Multiscale entropy proved that the 

original data is more complicated than surrogate data. It is used to determine the complexity 

dynamics of EEG signals at multiple time scales 

3.1.4.9 Fractal Dimension: Fractal Dimension (FD) is used as a parameter to detect and 

differentiate certain states of the physiological function of EEG signals. Fractal Dimension is one 

of the promising means for modeling the EEG signals which is highly complex and irregular in 

nature (Uthayakumar 2013). It is used to analyze the non-linearity as well as the chaotic aspects 

and behavior of the EEG signals. In the case of the information dimension, the Fractal Dimension 

is described as: 

                                                              FD = lim
∈→0

−〈log 𝑝𝜖〉

log
1

𝜖

     .                                                   (6) 

In the above equation, p signifies the probability and 𝜖 denotes the scaling factor. 

3.1.4.10 Correlation Dimension: Correlation Dimension is a measure which quantifies the 

complexity of EEG signals (Grassberger & Procaccia 1983). Correlation Dimension is one of the 

categories of the fractal dimension. It is also used to differentiate among the deterministic chaos 

and random noise in order to identify the potential faults (Caesarendra et al. 2013). Correlation 

Dimension is generally computed by the GP algorithm which was developed by the Grassberger 

& Procaccia, 1983. Correlation Dimension is described as: 

                                                      𝐷2 = lim
𝜖→0

ln ∑ 𝑝𝑗
2𝐾(𝜖)

𝑗=1

ln 𝜖
              .                                                           (7) 

In the above equation (7), 𝐾(𝜖) symbolize the total numeral of hypercube with side length 𝜖 and 

covered the attractor, pj denotes the probability of identifying a point in the hypercube j. 

3.1.4.11 Hurst Exponent: Hurts describe an empirical descriptor an, the Hurst exponent (H) is 

used to define the natural phenomena related to the temporal nature of EEG signals (Hurst 1956). 

It is also applied for evaluating the randomness of a process. In addition to this, the fractal 
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dimension is also correlated with the Hurst exponent. Hurst exponent is used to quantifying the 

self-similar, the amount of long-range dependency and also for the prediction of EEG signals. 

Hurst exponent H is described as: 

                                                                𝐻 =
log(𝐷|𝑆)

log(𝑇)
       .                                                       (8) 

In the equation (8), T signifies the duration of the EEG signals and (𝐷|𝑆) defines the 

rescaled range value. D denotes the difference among the maximum and minimum deviation from 

the mean. S symbolizes the standard deviation. After plotting the (𝐷|𝑆) ) versus T in the axes of 

log, the slope of the regression line estimates the H (Hurst 1956).    

3.1.4.12 Largest Lyapunov Exponent: Largest Lyapunov Exponent (LLE) is used as a measuring 

unit to check the dependency of the process on its initial conditions. It is used in the analysis of 

EEG signals to quantify the chaoticity in that. It defines the rate of deviation of nearby trajectories. 

A positive value of Largest Lyapunov Exponent demonstrates the presence of chaos nature. LLE 

is defined as (Rosenstein, Collins & De Luca 1993): 

                                                                   𝑑(𝑡) = 𝐾𝑒𝑐1𝑡         .                                                    (9) 

In the above equation, 𝑑(𝑡) denotes the average divergence at time t, K symbolize the constant 

that used for the normalization of initial separation and 𝑐1 represents the exponential divergence 

of nearest neighbors. 

3.2 EEG signal classification techniques 

The EEG signals classification is a crucial step the neuroscience field for the brain disorders 

identification. An effectual classification technique plays a critical role to determine the 

individual’s mental health by adequately classifying the EEG signals. Classification is basically 

an algorithmic process which is used to classify the unidentified sets of observations (testing class) 

into their appropriate categories via predefined observations (training class). Classification is 

implemented with the help of a classifier, a mathematical function, which maps input values into 

the right class (Siuly, Li & Wen 2013). In order to classify the EEG signals efficiently, the essential 

properties of the signals should be known in advance. The feature a measurable that quantify the 

characteristics and essential property of EEG signal. And the set of the numerical features is 

labeled as a feature vector. The feature vector of EEG signals is fed to the classifier to perform the 
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classification task (Siuly, Li & Wen 2013). EEG signal classification can be categorized into two 

approaches named: Supervised Classification and Unsupervised Classification. In the following 

section, a brief outline of these two EEG classification approaches has been discussed. 

3.2.1 Supervised Classification Approach: Supervised classification approach is a procedure to 

predict a function, by evaluating the features of the feature sets of which the class label is pre-

determined. With the help of this function, the class label of the target is predicted. Supervised 

classification is comprised of a two-stage. In the first stage, a learning model is constructed for 

describing the known class categories for a data set. This learning prototype is constructed on the 

basis of the analysis of data sample and also on the idea for which the class labels are predefined. 

The data samples, in this case, are identified as the training set. In the second stage, the learned 

prototype is implemented to new (target) data sample in order to predict their class labels.  

In general, the supervised classification techniques comprises of training the classifier on 

the basis of a pre-defined set of training samples, and when new data sample is provided to the 

classifier, it will distinguish that new data samples on the basis of the training experience 

(Osisanwo et al 2017). In supervised classification, the final aim is to develop a predict function 

p(x). This predict function is optimized with the help of mathematical algorithms in order to predict 

some valuable information when the input data samples (x) are passed into it. To clearly understand 

about supervised classification, let’s assume the predict function p(x) is defined with the help of 

equation (10).   

 

                                                        𝑝(𝑥) = ℎ1 + ℎ2𝑥  ;                                                      (10) 

where ℎ1and ℎ2 are the constants. The main aim is to determine the correct value of ℎ1and ℎ2 so 

that the predict function can provide the most accurate results. It is only possible by optimizing 

the predict function p(x) with the help of the training sample. Each training sample is consist of 

the input value and their corresponding output value (class). The p(x) is trained with the help of 

enough training sample by adjusting the values of ℎ1and ℎ2 to make it more efficient and less 

wrong. This procedure is repeated until the best value of ℎ1and ℎ2 is achieved. In this manner, the 

predict function is trained, and the classifier is ready to perform some real-world predictions.  

 It is important to note that outlier is the primary source of error in the supervised 

classification, so it is essential to remove the outliers in the training data samples. An outlier is a 
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data point that diverges from the complete pattern of the training data. The primary source of 

outliers is human error, measurement error, and experimental error, etc. The detection and 

elimination of outliers can increase the classifier performance (Domingues et al. 2018). The 

supervised classification techniques that are commonly used in the EEG signal analysis are 

Decision Table (DT), JRip (RIPPER), Random Forest (RF), Decision Tree (J48), Logistic 

regression, K-nearest-neighbor (KNN), Kernel estimation, Linear regression, Support vector 

machine (SVM), Gaussian process regression, Simple Classification and Regression Tree (CART) 

and Naïve Bayes (NB) etc.   

 

3.2.2 Unsupervised Classification Approach: Unsupervised classification approach is based 

upon the training of an artificial intelligence system (AIS) on the basis of the non-classified or 

unlabeled information, and the AIS has to act on that non-classified or unlabeled information 

without any guidance. The unsupervised classification includes the grouping of the unsorted 

information on the basis of some quantify of integral ability (according to resemblances, 

similarities, the distance among the instance, variations and dissimilarities, etc.). In unsupervised 

classification, the classifier (AIS) is presented with the data that don’t have the class label as well 

as uncategorized and the classifier has to predict the class of the testing data without any prior 

training. Therefore, in unsupervised classification, there is no pre-defined set of training samples 

from which the classifier can learn (Lin et al. 2016). The unsupervised classification is used to 

evaluate more complex task which cannot be attained by the supervised classification techniques. 

The ultimate objective of the unsupervised classification is to classify the complex data by learn 

more about the underlying dynamics or distribution in the data. 

 The unsupervised classification methods that are commonly used in the EEG signal analysis 

are K-means clustering, Density-based spatial clustering of applications with noise (DBSCAN),  

Hierarchical clustering, Generative Adversarial Networks classifier,  Hidden Markov Models, 

Categorical mixture model, Expectation–Maximization (EM), Deep Belief Nets based 

classification, Blind signal separation based classification like Kernel Principal Component 

Analysis (Kernel PCA), Independent Component Analysis (ICA) etc.      
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3.3 Research summary in the field of EEG signals analysis and classification  

As the main focus of this research work is to detect the epilepsy syndrome by analysis and 

classification of EEG signals. Therefore, this section provides an overview of the research work 

or state of the art in the field of automated detection of epilepsy disorder by analysis and 

classification of EEG signals.  

Automated EEG based seizure detection for assistance in epilepsy syndrome was started 

in the early 1970s. Prior, Virden & Maynard 1973, introduce a device named as Cerebral Function 

Monitor (CFM) that monitor the long-term EEG without any supervisor. The device was able to 

detect tonic-clonic seizures on the basis of the high increase in the amplitude of the EEG signal. 

Latter on Babb, Mariani & Crandall 1974 designed an electronic circuit based seizure detection. 

Gotman & Gloor 1976, tried to identify and quantify the inter-ictal activity during a seizure with 

the help of small computerized system.  

In 1982, Gotman individually developed a computerized automated epilepsy detection 

technique (Gotman 1982). Afterward, has been recognized as an avant-gardist who instigate the 

idea of automated computerized based epilepsy detection system. The proposed technique was not 

patient-specific in nature, (i.e., not specific to an individual). The method was based upon the 

discovery of sudden fluctuation in the rhythmic bustle of EEG signals within the frequency range 

of 3 to 20 Hz. For seizure detection, some experiments had been performed in which the amplitude 

of EEG signals is measured with respect to the background, the period of time and the periodicity 

of EEG signals. But the proposed algorithm was unsuccessful to detect epileptic seizure from that 

EEG signals in which the frequency bustle is high, and amplitude is low. In addition to this, it was 

not to detect epilepsy from that EEG signals in which the various frequency ranges exist. It was 

only able to detect the epileptic seizure with a frequency less than 20 Hz. Latterly, this technique 

was modified and used on the larger EEG database with 5303 hr recording. The main aim of this 

new methods was to consider the large temporal context of EEG data and to increase the specificity 

of the technique. The technique suffered from the detection delay drawback and therefore was not 

successful in implementing in a real-time application (Gotman 1990).  

Qu & Gotman 1993, developed a new technique with the help of K Nearest Neighbor 

classifier for the automatic detection of seizure activity. The proposed method was patient-specific 

in nature. It helped to enhance the performance of the seizure detection as the EEG recording of 

individual-patient shows less inconsistency for the seizure and non-seizure activity but has the 
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limitation on the detection of latency. They modernized this technique a number of times (Qu & 

Gotman 1995; Qu & Gotman 1997; Qu 1997). The major limitation of these above patient-specific 

methods was when it is tested on different types of epileptic patients; it did not provide good 

results. In addition to this, in case of multiple seizures present in one person, the favorable results 

in the sensitivity can be achieved by combining different classifiers. Later on, different researchers 

proposed different types of epileptic seizure detection techniques. Below is the brief information 

about various epileptic seizure detection methods. 

Pradhan & Dutt 1994, analyzed that, a linear prediction is a promising approach for better 

analysis and visualization of EEG signal. In addition to this, the linear prediction method is an 

efficient technique to generate, store and transmit EEG signal. Altunay, Telatar & Erogul 2010, 

observed that when the linear prediction method is used to detect epilepsy, the energy prediction 

error feature increased during the seizure activity. Some other researchers also used the energy of 

the signal as a parameter for the detection of epilepsy disease (Yoo et al. 2013; Aloraiby et al. 

2016; Baldominos & Ramon-Lozano, 2017). Xie, Jin & Krishnan 2011, attained 100% 

classification results by proposing a new feature in PCA and also used the energy of signal as a 

feature for epilepsy detection. Acharya et al. 2012, applied PCA with Gaussian Mixture Model 

classifier to detect epilepsy and abled to acquire clinical adequate results. Siuly & Li 2015, reported 

optimum allocation scheme based upon principal component analysis to distinguish epileptic EEG 

signals from normal. The motive of using PCA in the proposed study was to develop independent 

components and to diminish the dimensionality of the data set. Nam et al. 2002, implemented ICA 

to find the ictal activity in temporal lobe epilepsy and observed that there is increased in the 

laterization from 75% to 96% while seizure. Whitmer et al. 2010, investigated that ICA can 

efficiently distinguish different types of EEG signals with dissimilar sources. Arunkumar et al. 

2012, found that ICA and Hurst exponent perform better in seizure detection as compared to PCA. 

Fathima et al. 2011, applied linear discriminant analysis by extracted the features named: variance, 

skewness, and coefficient of variation and achieved 96.9% classification accuracy with the linear 

classifier. Some researchers implemented the PC, IC, and LDA approach together for classifying 

the epileptic seizure with the help of support vector machine classifier and attained promising 

results (Gursoy & Subast 2008; Subasi & Ismail Gursoy 2010). 

Adeli, Zhou & Dadmehr 2003, introduced the idea of automatic detection of the epileptic 

syndrome from EEG signals by analysis and characterizing the epileptiform discharges with the 
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help of wavelet transformation technique. Jahankhani, Kodogiannis & Revett 2006, applied a 

wavelet transform method to extract the parameters and neural network based classifier for 

classifying the EEG signals. Subasi 2007, detected epilepsy from EEG signals with the help of 

wavelet transform based feature extraction method in the combination of expert model and 

observed that combination of experts model attained higher accuracy as compared to the individual 

neural network-based model. Ocak 2009, applied a discrete wavelet transform for the epilepsy 

detection from EEG by computing approximation and detail coefficients as the features. The 

proposed method was able to differentiate the seizure activity with 96% classification results. The 

study results also demonstrated that EEG signals with ictal activity exhibit non-linear behavior 

while normal EEG behaved like Gaussian linear stochastic system and also the approximate 

entropy decreases during an epileptic seizure. Acharya, Sree & Suri 2011, proposed epilepsy 

detection technique based upon higher order spectra cumulants from Wavelet Packet 

Decomposition coefficients and achieved 98.50% accuracy with SVM classifier. Zainuddin, 

Huong & Pauline 2012, developed a real-time approach for epilepsy detection from EEG signals 

with the help of wavelet transform. The feature sets named standard deviation, a minimum, and 

maximum measure of the wavelet coefficients were extracted from each and every sub-band. The 

research work included the study of the Gaussian wavelet, Mexican Hat wavelet, and Morlet 

wavelet by applying the wavelet neural networks classification technique. They reported 98% 

classification performance results with the conclusion that the Morlet wavelet having order four 

daubechies provide better results as compared to another wavelet. 

Kannathal et al. 2005, implemented spectral entropy, renyi entropy, kolmogorov-sinai 

entropy, and ApEn in order to detect epilepsy and observed that in the period of epileptic discharge, 

the four entropies measures decreases. Later, Kannathal et al. 2005 used non-linear features named 

correlation dimension, Largest Lyapunov Exponent, Hurst Exponent, and entropy were applied to 

characterize the epileptic EEG signal as well as to differentiate epileptic signals from normal. The 

more than 90% classification accuracy depicts the significance of the algorithm. Pravin Kumar et 

al. 2010, presented the significance of entropy parameter for distinguishing the normal and 

epileptic as well as inter-ictal activity EEG signals. The parameters named wavelet entropy, sample 

entropy, and spectral entropy were extracted in the feature extraction phase. The two neural 

network based models (named recurrent Elman network and radial basis) were used for classifying 

the Epileptic EEG signals.  
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Nigam & Graupe 2004, applied artificial neural network based approach for epilepsy 

detection and reported 97.20% accuracy. Srinivasan, Eswaran & Sriraam 2005, applied 

approximate entropy as a parameter in Elman neural networks and probabilistic neural networks 

for classifying the epileptic EEG database. The 100% classification accuracy with Elman neural 

network revealed its importance in seizure detection field. Aslan et al. 2008, considered two 

different types of epileptic seizure named partial epilepsy and primary general epileptic disorder 

for analysis under the supervision of two expert neurologists. The radial basis function neural 

network classifier attained 95.2% accuracy, and a multilayer perceptron neural network classifier 

perform with 89.2% classification.   

Mursalin et al. 2017, proposed a mixed approach for epilepsy detection by extracting 

parameters from time and frequency domain. Mean, skewness, mode, standard deviation, median, 

minimum, kurtosis, maximum, first, third and interquartile range, etc. were the parameters that 

extracted in addition to the maximum, minimum, mean and standard deviation of the wavelet 

coefficient features. In order to select the most promising feature, the correlation-based feature 

selection technique was implemented, and then the selected parameters were passed to the Random 

Forest classifier. The experimental outcomes depicted that the proposed study was a promising 

technique to classify different test cases of Bonn University epileptic EEG database. 

Polat & Gunes 2007, used Fast Fourier Transformation based Welch technique with 

decision tree as a classifier to detect epileptic EEG signals and attained the classification 

performance results with 98.72% accuracy, 99.4% sensitivity, and 99.31% specificity. Later on, 

Polat & Gunes 2008, proposed a novel hybrid system for classifying the epileptic EEG signals by 

using Welch FFT technique for parameter extraction and Principal Component Analysis for 

dimension reduction. The proposed method was built upon an artificial immune recognition system 

and reported 100% classification accuracy. Kabir, Siuly & Zhang 2016, developed a seizure 

detection system with the help of logistic model trees. Aln et al. 2016, introduced a time-frequency 

(T-F) image based algorithm to identify epilepsy from EEG signals by using Grey Level Co-

occurrence Matrix as a descriptor with Fisher Vector as an encoder and reported high-quality 

results.  

Rana et al. 2012, presented a method to detect epilepsy from multi-channel by using phase 

slope index (PSI). The PSI was used to distinguish epileptic and normal activity from the EEG 

database. PSI quantified the link between two EEG channels and discovered the increased in the 
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spatio-temporal interaction among the EEG channels, to categorized different EEG signals. The 

research study was implemented on the 258-hour-long EEG recording of 5 patients with different 

categories of an epilepsy syndrome. The methodology was implemented on two different epochs 

of EEG signals with the length of 20 sec and 60 sec. In the absence of any classifier, the proposed 

study achieved 100% classification accuracy for 20-sec epoch’s length.  

Chua et al. 2010, applied HOS approach for classifying normal, background and epilepsy 

seizure activity EEG signals. Parameters were extracted from the power spectrum and higher order 

spectra and analyzed by applying Gaussian mixture model classifier and Support Vector Machine 

classifier. It was reported that HOS based parameters are a more efficient approach to distinguish 

different EEG signals by attaining 93.11% accuracy. Martis et al. 2012, applied Empirical Mode 

Decomposition for the classification of normal, ictal and inter-ictal activity in epileptic EEG 

signals and achieved 95.3% classification accuracy.   

Siuly, Li & Wen 2011, developed a novel clustering approach for classifying epilepsy from 

EEG by using least square support vector machine and reported 94.18% classification accuracy. 

Later on, Siuly & Li 2014, introduced a statistical system for classifying the multi-category EEG 

signals using optimum allocation approach for data representation based on definite time and 

variability of within a class. By using multiclass least square support vector machine as a classifier, 

the study claimed high-performance results for epilepsy detection. The importance of sampling 

approach was presented by Siuly et al. 2015, using random sampling and optimal allocation 

sampling-based approach for classifying epilepsy EEG signals. The study investigated that random 

sampling is a more promising approach for seizure classification as compared to the optimal 

allocation sampling. The proposed work used KNN, multinomial logistic regression with a ridge 

estimator (MLR), and SVM classifier. The KNN classifier provided 100% classification results. 

 Faul et al. 2007, presented the Gaussian Process probabilistic models for classifying the 

epileptic EEG signals. Niknazar et al. 2013, applied the recurrence quantification analysis 

approach as well as wavelet transform with order 4 to distinguish healthy, inter-ictal, and epileptic 

EEG signals. The alpha, beta, delta, theta, and gamma values were extracted from each sub-band. 

98.67% classification result was attained after applying an error-correcting output coding 

classifier.  

Guler, Ubeyli & Guler 2005, applied Largest Lyapunov Exponent parameter for the feed-

forward neural network as well as for the recurrent neural network for classifying three kinds of 
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EEG signals with normal, inter-ictal and ictal conditions of epilepsy. The recurrent neural network 

provided more promising results with 96%, classification sensitivity, 97.38% for specificity and 

accuracy result was 96%. Shoaib et al. 2014, used wavelet energy as a parameter for the 

development of seizure detection processor with the help of SVM classifier. Belhadj et al. 2016, 

introduced the clustering method which was unsupervised in nature for epilepsy detection. 

Potential-based hierarchical agglomerative clustering method was implemented in combination 

with empirical mode decomposition. Euclidian distance as well as kolmogorov distance with 

Bhattacharya distance were calculated among the IMFs and used as input to the Potential-based 

hierarchical agglomerative clustering system. After applying the proposed methodology to the 

CHB-MIT epileptic database (Goldberger et al. 2000), they reported 98.84% classification 

performance results. Kabir et al. 2018, proposed the idea of a computer-aided analysis framework 

for the detection of epileptic disorder from EEG. K-means clustering approach was applied to 

determine various clusters of data by considering the similar and dissimilar behavior between the 

patterns of EEG signals. SVM, Naive Bayes as well as Logistic regression were used to classifying 

the normal and EEG signals with epilepsy. 100% classification accuracy was reported with SVM 

classifier.   

 

3.4 Drawback of the Existing Techniques  

From the above state of the art in the field of automated detection of the epileptic syndrome, it is 

clear that there are various methods are available for the analysis and classification EEG signals 

in order to detect epilepsy from EEG. But the above-described literature has some restriction and 

limitations. This section discusses the general drawbacks of the existing methods based on 

different approaches. 

The time-domain approach includes only the time and magnitude mechanism of the EEG 

signal. It does not provide any information regarding the frequency based only the time and 

magnitude components of the signal of the EEG signals. Whereas, the more in-depth analysis of 

EEG signals also requisite the frequency mechanism of EEG signals. Time domain approach is 

less robust as compared to the frequency domain (Mursalin et al. 2017).  

The non-parametric approach has the limitation of spectral leakage where the level of the 

EEG signal reduces, and the consequences can be easily shown in the whole frequency spectrum. 
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The non-parametric approach provided low-frequency resolution and suffered from great noise 

sensitivity. The parametric approach has the drawback of the absence of time mechanism of EEG 

signals whereas, the time component provides beneficial information about EEG signals. The short 

Fourier transform has the limitation of the fixed and definite size of the window and the resolution 

problem associated with the window size as the narrow scale window provides poor frequency 

resolution and wide-scale window provide poor time resolution. The Fourier transformation 

approach has not enough information about what frequency occur at which time-interval.   

Time-frequency distribution based methods have the limitations of slow in speed as the 

time for computing the gradient ascent is high and extracted measures are inter-dependent. It is 

not able to provide efficient results if the signal suffers from noise, i.e. it is not a reliable analysis 

approach for EEG signals with artifacts. In addition to this, some restricted pre-processing steps 

need to be followed carefully for de-noising the signal which also increases the cost and time for 

analysis.  

Wavelet Transform based techniques have the drawback of selection of an appropriate 

mother wavelet, the number of decomposition levels and the selecting appropriate features from 

specific sub-bands. In addition to this, Wavelet Transform performs well on multiscale structure 

but provide low efficient results for a single scale. The drawback of HHT is that IMFs takes long 

computational time if the database is extensive. In addition to this, the EMD is suffered from the 

problem of mode-mixing. Moreover, the mode-mixing is the primary reason behind the aliases in 

the time‐frequency distribution and also the distinct IMF lose its physical uniqueness.    

Power spectrum and autocorrelation functions are not able to provide any phase 

information about EEG signals. 2nd order measures find it challenging to analyze the EEG signals 

with non-Gaussian background noise. Whereas, higher order cumulants (moments and cumulants) 

are sensitive to the outliers in the EEG data sets. In the case of Gaussian density, the third and 

higher-order cumulants vanish.  

 The major drawback of applying the recurrence plot, RPDE and RQA is that the choice of 

recurrence threshold value (ε) to generate recurrence plot which covers sufficient recurrence points 

so that the generated recurrence plot provides enough and valuable information about the EEG 

signals. There is no proper guidance has been provided to decide the value of the ε threshold. In 

addition to this, the recurrence study of EEG signals at multiscale level generates numerous 

recurrence plots which will make the visual analysis infeasible. The major problem during the 



51 
 

serialization of recurrence plots includes the compromisation of the spatial neighborhood data 

values. 

Approximate Entropy suffers from the limitations of lacking in relative consistency for the 

choice of parameters and dependability on the EEG signal length. Approximate entropy and 

sample entropy measures the degree of regularity of EEG signals on a single scale. There is no 

direct link between regularity and complexity of the EEG signals. These traditional entropy 

methods analysis the surrogate data which are generated from the original data. And during 

surrogate data generation practice, there are chances of loss of some critical information and data 

degradation. In addition to this, approximate entropy, sample entropy, and multiscale entropy are 

significantly affected by the outlier because outlier alters the standard deviation of EEG signals 

which in turn affects the similarity criteria measurements. 

The fractal dimension based techniques have some limitations like the choice of scaling 

range is a critical issue, and the fractal dimension measurements after applying the discretization 

on the EEG data is different from the continues EEG signals with unlimited details. In addition to 

this, it is not a robust method in the case to estimate the complexity of irregular graphs. Whereas, 

the Correlation Dimension has some shortcoming, i.e. the selection of the number of data points 

required for the consistent evaluation of the Correlation Dimension. The sensitivity and selection 

of estimate time-delay for the modernization of the phase space and also for noise effect.  

The accurate evaluation of the time-dependent Hurst exponent is a big challenge. Hurst 

exponent has time as well as scale dependency. The H-index produces reliable results only if the 

right estimate method is executed, otherwise, it provides inconsistent results. In the case of 

Lyapunov Exponent based techniques, the major problem is the remodeled phase spaces which 

have additional dimensions in comparison to the actual phase space. The Lyapunov Exponent 

calculation based upon differences method has the shortcoming of the choice of a reasonable initial 

distance and the appropriate selection of the renormalization period.  

 

3.5 Gap in Literature 

The above-mentioned drawbacks of the existing methods clearly demonstrate that there is an 

obligatory of reliable automated seizure detection techniques that assist the clinicians for the 

diagnosis of epilepsy and also reduce cost and time. Nowadays, the graph-theory mechanism has 

provided innovative sights in epilepsy detection from EEG signals with the help of specific graph 
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parameters (Ponten, Bartolomei & Stam 2007; Li et al. 2013; Tang et al. 2013; Bhaduri & Ghosh 

2014). The graph-theory based techniques characterize a hidden sight of brain activity and brain-

behavior mapping. The graph theory not even helps to provide a distinction between three spatial 

scales: microscopic, mesoscopic, and macroscopic of EEG signals but also provides the correlation 

among them. Therefore graph theory based framework can play a crucial role in determining the 

gap present in the EEG patterns (the gap in the existing techniques have also been discussed in the 

introduction section of subsequent chapters of this thesis). Graph theory harvests important 

information about the underlying brain connectome with the help of certain topological properties 

of the EEG signals network. The statistical features of the graph based upon EEG signals provide 

critical knowledge about dysfunction related to the structure and function of the brain with 

abnormalities.  

3.6 Summary 

This chapter presents a brief overview of different domains of EEG signals analysis named Time 

domain, Frequency domain, Time-Frequency domain, and Analysis on the basis of a non-linear 

approach. Then this chapter describes different approaches for classification of EEG signals 

named: Supervised classification and Unsupervised classification approach. In addition to this, a 

literature review in the field of automated epilepsy detection techniques is also discussed. The 

literature review includes a summary of the exiting techniques. Later on, the limitations of the 

existing methods are defined. In addition to that the gap in the literature is also discussed. The gap 

in the literature also depict that the existing statistical methods for analysis the EEG signals are 

not sufficient enough for detecting the brain abnormalities from EEG. The graph theory assists in 

determining the gap present in the EEG patterns. Therefore, in the following chapter, a novel graph 

theory based technique has been proposed for the automated classification of epileptic EEG signals 

from the normal. 
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CHAPTER 4 

              WEIGHTED_COMPLEX_NETWORK BASED 

FRAMEWORK FOR EPILEPSY DETECTION FROM EEG 

SIGNALS 

 

In this chapter, a Weighted_Complex_Network Based Framework is proposed to identify one 

of the most challenging brain disorder named epilepsy disorder. Automated diagnosis of 

epileptic seizure activity using EEG signals is an area undergoing deep attention in medical 

science as well as in research disciplines. Because the traditional method of diagnosis relies 

on monotonous visual inspection by highly expert clinicians from long-lasting EEG 

recording. The branch of complex science named complex network has proved that the 

underlying dynamics of EEG signals is best defined if the strength amongst the nodes of the 

network is considered and evaluated. As the topological invariant of the network are closely 

associated to the underlying dynamics of EEG signals. This research study introduces an 

innovative edge-weight algorithm in the visibility graph for classifying epileptic EEG signals 

from the healthy EEG recording. This study aims to explore the efficacy of introducing the 

innovative edge weights idea as well as average weighted degree as an efficient network 

feature for identifying epileptic seizure activity by using five prevalent machine learning 

classifiers.  

 Some contents present in this chapter are already published in In Australasian 

Database Conference, Springer, Cham, 2016 [Publication 2]. And also in Electronics Letters, 

journal in 2016 [Publication 2]. 

4.1 Introduction  

65 million population at worldwide are suffered from the critical chronic brain syndrome 

named as epilepsy (England et al. 2012). According to the World health organization, the 

epilepsy occurrence rate per year is 2.4 million, and it can affect any age group (Acharya et 

al. 2013). Almost one-third of epileptic patients experience seizures attack even with 
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medicated treatment (Ramgopal et al. 2014). The menace of SUDEP (Sudden unexpected 

death in epilepsy) in an adult epileptic patient is approximately 8-17% more and 34% in 

children epileptic patient. SUDEP is approximately 24 fold more in the epileptic patient as 

compared to the general (Hyvarinen & Oja 2000). During epileptic seizure attack, there is the 

incidence of abnormal electrical action in the brain because of the disparity of excitatory and 

inhibitory synapses present in the brain (Siuly & Li 2015). Epileptic patients have a greater 

risk of other complications such as Bleeding into the brain, Brain tumors, Cerebral palsy, 

Alzheimer’s disease (in the later stage of life) and Autism disorder, etc. (Ghosh-Dastidar, 

Adeli & Dadmehr 2008). Epilepsy is diagnosed with the help of an EEG, which tracks the 

electrical activity occur in the human brain and records the diverse brain wave pattern. As 

brain exhibit complex interconnection among millions of billions of neurons, as a result, EEG 

recording is also having complex characteristics properties like non-linear and non-stationary 

in nature. The non-stationary and complex nature of EEG signals make the epilepsy detection 

task more error-prone, time-consuming and even expensive for the clinicians. Moreover, 

finding traces of seizure activity by experts’ neurologist through visual examination of EEG 

is a challenging issue and cannot be considered as a very reliable procedure (Siuly et al. 

2017). Despite the fact that numerous anti-epileptic drugs have been developed from the last 

decade still, one-third of epileptic patients continue to have a seizure attack in spite of 

treatment. In addition to this, EEG analysis not only help in the diagnosis of anti-epileptic 

medication but also plays a crucial role in all the neuro-surgery related to epilepsy. As a 

result, there is continuously an obligatory of automated seizure detection techniques that 

assist the clinicians for the diagnosis of epilepsy and also reduce cost and time. 

 Research in the arena of automatic epilepsy detection techniques started in 1982 when 

Gotman (Gotman & Gloor 1976) first time proposed an automatic method to detect the 

epileptic seizure and performed some experiments wherein the amplitude of EEG signals was 

measured with reverence to the background, the period of time and the periodicity of EEG 

signals. However, the proposed algorithm was unsuccessful in identifying seizure activity 

from that EEG signals wherein the frequency bustle is high, and amplitude is low. Later on, 

different techniques were proposed by different researchers for automated detection of 

epilepsy from EEG signals. Fourier Transform is one of the popular techniques to detect 

epilepsy (Gotman 1982; Gotman, Qu & Gotman 1993; Yadav, Agarwal & Swamy 2007; 
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Samiee, Kovacs & Gabbouj 2015) but suffered from great noise sensitivity and lack of 

spectral estimation. Wavelet Transform based seizure detection techniques (Hazarika et al. 

1997; Adeli, Ghosh-Dastidar & Dadmehr 2007; Ocak 2009; Hassan, Siuly & Zhang, 2016; 

Islam, Rastegarnia & Yang 2016) have the drawback of selection of an appropriate mother 

wavelet. Time-frequency distribution based methods  (Tzallas, Tsipouras & Fotiadis 2007; 

Tzallas, Tsipouras, & Fotiadis 2009; Boashash & Ouelha 2016; Alcin et al. 2016; Alcin et al. 

2016 (b); Ghayab et al. 2018; Ghayab et al. 2018(b); Siuly et al. 2019) has limitations of slow 

in speed as the time for computing the gradient ascent is high and extracted measures are 

inter-dependent. Some researchers had proposed seizure epileptic seizure detection methods 

based upon the parametric analysis. Like Granger Causality (GC) parameter was used to 

recognize epileptic seizure from EEG (Bhardwaj et al. 2009; Murta et al. 2012; Epstein et al. 

2014; Coben & Mohammad-Rezazadeh 2015). Even though GC is easy to implement but it 

has the drawback of sensitivity towards volume conduction and noise. Phase-based 

techniques (Mormann et al. 2000; Sabesan et al. 2008; Lobier et al. 2014; Shah 2014) has the 

limitation of uncertain results with the wrong choice of the phase difference. The traditional 

approaches have some restrictions, and drawbacks like the non-parametric approach have the 

limitation of spectral leakage where the level of the EEG signal reduces, and the 

consequences can be easily shown in the whole frequency spectrum. The parametric 

approach has the drawback of the absence of time mechanism of EEG signals whereas, the 

time component provides beneficial information about EEG signals. Power spectrum and 

autocorrelation functions are not able to give any phase information regarding EEG signals. 

The major drawback of applying the recurrence plot, RPDE and RQA is that the choice of 

the recurrence threshold value (ε) to generate recurrence plot which covers sufficient 

recurrence points so that the generated recurrence plot provides enough and valuable 

information about the EEG signals. Due to the limitations of the traditional approaches for 

the analysis and processing of EEG data to detect an epileptic seizure, the graph theory has 

become one of the key research fields in epilepsy detection.   

Even though early discoveries in the neuroscience research also suggest the 

importance of graph theory in clinical interpretability (Bassett & Bullmore 2006; Ponten, 

Bartolomei & Stam 2007; Reijneveld et al. 2007; Ortega, Sola & Pastor 2008). Graph theory 

harvests important information about the underlying brain connectome with the help of 
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certain topological properties of the EEG signals network (Bullmore & Bassett 2011). The 

statistical features of the network build from EEG signals provide critical knowledge about 

dysfunction related to the structure and function of the brain with epilepsy.  

From the last few years, complex network-based EEG signals analysis for the 

detection or prediction of epileptic seizure are showing vast progress. Such as: Schindler et 

al. 2008, analyzed the complex network of different EEG signals earlier, later and for the 

duration of epileptic seizure activity. Network path length and cluster coefficient were used 

as parameters for the research. The major findings of the proposed research work that the two 

parameters were showed transformation in the network topology by shifting from random to 

regular then again shifted to random. Before the starting of the seizure attack, the clustering 

coefficient showed an increase in value. The synchronization of neurons was decreased for 

the duration of seizure attack and shifted towards the increasing level before finishing of the 

seizure attack. The proposed study encompassed with the drawback of a threshold value for 

the selection of cross-correlation function and edge matrices. Wilke, Worrell & He 2009, had 

applied graph measure to investigate the behavior of ictal activity in the epileptogenic 

networks. The out-degree parameter of the epileptogenic networks was used for the analysis. 

The major finding of the research study was that the out-degree parameter helped in the 

location of the seizure onset zone and gave information about the occurrence of the ictal 

movement in the brain. The research work had the limitation for the choice of optimal model 

order which varied according to the selection criteria. Bialonski & Lehnertz 2013, introduced 

the assortativity measure of the graph for the analysis of the epileptic EEG signals. 

Correlation coefficient and time lag were used to evaluate the interconnection of the signals. 

The major finding of this research study was that the positive degree-degree correlations 

feature of the network helps to characterize the seizure activity. In addition to this, the 

assortativity coefficient increased, and synchronization decreases for the duration of the 

epileptic seizure. The research study comprised with the shortcoming that the edge links are 

established using threshold value which was not certain. Ni et al. 2014, have done an analysis 

of EEG signals in order to check how the small-world or scale-free topology of the brain 

network related to the epileptic seizure. The multiple-mass neural model was used to extract 

the neural network statistics for the duration of the epileptic seizure. The main discovery of 

the proposed study was that the small world network and the scale-free network has a 
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significant relation with the incidence of seizure attack. Petkov et al. 2014, used the 

computational model for understanding the underlying dynamics of the seizure activity in the 

functional network of EEG signals. The mean degree, degree variance, and local clustering 

coefficient were the measurements of the functional network used for the investigation. The 

research study concluded that the mean node degree parameter increased during epileptic 

seizure activity and degree variance parameter also played an important role in distinguished 

different EEG signals. Whereas, the clustering coefficient feature had not performed really 

well with the proposed methodology.   

 The above-cited techniques to detect epileptic seizure comprises of some 

shortcomings. But the common and major drawback that all of the above-mentioned 

techniques are having is the lack of edge strength in their proposed methodologies. The 

above-mentioned techniques of seizure detection from EEG signals using a network approach 

has considered that all the links of the network are equal in magnitude irrespective the nature 

of the EEG signals. Whereas, according to R. Polikar, different nodes of the network connect 

with each other through different intensities. And if we preserve the weight information on 

the graph, then we can achieve strong, reliable result (Polikar 2006). The strength of the edges 

plays an important role to analyze the existing information of the network. The edge strengths 

help in to discriminate between strongly important and potentially weak node. This 

information will further assists to understand the underlying dynamical information about the 

network. By considering the importance of weight in a network, this chapter introduces an 

innovative edge weight method in the Visibility Graph (VG) for epilepsy detection from 

EEG. The reason behind using VG for this research study is that VG technique plays a 

decisive role in several research fields like in the analysis of multifractal stochastic processes 

(Yang et al. 2009), econometrics field (Wang, Li & Wang 2012; Long 2013, hurricane data 

(Elsner, Jagger & Fogarty 2009), seismology (Telesca & Lovallo 2012), Human heartbeat 

dynamics (Dong & Li 2010; Shao 2010). Moreover, Ahmadlou, Adeli & Adeli 2010, first-

time applied the VG in the brain signal analysis field to detect Alzheimer’s syndrome and 

achieved very satisfactory results.   

 In this chapter, we proposed an innovative WCNBF founded on the graph theory for 

the automated analysis of EEG signals to extract the valuable information for the 

categorization of diverse kinds of EEG signals. Firstly, the time-series EEG signals are 
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converted into Weighted_Complex_Network (WCN) with the help of VG theorem and by 

introducing innovative weight formula. Then, the statistical feature of the WCN is extracted 

in the feature extraction part. After that, the extracted feature is evaluated with the help two 

standard machine learning classifiers: SVM with several kernel functions and LDA. The 

performance of the Weighted_Complex_Network Based Framework is measured with the 

help of some sensitivity, specificity and accuracy parameters. The primary objective of this 

chapter is: 

 To introduce weight in the edges of the visibility graph; 

  To identify how efficient a weighted-visibility graph is for distinguishing the EEG 

signal of a healthy volunteers and epileptic patient in seizure zone; 

 To introduce Average Weighed Degree as an efficient feature in the analysis of 

epileptic seizure activity from the weighted-visibility graph; 

 To investigate the effect of segmented and unsegmented EEG signals for the 

identification and classification of epileptic seizure activity.  

The experimental outcomes with 100% accuracy results demonstrate that our proposed 

WCNBF is proficient for discriminating between EEG signal of a healthy person and 

epileptic patient in seizure zone. As far we are aware of, this proposed WCNBF is truly 

newfangled and can be beneficial in the arena of automated detection of epilepsy and other 

neurological disorder. The rest of the chapter is systematized as: Section 4.2 comprised 

detailed information about the WCN based framework. The detailed information regarding 

EEG data used in this research project is available at Section 4.3. Section 4.4 covered 

experimental results with the required discussion about that. The conclusion is depicted in 

Section 4.5.   

4.2  Weighted_Complex_Network Based Framework 

This section of the chapter provides the complete description of the WCNBF for epilepsy 

detection from EEG signals. This WCNBF is using the following sequence of steps for the 

detection of epileptic seziure: 

1. Transformation of EEG signals into WCN; 

2. Topological features are extracted from the WCN of EEG signals; 

3. Classification based upon the extracted feature sets; 
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4. Performance Measures 

Figure 4-1 illustrates a schematic diagram of the WCNBF. Firstly, the EEG signals are 

converted into WCN.  For the transformation of time-series EEG signals to WCN, each 

sample value of the EEG signal is considered as the vertex or node of the complex network. 

The links between different nodes are built on VG graph theorem. After that, an innovative 

edge weight theorem is introduced to compute the weight of the different links or edges in a 

WCN. As the WCN is formed then the statistical features of the network are extracted and 

features set are created. Afterward, with the help of classifiers and the extracted features set, 

the EEG signals are classified into their appropriate class (healthy or epileptic EEG signals). 

Then the performance of the anticipated framework is assessed via specific measurements. 

Following is the detailed elaboration of each step. 

4.2.1 Transformation of EEG signals into Weighted_Complex_Network (WCN) 

As WCN is based upon the VG, for that reason, it is essential to understand the VG first. 

Lacasa et al. 2008, proposed the idea of the Visibility Graph Algorithm to transform the time 

series into a network or graph on the basis of visibility character of geometry. The principle 

of VG is the theory of Euclidean plane, i.e., if each node denotes the point’s position in the 

Euclidean plane, then the link between the allied nodes is only probable if there is visibility 

among them. This VG graph makes the visual analysis of the structural patterns of the 

network, easy at various time scales of the microscopic level to the macroscopic level 

(Ahmadlou & Adeli 2012).  To understand the VG graph, let’s assume G(N, E) denotes a 

graph with N number of the node and E is the total edges. X={Xt}(t=1,2,…….m)  symbolize a 

time-series.  According to Lucas, if each data point (Xi) of the time series X is measured as 

a node (ni) of the graph G (N, E). The edges among the nodes of the graph G (N, E) is only 

possible if they satisfied the following equation: 

                                     𝑛𝑏 < 𝑛𝑎 + (𝑛𝑐 − 𝑛𝑎)
𝑡𝑏−𝑡𝑎

𝑡𝑐−𝑡𝑎
, 𝑐 > 𝑏 > 𝑎 ,                                           (1) 

 

where, na, nb and nc are the nodes which relates with the data sample xa, xb, and xc of the time 

series X and ta, tb and tc are their corresponding time events. Figure 4-2 exemplify the VG of 

a small sample of time series data. 
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Figure 4-1: Schematic representation of the general sequence of steps followed by the Weighted_Complex_Network 

Based Framework. 

 

 

Figure 4-2: Illustration of Visibility Graph. 
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The WCN from EEG signals are comprised of the subsequent steps: 

I. Consider an EEG time-series is symbolized as E= {Et} (t=1,2,…….m) with m number of total 

data sample in it. Each sample point of E time-series is considered as node of the network 

with N ={ni },i=1,2,….k,  denotes the node sets and E ={ei },i=1,2….j,  represents the 

edge sets; 

II. The link between all the nodes is generated on the principle of equation (1) of lucasa VG 

theorem;  

III. Once the links or edges formed then edge weight is calculated. In this research work, I 

have developed the equation (2) for calculating the weight of the edges among distinct 

nodes: 

 

                                         𝑤𝑙𝑚 = |
𝑛𝑚−𝑛𝑙

𝑡𝑚−𝑡𝑙
|  , 𝑙 < 𝑚,                                            (2)     

             

Where, 𝑤𝑙𝑚 denotes the weight of the edge among nodes l and m. 𝑡𝑚 and 𝑡𝑙 are the 

associated time event corresponds to nodes l and m. The weight of the edges are 

directional in nature. Once the edge weight amongst all the nodes are calculated then 

WVG is generated. Figure 4-3. illustrate the WCN of small segment of EEG signals of 

epileptic person during seizure attack with data sample values = {100, 124, 153, 185, 

210, 220, 216, 222, 240, 265, 298, 330, 362, 381, 391}.  I believed that the idea of 

introducing weight in the visibility graph for EEG signal analysis is really innovative 

and have not applied before.  

 

4.2.2 Extraction of the network features from WCN 

Extracting the relevant statistical feature of the network plays a crucial function during the 

classification of distinct EEG signals. In technical term, a feature embodies as a discernable 

dimension that can characterize the unique or distinguishable properties of a pattern or 

configuration. In the process of feature extraction, the vast EEG data is simplified into a 

feature vector on the principle of least possible loss of information (Siuly & Li 2014).  
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Figure 4-3: Illustration of WCN of EEG signal of an epileptic patient in seizure activity. 

 

In this research work, Average Weighted Degree (AWD) is extracted as a feature 

from WVG to distinguish among the distinct class of EEG signals. As per my knowledge, 

AWD feature has not been applied before in the analysis of EEG signals. AWD feature is 

effectual to distinguish diverse EEG signals by discerning the underlying hidden pattern of 

EEG. 

 If 𝐴𝑙×𝑙 = {𝑎𝑗𝑘} denotes an adjacent matrix of WCN with l number of total nodes. 𝑎𝑗𝑘  

symbolize an edge from node j to k. The value of  𝑎𝑗𝑘 = 1 if there is presence of link from 

node j to k and 𝑎𝑗𝑘 = 0 if there is no link among them. According to Antoniou & Tsompa 

2008, the weighted degree of a node j is measured as the summation of all the edge weights 

of all the link joined to node j and is calculated as: 

                                                           𝑤𝑑𝑗 = ∑ 𝑤𝑗𝑘𝑘∈𝑁(𝑗)   ,                                                         (3) 

In the above equation (3),  𝑤𝑑𝑗 represents the weighted degree of node j; 𝑁(𝑗) denotes the 

neighbours of j; 𝑤𝑗𝑘 signifies the weight of the edge among node j and k. AWD is measured 

as the average mean of summation of all the edge weights incident on all the nodes of the 

network. As during seizure-activity, the EEG signals reveal sudden fluctuation which in turn 

affect the strength by which all the nodes are connected to each other. As a result, edge weight 
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is affected and the result can be seen in AWD feature. Because AWD is directly proportional 

to the weight of the edges. In this way, AWD play a crucial role in the analysis of diverse 

EEG signals. The experimental outcome in section 4.4, clearly demonstrates the above-

mentioned premise.   

4.2.3 Classification  

In the procedure of classification, a mathematical function named as a classifier, categorize 

the EEG signals with distinct class into their relevant class on the basis of feature sets. During 

classification, the whole EEG feature sets are partitioned into two portions: training group 

set and the testing groupset. The set of unidentified observation (testing group) is predicted 

or classified into the appropriate class by considering some criteria on the set of identified 

observation (training group). This research analysis used two eminent supervised classifiers 

of machine learning for evaluating the performance of the extracted feature AWD of the 

WVG. The two classifiers are: SVM classifiers and DA classifiers.  

4.2.3.1 Support Vector Machine (SVM) classifier 

SVM is described as set of techniques in which the linear functions make use of the 

hypothesis space with the feature space of high-dimensions and trained on the basis of the 

learning process with optimization principle for implementing a learning bias derivative as 

of statistical learning model (Jakkula 2006). The statistical learning model helps to generate 

a framework for analysis the problem of acquiring knowledge, to make predictions, to make 

decisions on the basis of the available data set. In general, it helps in selecting the hyper-

plane space (Vapnik 1998). Generalization is the capability of a hypothesis on the basis of 

which it can perform accurate classification of the data not present in the training group. 

SVM is more proficient in means of not performing over generalization whereas 

overgeneralization is the major drawback of neural network classifies. The linear classifiers 

execute the classification on the principle of selecting the appropriate hyper-planes and are 

affected with the shortcoming of choosing that hyper-plane which is proficient at classifying 

the one group of data and does not perform better classification to other data sets. The SVM 

classifier overcomes this shortcoming by providing the idea of hyper-plane with maximum-

margin and accomplish efficient classification. The maximum margin is expressed as: 
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                                   𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑙∈𝐷

𝑑(𝑙) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑙∈𝐷

𝑙.𝑤+𝑚

√∑ 𝑤𝑗
2𝑑

𝑗=1

  ,                               (4) 

Where, w represent the weight vector and is orthogonal to hyper-plane; l denotes the input 

vector; m is the bias; d represents the margin of separation. The detail information about 

equation (4) and all of the parameters are available in Cristianini & Shawe-Taylor 2014. The 

hyper-plane is defined as subspace which has its dimension less than by one in comparison 

to the ambient space of it. In general, hyper-plane partition space into two portions. The 

standard equation of hyperplane is: 

                                                         𝑤 ∙ 𝑙 + 𝑚 = 0   .                                                           (5) 

The hyperplane based upon w and m provides the following function for the correct 

classification of the training sample or data. 

                                                     𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤. 𝑙 + 𝑚)    .                                              (6) 

In the procedure of train the SVM, the following equation is used: 

                                                      𝑦𝑗(𝑤. 𝑙𝑗) ≥ 1  ∀    1 ≤ 𝑗 ≤ 𝑛    .                                           (7) 

The equation (7) is solved to determine the hyper-plane with a maximum margin for the value 

of w if the 𝑦𝑗 is the available data labels and 𝑙𝑗 is the feature vectors (Boswell 2002). The 

dual formulation of the SVM classifier is represented as: 

𝑚𝑖𝑛
𝛼𝑗

∑ 𝛼𝑗
1
𝑗=1 −

1

2
∑ ∑ 𝛼𝑗𝛼𝑝𝑦𝑗

1
𝑝=1 𝑦𝑗𝐾(𝑙𝑗 , 𝑙𝑝)1

𝑗=1     0 ≤ 𝛼𝑗 ≤ 𝐵 , ∀ 𝑗;  ∑ 𝛼𝑗𝑦𝑗𝑗 = 0   ,       (8) 

where, B denotes the cost penalty, and α represents the Lagrange multipliers (Vapnik 1998). 

SVM used the concept of the kernel to map the non-linear input vector to the high 

dimensional. The function  𝛷𝑙 is functioned as transformational function for mapping the 

input vector into a high-dimensional. The kernel function K(l) is defined in terms of dot 

product as: 

                                              𝐾(𝑙𝑗 , 𝑙𝑘) = 𝛷(𝑙𝑗) ∙ 𝛷(𝑙𝑘)     .                                             (9) 
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Different categories of the kernel have been developed for SVM. The following three types 

of kernels are used in this research project (Boswell 2002): 

 Linear Kernel function: 

                                                                𝐾(lj, lk) = 𝑙𝑗
𝑇lk         .                                              (10) 

 Radial basis kernel function is having 𝜕 as a tunable parameter: 

                                               𝐾(lj, lk) = 𝑒𝑥𝑝 (−
‖𝑙𝑗−𝑙𝑘‖2

2𝜕2 )       .                                 (11) 

 Polynomial kernel function and z are a tunable parameter show variations from  

1 𝑡𝑜 ~10 : 

                                         𝐾(𝑙𝑗, 𝑙𝑘) = (𝑙𝑗 ∙ 𝑙𝑘 + 1)
𝑧
           .                                    (12) 

Following are the applications of the SVM for the binary classification: 

A. Case 1: The data have h training points, and data is linearly separable in nature.  

1. Construct matrix M, such that  

                                                       𝑀𝑗𝑘 = 𝑦𝑗𝑦𝑘𝑙𝑗 ∙ 𝑙𝑘 .                                                       (13) 

2. Find that value of α in which  

                                          ∑ 𝛼𝑗
ℎ
𝑗=1 −

1

2
𝛼𝑇𝑴𝛼  .                                                                 (14) 

         have a maximum value, with respect to 

                                           𝛼𝑗 ≥ 0 ∀𝑗     and  ∑ 𝛼𝑗𝑦𝑗 = 0ℎ
𝑗=1      .                                         (15) 

             with the help of Quadratic Programming Solver 

3. Compute  𝑤 = ∑ 𝛼𝑗𝑦𝑗
ℎ
𝑗=1 𝑙𝑗    .                                                                                   (16) 

4. Find the S which is a set of support-vectors via determining the indices where 𝛼𝑗 >

0. 
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5. Calculate 

                                       𝑚 =
1

𝑁𝑢
∑ (𝑦𝑢𝑢∈𝑆 − ∑ 𝛼𝑣𝑦𝑣𝑣∈𝑆 𝑙𝑣 ∙ 𝑙𝑢)        .                                   (17) 

6. Every new data point  lʹ is classified via calculating  

                                           yʹ= 𝑠𝑖𝑔𝑛(𝑤. 𝑙ʹ + 𝑚)    .                                                               (18) 

 

B. Case 2: The data have h training points, and data is non-linearly separable in nature 

1. Construct matrix M, such that  

                                            𝑀𝑗𝑘 = 𝑦𝑗𝑦𝑘𝑙𝑗 ∙ 𝑙𝑘 .                                                                   (19) 

2. Select an appropriate value for the cost penalty parameter B to deal with the 

significant level of misclassification. 

3. Find that value of α in which  

                                            ∑ 𝛼𝑗
ℎ
𝑗=1 −

1

2
𝛼𝑇𝑴𝛼   .                                                               (20) 

              have the maximum value, with respect to 

                                0 ≤ 𝛼𝑗 ≤ 𝐵   ∀𝑗       and  ∑ 𝛼𝑗𝑦𝑗
ℎ
𝑗=1 = 0    ;                                           (21) 

             with the help of Quadratic Programming Solver 

4. Compute  𝑤 = ∑ 𝛼𝑗𝑦𝑗
ℎ
𝑗=1 𝑙𝑗    .                                                                                   (22) 

5. Find the S which is a set of support-vectors via determining the indices where 

 0 < αj < B.   

6. Calculate 

                                         𝑚 =
1

𝑁𝑢
∑ (𝑦𝑢𝑢∈𝑆 − ∑ 𝛼𝑣𝑦𝑣𝑣∈𝑆 𝑙𝑣 ∙ 𝑙𝑢)      .                                     (23) 
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7. Every new data point  lʹ is classified via calculating  

                                            yʹ= 𝑠𝑖𝑔𝑛(𝑤. 𝑙ʹ + 𝑚)     .                                                             (24) 

C. Case 3: The data have h training points as well as is non-linearly separable in nature 

and kernel function based classification 

1. Select the appropriate kernel and map 𝑙 ↦ 𝛷(𝑙) 

2. Construct matrix M, such that  

                                            𝑀𝑗𝑘 = 𝑦𝑗𝑦𝑘𝛷(𝑙𝑗) ∙ 𝛷(𝑙𝑘) .                                                                   (25) 

3. Select an appropriate value for the cost penalty parameter B to deal with the 

significant level of misclassification. 

4. Find that value of α in which  

                                                ∑ 𝛼𝑗
ℎ
𝑗=1 −

1

2
𝛼𝑇𝑴𝛼    .                                                              (26) 

             have the maximum value, with respect to 

                                 0 ≤ 𝛼𝑗 ≤ 𝐵   ∀𝑗       and  ∑ 𝛼𝑗𝑦𝑗
ℎ
𝑗=1 = 0  ;                                             (27) 

 

             with the help of Quadratic Programming Solver 

5. Compute  𝑤 = ∑ 𝛼𝑗𝑦𝑗
ℎ
𝑗=1 𝛷(𝑙𝑗)                                                                                          (28) 

6. Find the S which is a set of support-vectors via determining the indices 

where 0 < αj < B. 

7. Calculate 

                           𝑚 =
1

𝑁𝑢
∑ (𝑦𝑢𝑢∈𝑆 − ∑ 𝛼𝑣𝑦𝑣𝛷(𝑣∈𝑆 𝑙𝑣) ∙ 𝛷(𝑙𝑢))  .                                         (29) 
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8. Every new data point  lʹ is classified via calculating  

                                    yʹ= 𝑠𝑖𝑔𝑛(𝑤. 𝛷(𝑙ʹ) + 𝑚)  .                                                                (30) 

4.2.3.2 Discriminant Analysis (DA) classifier 

R. Fisher is known as the developer of Discriminant Analysis (DA) classifier. DA played a 

critical role in classification to solve various problems (Sapatinas 2005). The discriminant 

analysis method is used to categorize the entities into mutually exclusive as well as 

exhaustive sets on the basis of quantifiable parameters or features of the entities. The DA 

classifiers are categorized into two categories: the first is linear discriminant analysis and the 

second is quadratic discriminant analysis. The major difference among LDA and QDA is that 

LDA classifier has a linear decision surface whereas, QDA have non-linear decision 

boundary. Both DA classifiers are based upon the simple probabilistic models with the 

conditional distribution of the data 𝑃(𝐿|𝑤 = 𝑗) for each class j. Predictions are obtained with 

the help of Bayes’ rule:   

                                            𝑃(𝑤 = 𝑗|𝐿) =
𝑃(𝐿|𝑤=𝑗) P(w=j)

𝑃(𝐿)
     .                                             (31)           

Generally, the class with maximum conditional probability is selected.    

Construction of the Discriminant analysis (DA) classifier: The DA classifier is built on the 

basis of two steps. The first step is to construct the building model of the classifier. The 

second step is how the unknown data sample is classified by the DA. Following are the 

structure of steps (Tharwat 2016):    

Step I: Construction of building model of the classifier 

1. Build a feature matrix L that have K samples such as [𝑙𝑗]
𝑗=1

𝐾
, each sample is signified 

as a column of p length , whereas 𝑙𝑗 denoted the 𝑗𝑡ℎ sample; 

2. Calculate the each class’s mean 𝜇𝑗(𝑝 × 1) as in below : 

                                  𝜇𝑗 =
1

𝑘𝑗
∑ 𝑙𝑗

𝑘𝑗

𝑗=1
 , 𝑙𝑗 ∈ 𝑤𝑗 ,     ∀𝑗= 1,2, … , 𝑏  ,                                  (32) 
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                where, 𝑘𝑗 denoted the number of data samples in the 𝑗𝑡ℎ class, 𝑤𝑗 are the sets of b     

                 classes. 

3. For each class, compute the priori probability, i.e. P(𝑤𝑗) =
𝑘𝑗

𝐾
. 

4. For each class, calculate the covariance matrix by using: 

                     ∑ =
1

𝑘𝑗
𝑗 ∑ (𝑙 − 𝜇𝑗)𝑗∈𝑤𝑗

(𝑙 − 𝜇𝑗)
𝑇

,   ∀𝑗= 1,2, … , 𝑏                                              (33) 

5. For all (class 𝑤𝑗, j = 1,2, … , 𝑏) do 

6. Compute the discriminant function (𝑓𝑗) as 

                       𝑓𝑗(𝑙) = ln 𝑃(𝑤 = 𝑤𝑗|𝑙 ) = 𝑃(𝑙|𝑤 = 𝑤𝑗)                                                          (34) 

                𝑃(𝑤𝑗) = ln
1

√(2𝜋)𝑝| ∑𝑖 |
𝑒𝑥𝑝 (−

1

2
(𝑙 − 𝜇𝑗)

𝑇
∑ (𝑙 − 𝜇𝑗)−1

𝑗 ) + ln(𝑃(𝑤𝑗))              (35) 

7. End for 

Step II: How the unknown data sample (UNDS) is classified by the DA classifier 

1. The input is the unknown data samples (𝑈(𝑝 × 1)). 

2. The output will be the class label (𝑤𝑗) . 

3. for all (𝑓𝑗 , discriminant functions that are computed in Step I) do 

4. Put the value of the UNDS (U) in the discriminant function (𝑓𝑗). 

5. end for 

6. Class label (𝑤𝑚𝑎𝑥) is assigned to the UNDS (U), whereas (𝑤𝑚𝑎𝑥) denoted the class 

with maximum value of the discriminant function.  
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In LDA the covariance and means matrices are similar for both the classes whereas, the 

covariance and means matrices vary for each class in case of QDA. 

4.2.4 Performance Measurement  

The performance of the introduced framework is assessed by employing the following 

defined standard measuring parameters (Siuly & Li 2015) i.e. 

 Sensitivity =
True Positive

True Positive(TP)+False Negative(FN)
                                                         (36) 

 

 Specificity =
True Negative

True Negative(TN)+False Positive(FP)
                                                         (37)          

 

  Accuracy =
TP+TN

TP+FN+TN+FP
                                                                                            (38)      

 

 

4.3 EEG Database used in the research project 

The WCNB framework has been implemented on the online available epileptic EEG database 

provided by Bonn University, Germany. The database is composed of five sets (symbolized 

Z, O, F, N, and S) of different categories of EEG signals. Each set inclosing 100 single-

channel segments of EEG and the duration of each is 23.6-sec with 4097 data sample values. 

Set Z contained the EEG segments that are collected by recording the surface EEG of five 

healthy persons eyes open. Set O is the recording of the same healthy persons with eyes 

closed. F set comprised the EEG recording of five epileptic patients during the non-seizure 

interval from the epileptogenic zone of the brain. Set N included the EEG recording of the 

similar five epileptic patients during the non-seizure interval in the hippocampal formation 

region of the opposite hemisphere area of the brain. S set comprised the EEG recording of 

the similar five epileptic patients when the epileptic-seizure activity occurs.  The recording 

of all the EEG sets was performed at a 173.61 Hz sampling rate and using a 128-channel 

amplifier system. The filter named band-pass was used with a value range of 0.53 to 40 Hz. 

The more detailed information about how this data was collected is available at (Andrzejak 

et al. 2001).  
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4.4 Experimental Evaluation of the WCNBF 

This section presents the experimental exploration of the WCNBF. I have used MATLAB 

R2015b (with version 8.6, 64 bit) to perform the simulation analysis of theWCNBF. As per 

the WCNB framework, each channel of all the sets of EEG signals with 4097 data sample 

points are converted into the WCN first. After that, Average weighted degree parameter of 

the WCN is used as a statistical feature of the network and extracted to perform the 

classification. To execute the classification task, the above mentioned five sets of EEG 

signals are organized into the following four classification test problems: 

 Test-Problem 1: Set Z and Set S. 

 Test-Problem 2: Set O and Set S. 

 Test-Problem 3: Set N and Set S. 

 Test-Problem 4: Set F and Set S. 

 Cross-validation is a promising technique to assess the general performance as well as the 

potentiality of the classifier. In cross-validation, the segmentation is performed on the   

independent dataset to generate the training subset and validation subsets. The subsets are 

rotated for evaluations. In the end, the average of the outcomes of multiple evaluations is 

considered for reducing the variation of the evaluation performance. In this research, K-fold 

cross-validation has been performed with K=10 and named 10-fold cross-validation. In 10-

fold cross-validation, the whole feature set is partitioned into 10 subsets randomly of equal 

sizes. During classification, one subset is used for the testing purpose, and the remaining 9 

subsets are utilized as a training for the classification model. This procedure is repeated ten 

times, and at the end, the average of the evaluations (10) outcomes are considered. For the 

classification of the extracted AWD feature of the WCN, I have used SVM Linear, SVM 

Rbf, SVM Polynomial, LDA and QDA classifiers. The overall classification performances 

of the different classifiers in case of Test-Problem 1, 2, 3 and 4 are illustrated in the following 

Table 4.1, Table 4.2, Table 4.3, and Table 4.4.   

Table 4.1 clearly describes that all of the five classifiers achieved 100% sensitivity 

performance during the classification task. Whereas the QDA and SVM_Poly achieved 100% 

specificity performance, SVM Linear and SVM Rbf attained 91% classification specificity, 
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Table 4.1: Overall classification performance of the different classifier for the Test-Problem  

and LDA reaches 76% of specificity performance during the classification task. The 

classification accuracy of different classifiers is: 100% for QDA as well as SVM_Poly, 

96.5% for SVM Rbf; 95.5% for SVM Linear and 88% for the LDA classifier which is least 

among all the classifiers. Therefore, we can say that LDA classifier archived least 

classification outcomes in terms of specificity and accuracy for the Test-Problem 1. Whereas, 

the QDA and SVM_Poly classifiers are considered as more promising classifiers for 

classifying the Test-Problem 1 by achieving the 100% classification performance results. 

From the above discussion, it is clear that QDA and SVM_Poly classifiers can efficiently 

classify healthy EEG signals (eye open) and epileptic-seizure-activity EEG signals. 

Table 4.2 presents the overall classification performances results for Test-Problem 2. 

The classification performance in terms of sensitivity are: 100% for LDA, SVM Linear and 

SVM Rbf classifier; 97% for QDA and 96% for the SVM Poly classifier. The classification 

performance in terms of specificity are: 94% for SVM Poly; 93% for QDA; 85% for the SVM 

Rbf; 83% for SVM Linear and 74% for the LDA classifier. The classification performance 

in terms of accuracy measurement of different classifiers are: 95% for QDA and SVM_Poly 

classifiers; 92.5% for SVM Rbf; 91.5% SVM Linear and 87% for LDA classifier. From the 

experimental outcomes of Table 4. 2, we conclude that among all the classifiers, the QDA 

and SVM_Poly classifiers can distinguish the EEG signals of healthy volunteers (eyes 

closed) and Epileptic-seizure-activity. 

 

Different classifiers 

 Classification performance 

Sensitivity 

 (%) 

Specificity 

(%) 

Accuracy 

(%) 

LDA 100 76 88 

QDA 100 100 100 

SVM_Linear 100 91 95.5 

SVM_Rbf 100 91 96.5 

SVM_Poly 100 100 100 
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Table 4.2: Overall classification performance of the different classifier for the Test-Problem 2 

 

Table 4.3 demonstrates the classification outcomes of all the five different classifiers 

for Test-Problem 3.  The sensitivity performance of the Test-Problem 3 classification are: 

98% for the LDA classifier; 96% for the QDA, SVM Linear as well as SVM Rbf, and 94% 

for SVM Poly classifier. The specificity results of the different classifiers are: 95% for SVM 

Poly; 86% for SVM Rbf; 82% for QDA as well as SVM Linear and 75% for LDA classifier. 

The accuracy outcomes of the different classifiers are: 94.5% for SVM Poly; 91% for SVM 

Rbf; 89% for QDA as well as SVM Linear and 86.5% for LDA classifier. The experimental 

outcomes illustrate that SVM Poly classifier is more prominent for classifying the Test-

Problem 3 in comparatively other classifiers.  

The classification performance for the Test-Problem 4 of the different classifiers are 

exemplified in Table 4.4. The classification sensitivity outcome of different classifiers are: 

100% for LDA as well as SVM Linear; 99% for SVM Rbf as well as SVM Poly and 98% for 

QDA classifier. The classification specificity outcome of different classifiers are: 99% for 

QDA; 98% for SVM Poly; 91% for SVM Rbf; 85% for SVM Linear and 76% for LDA 

classifier. The classification accuracy outcome of different classifiers are: 98.5% for SVM 

Poly as well as QDA; 95% for SVM Rbf; 92.5% for SVM Linear and 88% for LDA. 

Therefore, the outcomes of Table 4. 4. signifies that SVM Poly archived higher accuracy 

performance when classifying the distinguished EEG signals present in the Test-Problem 4.  

The experimental analysis performed in the Table 4.1, 4.2, 4.3 and 4.4 clearly depict 

that the classification performances of QDA and SVM classifier with polynomial kernel 

function are very close to each other for all the Test-Problem except for the Test-Problem 3. 

However, LDA classifier performed higher sensitivity results as compared to other 

 

Different classifiers 
Classification performance 

Sensitivity 

(%) 

Specificity 

 (%) 

Accuracy 

(%) 

LDA  100 74 87 

QDA 97 93 95 

SVM_linear 100 83 91.5 

SVM_rbf 100 85 92.5 

SVM_poly 96 94 95 
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classifiers. But the scenario of the experiments demonstrates that SVM polynomial kernel 

function classifier is more compatible with our WCNB framework and provide high 

classification outcomes for all the four Test-Problems.     

 

 

Table 4.3: Overall classification performance of the different classifier for the Test-Problem 3 

 

 

Table 4.4: Overall classification performance of the different classifier for the Test-Problem 4 

   

 The other objective of this research project is to evaluate the affect of segmentation 

on EEG signal analysis. For the purpose of segmentation, each single channel of EEG signals 

is partitioned into four segments and each segment of EEG has the duration of 5.9-sec with 

1024 data points. As a result of the segmentation of each single channel, the resultant four 

segments are further measured as four independent channels for analysis. Therefore, for each 

set, if there are 100 channel then after segmentation, there will be 400 independent segments. 

From the above experimental investigation, it is an analysis that SVM polynomial classifier 

 

Different classifiers 

Classification performance 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

LDA 98 75 86.5 

QDA 96 82 89 

SVM_linear 96 82 89 

SVM_rbf 96 86 91 

SVM_poly 94 95 94.5 

 

Different classifiers 
Classification performance 

Sensitivity 

(%) 

Specificity 

 (%) 

Accuracy 

(%) 

LDA  100 76 88 

QDA 98 99 98.5 

SVM_linear 100 85 92.5 

SVM_rbf 99 91 95 

SVM_poly 99 98 98.5 
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performed high classification outcomes with our WCNB framework, therefore the affect of 

segmentation and without segmentation is evaluated on the SVM poly classifier. Table 4. 5 

present the overall classification performance of the WCNB framework with segmented EEG 

signals as well as without segmentation of EEG signals by applying the SVM poly classifier 

for all the four Test-Problems. 

Table 4.5 describes that the specificity performance for the Test-Problems 1 is 100 % 

in both the case of segmented EEG signals as well as without segmented EEG signals. 

Similarly, the sensitivity and accuracy performance for the Test-Problems 1 are 100 % in 

both the case of segmented EEG signals as well as un-segmented EEG signals. Therefore, 

we can conclude that for Test-Problems 1, there is no effect of segmentation and un-

segmentation 

 

Table 4.5: Overall classification performance using SVM poly classifier for all the four Test-Problems by 

applying the segmentation and without segmentation of EEG signals.  

Different Test 

Cases 

Segmented EEG Signals Un-segmentation EEG Signals 

Specificity 

(%) 

 Sensitivity 

(%) 

Accuracy 

(%) 

Specificity 

 (%) 

Sensitivity 

(%) 

Accuracy 

(%) 

Test-Problems 1 100 100 100 100 100 100 

Test-Problems 2 92.75 94 93.37 94 96 95 

Test-Problems 3 95.25 93.75 94.5 95 94 94.5 

Test-Problems 4 99 97.75 98.38 98 99 98.5 

 

on the classification performance with our WCNB  framework. For Test-Problems 2,   the 

specificity performance is 92.75% for segmented EEG signals and 94% for un-segmented 

EEG signals. The sensitivity performance for the Test-Problems 2 is 94% in the case of 

segmented EEG signals and 96% for un-segmented EEG signals. The accuracy performance 

for the Test-Problems 2 is 93.37% in the case of segmented EEG signals and 95% for un-

segmented EEG signals. The overall classification outcomes for the Test-Problems 2 depicts 

that the classification sensitivity, specificity and accuracy results are very close to each other 

in case of segmented and unsegmented EEG signals. For the Test-Problems 3,   the specificity 
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performance is 95.25% for segmented EEG signals and 95% for un-segmented EEG signals; 

the sensitivity performance is 93.75% for segmented EEG signals and 94% for un-segmented 

EEG signals; the accuracy performance is 94.5% in both the case of segmented as well as 

un-segmented EEG signals. Thus, it can be concluded that for Test-Problems 3, the 

classification outcomes of segmented and un-segmented EEG signals are closed to each 

other. Similarly in case of Test-Problems 4, it is analyzed that the classification results of  

 

Table 4.6: Comparison analysis of accuracy performance of different Test-Problems classification with the 

existing state-of-the-art. 

Test-Problem  Author features Accuracy 

Test-Problem 1 

Siuly, Li & Wen 2011 

Nicolaou & Georgiou 2012 

Samiee, Kovacs & Gabbouj 2015 

WCNBF 

9 

1 

- 

1 

99.9% 

93.5% 

99.8% 

100% 

Test-Problem 2 

Siuly, Li & Wen 2011 

Nicolaou & Georgiou 2012 

Kumar, Dewal & Anand 2012 

WCNBF 

9 

1 

1 

1 

93.6% 

82.8% 

92.5% 

95% 

Test-Problem 3 

Siuly, Li & Wen 2011 

Nicolaou & Georgiou 2012 

Xiang et al. 2015 

WCNBF 

9 

1 

1 

1 

96.20% 

88% 

87.6 % 

94.5% 

Test-Problem 4 

Siuly, Li & Wen 2011 

Nicolaou & Georgiou 2012 

Xiang et al. 2015 

WCNBF 

9 

1 

1 

1 

93.60% 

79.94% 

88.5% 

98.5% 

 

segmented and un-segmented EEG signals are very close such as the specificity performance 

is 99% for segmented EEG signals and 98% for un-segmented EEG signals; the sensitivity 

performance is 97.75% for segmented EEG signals and 99% for un-segmented EEG signals; 

the accuracy performance is 98.38% for segmented EEG signals and 98.5% for un-segmented 

EEG signals. Therefore, from the experimental investigation from Table 4.5, it can be 
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concluded that the WCNB framework is effective to produce high classification results in the 

case of segmented and un-segmented EEG signals. Moreover, the segmentation and un-

segmentation of EEG signals have the almost the same impact on the classification 

performance.   

 Table 4.6 present the comparison analysis of the accuracy performance of different 

Test-Problems classification with the existing state-of-the-art. Table 4. 6 clearly revealed that 

the WCNB framework based upon graph-theory is more effective for categorizing diverse 

EEG signals in comparison to the existing cited methods. 

 

4.5 Summary 

This chapter firstly presents the idea behind the importance of edge-weight in the network 

for the detection of an epileptic seizure. Subsequently, WCNBF based on weighted graph 

theory is proposed. An innovative edge-weight computing method is developed in the 

visibility graph. In addition, a statistical parameter named Average weighted degree is used 

as a graph feature for feature extraction. The WCNBF is evaluated with five different 

classifiers: LDA, QDA, SVM Linear, SVM Rbf and SVM with polynomial kernel. The 

experimental outcomes explore that SVM Poly is more suitable and provide high 

classification results as compared to other four classifiers. Furthermore, the effect of 

segmentation on the EEG signals is evaluated. The investigational results depict that the 

WCNBF is not affected by the segmentation and un-segmentation of EEG signals. The 

experimental outcomes of segmented and un-segmented EEG signals are almost close to each 

other for different Test-Problems. 

 The experimental results of this chapter explain that the WCNBF is superior and 

effective for distinguishing the different categories of EEG signals. Plus, proficient for 

detecting the epileptic seizure activity from healthy subject’s EEG signals. However, the 

classification accuracy for the Test-Problems 2, 3, and 4 is less as compared to Test-Problems 

1. To increase the classification performance for these Test-Problems, it is needed to develop 

a different edge weight method and that is presented in the next chapter.   
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CHAPTER 5 

WEIGHTED VISIBILITY NETWORK BASED FRAMEWORK 

FOR CLASSIFYING EEG SIGNALS TO DETECT THE 

EPILEPTIC SEIZURE USING MODULARITY AND AWD 

FEATURES 

 

In chapter 4, a WCNBF framework has been developed for the analysis of EEG signals and 

for the classification of different test-problems based on epileptic EEG signals. The WCNBF 

provides good classification performance for one test-problem whereas for the other three 

test-problems, the classification accuracy is not good. To increase the classification 

performance for all the test-problems, this chapter 5, introduces the idea of Weighted 

Visibility Network Based Framework (WVNBF). WVNBF uses the modularity (which is a 

community detection parameter of the network) as an efficient feature of the EEG signals 

based network in the analysis of epileptic seizure activity. An innovative weight method is 

also introduced among the links of the vertices of the network. This chapter aims to develop 

WVNBF for classifying the diverse EEG signals to detect the seizure activity. This research 

also investigates how the modularity feature of the weighted network and visibility network 

performed altogether in the analysis of EEG signals for epilepsy detection or classification. 

Firstly the modularity and AWD features are individually analyzed using SVM linear kernel 

function classifier. The experimental outcomes revealed that by combining the modularity 

and AWD feature, more accurate results are attained in comparison to the individual feature. 

This remaining paper has been structured as: section 5.2 includes the importance of visibility 

graph-based network (VGBN) and the need for introducing the weight to the links of VGBN. 

Section 5.3 presents the complete description of the data set used in the experimental part 

along with the steps to construct the Weighted Visibility Network Based Framework. Section 

5.4 comprises a detailed discussion about the experimental procedure and the results. 

Summary of the whole chapter is provided in section 5.5. 
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This chapter acquired some contents that are already published IEEE Access journal 

of volume 4 in 2016 (Supriya et al. 2016).   

5.1 Introduction  

Epilepsy is recognized as the common and chronic brain malady after the Alzheimer and 

stroke at worldwide. Epileptic patients are suffered from the anxiety of recurrent and erratic 

seizure attacks which also leads to epileptic attack or affect their quality of life as well as the 

life of their nearby friends and family members. The epileptic seizure attack sometimes 

brings the reason for short-term and long-term cognitive impairment and alternations in 

behavior (Meier et al. 2008). Therefore, automated epileptic seizure detection is the necessity 

of anti-seizure medicines, for the prevention of SUDEP and injuries allied to an epileptic 

seizure. EEG is a successful technique that plays a critical role to determine the individual’s 

mental health for adequate detection of epilepsy disorder. Because epileptic seizure activity 

leaves their signature in the time-series EEG signals. In addition, EEG can easily measure 

the disproportionate, and synchronized pattern of the brain voltage that occurs during an 

epileptic attack (Siuly 2012). Because EEG data is available in time-series form therefore, 

time-series analysis techniques or methods are generally used for epilepsy detection. The 

existing epilepsy detection methods are present in a vast range from linear to non-linear 

techniques and mostly reliable on the traditional techniques (Hsu & Hsu 2005; Osterhage & 

Lehertz 2007; ; Vavadi, Ayatollahi & Mirzaei 2010; Hogan 2011; Musselman & 

Djurdjanovic 2012;  Bellegdi & Arafat 2017;). However, these techniques are not sufficiently 

capable of perpetuating all the characteristics of EEG signals for example, non-stationary and 

chaotic nature (Campanharo et al. 2011). For that reason, there is requisite to develop new 

methods that can efficiently identify the epileptic activity from EEG signals and provide 

pertinent and important information.  

The network-based EEG analysis is an alternate approach for visualizing the 

underlying as well as hidden patterns associated with time series (Zhang & Small 2006). The 

different properties of the network help in identify the different nature (such as chaotic or 

fractal behaviour) of time series. The statistical parameters of a network play a significant 

role in obtaining valuable information associated with time series data. In the recent era, the 

complex network has become the most nascent approach in the neuroscience for identifying 
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the brain abnormalities (Stam & van Straaten 2012). The network-based techniques bring a 

new direction in the field of neuroscience for detecting the brain abnormalities via exploring 

the changes that occurs in the characteristic features of the named build from the EEG signals. 

EEG signals exhibit the multiple behaviors which are easy notable with the help of different 

attributes of the network as different EEG signals have different corresponding statistical 

features. The visibility graph algorithm (VGA) has the ability to inherit the various non-linear 

characteristics features of time series data (Lacasa et al. 2008). The VGA based time series 

analysis has the major limitation of not considering the link strength value among the vertices 

of the network. Whereas, all the links of the network have not the same strengths. As a result, 

after considering the limitation of the VGA based methods for epilepsy detection, this 

research study develops a new methodology for the analysis of EEG signals. 

  This research study presents an innovative methodology named Weighted Visibility 

Network Based Framework (WVNBF) based upon an innovative edge link method for 

classifying the seizure activity from non-seizure EEG signals. EEG signals originating from 

the epileptic seizure exhibit multi-fractal property due to the presence of non-linear behavior. 

An epileptic seizure can be identified from the WVNBF by extracting the comprehensive 

information from the structure of the WVNBF. The most significant approach is to 

decompose the WVNBF into collections of highly interlinked vertices named clusters and 

used an appropriate function that can accurately classify the Epileptic EEG signals. This 

research study considered that modularity and average weighted degree are the most effective 

feature of the network for this purpose.     

The main reason for selecting these two features is that as these features have the 

ability to acquire the important and valuable information from the structural pattern of the 

network. The Weighted Visibility Network Based Framework is evaluated on four different 

research problems (test-groups) by using different machine learning classifiers. The 

experimentation with high classification outcomes for all the four different research problems 

proves the competence of the WVNBF. As per my knowledge, the link weight theory in the 

VGA with the modularity and AWD is totally novel in the field of epilepsy detection from 

EEG, and this WVNBF has not been applied in the past. 
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5.2 Importance of visibility graph-based network (VGBN) and the need 

for introducing the weight to the links of VGBN 

A complex network is a subfield of complexity science that concerned with statistical 

physics, graph theory and also with data analysis. Currently, complex network is considered 

as an emergent approach for the qualitative and quantitative analysis of time-series data of 

EEG in term of fractality as well as long-range dependency. Among the several approaches 

of the complex network for studying the time series and its underlying dynamical 

information, VGBN is considered as one of more prominent approach. VGBN has the ability 

to characterize the EEG signals in terms of network theory by inheriting the dynamical 

properties of EEG data and representing in the form of statistical parameters of the network. 

Therefore, VGBN can utilize to attain valuable or significant information about EEG signals. 

Moreover, Liu et al. 2015, also reveal that VGBN exhibit noise robustness and not required 

any parameter selection (like time series to complex network method (Wang et al 2013) 

required threshold value and recurrence plot based network also be determined by threshold 

value (Thiel et al. 2004)). The state-of-the-art in the visibility graph also divulges that the 

topological invariant allied to VGBN play a significant role to understand the time series 

(EEG) data. As a result, VGBN can be considered as a competent technique in the scrutiny 

of EEG signals and also is the reason behind for used in this research study. The following 

paragraph demonstrates the different techniques based upon VGBN for the analysis of 

epileptic seizure detection or classification and their limitations as well. 

 Zhu, Li & Wen 2014 used VG algorithm to analyze the epileptic EEG signals. 

This research study used the public repository of Bonn University epileptic EEG database in 

which the EEG signal has a frequency of 173.61 Hz.  Mean degree and Degree distribution 

features were used to distinguish between healthy, inter-ictal and seizure state of EEG 

signals. The Degree distribution features were able to satisfy the power law whereas, the 

Mean degree parameter of epilepsy activity showed remarkable variance from normal EEG 

signals when used LDA. On the other hand, the author used a small part of the whole 

database. In addition to this, the low degree nodes feature was not able to fully satisfy the 

power law. Tang et al. 2013, proposed the idea of using VG algorithm for epilepsy detection 

from high-frequency Electrocorticography (ECoG) signals with a frequency range of 100- to 
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200 Hz by using Butterworth Bandpass filter. The experimental data was collected from the 

Hospital of Peking University which comprises of ECoG signals of three epileptic patients. 

This research study focused on the comparative analysis between Graph index complexity 

(GIC), Sample Entropy and Lempel-Ziv Complexity parameters for the identification of 

Epileptic activity. The investigational results proved that the GIC feature was the most 

promising as compared to the other two features for the database used in the proposed study. 

Although, GIC was a good non-linear marker to detect epilepsy in case of high-frequency 

signals because it is sensitive to high-frequency fluctuations. However, GIC parameter also 

showed inconsistent results for some spatially independent channels. Hao, Chen & Zhao, 

2016, have done the analysis and prediction of the epilepsy seizure attack by using the VG 

algorithm. The study was based on two features: Average Path Length and Clustering 

Coefficient. According to the research study, Average Path Length does not perform any 

significant output for the classification of the epileptic signals whereas the Clustering 

Coefficient feature produced quiet promising results. This research work was based on the 

small subset of Bonn university database. The drawback of this proposed methodology is that 

there were no performance measurements used for the evaluation of results. The research 

output was based on the visualization of the graph. As a result, it is hard to decide the 

classification performance of the proposed methodology without any performance evaluation 

measurement. (Olamat, Shams & Akan, 2017, developed a VG based algorithm to detect 

epilepsy seizure in which a particular size window was slide along the EEG signals to 

generate the segments. Then, each segment was considered as nodes and link between them 

was establish using VG algorithm. This research study claimed that the motifs of the complex 

network could be considered as a marker for the analysis of epileptic seizure activity. During 

seizure activity, the nerve tissue discharge was spatially extended which in turn increases the 

rate of connectivity among vertex-pairs and the presence rate of pre-eminent motifs. The 

proposed method included with the shortcoming of the limitation of window size. If the 

window sized above 10, then the proposed methodology was not able to provide valuable 

information about EEG signals. Wang et al. 2017, performed EEG signal analysis using VG, 

HVG and DVG approach to detect epileptic seizure in a patient with intellectual disability 

(ID) by collecting the data from Epilepsy Center Kempenhaeghe. The Mean degree (MD), 

Degree entropy (DE), Power-law degree power (DP), Assortativity coefficient (AC) and 
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Average shortest path length (SL) parameters were extracted in the feature extraction part 

after mapping time series EEG data into three different graph(VG , HVG and DVG) to 

perform statistical analysis and 5 fold cross-validation using Support Vector Machine (SVM) 

classifier with a Gaussian kernel. The major finding of this research was the graph parameters 

of HVG provided more promising results to discriminate epileptic EEG from the non-

epileptic EEG signals as compared to VG and DVG. It was the author believed that the 

attained results might be not appropriate for automated epilepsy detection in actual clinical 

implementations. In addition to this, the seizure duration was very small in the EEG signals 

due to which the boundaries of the different stages of the seizure attack was difficult to 

distinguish. 

 The above-cited methods have some inadequacies. But the common and most 

important constraint of these techniques is about not considering an essential fact that links 

amongst the nodes of the network sustain strength and different links exhibit different values 

of strength. Moreover, the literature research in the discipline of network theory has also 

exposed that the binary network exhibit information only about the existence of links 

whereas, the preservation of information regarding the weight among the links of the vertices 

of network helps to determine more robust and reliable results (Polikar 2006). Because the 

presence of weight in the network links play a vital role in the determination of strong and 

potentially important links that exist in the network. For all of the above-mentioned reasons, 

this research study has developed a WVNBF to determine the weight of the links among 

different vertices of the network. 

5.3 Data and Technique 

This section provides extensive information regarding the WVNBF and the EEG data used 

in this research study. The structure diagram of the WVNBF is presented in Figure 5-1. 

Firstly, the EEG signals are transformed into Weighted Visibility Network. Subsequently, 

Statistical parameters of the WVN are extracted for classification, and finally, the 

performance is evaluated using standard parameters. Following is the detailed elaboration of 

each step. 
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5.3.1 Data  

In this study, I have used the similar EEG database that I have used in my previous chapter 

4 in section 4.3, i.e. http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3  

which is made available by the Epilepsy Center stage 1 of Bonn, Germany. This EEG data is 

online available and encompassed with five different class of EEG signals with the class 

named: F, S, Z, O, and N. There are 100 channels of EEG signals in each class and each 

channel comprised with 4097 sample points with 173.61 sampling rate of 23.6s duration. The 

detailed information regarding this database is available at Andrzejak et al. 2001. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: Schematic illustration of the general sequence of steps followed by the Weighted Visibility Network Based 

Framework. 
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5.3.2 Weighted Visibility Network Based Framework 

The Weighted Visibility Network Based Framework comprised of four stages. The first stage 

is to transform the EEG signals to WVN. The second stage is the extraction of Modularity 

and AWD as statistical parameters of the network in the feature extraction. The third step is 

to evaluate the performance of the extracted features using supervised classifiers of the 

machine learning, and the final step is the use of different performance measurements for the 

valuation of the classification outcomes. Following is the more details about each step: 

For the construction of WVN, the first phase is to consider that each sample point of the EEG 

signal is the vertex of the network. If G = (V, L) represent a network with V ={vi };i=1,2,…n, 

is the set of n number of vertices and L = {li };i=1,2,…m , is the set of m number of links and 

E = { ei };i =1,2,…n denotes an EEG time series signal then vertex vi correspond to sample 

point ei. The links among different vertices of the network are only possible if they satisfied 

the following equation which is based upon the visibility graph method. 

                                         𝑣𝑏 < 𝑣𝑎 + (𝑣𝑐 − 𝑣𝑎)
𝑡𝑏−𝑡𝑎

𝑡𝑐−𝑡𝑎
, 𝑐 > 𝑏 > 𝑎  ,                                     (1) 

where,  va, vb and vc are the vertexes corresponding to the sample point ea, eb, and ec of the 

time series EEG signal E and ta, tb and tc are their equivalent time events. The more detailed 

information about the role of visibility graph for finding the links among the nodes is 

available at section 4.2.1. The next phase is to evaluate the weight of the links among the 

vertices of the network. This study introduces the following weight equation: 

                                                𝑤𝑎𝑏 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑣𝑏−𝑣𝑎

𝑡𝑏−𝑡𝑎
 , 𝑏 > 𝑎   ,                                            (2)                 

where, 𝑤𝑎𝑏 represents the weight among the vertex va and vb with their equivalent time events 

ta and tb.  arctan denotes an inverse trigonometric function named arc tangent. This study 

consider the radian function value of the arctan for all the links weights of the network. In 

this research study, all the links are considered directional in nature i.e. link L12 hae direction 

from vertex v1 to vertex v2. In addition, the absolute value of the link’s weight has been 

considered. After computing the links weight among all the vertices of the network, the final 

phase is the construction of WVNBF of an EEG signal. The below example demonstrates 
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how WVNBF is constructed from the EEG signal and the significance of the links weight in 

the analysis of the EEG signal. 

 Example 1: Construction of the WVNBF from the time series EEG signal with 

value E = {10, 20, 30, 25, 50, 10, 70, 60, 65, 100} and associated equivalent time events t = 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Figure 5-2 illustrates the pictorial representation of the EEG 

signals E and elucidate how to calculate the value of link weight among different sample 

point. It can be seen from the Figure 5-2 that E(t1) =10 and E(t6) =10 exhibit same value 

whereas, at time interval t7, there is fluctuation with the value E(t7) =70. As per the above-

mentioned criteria for the construction of WVNBF from E. Each sample value of E is 

considered as the vertex of the network and links among all the vertices is computed using 

equation (1). The link weight among vertex between v1 and v7 is denoted as w17, and w67 

symbolize the link weight among vertex v6 and v7. The value of w17 and w67 is determined 

using equation (2), i.e.: 

                 𝑤17 = |𝑎𝑟𝑐𝑡𝑎𝑛
𝑣7−𝑣1

𝑡7−𝑡1
| = |𝑎𝑟𝑐𝑡𝑎𝑛

70−10

7−1
| = 1.471 = 𝛼1    ;                                 (3) 

               𝑤67 = |𝑎𝑟𝑐𝑡𝑎𝑛
𝑣7−𝑣6

𝑡7−𝑡6
| = |𝑎𝑟𝑐𝑡𝑎𝑛

70−10

7−6
| = 1.554 = 𝛼2    .                                  (4) 

 

Therefore, the above values of the w17 and w67 clearly demonstrate that the two vertices (v1 

and v6) have similar value (sample value=10), but their link weight strength show a 

discrepancy when linked with third node (v7). In addition, there is sudden fluctuation occurs 

at t7 in Figure 5-2. Due to this sudden fluctuation, the link weight value increases. Therefore, 

the proposed link weight strength method helps to detect the epileptic seizure activity by 

identifying the sudden fluctuation and efficiently distinguish diverse categories of EEG 

signals. Table 5.1 depicts the vertices of the network correspond to the E time series EEG 

signal and the values associated with each vertex. Table 5.2 present the value of all the links 

of the network build from E and their associated weight value. L12 denotes the link among 

vertices v1 and v2. And computing all the links and their associated weight value, finally, the 

WVNBF is constructed.  Figure 5-3 illustrates the WVNBF of E EEG signal.     
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Figure 5-2: Illustration of EEG signals E = {10, 20, 30, 25, 50, 10, 70, 60, 65, 100}. 

         

        Table 5.1: The values associated with each vertex of the network correspond to the EEG signals E  

     

      

  

  

 

 

 

 

Once the WVN of EEG signals is developed, the next step of the WVNBF is to implement 

the feature extraction process. Technically, feature extraction has a significant role in the 

classification of various categories of EEG signals. A feature is an identifiable measuring 

quantity acquired from the pattern and characterizes the distinctive properties. In feature 

extraction, the vast amount of EEG signal is simplified into vector sets named feature vectors 
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Table 5.2: Illustration of all the links and their associated weight value among different vertices of the    

     a network of EEG signals E presented in Table 5.1 

 

 

Figure 5-3: Illustration of WVNBF of EEG signal E. 

Links Weight (w) Links Weight (w) Links  Weight (w) 

L12 1.529 L13 1.533 L19  1.566 

L14 1.535 L15 1.534 L1 10  1.516 

L23 1.536 L24 1.538 L29  1.510 

L2 10 1.514 L78 1.405 L89  1.515 

L34 1.539 L39 1.501 L3 10  1.508 

L45 1.530 L49 1.480 L4 10  1.495 

L56 1.471 L58 1.325 L9 10  1.530 

L5 10 1.480 L59 1.438 L79  1.487 

L67 1.325 L68 0.785 L8 10  1.524 

L6 10 1.482 L69 1.421 L7 10  1.509 
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on the principle of least possible loss of information present in the original signal. In this 

research, as an EEG signal is transformed to the WVN, therefore, graphical parameters are 

mined in the feature extraction part and used for the classification of different types of EEG 

signals. The measures of the network that are used as extracted features in this study for the 

epilepsy detection are named: Modularity (Q) and Average Weighted Degree (AWD). 

 Modularity is measured as a complexity function for a weighted graph to 

determine the quality of sub-division of the graph into the components or modules (Newman 

2004). Newman was the first who introduce the idea of modularity. According to M. E. 

Newman, if M denotes the weighted adjacency matrix of the weighted network, then the 

modularity is measured as: 

                                         𝑄 =
1

2𝑤
∑ (𝑀𝑑𝑒 −

𝑘𝑑𝑘𝑒

2𝑤
) 𝛿(𝐶𝑑𝐶𝑒)𝑑𝑒      .                                       (5) 

where Q symbolize the modularity, 𝑀𝑑𝑒 signify the weight of the links among vertex d and 

e. 𝑘𝑑 = ∑ 𝑀𝑑𝑒𝑒  represent the sum of the weight of links associated with the vertex e. 𝐶𝑑 

denotes the community in which vertex e lies and w. 𝛿(𝐶𝑑𝐶𝑒) is 1 if 𝐶𝑑 = 𝐶𝑒 else 0. This 

research work used the modularity feature that is developed by Blondel et al. 2008. As this 

method of modularity calculation is more simple and efficient to compute the community 

partition quality from a vast network. According to Blondel, when the module y combine 

into module z at that juncture the modularity gain is calculated as:   

                 ∆𝑄𝑦𝑧 = [
∑ +𝑘𝑦,𝑧𝑛𝑧𝑛

2𝑤
− (

∑ +𝑘𝑦𝑡𝑜𝑡

2𝑤
)

2

] − [
∑𝑧𝑛

2𝑤
− (

∑𝑡𝑜𝑡

2𝑤
)

2

− (
𝑘𝑦

2𝑤
)

2

]    ,                   (6) 

where ∑𝑧𝑛  symbolize the total weights of the links that come under module z; ∑𝑡𝑜𝑡  

represents the total weights of the links that are incident to the vertex in the module; 

𝑘𝑦,𝑧𝑛denotes the sum of the weight of the links from the module y to module z; ky signify the 

sum of the weights of the links incident to vertex y; w exemplifies the total weight of all the 

links in the graph. The modularity is a complex network feature which is used to measure the 

quality of the division of the complex network into clusters. The modularity measure 

developed by Blondel et al. 2008, is comprises of two stages. Firstly, recognize the small 

clusters with the help of optimization of modularity in a local manner. Secondly, in order to 

rebuild the new network, the vertices fit into the same clusters are combined together with 
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vertices of the network are the communities. These two steps repeated iteratively until the 

maximum value of modularity is attained.  

Average Weighted Degree (AWD) is the second parameter that is extracted in the 

feature extraction stage. If AKxK = {ayz} symbolize an adjacency matrix with K number of 

vertices. Then Ayz =1 if the edge exists from the vertex y to z otherwise 0. The weighted 

degree of vertex y is the sum of the weights of all the edges linked to vertex y and is 

symbolized by (Antoniou & Tsompa 2008) : 

                                              𝑤𝑑𝑦 = ∑ 𝑤𝑦𝑧𝑧∈𝐵(𝑦)  ,                                                    (7) 

where B(y) indicates the neighborhood of vertex y and wyz be a sign of the link weight among 

vertices y and z. The AWD is measured as the average of the total weights of the existing 

links on all the vertices in the WVNBF. 

 After extracting the modularity and average weighted degree features from the 

WVN of EEG signals, the next step of the WVNBF is to evaluate the significance of the 

extracted features by using classification. During classification, the unknown sets of 

observations named testing class are classified into their apposite group on the basis of known 

sets of observations named training class. Technically, a mathematical function is used in the 

classification named classifier, which predicts the true or apposite label of unknown 

observation based upon its training trialing. This research study has used two well-known 

machine learning classifiers named: SVM and KNN. 

 KNN is a supervised learning and non-parametric algorithm that classified the 

outcomes of new instance-query on the basis of the majority of the k-nearest neighbor class. 

The k-NN classification has been considered as one of the top ten data-mining methods 

(Zhang et al. 2017). It is robust to noise as well to large training samples. It performs the 

prediction by using local information which makes it adaptive in nature. It accomplishes the 

classification based upon the frequent class set of its nearest neighbors present at its feature 

space. The general steps of its algorithm are as follows: 

1. The first step is the initialization, i.e. define k; 

2. Calculate the test instance’s distance from each training instance; 

3. Sort the distances either in ascending order or descending order; 

4. Then sorted distances are used to select the k-nearest neighbors; 
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5. Apply majority rule i.e., the label of test instance is predicted by using major class or 

group of its feature space with k most similar training instances.   

There are several approaches to measure the distance in the k-NN algorithms such as 

Euclidean distance, Minkowsky distance, and Mahalanobis distance. The study has used the 

Euclidean distance. The euclidean distance among the vector as and bt is calculated as 

following (Cover & Hart 1967): 

                                               𝑑𝑠𝑡 = √∑ |𝑎𝑠𝑗 − 𝑏𝑡𝑗|
2𝑛

𝑗=1           ,                                                (8)         

 A research study in the field of classification has proved that SVM is considered 

as a promising classifier in the discipline of biomedical science especially in the anomalies 

detections from EEG signals (Mehta & Lingayat 2007; Siuly &  Li 2012). SVM has the 

excellent ability to handle the high dimensional as well as non-linear data. SVM is based 

upon hyper-planes for classification, therefore, provide enhanced empirical performance. 

Furthermore, efficient classification outcomes are attained by evading local minima. SVM is 

enriched with the special feature named classification based on the kernel function. This 

research used the three different kernel function of SVM for classifying EEG signals: Linear 

Kernel function, the radial basis kernel function and Polynomial kernel function. The more 

detailed information about the SVM mechanism or algorithm is available at section 4.2.3.1 

of the previous chapter. 

 To evaluate the classification performance of SVM and k-NN, the sensitivity, 

specificity and accuracy measurements are used. 

 

5.4 Evaluation of Results and Discussion  

This section presents detailed information about the experimental results and discussion 

about them. The WVNBF is applied to the EEG Epileptic database described in section 5.2.1. 

The data is divided into four test-group which is shown in Table 5.3.   
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Table 5.3: Representation of EEG datasets into four test-group 

Test-group Data-set Description 

Group-I Set A vs. Set E 
EEG of healthy volunteers (eyes open) and EEG of epileptic seizure 

zone activity. 

Group-II Set B vs. Set E 
EEG of healthy volunteers (eyes closed) and EEG of epileptic seizure 

zone activity. 

Group-III Set C vs. Set E 
EEG of epilepsy patient during hippocampal formation area at seizure 

free zone region and EEG of epileptic seizure zone activity. 

Group-IV Set D vs. Set E 
EEG of epilepsy patient non-seizure interval from the epileptogenic 

zone and EEG of epileptic seizure zone activity. 

  

Tang et al. 2013, claimed that there is no advantage of using the large or great number of 

sample points during the transformation of time-series to network as the complexity 

quantification as well as the self- similarity in the nature of a network does not require many 

vertices. In addition, the segmented signals can also provide meaningful information. 

Moreover, the experimental outcomes of our previous chapter 4 also prove that the 

segmented and whole EEG signals do not show much difference in the classification 

performance. The segmentation of EEG signals also provides fast computation. By 

considering all of the above-mentioned points, WVNBF is implemented on the segmented 

EEG database. Every single channel of EEG signals with 4097 sample points is segmented 

into four parts in such a way that Seg1 contains 1024 sample point, Seg2 also contains 1024 

sample point, Seg3 comprised of 1024 sample points, and Seg4 contain 1025 sample points. 

Each segmented part is associated with the data correspond to the 5.9-sec. These four 

segmented parts are further considered as four independent samples while implementing the 

WVNBF.  As each set comprises of 100 channels and each channel contains 4097 sample 

points. After executing the segmentation task, there will be 400 independent segments for 

each set with 1024 sample points in each.   

 The first step of the WVNBF is to transform each segment into a WVN. Figure 

5-4 illustrates the visualization of the WVNBF based upon the 50 sample points taken from 

one segment of set A. Whereas, Figure 5-5 illustrates the visualization of the WVNBF based 

upon the 50 sample points taken from one segment of set E.  
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Figure 5-4: Illustration of WVNBF of EEG signal of a healthy person. 

 

 

 

Figure 5-5: Illustration of WVNBF of EEG signal of an epileptic patient during seizure activity. 

 

The different colours in the vertices of the above two figures represent the different 

communities in which they belong which is evaluated using the modularity algorithm. 

Moreover, both the figures also demonstrated that the WVNBF of different EEG signal 

exhibit different topological structure. The main objective of introducing the weight in the 

visibility graph-based network is to identify the sudden changes or fluctuations that happens 

during seizure activity. As in the period of seizure, the amplitude of the EEG signals shows 

immense changes or fluctuations. The proposed link weight technique helps to identify this 

sudden fluctuating changes because due to these sudden fluctuating changes the link weight 
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values also start changes, which shows its effects on their corresponding statistical attributes 

or parameters of the WVNBF. 

 The second step of the WVNBF is to determine the modularity and AWD 

features from WVNBF of EEG datasets.  Figure 5-6 illustrates the box-plot diagram of the 

feature named modularity corresponds to all the five sets with 400 segments in each set. It is 

clearly depicted in Figure 5-6 that, all of the five sets exhibit the different value of modularity. 

Moreover, set E shows the lowest value of the modularity parameter in comparison to the 

other four sets. The reason behind is that the value of the modularity parameter is evaluated 

by using Blondel method and should be lies in the range of [-1, 1]. The network has a stronger 

community structure if the value of modularity parameter is 1or close to 1. Therefore, Figure 

5-6 depict that the sets A, D, B, and C exhibit a strong connection between their vertices 

inside the communities in comparison to Set E and also have a better division of the network. 

In short, during seizure activity, the modularity parameter starts to decreases.   

 

 

Figure 5-6: Illustration of the box-plot diagram of modularity feature of WVNBF of EEG signal of five sets.  
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Figure 5-7: Illustration of the box-plot diagram of AWD feature of WVNBF of EEG signal of five sets.  

 

 Similarly, Figure 5-7. illustrates the box-plot diagram of the feature named 

AWD correspond to all the five sets and also depict that the set E exhibit the highest value of 

AWD parameter in comparison to the remaining four sets. The reason behind is that because 

of sudden fluctuation in the period of seizure, the value of links weights increases which in 

turn increase the AWD parameter. Therefore, the above analysis outcomes divulge that the 

Q and AWD parameters of the WVNBF of different EEG signal are capable of imitating their 

characteristic disparity and can play a key role in attaining the higher classification outcomes 

for different test-groups.      

 The performance of the extracted parameters: Q and AWD of WVNBF of 

different EEG signal are evaluated by applying the different classifiers. The classification 

performance of each feature is evaluated individually as well as also by combining the both 

(Q+AWD) parameters, and the experimental outcomes demonstrate that the combined 

feature sets provide high classification performances or results as compared to individual 

parameters. Therefore in this WVNBF, the classification task is implemented on the 

combined feature sets, i.e. Q+AWD. The classification is executed using SVM and k-NN 

classifier. The different categories of kernel functions available in SVM play a different and 

significant role. Therefore, this research has used three different kernel function of SVM 

named: SVM-linear, SVM-rbf, and SVM-poly. The choice of the k-value in k-NN classifier 

also affect the classification outcomes or performances. Therefore, different experiments 

have been executed to estimate the most apposite value of k. The experimental investigation 
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discloses that k=3 and k=10 provide the most promising classification results for all the test-

groups. Therefore, in this WVNBF, all the experiments study has used K=3 and K=10 value 

of k-NN classifier.  

 Table 5.4 presents the sensitivity performance of the classification on different 

test-groups by applying different classifiers on the combined feature set. It is visible from 

this table that all the five classifiers exhibit 100% classification performance in terms of 

sensitivity for the test-group-I. The classification sensitivity of Group-II for different 

classifiers are: 98.90 % and 97.30% in case of the k-NN classifier with k=3 and k=10; 99.46% 

for SVM-linear; 99.46% for SVM-rbf, and 99.47% in case of SVM-poly. For the Group-III, 

the sensitivity is: 96.50 % and 97.05% in case of the k-NN classifier with k=3 and k=10; 

98.50% for SVM-linear; 98.50% for SVM-rbf, and 98% in case of SVM-poly. Whereas, the 

sensitivity of Group-IV are: 90.95% for SVM-rbf; 90.60% for SVM-poly; 92.30% for SVM-

linear; 90.68% and 91.26% in case of k-NN classifier with k=3 and k=10. Table 5.4 clearly 

depicts that all the results of sensitivity performance for all the four groups are very close to 

each other whereas, SVM classifier provides high competence results as compared to the k-

NN classifier.     

Table 5.4: The classification performance in terms of sensitivity on different test-groups by applying different 

classifiers  

Classifiers 

Classification Test-Group 

Group-I 

(%) 

Group-II 

(%) 

Group-III 

(%) 

Group-IV 

(%) 

k-NN( k=3) 100 98.90 96.50 90.68 

k-NN( k=10) 100 97.30 97.05 91.26 

SVM-linear 100 99.46 98.50 92.30 

SVM-rbf 100 99.46 98.50 90.95 

SVM-poly 100 99.47 98 90.60 

 

 Table 5.5 demonstrates the classification specificity of the combined feature set 

of WVNBF on different test-groups. It can be seen from this table that all the five classifiers 

exhibit 100% classification specificity for the test-group-I. The classification specificity of 

k-NN (k=3) classifier is 95.19% for test-group-II; 96.50% for test-group-III, and 92.34% for 

test-group-IV. The classification specificity of k-NN (k=10) classifier is 91.16% for test-
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group-II; 98.97% for test-group-III, and 93.81% for test-group-IV. Similarly, the 

classification specificity for test-group-II is 93.86% in case of SVM-linear as well as SVM-

rbf classifier; 98.50% in case of SVM-linear as well as SVM-rbf classifier; 90.24% for test-

group-IV by SVM-linear and 95.26% by SVM-rbf. The classification specificity of SVM-

poly classifier is: 95.21% for test-group-II; 98.49% for test-group-III and 96.25% for test-

group-IV. It can be examined from Table 5.5 that the specificity results of all the classifiers 

are very close to each other for the four test-groups. Moreover, SVM-poly classifier has 

higher performance results for all the four test-groups in comparison to the remaining four 

classifiers.  

Table 5.5: The classification specificity on different test-groups by applying different classifiers 

Classifiers 

Classification Test-Group 

Group I Group II Group III Group IV 

k-NN (k=3) 100 95.19 96.50 92.34 

k-NN (k=10) 100 91.16 98.97 93.81 

SVM-linear 100 93.86 98.50 90.24 

SVM-rbf 100 93.86 98.50 95.26 

SVM-poly 100 95.21 98.49 96.25 

 

Table 5.6 demonstrates the accuracy performance of the combined feature set of 

WVNBF on the four test-groups while applying the different classifiers. The classification 

accuracy for the test-group-I is 100% in case of all the five classifiers. The classification 

accuracy of Group-II for different classifiers are: 93% and 94.25% in case of the k-NN 

classifier with k=3 and k=10; 96.50% for SVM-linear as well as for SVM-rbf, and 97.25% 

in case of SVM-poly. For the Group-III, the accuracy is: 96.50 % and 98% in case of the k-

NN classifier with k=3 and k=10; 98.50% for SVM-linear as well as SVM-rbf, and 98.25% 

in case of SVM-poly. Whereas, the accuracy of Group-IV are: 91.25% for SVM-linear; 

91.50% for k-NN classifier (k=3); 92.50% for k-NN classifier (k=10); 93% for SVM-rbf and 

93.25% for SVM-poly classifier. Table 5.6 clearly depict that the accuracy outcomes of 

different classifiers are very close to each other in case of all the four test-groups. The SVM-

poly classifier achieved the highest accuracy performance in comparison to other classifiers.     
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Table 5.6: The classification accuracy of different test-groups after applying the different classifiers 

Classifiers 
Classification Test-Group 

Group I Group II Group III Group IV 

k-NN( k=3) 100 93 96.50 91.50 

k-NN( k=10) 100 94.25 98 92.50 

SVM-linear 100 96.50 98.50 91.25 

SVM-rbf 100 96.50 98.50 93 

SVM-poly 100 97.25 98.25 93.25 

 

The classification specificity of Group-II for different classifiers are: 95.19% and 91.16% in 

case of the k-NN classifier with k=3 and k=10; 93.86% for SVM-linear as well as for SVM-

rbf, and 95.21% in case of SVM-poly. For the Group-III, the sensitivity is: 96.50 % and 

97.05% in case of the k-NN classifier with k=3 and k=10; 98.50% for SVM-linear; 98.50% 

for SVM-rbf, and 98% in case of SVM-poly. Whereas, the sensitivity of Group-IV are: 

90.95% for SVM-rbf; 90.60% for SVM-poly; 92.30% for SVM-linear; 90.68% and 91.26% 

in case of k-NN classifier with k=3 and k=10. The classification performance of all the above 

four tables in terms of sensitivity, specificity and accuracy parameters for the test-group-I is 

100% which clearly depict that the WVNBF is very much proficient at distinguishing the 

seizure activity from EEG signals associated with healthy persons.   
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Figure 5-8: Illustration of the accuracy performance of different classifiers for the test-Group-I such as (a) 

SVM-linear, (b) SVM-RBF, (c) SVM-polynomial, (d) k-NN (k=3), and, (e) k-NN (k=10). 

 

 

Figure 5-8 illustrates the classification accuracy with 100% performance for the test-

Group-I with 1024 sample points after applying the different classifier such as Figure 5-8: 

(a) correspond to SVM-linear, (b) correspond to SVM-RBF, (c) correspond to SVM-

polynomial, (d) correspond to k-NN (k=3), and, (e) correspond to k-NN (k=10). In Figure 5-

8, the training group 1 represent the set E with seizure activity, and training group 2 signifies 

the set A with EEG signals of healthy persons (eyes open). 

           Table 5.7 reported the comparative analysis of the WVNBF with the different 

technique present in the state-of-the-art that has used similar Bonn EEG data for their 

experimentations. Table 5.7 clearly demonstrates that our WVNBF is the most promising 

with highest accuracy performance as compared to others.    
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Table 5.7: Comparison analysis of the WVNBF with the different techniques that are present in the state-of-

the-art and also used the similar Bonn EEG data for their experimentations. 

Classification 

Test-Group 
Authors Features Accuracy (%) 

 

Group I 

Srinivasan, Eswaran & Sriraam 2005 

Guo et al. 2011 

Siuly, Li & Wen 2011 

Nicolaou & Georgiou 2012 

Zhu, Li & Wen 2014 

Husain & K.S 2014 

Ghayab et al. 2016 

Martinez-del-Rincon et al. 2017 

 WVNBF 

5 

1 

9 

1 

2 

- 

9 

1 

2 

99.6 

99.85 

99.9 

93.42 

99.0 

99.8 

99.90 

99.85 

100 

 

 

Group II 

 

Siuly, Li & Wen 2011 

Zhu, Li & Wen 2014 

 WVNBF 

9 

2 

2 

93.6 

97.0 

97.25 

 

Group III 

 

Siuly, Li & Wen 2011 

Zhu, Li & Wen 2014 

WVNBF 

9 

2 

2 

96.20 

98 

98.25 

Group IV 

Siuly, Li & Wen 2011 

Nicolaou & Georgiou 2012 

Kumar, Dewal & Anand 2012 

Zhu, Li & Wen 2014 

Riaz et al. 2016 

WVNBF 

9 

1 

- 

2 

6 

2 

93.60 

83.13 

93 

93 

93 

93.25 

 

In conclusion, the above experimental analysis divulges that the two parameters of 

the WVNBF named: modularity and average weighted degree play a significant role in 

characterizing the underlying dynamics behavior or nature of different EEG signals. This 

research study also investigates that the chaotic nature of ictal EEG signals (signals in the 

period of epileptic seizure activity) makes them more difficult to partitions into different 

modules or clusters. The experimental results also demonstrate that among all the five 
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classifiers the SVM-poly classifier is more efficient for providing higher performance results 

with the WVNBF.   

5.5 Summary 

This chapter introduces an innovative WVNBF for identifying or classifying the epileptic 

seizure. The WVNBF is developed by converting the EEG signals to WVN and introducing 

the link’s weight in the form of arctan in it. The modularity feature and AWD feature are 

extracted from the WVNBF and evaluated using SVM and k-NN classifiers. The 

experimental investigation discloses that both the features help for identifying the sudden 

fluctuations in the EEG during seizure period. The links weight play the most important role 

in distinguishing the seizure EEG from non-seizure EEG signals. This research work explores 

that the WVNBF can be considered as the promising method for best describing the 

underlying dynamical pattern of EEG signals.  

 In the next chapter, a new method is introduced for analyzing the different types of 

EEG signals, and the method is tested on the Epileptic as well as on alcoholic EEG database.     
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CHAPTER 6 

WEIGHTED HORIZONTAL VISIBILITY NETWORK IN THE 

ANALYSIS OF EEG SIGNALS 

 

In chapter 5, a WVNBF has been developed for the automated detection of EEG signals and 

used the arctangent to calculate the weight of the links among all the nodes. The limitation 

of the arctangent based weight is that, its value lies between -1 to1 which will effect the value 

of the extracted parameters. To overcome this limitation, this chapter has used technique to 

calculate the link weight with the help of horizontal visibility graph. This chapter 6, presents 

an effective data analysis framework named based upon two different approaches named: 

horizontal visibility graph and machine learning methods for the analysis of EEG data. The 

Weighted Horizontal Visibility Network Based Framework (WHVNBF) is analyzing the 

different types of EEG signals by introducing the link weight technique in the horizontal 

visibility graph. An EEG signal is first mapped into the horizontal visibility network. After 

that, the link weight technique is introduced in it. Then the new network is named as weighted 

horizontal visibility network (WHVN). Two graph based measurements named: Average 

Weighted Degree, and Average degree are used for characterizing the EEG signals and are 

extracted in the parameter extraction process. The cross-validation approach with k=10 fold 

is used to test the effectiveness of the extracted parameters by applying the different 

classifiers named: Naive Bayes, linear and quadratic discriminant analysis, support vector 

machine with three different kernel function. The WHVNBF is tested on two different types 

of EEG database named: Epileptic EEG database and Alcohol-related EEG database. The 

experimental results demonstrate that the WHVNBF has the capability of analyzing and 

classifying the distinct types of EEG signals. This chapter is organized as: section 6.1 

includes a detailed description of the horizontal visibility graph. Section 6.2 comprised of 

experimental data. Section 6.3 provides the detailed view of WHVNBF. The experimental 

results and discussion is present in section 6.4. Summary remarks are specified in Section 

6.5.   
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This chapter acquired some contents that are already published in Lecture Notes in Computer 

Science Databases Theory and Applications, pp. 199–207, 2018 [245].   

6.1 Horizontal Visibility Graph 

Luque et al. 2009, proposed a Horizontal Visibility Graph (HVG) Algorithm which is easier 

to understand at a geometrical level as well as analytical level as compared to VG algorithm. 

HVG is based upon the comparison of the amplitude of data sample points of EEG signals. 

According to HVG, the link between two points only exist if there is a direct horizontal line 

between the points without being intersected by any other point.  In order to comprehend the 

HVG graph, let’s assume G (V, L) denotes a graph with V number of the vertex (node) and 

L number of links. A time series is denoted by Z= {Zt}; (t=1,2,...z)  is a time-series.  

According to Lacasa, if each data point (Zi) of the time series Z is considered as a node, (vi) 

of the graph G (V, L). The link among the nodes of the graph G (V, L) is only established if 

they satisfied the following equation: 

 

                                                                          𝑣𝑖 , 𝑣𝑗 > 𝑣𝑘 , ∀ 𝑘 |𝑖 < 𝑘 < 𝑗                                                          (1) 

where, vi, vj and vk are the nodes which relate to data points zi, zj, and zk of, the time series 

Z and ti, tj and tk are their corresponding time events. Figure 6-1 illustrate the HVG between 

different time series data points. 

 

 

 

 

 

 

 

Figure 6-1: Illustration of the HVG between different time series data points. 
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The HVG technique has been used in the various field for the scientific purpose like in the 

analysis of heartbeat intervals (Madl 2016), financial time-series (Segberg & Skoglund 2017) 

and river flow fluctuations (Braga et al. 2016), etc. The following paragraphs provide 

information about some methods that have used the HVG technique in the analysis of EEG 

signals for the application of epilepsy detection or alcoholic data classification.  

Liu et al. 2016, proposed a method to distinguish epileptic seizure activity from non-

seizure activity by using the HVG algorithm and with the help of Degree Centrality parameter 

of a graph. The performance of the proposed methodology was check by the SVM classifier. 

It was claimed that Degree Centrality parameter of a HVG is a satisfactory marker for 

distinguishing ictal from inter-ictal EEG signals. The major limitation of the proposed 

methodology was that the Degree Centrality parameter provided low performance as the size 

of the data sample of EEG signal increases. Moreover, the classification performance results 

were not as high as compared to state of the art.  Artameeyanant, Sultornsanee & 

Chamnongthai 2017, developed a feature extraction based methodology using HVG for 

epileptic seizure detection. Three classifiers named KNN, MLPNN, and SVM were used to 

analyze the ten statistical characteristics (Average degrees, average‐clustering coefficient, 

transitivity, assortativity, density, central point dominance, closeness, average short path, the 

global efficiency, and network diameters) of a complex network. The authors achieved good 

classification accuracy results for the two databases used. However, the proposed 

methodology has some drawbacks as it is not appropriate for a large data sample of EEG 

signals. Furthermore, ten statistical characteristics of the complex network were used for 

classification which is time-consuming part as the number of feature sets increases, and the 

feature extraction part takes more computation time. Even the P-value test for the two 

databases showed a big difference in value for some characteristics and also was not quite 

promising. Liu et al. 2017, have done seizure analysis with the help HVG algorithm and 

proposed the idea of the new feature named Improved Degree Centrality (IDC) to classify 

different EEG signals and achieved 96.5% classification accuracy. The major problem of the 

proposed method is that the newly developed feature IDC is not able to provide high-

performance results when combined with the classifiers. In addition to this, a small part of 

the database was used, and on the basis of that, it is hard to depict how the proposed 

methodology will behave when used to differentiate different types of EEG signals. 
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Zhu et al. 2014, proposed the HVG based method for classifying the EEG signals of 

alcoholic subjects from the controlled drinkers. Firstly, HVG based entropies (HVGEs), as 

well as sample entropy (SaE), are extracted from EEG signals. The selection of optimal 

channels for the identification of anomalies in alcoholics is based upon a statistical analysis 

technique. K-NN and SVM were used for classification. Only 87.5% accuracy was obtained 

after applying the 10-fold cross-validation algorithm for the classification of three HVG 

based features. After applying the optimal 13-dimension of horizontal visibility graph 

entropy features, 95.8% accuracy was attained. The above-cited methods of analyzing the 

EEG signals comprises of some inadequacies. But the common and major disadvantage of 

the above methods is the lack of link strength in their proposed methodologies. The 

preserving of link weight information on the network helps to obtain a more consistent result. 

The strength of the links plays an important role to analyze the crucial information of the 

network. Different nodes of the network connect with each other through different intensities. 

Therefore the WHVNBF has introduced the idea of link strength in the HVG.   

6.2 Experimental data 

This research work has used two different types of EEG databases named: Epileptic EEG 

database and Alcoholic EEG database. The epileptic EEG database used in this study is the 

same Bonn University EEG database that I have used in my previous chapter 4 and chapter 

5. This study has used all the channels associated with five different sets (A to E) for this 

research work. The complete information about this database is presented in section 4.3 as 

well as also available at Andrzejak et al. 2001. The alcoholic EEG database is collected online 

from the Irvine Knowledge Discovery in Databases Archive UCI KDD, which is made 

available by the University of California (Bache & Lichman 2013). This database includes 

two different types of EEG recordings named as EEG recording of control subjects and EEG 

recording of alcoholic subjects, at sampling rate of 256 Hz. This database is acquired from 

122 subjects, and 120 trails were completed by each subject. The complete information 

regarding this alcoholic EEG database is presented at Zhang et al. 1997.        
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6.3  WHVNBF Framework 

This section elaborates the detailed description regarding the WHVNBF. Figure 6-2 

illustrates the systematic drawing of the WHVNBF. This WHVNBF analysis the distinct 

EEG signals and comprised of four distinct processing modules. The first module is 

developed to transform the EEG signals into the WHVN. The second module includes 

information regarding different parameters of the network that are used for extracting the 

valuable feature of the WHVN. The third module comprised of different classification 

methods for efficiently categorized the feature set into their appropriate class. The fourth 

module is used to evaluate the performance of the WHVNBF on the basis of accuracy 

measurement.     

 

 

 

 

 

 

 

 

 

Figure 6-2: Illustration of the structural diagram of the WHVNBF. 

 

6.3.1 Module I: Transform the EEG signals into the WHVN 

To transform an EEG signal to WHVN, the first step is to consider that each data point of a 

time series EEG as a vertex of the HVG and the links between different vertices is calculated 
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on the basis of the equation (1). Once the links are calculated among all the vertices, the next 

step is to find the link strength or link weight. The link weight is measured by using the 

following equation:     

                                                      𝑤𝑎𝑏 = |
𝑧𝑏−𝑧𝑎

𝑡𝑏−𝑡𝑎
| , 𝑎 < 𝑏   ,                                                                (2) 

 

Finally, WHVN is developed from the above steps. The horizontal visibility graph is used 

for the construction of WHVN for the below two reasons (Ahani et al. 2014): 

1. The HVG has the ability to efficiently differentiate the random series form the chaotic 

ones;  

2. The HVG is a geometrically simple plus analytically more solvable as compared to 

the visibility graph method. 

6.3.2 Module II: Parameters Extraction from the WHVN 

The parameter extraction is an indispensable step in the processing of pattern recognition as 

well as in machine learning. The main goal of the parameter extraction step is to extract a set 

of parameters or features from the WHVN based upon EEG signals. These parameters are 

informative relating to the desired or important properties of the EEG signals. Parameter 

extraction is also considered as a data rate reduction process because it helps to analyze the 

WHVNBF on the basis of a relatively small number of parameters without the loss of crucial 

information. This research study has used two parameters that are extracted from the WHVN 

named: Average weighted degree and Average degree. The Average Weighted Degree 

(AWD) of the WHVN is measured as the average of the total weights of the existing links on 

all the vertices in the WHVN. Whereas, the weighted degree of vertex l is the sum of the 

weights of all the links connected to vertex l and is symbolized as (Antoniou & Tsompa 

2008): 

 

                                       𝑤𝑑𝑙 = ∑ 𝑤𝑙𝑧𝑧∈𝐶(𝑙)  ,                                                             (3) 
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where C(y) indicates the neighborhood of vertex l and wlz be a sign of the link’s weight among 

vertices l and z. The Average Degree (AD) of a WHVN (with K number of vertices and L 

number of links) is measured as the total number of links presents in set L in comparison to 

the number of vertices present in set K. It is already mentioned that the weight of the links 

are directional in nature and therefore the degree is counted in one direction. The Average 

Degree of a WHVN is measured as: 

                                                      𝐴𝐷 =
|𝐿|

|𝐾|
                                                                          (4) 

 

6.3.3 Module III: Classification of the Extracted Parameters 

In the pattern recognition approach, a particular pattern is studied for determining the class 

membership of that pattern. A pattern is encompassed of measuring vectors, and the vectors 

are allied with one of a particular class among the set of classes. Therefore, classification is 

also considered as the main theme of pattern recognition. The classifier associated with the 

classification task is derived with the help of training. The specific approach of classification 

is more appropriate for identifying the characteristics of the data and also for classifying the 

data. The preeminent classification approach is responsible for producing stable and 

consistent results. Therefore, the WHVNBF is tested on the different classifiers: naïve bayes, 

quadratic and linear discriminant analysis, and support vector machine with different types 

of kernel functions. The reason for using these classifiers is: the naïve bayes (NB) classifier 

have the ability to quickly converge in case of the conditional independence hypothesis, 

therefore required less training data. The SVM provides the high accuracy results in regards 

to overfitting whereas, to evaluate the adequacy of the classification and to achieve fast and 

accurate results, the LDA and QDA classifiers are implemented. The detailed information 

regarding all the above-mentioned classifiers is presented in Drotár & Smékal 2014.    

 

6.3.4 Module IV: Performance Analysis 

The performance of the extracted feature set is evaluated by using the different classifiers by 

measuring the accuracy parameter for all the different test groups of the classification 

process.                                   
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6.4  Results and Discussion 

This section investigates the competency and consistency of the WHVNBF on two distinct 

EEG databases (Epileptic and Alcohol EEG database). MATLAB R2016b (with Version 9.1) 

is used for executing all the experimentations. 10-fold cross-validation was used to attain the 

consistent and reliable outcomes of all the experiments. 

6.4.1 Experimental outcomes allied to Epileptic EEG data 

The Epileptic database is distributed into the following four test-groups: which is shown in 

Table 5.3.   

1. Group-I: Set Z vs. Set S 

2. Group-II: Set O vs. Set S 

3. Group-III: Set N vs. Set S 

4. Group-IV: Set F vs. Set S 

As per the WHVNBF, the different sets of the EEG databases are first transformed to WHVN 

and after that two distinct parameters are extracted from the WHVN. Figure 6-3 elucidates 

the boxplot diagram of AWD parameter associated with the 5 different sets of Epileptic 

database after applying the WHVNBF. Figure 6-3 depicts that the seizure activity (set S) 

shows clearly great deviation and have increased value of the AWD parameter in case of 

WHVN. Similarly, Figure 6-4 depicts the boxplot diagram of AD parameter associated with 

the 5 different sets of Epileptic database after applying the WHVNBF. Figure 6-4 illustrates 

that different sets of EEG signals exhibit different values of AD parameter. After extracting 

the two parameters, the next steps are to evaluate the performance of the two parameters 

using different classifiers.    

Table 6.1 demonstrates the accuracy outcomes of the classification process for the 

Epilepsy database with different classifiers on the combined feature vector set (AWD+AD). 

Table 6.1 depicts that for the test Group-I, the accuracy of the different classifiers is 93% for 

LDA, 97% for SVM-linear, 95.50% for SVM-rbf and 100% for NB, QDA, and SVM-poly. 

For the test Group-II, the accuracy of the different classifiers is 93% for LDA, 94% for SVM-
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linear, 95% for SVM-rbf and 97% for NB, QDA, and SVM-poly. Similarly, for the test 

Group-III, the accuracy of the different classifiers is 89.50% for LDA, 95.50% for SVM-

linear, 95% for SVM-rbf and 97.50% for NB, 98% for QDA and 98.50% for SVM-poly. For    

 

Figure 6-3: Boxplot diagram of AWD parameter allied to different sets of Epilepsy data. 

 

 

Figure 6-4: Boxplot diagram of AD parameter allied to different sets of Epilepsy data. 

 

the test Group-IV, the accuracy of the different classifiers is 87% for LDA, 92% for SVM-

linear, 92.50% for SVM-rbf and 91.50% for NB, 94.50% for QDA and 95.50% for SVM-
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poly. The experimental evaluation of the WHVNBF for different test groups with different 

classifiers demonstrates that the results of all the applied classifiers are very close to each 

other. But the SVM-poly provides the highest accuracy results for all the four test group 

problems as compared to others.    

Table 6.1: The accuracy outcomes of the classification process for the different classifiers in the case of 

Epilepsy data. 

Test-Groups 
Naive 

Bayes (%) 

LDA 

(%) 

QDA 

(%) 

SVM Linear 

(%) 

SVM Rbf 

(%) 

SVM Poly 

(%) 

Group-I 100 93 100 97 95.5 100 

Group-II 97 93 97 94 95 97 

Group-III 97.50 89.50 98 95.50 95 98.50 

Group-IV 91.50 87 94.50 92 92.50 95.50 

 

6.4.2 Experimental outcomes for Alcoholic EEG data 

This section includes the experimental outcomes of the WHVNBF with alcoholic EEG data. 

Figure 6.5 illustrates the boxplot diagram of AWD parameter associated with the different 

sets of alcoholic EEG data after applying the WHVNBF. Figure 6.5 demonstrates that in the 

case of alcoholic EEG signals, the AWD parameter exhibit low value as compared to the 

non-alcoholic-healthy subject. Similarly, Figure 6.6 illustrates the boxplot diagram of AD 

parameter associated with the different sets of alcoholic EEG data after applying the 

WHVNBF. Figure 6.6 shows that in the case of alcoholic EEG signals, the AD parameter 

exhibit very low value as compared to the non-alcoholic-healthy subject.   

Table 6.2 demonstrates the accuracy outcomes of the classification process for the 

Alcoholic EEG data with different classifiers on the combined feature vector set 

(AWD+AD). Table 6.2 depicts that the accuracy of the different classifiers is 84.21% for 

LDA, 88.33% for SVM-linear, 87.08% for QDA, 89.17% for SVM-rbf and 87.08% for NB,  

and 90.42% for SVM-poly. The experimental outcomes of Table 6.2 elaborate that the SVM-

poly provides the highest accuracy in comparison to other classifiers. Table 6.3 also depict 

the comparative analysis of the proposed framework with some existing techniques. And also 
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proves that the accuracy output of proposed framework is very close to the existing 

techniques.      

 

Figure 6.5: Boxplot diagram of AWD parameter allied to different sets of Alcoholic data. 

 

 

Figure 6.6: Boxplot diagram of AD parameter allied to different sets of Alcoholic data. 
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Table 6.2: The accuracy outcomes of the classification process for the different classifiers in the case of Alcoholic data. 

Test-Group 
Naive Bayes 

(%) 

LDA 

(%) 

QDA 

 (%) 

SVM Linear 

(%) 

SVM Rbf 

(%) 

SVM Poly 

      (%) 

Alcohol-EEG vs.          

Non-Alcoholic 

EEG 

87.08 84.21 87.08 88.33 89.17 90.42 

 

 

Table 6.3: Comparison analysis of the WHVNBF with the different techniques that are present in the state-of-

the-art and have used SVM Classifier 

Classification Test-

Group 

Authors Accuracy (%) 

 

Alcohol-EEG vs.          

Non-Alcoholic 

EEG 

Acharya et al. 2012 

 

Zhu et al. 2014 

 

WHVNBF 

91.70 

 

95.80 

 

90.42 

 

 

6.5 Summary 

This chapter presents an innovative framework for effectively analyzing the distinct EEG 

database with the help of HVG approach. The experimental outcomes of this study proved 

that the idea of introducing the link weight in the horizontal visibility graph plays a significant 

role in classifying the distinct EEG signals. Moreover, the average weighted degree, as well 

as average degree parameters of the graph, are also an important feature for characterizing 

the underlying dynamical properties of the WHVN. The efficiency of the WHVNBF is 

assessed by using six classification algorithms. The research results of classification also 

prove the proficiency of the WHVNBF. The next chapter includes a technique for classifying 

sleep stage data.   
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CHAPTER 7 

GRAPH BASED TECHNIQUE FOR THE ANALYSIS OF EEG 

SLEEP STAGES 

 

The current available methodologies for the identification of various sleep states present in 

EEG data are based upon the time as well as on frequency parameters. Whereas, the non-

stationary nature of EEG data makes the existing approaches less reliable as the present 

available approaches are not able in providing efficient results if the signal suffers from noise. 

This chapter 7, presents a graph based automated technique for the identification of different 

sleep stages from the single-channel EEG data. The aim of this research study is to develop 

a Weighted Graph Based Technique (WGBT), based upon the visibility theorem for 

classifying different sleep stages. The validity corresponds to the noise robustness of the 

WGBT is evaluated by performing the simulation analysis using the Lorenz-series and 

Rossler-series. For the experimentation, two different rules named: American Academy of 

Sleep Medicine (AASM) rules and Rechtschaffen and Kales (R&K) were used for the scoring 

of EEG database. The higher accuracy performance for classification of distinct sleep states 

present in the EEG data proves that by introducing the link weight in the graph theory helps 

to achieve more competent outcomes as compared to the existing technique in the state-of-

the-art. This chapter is schematized as: section 7.1 covers the introduction. Section 7.2 

explains about the EEG database used for the experimentation. Section 7.3 provides a 

detailed information regarding the WGBT. Section 7.4 includes the simulation analysis for 

the noise robustness of the WGBT using the lorenz and rossler time series. Section 7.5 gives 

detailed information about the experimental outcomes, discussion, and comparison of the 

WGBT with the existing state-of-art approaches. Summary of the chapter is presented in 

section 7.6. 

This chapter acquired some contents that are already published in IEEE TETCI journal, pp 

1-112018 (Supriya et al. 2018).   



116 
 

7.1 Introduction 

Sleep EEG data classification is an exigent and emergent topic of research interest in the 

healthcare community at presently. If different sleep stages are identified efficiently from the 

EEG signals then the diagnosis of various sleep maladies (such as insomnia, obstructive sleep 

apnoea, snoring, narcolepsy, sleep hypoventilation, and bruxism, etc.) become more easy and 

appropriately (Saper et al. 2010). As a result, different organizations named: The American 

Psychiatric Association (APA), World Health Organization (WHO), and other professional 

sleep societies are actively participating in the research of sleep disorder identification from 

EEG system (Morin & Espie, 2012). The research report also demonstrates that the sleepiness 

and drier fatigue is also the main reasons behind the fatal vehicle accidents upto 10 to 15% 

(Ohayon 2011). It is foreseeable that in 2020, the death rate because of vehicle-accidents will 

be 2.3 million at the world level and around 230,000 to 345,000 people will die because of 

the cause of sleepiness or tiredness (Ferrie et al. 2011). In general, the polysomnography 

(PSG) technique used for the identification of sleep anomalies. A PSG includes the data that 

is acquired from EEG, Electrooculogram, Electromyogram, and Electrocardiogram. EEG 

data epitomize the crucial information regarding the brain activities and majority of the sleep 

disorders leaves their signature of presence in EEG signals. Henceforth, the detection of 

distinct sleep stages from the EEG data is becoming the subject of continuous research 

interest. 

This chapter has used the Sleep-EDF database (of EEG signals) for analyzing the distinct 

sleep stages. The analysis of EEG data for the identification of sleep stages may improve the 

detection and diagnosis of sleep disorders. Distinct approaches are developed for analysis the 

sleep EEG data such as correlation dimension as well as fractal exponent approach for sleep 

staging (Chouvarda et al. 2011), feature weighting method based upon the k-means clustering 

(Güneş, Polat & Yosunkaya 2010), non-linear measurement approach such as largest 

Lyapunov entropy, approximate entropy and Hurst exponent (Acharya et al. 2005), time-

frequency based approach using random forest classifier (Fraiwan et al. 2012), 

complementary cross-frequency based coupling estimates approach (Dimitriadis, Salis & 

Linden 2018). The present techniques are less reliable as the present available approaches 

are not able to provide efficient results if the signal suffers from noise. By considering the 

above points, this research study developed a WGBT for automated classification of sleep 
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stage data. Because network theory plays a decisive role in the neuroscience discipline for 

extracting the significant information from EEG data to identify the abnormalities (He & 

Evans 2010; Li et al. 2013).   

This study used network based approach to perform the computational experiments. 

Firstly, each signals of EEG data is segmented to perform the fast computational experiments 

and after that each segment is assumed as the vertices and joining links are calculated using 

visibility network approach. The link strength formula is used to calculate the link strength, 

and then a weighted visibility network (WVN) is formed. From the WVN, average weighted 

degree, modularity and average degree parameters are used to extract the coherence 

characteristics of WVN and after that, KNN classifier is applied. The WGBT is verified on 

the benchmark Sleep-EEG database (Rechtschaffen 1968). 

Zhu, Li & Wen 2014, applied a network-based method for the identification of sleep states, 

and have not considered the evaluation of the link weight in their proposed method. Whereas, 

the link weight performs an indispensable task in network-based investigation of a system. 

Because the different links have different value of the link strengths and all the vertices of a 

WG are linked with each other on the basis of the associated link strength. As a result, a WG 

approach is effective to identify the sudden fluctuations happening in EEG data allied to sleep 

behavior. The key benefit of WGBT over the present state-of-art in the cataloging of different 

sleep stages is that:  this study used a link strength method and this link strength method is 

new as well as inventive in the classification of EEG sleep data. Additionally, the link 

strength helps in the easy recognition of the vacillation in EEG data using the three 

parameters. Because different classes of EEG data exhibit variations in their links weight, as 

a result, the parameters sets allied to the link weights will demonstrate a variation in their 

values. 

The objective of this research study is to examine how the link strength method in network 

theory assistances for multi-class classification problem as classification of EEG data of sleep 

is a multi-class categorization problem. Furthermore, in this study, I want to evaluate the 

consequence of sorting the vector sets (of parameters) on the k-NN classifier. The main 

innovation of this research study is the use of modularity, AWD and average degree 

parameters in the analysis of sleep EEG at first time. The experimentation results substantiate 

that the WGBT is competence to the present techniques for two different standard groups of 
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sleep scoring named: R&Ks and AASM with 97.91% and 97.93% of accuracy outcomes of 

the classification. Furthermore, it is also explored that by combining the feature vector sets, 

more suitable results are achieved in comparison to the individual feature vector. It is 

expected that that this WGBT will enhance the EEG sleep related diseases diagnosis and 

treatments in consistent manner and reduces the cost as well as time.  

7.2 Experimental Sleep EEG  

To measure the effectiveness of the WGBT, I used Sleep-EEG database that is online present 

(http://www.physionet.org/physiobank/database/sleep-edf) and available at the databank 

repository (Kemp et al. 2000). This EEG data is the recordings collected from 8 Caucasian 

males and females having the age group of 21–35 years and without the usage of any 

medicine. This research used two standard principle of sleep stage scoring named: R&Ks 

recommendations and AASM standards. According to R&Ks (Rechtschaffen 1968), the sleep 

periods have 6 distinct stages named: awake-fullness (awake), sleep-stage 1 (S1), sleep-stage 

2 (S2), sleep-stage 3 (S3), sleep -4 (S4), and rapid-eye-movement (REM). Moreover, sleep 

stages S1, S2, S3, and S4 are signified as Non-Rapid-Eye-Movement (NREM). According 

to AASM recommendations, the sleep stages named S3 and S4 (of R&Ks) are joined into a 

single state, identified as slow-wave-sleep (SWS) or deep-sleep (Iber et al., 2007). The 

recordings encompass horizontal electrooculography, Fpz-Cz/Pz-Oz EEG. The EEG data is 

selected carefully and based on Pz-Oz channel in the time-interval of 00:00 a.m. to 5:00 a.m. 

The sampling rate of the recording is 100Hz and the length for each epoch are 30s and 

includes 3000 data sample points. 

7.3  WGBT Technique 

This section designed an effective technique for analyzing and categorization of different 

sleep states in the EEG data. The structural representation of the WGBT is revealed in Figure 

7-1. As the Figure 7-1 portrayed that the WGBT comprises with four sub-phases: (a) Map 

the EEG data to WVN (b) Mining of the coherence characteristics, (c) Taxonomy, (d) The 

performance is evaluated for decision making.  

For the mapping of EEG data to WGBT, I have used the VG theorem and link weight 

technique. Afterward, the coherence parameters of the WVN named: AD, modularity, and 

http://www.physionet.org/physiobank/database/sleep-edf
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AWD are mined in the parameter extraction process. Then, taxonomy is comprised with two 

stages: (i) Firstly, the extracted parameter vector sets are arranged in particular sequence such 

as ascending or descending. The parameter’s values located at odd location are utilize for 

train the classifier and the remaining value is used for the testing. (ii) Next, the acquired 

parameter set is evaluating using k-NN classifcation. In this research, I have used the k-NN 

classifier because k-NN is very instinctive to label the known values on the basis of their 

similarity among observations in the training set. 

 

 

 

 

 

 

 

 

 

Figure 7-1: The structured representation of WGBT. 

 

Mapping of EEG data to WVN 

I have used the lucasa Visibility algorithm in order to map the EEG data to visibility 

network [110]. The main motive for the use of visibility algorithm (VA) in this research work 

is that as the VA is a significant approach for inheriting the dynamical features of the data 

that is available in time series form (EEG data is in the time series form). In addition, VA 

exhibits the property of noise robustness [205], as well as does not depend on the choice of 

selecting the value of some parameters (like as the selection of threshold value in case of 

TSCN [54] as well as recurrence network [249]). According to R. Polikar [195], the more 

reliable outcomes can be achieved by conserving the information regarding the weight in the 

graph. For that reason, I introduced the weight in the VA and given the name WVN. The 

weight feature plays a significant role for analyzing the vital or weak links present in the 

EEG network. And this analysis can further be helpful for determining the distinct types of 
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dynamical underlying properties present in the EEG recording. The WVN is built on the basis 

of the following sequence of steps: 

1. If G(V, L) signifies a network with V number of vertices and L number of links and a 

time series is denoted as {Z=Zt; t=1,2,…N}. Then it is considered that the mapping 

between Zt and G(V, L) is possible by assuming that each data sample of Zi as a vertex 

vi of G(V, L). 

2. All the links present in G(V, L) is based upon the following VA equation  

                                    𝑣𝑜 < 𝑣𝑛 + (𝑣𝑝 − 𝑣𝑛)
𝑡𝑜−𝑡𝑛

𝑡𝑝−𝑡𝑛
, 𝑝 > 𝑜 > 𝑛    ,                                        (1) 

   where, vn, vo, and vp are the vertices corresponds to the sample zn, zo, and zp with the 

associated time tn, to, and tp. 

The VA is developed on the principle of Euclidean plane with each vertex signifies the 

point’s position and the links among the allied vertices is only exist if there is visibility 

amongst them. For clear understanding regarding the construction of VA from EEG 

signals, a small sample of EEG (Z) of Fpz-Cz channel with ten data sample has been 

taken, i.e., Z = {29.2674, 34.0535, 15.8256, 35.0718, 19.8989, 9.5121, 8.6974, 

11.8542, 9.7158, -4.0315). Table 7.1 represents the EEG data sample and their 

corresponding vertices. Similarly, Table 7.2 represents the corresponding links value 

of the vertices presented in Table 7.1.  

Table 7.1: EEG data sample and their corresponding vertices.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Small sample EEG Value of sample points  Vertices (v) 

Z1 29.2674 V1 

Z2 34.0535 V2 

Z3 15.8256 V3 

Z4 35.0718 V4 

Z5 19.8989 V5 

Z6 9.5121 V6 

Z7 8.6974 V7 

Z8 11.8542 V8 

Z9 9.7158 V9 

Z10 -4.0315 V10 
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Table 7.2: Example of links corresponds to different vertices present in Table 7.1   

 

3. The next step is to calculate the weight of all the links presents in the G(V,L) which is 

computed from the succeeding equation (2): 

                              𝑤𝑛𝑜 = 𝑎𝑏𝑠 (
𝑣𝑜−𝑣𝑛

𝑣𝑜−𝑣𝑛
) , 𝑜 > 𝑛                                                                     (2) 

Where wno denotes the weight of the link connecting the vertices vn and vo and exhibit 

direction from n to o.  

4. The final step is that WVN is constructed from the above three steps. Fig 7-3 illustrates 

the WVN from the small sample value of EEG data i.e. E={1.049, -3.079, -6.122, -4.65, 

-4.453, -1.509, -2.883, -3.276, -2.294, 1.442,3.993, 6.741, 8.606, 8.017, 5.662, 3.601, 

4.778, 5.76, 2.619, 2.717, 3.601, 4.582, 7.428, 12.925, 15.476, 16.163, 13.612, 7.527, 

3.012, 4.68, 5.564, 2.227, 3.797, 3.895, 2.717, -0.233, -6.51, -8.085, -6.907, -4.552, -

3.079, -2, 1.049, 0.847, 0.847, -0.037, -1.313, -0.331, -0.233, -3.57}. The different 

colour of the vertices are representing the different groups or clusters in which the vertex 

belongs. 

Parameter extraction is the process of analyzing the EEG signals to extricate the pertinent 

characteristics or parameters of the EEG data from WVN and represents them in a compacted 

form (reduce the dimensionality) suitable for classification or categorization by considering 

the minimum information loss. Parameter extraction has a significant role in the classification  
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Figure 7-2: Illustrates the WVN from the small sample value of EEG data. 

 

of distinct EEG signals. In this research work, I have extracted three statistical parameters of 

WVN named: modularity, AWD and Average degree that represent the significant 

characteristics of EEG signals. The detailed information regarding these three parameters is 

already provided in the previous chapters at section 6.3.2 and 5.3.2. After parameters 

extraction or mining, the subsequent stage is to organize the parameter vector sets in 

particular order: ascending or descending and then distribute the parameter sets in two 

portions: - (i) even place values of parameters sets and (ii) odd place values of parameter sets. 

After that, the classification method is completed. The classification is executed by 

considering the value at odd places as a training set for the classifier and the remaining values 

as a testing set for classification. I used k-NN classifier based upon machine-learning for 

ensuring the performance of all three parameters that are mined in the stage of parameter 

extraction. The kNN classifier has the property of naivest amongst other machine learning 

classifiers and exhibit robustness with respect to noisy as well as massive training data (Cover 

& Hart 1967). In addition, k-NN classifier is not based upon the selection of kernel 

parameters as in case of SVM classifier. Additionally, the k-NN rule attains consistently high 

accurateness, without a priori supposition regarding distributions associated to the training 

samples.  
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This research work, is evaluated with the help of well-known performance metric named 

accuracy.  

7.4  Chaotic Analysis 

The superiority of the WGBT is validated by applying the two different chaotic by nature 

benchmark time series analysis named: (i) Rosseler series and (ii) Lorenz series. This 

experiment also checks the behaviors of the WGBT with the noise. First, the analysis is 

executed on the lorenz series and secondly on rosseler series. In case of lorenz series, the 

implementation is performed firstly by applying the 1200 simulated sample points without 

noise and subsequently by introducing the noise in lorenz series with zero mean in addition 

to variance with 0.2. The following Lorenz equations has implemented (Lorenz 1963).                   

 𝑑𝑓

 𝑑𝑡
= 𝑠 ∗ (𝑔 − 𝑓)                                                      (3) 

 

                                                          
𝑑𝑔

𝑑𝑡
= 𝑟 ∗ 𝑓 − 𝑔 − 𝑓ℎ                                                 (4) 

 

       
𝑑ℎ

𝑑𝑡
= 𝑓 ∗ 𝑔 − 𝑏 ∗ ℎ                                                   (5) 

 

Where, f, g, h are correspond to the simulated time series; s, n, and b denotes the parametric 

values. The experiments is accomplished via assigning the random values to 𝑙0, 𝑚0 and 𝑛0 

between (0,1) and parameters has fixed value i.e. b=4, s=16, and r=45.92. For Lorenz and 

Lorenz using noise, the experiments are executed with the help of 10 repeated test-runs. 

Secondly, the analysis is executed on the rossler series by applying the 1200 simulated 

sample points without noise and subsequently by introducing the noise in rossler series with 

zero mean in addition to variance with 0.2. The following rossler equations has implemented 

(Rössler 1976). 

 

𝑑𝑜

𝑑𝑡
= −𝑝 − 𝑞                                                                (6) 

 

𝑑𝑝

𝑑𝑡
= 𝑜 + 𝑎𝑝                                                                  (7) 
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𝑑𝑞

𝑑𝑡
= 𝑏 + 𝑞(𝑜 − 𝑐)                                                      (8) 

 

where, o, p, and q are correspond to the simulated time series; a, b, and c denoted the 

parametric values c=5.7, a=0.2, and b=0.4. In the case of rossler and rossler using noise, the 

experiments are executed with the help of 10 repeated test-runs. Figure 7-3 elucidates the 

behaviors of WGBT for the three parameters during the two chaotic series analysis. Figure 

7-3(a, b, c) illustrates that all the three parameters of the WGBT (i.e. AWD, AD and 

Modularity) exhibit stability against noise. Figure 7-3(a, b, c) illustrates that the distance 

among Lorenz and Lorenz using noise is very less. 

Likewise, the distance among Rossler and Rossler using noise is demonstrated in Figure 

7-4(a, b and c) and is less in case of  three paramters. Figure 7-4 (a) illustrates the AWD, 

Figure 7-4(b) illustrates the AD and modularity paramter is illustarted in Figure 7-4(c). From 

the above experimental results, it can be elaborate that the WGBT has robustness and stability 

against noises. Moreover, the three parameters of the WGBT also exhibit stability against the 

noise.    

7.5  Results of the Experimental Evaluations and Discussion 

This section provides the information regarding the results of the experimental evaluations 

of the WGBT and includes important discussion regarding the evaluations. The WGBT is 

explored on standard benchmark sleep stages data named Sleep-EDF dataset (as discoursed 

in Section 7-2) which is present online. The experiments is used to investigate the different 

test-problem as presented in Table 7.4. 
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Figure 7-3: Illustration of (a) AWD, (b) AD, and (c) Modularity parameters of the WGBT with Lorenz and 

Lorenz with noise using 10 repeat run times plus 1200 simulated sample points. 
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Figure 7-4: Illustration of (a) AWD, (b) AD, and (c) Modularity parameters of the WGBT with Rossler and 

Rossler with noise using 10 repeat run times plus 1200 simulated sample points. 

  

 

Before mapping the EEG data to WVN, I have done the segmentation. Each epoch of EEG 

signals is comprises with 3000 sample points and to achieve the fast computational results, I 

divided the each epoch into the two parts named segment (i.e., Segment1 includes 1500 

sample points and similarly, Segment2 comprises with 1500 sample points). After that, these 

two segmented parts are utilized as two different independent samples. According to Table 

7.3, this database has total 4706 epochs, and after applying the segmentation, the resultant 

9412 independent segmentations are achieved. As discussed earlier, the parameter’s values 

located at odd location are utilize for train the classifier and the remaining value is used for 

the testing. Amid 9412, 50% of the segments are resered for training the classifier and 

remaining 50% segments are preserved for testing after applying the WGBT. Figure 7-5 

illustrates the boxplot diagram of AWD, Figure 7-6 illustrates the boxplot diagram of AD, 
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and Figure 7-7 illustrates the boxplot diagram of the Modularity parameters extracted from 

the WVN of sleep EEG signals with distinct sleep stages. Figure 7-5, illustrates that the AWD 

parameter value for REM period is very close to S1and S2 periods of sleep. 

 

 
 

Figure 7-5: Box plot diagram of AWD parameter for the WGBT of different sleep stages. 
 

 

Whereas, Figure 7-6 as well as Figure 7-7, depict that the AD and Modularity parameters 

value for the awake stage is more in comparison to other sleep stages. The above 

experimental investigation, demonstrates that for the duration of sleep, in comparison to 

awake period, the other sleep states period exhibits less fluctuations. As a result, the edge 

weight value associated to different parameters of the WGBT for awake state exhibits high 

value. Hence, our experimental results are consistency with Achermann & Borbély 1997,  

result for the period of sleep i.e., the EEG signals are dominated via slow wave actions with 

low-frequency range. For classifying the sleep states, k-NN classifier based on Euclidean-

distance is used. The KNN is finalized by considering the various values of k parameter. The 

experiments proved that K=2 accomplished the superlative performance for the 

classification. 
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Figure 7-6: Box plot diagram of AD parameter for the WGBT of different sleep stages  

 

 

To explore the performance of WGBT, I performed different experiments by considering 

the R & K rule to EEG data. Table 7.5 displays the experimental outcomes of two kinds of 

trials: (i) Classification without sorting the parameters vector set; (ii) Classification after 

sorting the parameters vector set.  

 
Figure 7-7: Box plot diagram of Modularity parameter for the WGBT of different sleep stages . 

 

Table 7.5 portrayed the experimental outcomes of different parameters with sorting or 

without sorting the parameter vector sets. Table 7.5 demonstrates that for AWD parameter, 
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the accuracy measure of classification task increases from 39.54% to 55.14%. Similarly, for 

Average Degree parameter, the accuracy measure of classification task associated to sorted 

and non-sorted approach are 47.21% and 55.73%. Likewise, for modularity parameter, the 

accuracy measure of classification task associated with sorted and non-sorted approach are 

14.81% and 10.05%. In addition, the performance of classification of distinct sleep states by 

considering the accuracy measure is also evaluated by applying the sorted and non-sorted 

approach on the combined parameters vector sets.     

 

 

Table 7.3: Total epochs associated to the different sleep states used in the experiments 

Sleep Stages Awake S1 S2 S3 S4 REM 

8 352 307 2223 517 478 829 

 

 

 

Table 7.4: Test-problem associated to different sleep stages for classification 

Test-problems Classification Different sleep stages 

  Test-problem I Two-State Awake vs. Sleep 

  Test-problem II Three-State Awake vs. NREM vs. REM 

  Test-problem III Four-State Awake vs. (S1+S2) vs. SWS vs. REM 

  Test-problem IV AASM standard (based) Awake vs. S1 v S2 vs. SWS vs. REM 

  Test-problem V R & K standard (based) Awake vs. S1 v S2 vs. S3 vs. S4 vs. REM 

 

 

The confusion matrix corresponds to the classification task with unsorted and sorted 

parameters vector set approach is illustrated in the Table 7.6 and Table 7.7 according to R & 

K principle.  

Table 7.6 and Table 7.7 clearly demonstrate that sorted the parameters vector sets increased 

the accuracy of the classification task for all the distinct sleep states such as for awake state 

accuracy increases from 65.9% to 93.4%, for S1 from 13.30% to 87.9%, for S2 from 54.38% 

to 99.5%, for S3 from 25.72% to 99.61, for S4 from 66.10% to 99.16 and for REM state the 

accuracy increases from 31.84% to 97.34%. Furthermore, Table 7.5 portrays that S3 exhibit 
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maximum value for classification accuracy i.e. 99.6% whereas, S1 exhibit lowest value for 

classification accuracy i.e. 87.9% in comparison to other sleep states. While, the overall 

accuracy in terms of mean value of the complete classification is 97.91% after applying the 

sorted approach. Different researchers (Zhu, Li & Wen 2014; Alcin et al. 2016) combined 

the S3 state with S4 state during the experimental evaluation. In addition, to measure the 

performance of WGBT, some more experiments are conducted by considering the AASM 

principle on EEG data in which S3 state of sleep and S4 state of sleep data are combined and 

called as SWS. In the same way, the classification task is executed by considering the AASM 

principle on the same EEG data in accordance with sorted and non-sorted the parameters 

approach. And the results are portrayed in Table 7.8. for different parameters. The results of 

experimentations proves that by combining the parameter sets i.e. AWD + AD + Q along 

with sorted approach produce higher accuracy results i.e. 97.93%. Table 7.9 depicts the 

classification outcomes of sleep data in terms of confusion matrix using AASM principle. 

From the Table 7.9, it can be seen that S2 state of sleep exhibit the maximum value of 

accuracy i.e. 99.55% and S1 state of sleep exhibit lowest value of accuracy i.e. 87.94% 

whereas SWS has 99.49% accuracy outcome. The overall performance in terms of mean 

accuracy of EEG data on the basis of AASM principle is 97.93% which is little higher as 

compared to R & K principle. 

The performance of WGBT is appraised by performing the comparison analysis of the 

classification accuracy measure of WGBT with existing two eminent techniques as well as 

with the visibility graph technique that have also utilize the same EEG sleep data for five 

distinct test-problems that haven’t applied by 

 

 

Table 7.5: The experimental outcomes of different parameters with sorting or without sorting the parameter 

vector sets, according to R & K principle of EEG sleep data 

Parameters 

Classification without sorting  Classification with sorting 

Accuracy (%) Accuracy (%) 

AWD 39.54 55.14 

AD 47.21 55.73 

Q 14.81 10.05 

AWD + AD + Q 46.64 97.91 
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Table 7.6: The confusion matrix corresponds to the classification accuracy with unsorted parameters 

vector set approach, according to R & K principle 

Sleep 

Stages 
Awake REM S4 S1 S3 S2 

Awake 232 99 3 65 21 128 

REM 7 264 1 70 5 318 

S4 48 4 316 9 213 153 

S1 34 101 1 41 7 149 

S3 3 16 135 15 133 266 

S2 28 345 22 107 138 1209 

Accuracy 

(%) 
65.90 31.84 66.10 13.3 25.72 54.38 

 

 

 

Table 7.7: The confusion matrix corresponds to the classification accuracy with sorted parameters vector 

set approach, according to R & K principle.  

Sleep Stages Awake S1 S2 S3 S4 REM 

Awake 329 14 4 1 3 12 

S1 8 270 2 0 0 2 

S2 3 7 2213 1 0 6 

S3 1 0 2 515 1 1 

S4 1 0 1 0 474 1 

REM 10 16 1 0 0 807 

Accuracy 

(%) 
93.4 87.9 99.5 

99.6

1 
99.16 97.34 

other researchers. Consequently, Table 7.10 presents the comparison analysis of the 

classification performance in terms of accuracy for two-state to six-state among existing and 

the WGBT. Table 7.10 clearly revealed that the WGBT provides improved accuracy in 

comparison to the other three technique for different test-problems with 98.78%  accuracy 

for Test-problem I, 98.21% for Test-problem II, 98.13% for Test-problem III, 97.93% for 

Test-problem IV, and 97.91% accuracy for Test-problem V. 

Additionally, for verifying the classification accuracy of the WGBT, I used only AASM 

and R & K principle and illustrated in Table 7.11. Table 7.11 illustrates the comparison 

analysis of accuracy measure of the WGBT with some existing technique present in the state 

of the art. Table 7.11 clearly illustrates that the WGBT outperforms in comparison to other 

existing techniques with 97.93% accuracy for AASM principle and 97.91% accuracy for R 
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& K principle of sleep EEG data.

 

Table 7.8: The experimental outcomes of different parameters with sorting or without sorting the parameter 

vector sets, according to AASM principle  

Parameters 

Classification 

without sorting 
 Classification with sorting 

Accuracy (%) Accuracy (%) 

AWD 46.83 59.09 

AD 53.86 59.79 

Q 15.38 10.05 

AWD + AD + Q 54.03 97.93 

 

 
 

Table 7.9: The confusion matrix corresponds to the classification accuracy with sorted parameters vector set 

approach, according to according to AASM principle  

Sleep Stages Awake S1 S2 SWS(S3+S4) REM 

Awake 329 14 4 4 12 

S1 8 270 2 0 2 

S2 3 7 2213 1 6 

SWS(S3+S4) 2 0 3 990 2 

REM 10 16 1 0 807 

Accuracy (%) 93.46 87.94 99.55 99.49 97.34 

 

 

 

Table 7.10: Representation of the comparison analysis of the classification performance in terms of accuracy 

for two-state to six-state among existing and the WGBT 

Different Test-problems 

PSD with 

ANN 
(Ronzhina et 

al. 2012) 

 

The fuzzy logic 

based system 
(Berthomier et al. 

2007)  

 

Difference 

Visibility 

Graph (Zhu, Li 

& Wen 2014) 

The WGBT 

 

Test-problem I 96.9% 95.4% 97.9% 98.78% 

Test-problem II 88.97% 88.3% 92.6% 98.21% 

Test-problem III 
           

81.42% 
74.5% 89.3% 98.13% 

Test-problem IV - 71.2% 88.9% 97.93% 

Test-problem V 76.7% - 87.5% 97.91% 
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Table 7.11: Illustration of the comparison analysis of accuracy measure of the WGBT with some existing 

technique present in the state of the art according to AASM and R& K principles   

 

 

 Moreover, the results presented in Table 7.5, Table 7.6, and Table 7.7 also agreed with the 

conclusions defined by Corsi-Cabrera et al. 2006, that S1 sate of EEG sleep was easily 

erroneously characterized as any of Awake state, S2 state as well as REM state. The 

investigation based on experiments also explored that in comparison to individual parameter, 

the combined parameters vector sets accomplishes more promising and higher accuracy 

results. Lastly, the experimental analysis divulges that the WGBT based upon WVN helps to 

discover the hidden dynamics of the distinct states of EEG signals. Further, to analyse the 

validity of the WGBT, I implemented the k-fold Cross-Validation (with k=5) on the 

combined parameters (AWD + AD + Q) by considering to R & K principle. The accuracy 

outcomes for each fold are: fold-1=97.45%, fold-2=97.18%, fold-3=96.94%, fold-4=97.06% 

and fold-5=97.11%. The overall accuracy for the 5-fold cross-validation is 97.14% and also 

very close to the results reported in above experimentation i.e. 97.91%. The 5-fold cross-

validation outcomes depicts the consistency of the WGBT. 

 

Standards Researcher Method Accuracy 

 

 

 

According to 

 AASM standard 

Hsu et al. 2013 Energy based features 87.20% 

Bajaj & Pachori 2013 T-F image-based features 92.93% 

Fraiwan et al. 2012 T-F features and Random forest 83% 

Alcin et al. 2016 GLCM + FV 95.17% 

WGBT WVN 97.93% 

 

 

According to  

R & K standard 

Doroshenkov, Konyshev &     

Selishchev 2007 

FFT based features and hidden 

Markov model 
61.08% 

Bajaj & Pachori 2013 T-F image-based features 92.93% 

Alcin et al. 2016 GLCM + FV 95.38% 

Diykh & Li 2016 Complex network approach 92.16% 

WGBT WVN 97.91% 
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7.6  Summary 

In this chapter, an effective technique is developed for analysis as well as identifying distinct 

sleep states from EEG signals. The WGBT is verified on sleep data associated to EEG signals 

and in the form of time-series. Firstly, the EEG sleep data is transformed to WVN. After that 

three statistical parameter are mined form WVN that characterized the behaviors of Sleep 

pattern. k-NN classifier is used to categorized distinct states of sleep present in the EEG 

signals. The experimental outcomes prove that the WGBT outperforms as compared to the 

recent techniques. The extensive experimentation outcomes also validate that the WGBT is 

effective for classifying the distinct states of sleep present in EEG data (as well as for multi-

class classification problem for EEG).  

The next chapter present a novel technique for analysis the EEG signal data to 

evaluate the different types of epilepsy data 
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CHAPTER 8 

 

AUTOMATED DETECTION OF EPILEPTIC SEIZURE USING 

COMPLEX NETWORK FEATURES 

 

In the previous chapters, different frameworks were developed such as WCNBF, VGBNBF, 

and WHVN. They have one major shortcoming that they are based upon some criteria to 

define or select the links among vertices. If the data points of the EEGs, (vertices) are not 

able to satisfy the requirement criteria then there is no link between them. Because of this 

reason some important vertices are missed, whereas, it is important to consider all the data 

points of EEGs for clinical analysis. By considering this fact, this chapter aims to propose a 

new algorithm to detect epileptic seizure activity by developing a new complex network 

approach named as New Weighted Complex Network (NWCN) Technique. In this study, a 

new method is introduced for the mapping of time series EEG signals to complex network. 

A new feature is also developed, named as ‘“Edge Weight Fluctuation (EWF)”, which helps 

to extract sudden fluctuation in EEG signals. The NWCN scheme is tested on two benchmark 

Epileptic EEG databases (Bern-Barcelona EEG database and Bonn University EEG 

database). In order to check the validity of the NWCN methodology, the simulation analysis 

has been performed with two different chaotic signals named as Henon map and Logistic 

map. The One-Way ANOVA statistical test is also performed. The overall accuracy has 

achieved 99% for Bern-Barcelona database and 100% for Bonn University database. The 

experimental results reveals that the NWCNT is more effective to distinguish epileptic 

seizure signal from between diverse EEG signals. 

Without loss of generality, the reaming parts of the chapter is systematized as: Section 

8.1 comprises with the introduction. Section 8.2 includes information about the EEG database 

used. Section 8.3 describes the detailed explanation of the NWCNT with data acquisition. 

Section 8.4 provides the validation of the NWCNT in terms of statistical analysis by using 

One-Way ANOVA and simulation analysis with different chaotic signals. Section 8.5 
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includes the results of the experiment with a detailed discussion about the outcomes. Section 

8.6 draws the summary of this chapter. 

8.1 Introduction 

EPILEPSY has been identified as a critical brain syndrome that is effecting around 65 

million population at world-level (Ramgopal et al. 2014). It needs special medical attention 

as it happens with an incidence of 68.8/100,000 person-years and the age-adjusted incidence 

because of the epileptic seizure is approximately 44/100,000 person-years (Ramgopal et al. 

2014). Epileptic disorder is a neurological condition, which occurs due to some degree of 

impairment in the electrophysiological portion of the brain and affects the nervous system of 

the brain. Epilepsy is identified as, at least two seizure attacks without some other medical 

conditions. Epileptic patients have a higher risk of other complications such as Bleeding into 

the brain, Brain tumors, Cerebral palsy, Alzheimer’s disease (in the later stage of life) and 

Autism disorder, etc. Epilepsy is diagnosed with the help of an EEG, which tracks the 

electrical activity in the brain and records the brain wave pattern (Siuly 2012). Despite the 

fact that numerous anti-epileptic drugs are developed from the last decade, still, one-third of 

epileptic patients continue to have a seizure attack in spite of treatment. One of the main 

essential difficulties in the treatment of epilepsy syndrome is the ability to detect clinical 

seizures rapidly and accurately. Finding traces of epileptic activity from human EEG is not 

only very crucial for efficient diagnosis and treatment management in the health monitoring 

applications but also is a very tedious, resource-consuming and exorbitant task.  Moreover, 

SUDEP is the main reason for fatality in epileptic patients. This concern also makes epileptic 

seizure detection an important and emerging aspect of research currently [200]. EEG has 

been recognized as the most promising tool for the analysis of Epileptic seizure. Because the 

fluctuating pattern of the action potentials during seizure activity can be best intelligible with 

the help of EEG. The ability to detect epileptic seizure rapidly and accurately can enhance 

its treatment therapy. Therefore, there is continuous research towards the field of automatic 

detection of an epileptic seizure from Brain EEG signals. The wide-ranging of approaches 

are available from linear methods to non-linear methods (Chua et al. 2010; Polat & Gunes 

2007; Polat & Gunes 2008; Xiang et al. 2015). 



 

137 

 

Currently, Time series analysis using complex network approach is continuously 

attaining attention in the neuroscience and other various disciplines (Baggio & Sainaghi 

2016; Scarsoglio, Cazzato & Ridolfi 2017; Tanizawa & Nakamura 2014). Complex network-

based time series analysis encompasses the underlying complex and irregular structure of 

traditional signals with the help of graph (Chen et al. 2015). Moreover, this mapping 

approach helps in analysing the structural properties of time series by quantify the graph 

features, such as the existence and size of the gigantic component, distribution of module 

sizes, degree distributions and clique distributions, and specific parameters of node or links, 

which includes clustering coefficients, path length, diameter, and centrality: betweenness; 

closeness and Eigenvector centralities (Sandryhaila & Moura 2013). During the mapping of 

times series EEG signals to the complex network, the different EEG signals acquire different 

statistical features. In addition, with the help of different network attributes, we can illustrate 

the multiple behaviors of EEG signals (Tang et al. 2013). Recently, various researchers and 

clinicians have implemented the complex network-based approaches to detect epilepsy and 

other brain disorder from EEG signals (Bhaduri & Ghosh 2014; Liu et al. 2016; Ni et al. 

2014). Time-series-complex-network (TSCN) (Wang et al 2013) , recurrence plot network 

(Niknazar et al. 2013), visibility graph (Lacasa et al. 2008) and horizontal visibility graph 

(Luque et al. 2009) are the names of the method that are commonly used. But there are two 

major limitations of these cited methods. First, these approaches include the selection of 

specific parameters like threshold value (ε) and graph equation. Due to which the chances of 

loss of information are more because the criteria to form the link between the nodes, 

sometimes ignores the valuables nodes. Secondly, these approaches have not considered the 

links (edge) strength, whereas edge weight is an essential concept as different nodes linked 

with each other on the basis of this strength. As a result, addressing the limitations of the 

above-mentioned approaches, I introduce the new framework for EEG signals analysis. 

According to NWCNT, EEG time series signals are transformed into the complex network 

by preserving all the information of EEG signals. The main objectives of this research chapter 

are: 

1) To categorize the focal and non-focal signals of recorded from an epileptic patient; 

2) To detect epileptic seizure in term of classifying the epileptic seizure activity from 

five dissimilar groups of EEG signals; 
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3) To introduce a new feature “Edge Weight Fluctuation” (EWF)  for a weighted 

network that more suitable. to identify an unforeseen fluctuation in EEG signals 

and helps for statistical analysis of the complex network. 

In this research study, I develop a new framework for automated detection of the 

epileptic seizure. I present a single framework that works effectively for two different EEG 

database, i.e., The Bern-Barcelona EEG database and Bonn University Germany, Epilepsy 

database. In this NWCNT, firstly converted EEG signals into New Weighted Complex 

Network and then three features Modularity Gain (MG), Average Weighted Degree (AWD) 

and Edge Weight Fluctuation (EWF) are extracted for classification. SVM classifier with 

three different kernel functions, KNN classifier, DA classifier with two different discriminant 

analysis functions are used for to check the performance of three features. The noise 

robustness validity of NWCNT is checked by performing simulation analysis on two 

different chaotic signals named: Henon map and Logistic map. To justify the significance of 

NWCNT, I have also performed the statistical analysis by using One-Way ANOVA test. 

The experimental results prove that NWCNT is effectual with 99% accuracy for 

Barcelona database and 100% of Bonn database. Moreover, the newly developed feature 

plays a significant role in categorizing the diverse EEG signals and improves the 

classification performances. As far as, I are aware of, this NWCNT is genuinely new and can 

be beneficial in the arena of automated detection of epilepsy and other brain abnormalities.  

8.2 Experimental Database 

This section describes data acquisition. I have used the following two different time series 

EEG databases for this research study, which are publicly available. 

8.2.1 Database 1: The Bern-Barcelona EEG database 

This database used is made online available by the neurological department of the Bern 

University in 2012. This database is collected by the long-term recording of the intracranial 

EEG of five patient with the epileptic disorder via using10-20 electrode placement system 

by placing the electrode at the positions: Fz and Pz.  The sampling rate of the EEG signals 

are lies between 512 or 1024 Hz. The EEG recording has been classified into focal and non-

focal EEG channels by the judgments of the two expert neurologists. Each recording 
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corresponds to time-window of 20 sec has 10240 data samples points. This research work 

has used Data_F_50.zip and Data_N_50.zip data recordings. More details about this database 

are available in R. Andrzejak et al. [183]. 

 

8.2.2 Database 2: Bonn University Epileptic EEG database 

Bonn University, Germany data, issued by the department of epilepsy. More details about 

this database are available in Andrzejak, Schindler & Rummel 2012. 

8.3  NWCNT  

In this research work, I developed a framework named New Weighted Complex Network 

Technique (NWCNT), which can automatically classify the diverse EEG signals. The overall 

schematic presentation of the NWCNT is illustrated in Figure 8-1. In this NWCNT, firstly 

the time series EEG data are transformed into the NWCN. Then, with the help of feature 

extraction technique, the statistical parameters (features) of the NWCN are extracted. Finally, 

classification is performed via different classifiers. The classification performance is 

evaluated with the help of performance measures. Following is the detailed discussion about 

the NWCNT:   

Step I: Transformation of EEG signals to NWCN: 

For the construction of the NWCN, I have considered that all the data sample points of 

EEG time-series signals are the nodes of the complex networks. i.e., if a time series is 

represented by {X (ti), i=1, 2,… N} with N number of data sampling points. And G= (N, E) 

represents the complex network with N numbers of nodes and E set of edges. According to 

NWCNT, if N= {ni}, i=1, 2,… N, are the nodes and E =ei, i=1,2,3,………… N, are the edges 

then each node ni corresponds to data sample point xi. For determine the link (edge) between 

the nodes, I have considered that all the nodes of the NWCN are connected to each other, i.e., 

if we are having N number of nodes, then each node is connected with the remaining N-1 

number of nodes in the same order. The edge should be directional in nature. E.g., if there is 

a time series of 10 nodes, then it should have 45 edges and is represented as G (10, 45). 

Figure 8-4. illustrates the G (10, 45). 
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Afterward, the edge strength of the links is calculated. It is uncovered from the literature 

studies in the discipline of the complex network theory that if we preserve the information 

about the weight of the network, then the more reliable and robust results can be achieved 

(Polikar 2006). Because the binary network just provides the information regarding the 

existence of the link between the nodes. Moreover, with the help of edge weight information, 

it is easy to recognize the strength of different links which will further help in the detection  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-1: The structural diagram of the NWCNT of EEG Signals for Epilepsy Classification. 

 

of potentially strong or more essential links. Fundamentally, weight is any value that is 

accompanied by the link of a network. The edge strength of NWCN is calculated with the 

help of equation (1): 

                                        𝑤𝑖𝑗     =
𝑛𝑗 − 𝑛𝑖

𝑡𝑗 − 𝑡𝑖
, < 𝑗       ,                                                                   (1) 
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Feature Extraction 

 

 

 

 

Classification Performance  
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Where ni and nj are the nodes of the complex network and correspond to time series data 

sample points x (ti) and x(tj). Also, ti and tj  represent the time of interval. And wij represents 

the edge weight between node ni and nj. In this research study, I have considered the absolute 

value of edge weight. Moreover, I have also considered that all the edges of the network are 

directional in nature. The Figure 8-2 demonstrates how this equation has been derived and 

helps to detect sudden fluctuation. 

 As from Figure 8-2, it is clearly visible that the time interval t2 and t6 has the same voltage, 

i.e., 10v but at t7 there is a sudden fluctuation, i.e., =60 v. The edge weight of sample point x 

(t2) and x(t7) is denoted as w1. Whereas, the w2 symbolizes the edge weight between (t6) and 

x(t7). With the help of equation (1), the w1 = 10 and w2 = 50. Therefore, Figure 8.2 illustrates 

that when there is a sudden fluctuation in the EEG signal, then there is change (increase or 

decrease) in the edge weight value. Figure 8-3. Illustrates the idea of presenting the edge 

weight between different nodes. The main advantage of this edge weight equation is that it 

will help to detect sudden fluctuations in EEG signals, as different nodes of the complex 

network will connect with each other via their strengths (edge weight). 

 

 

 

Figure 8-2: Illustration of using edge weight in order to find the effect of sudden fluctuation between two 

different data points of EEG signals. 

 

Figure 8-4. illustrates the NWCN of X. Where, X ={22.62, 26.55, 28.43, 30.10, 30.03, 

27.86, 27.28, 30.01, 34.58, 39.98}is a small EEG time series with ten data sample points 

taken from the segment of Focal EEG signals (of Bern-Barcelona EEG database). The main 
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advantage of this NWCN from visibility graph or horizontal visibility graph is that Lacasa’s 

graphs used the equation to find the edges between the nodes which is basically a decision 

tree statement to find the links. If the nodes satisfied the equation then there are links between 

them, otherwise not. Thus, with the aim of, to find the links between the nodes, the algorithm 

has to execute the decision tree statement every time, which is basically, takes more 

computation or execution time. Whereas in this research study, I have not used any decision 

tree statement to find the edge links; therefore, the NWCNT takes less execution time and 

reduces the complexity of the algorithm. 

 

 

 

 

 

 

 

 

Figure 8-3: Illustration of the edge weights between different data points 

 

Figure 8-4:  Illustration of NWCN of small EEG segment 

 

Step II: Feature Extraction 

X(t3)=2 

X(t1)=1 

X(t2)=3 

X(t4)=5 
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Features are a small number of derived variables or identifiable measurement used to 

represent the larger set of data by preserving most of the information on the cost of least loss 

of information. The feature extraction process not only helps to reduce the computation cost 

but also play a significant role to enhance the classification accuracy. In this research work, 

I have extracted the following three features from the NWCN of EEG signals: 

1) Community Finding Approach; 

2) Average Weighted Degree; 

3) Edge Weight Fluctuation. 

 Community Finding Approach:  Newman was the first to introduce the community 

finding approach in the complex network for measuring the strength of partition of network 

(Newman 2004). In this research study, I have used the Louvain community finding 

approach, as it is an easy and efficient method for the large complex network. When group i 

combined into group j, then, according to Louvain (Blondel et al. 2008): 

 

               ∆MG𝑖𝑗 = [
∑ +𝑘𝑖,𝑗𝑛𝑗𝑛

2𝑚
− (

∑ +𝑘𝑖𝑡𝑜𝑡

2𝑚
)

2

]

− [
∑𝑗𝑛

2𝑚
− (

∑𝑡𝑜𝑡

2𝑚
)

2

− (
𝑘𝑖

2𝑚
)

2

],                                                     (2)       

 

 

where ∑𝑗𝑛  symbolises the total weights associated with all the edges that come under 

group j; ∑𝑡𝑜𝑡 represents the total weights of the links that are incident to the nodes in the 

group; 𝑘𝑖,𝑗𝑛  symbolizes the total weight of the edges from the group i to group j; ki is the 

total weights of the links incident to node i; m represents the total weight of all the links in 

the network and   ∆𝑀𝐺𝑖𝑗 symbolizes modularity gain. The modularity is a complex network 

feature which is used to measure the quality of the division of the complex network into 

clusters (Newman 2004). Louvain modularity comprises of two stages. Firstly, identify the 

small clusters with the help of optimization of modularity in a local manner. Secondly, in 

order to rebuild the new network, the nodes fit into the same clusters are combined together 

and named as the communities. These two steps repeated iteratively until the maximum value 

of modularity is attained. 
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 Average Weighted Degree (AWD): The weighted degree of the node i is the total weight 

of all the links connected to a node i and denoted by (Antoniou & Tsompa 2008):  

 

                                   𝑤𝑑𝑖 = ∑ 𝑤𝑖𝑗

𝑗∈𝐵(𝑖)

 ,                                                                                       (3)     

 

Where B (i) is the neighborhood of node i. and wij signifies the edge weight between nodes 

i and j. Thus, the Average Weighted Degree of a complex network is defined as the average 

mean of the total weights of the incident links on all the nodes in the network.  

 

Edge Weight Fluctuation (EWF): In this chapter, we have developed this new feature 

and the first time going to use this feature for classifying different EEG signals. To the best 

of my knowledge, this feature has not been developed and used before. EWF of a single 

channel EEG signals is measured by:  

 

                                  𝐸𝑊𝐹 = (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)    ,                                                                      (4) 

 

where wmax represents the maximum edge weight value of a channel or maximum 

fluctuation, occur in EEG signals, and wmin is the minimum edge weight value of the same 

channel. The EWF will be higher in case of an epileptic seizure as in case of seizure activity, 

there is a huge fluctuation in EEG signals.  The advantage of introducing EWF is clearly 

disclosed in the result and discussion section, where I had explained the effect of using EWF 

on the classification performance.    

Step III: Classification 

In order to evaluate the performance of the above-mentioned three features, I have used 

the following binary supervised machine-learning classifiers: 

a. SVM classifier with different kernel function Cristianini & Shawe-Taylor 2014; 

b.  KNN classifier (Cover & Hart 1967); 

c.  DA classifier with different discriminant functions (Tharwat 2016). 



 

145 

 

Step IV:  Performance Evaluation 

The performance of the introduced framework is assessed by employing the defined standard 

measuring parameters (Siuly 2012) named as sensitivity, specificity and accuracy.   

 

8.4  Analysis of the NWCNT  

This section includes the Simulation Analysis and Statistical Analysis, for the NWCNT and 

feature sets.  

8.4.1  Simulation Analysis with Chaotic Signals 

The stability and robustness to noise of the NWCNT are very crucial aspects in pattern 

classification. I considered two different chaotic signals named Henon map and Logistic map 

to investigate the potential of NWCNT. The Henon map is generated from the following 

equations with parameters values a=1.3 and b=0.3 (Hénon 1976): 

                𝑥𝑖+1 = 𝑦𝑖 + 1 − 𝑎𝑥𝑖
2                                                                                              (5) 

                       𝑦𝑖+1 = 𝑏𝑥𝑖                                                                                                                          (6) 

The Logistic map is generated from the following equation with parameter value a= 4 

(Vapnik 1998):    

 

                     𝑥𝑖+1  = 𝑎𝑥𝑖(1 − 𝑥𝑖)                                                                                              (7) 

 

 To evaluate the performance of the robustness to noise, I have added the similar Gaussian 

white noise (GWN) with variance = 0.2 in the two chaotic signals. I have conducted 16 test-

runs for the initial value of 𝑥0 and 𝑦0 , by randomly assigned value between (0,1). I have 

taken the size of each chaotic signals as 1000 data samples. 

Figure 8-5 illustrates the three features, i.e. AWD, EWF, and MG that are extracted from 

two chaotic time series (Henon map and Logistic map) with and without Gaussian white 

noise. From Figure 8-5(b) it is clear that the newly developed feature EWF is robust against 

noise. Based on the distance between chaotic signals and chaotic signals with noise, it is also 

noticed that the AWD and EWF features are more robust against noise as compared to Q. 
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                                                                 (d) 

 

Figure 8-5: Illustration of Average Weighted Degree(a), Edge Weight Fluctuation (b) and Modularity 

Gain(c,d) feature of the chaotic time series of Henon map and Logistic map. 
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8.4.2 Statistical Analysis 

I have performed one statistical analysis test named: One-Way ANOVA with the help 

of Matlab toolbox, to prove the statistical significance of NWCNT (May 1976).  

As I can see from Table 8.1 that the p-value results of the three feature (Q, EWF, and 

AWD) for both the databases lies between < 0.005 and < 0.0001, which not only justifying 

the statistical significance of this newly developed feature EWF but also for other two 

features. 

 

   Table 8.1: One-Way ANOVA test results 

Data Set Feature p-value test 

Bonn University EEG Data 

AWD 3.1173e-118 < 0.0001 

EWF 2.1031e-71 < 0.0001 

MG 9.9810e-95 < 0.0001 

Bern-Barcelona EEG database 

AWD 0.0013 < 0.005 

EWF 4.1973e-05 < 0.0001 

MG  1.6595e-15 < 0.0001 

 

8.5 Results and Discussion 

In order, to investigate the validation and consistency of the NWCNT, different 

experiments are performed with the help of MATLAB. This section presents the 

experimental outcomes of the NWCNT on the two different benchmark EEG databases: 

Bonn university epileptic EEG data and the Bern-Barcelona EEG database. This section also 

covers the comparative analysis of the NWCNT outcomes with the existing state of the art. 

The experimental results are discussed below: 

8.5.1 Database1: The Bern-Barcelona EEG database 

In order, to investigate the performance of NWCNT, firstly, I employed the NWCNT to 

first benchmark epilepsy EEG database known as The Bern-Barcelona EEG database. As 

mentioned earlier, I have used the subset of this database, i.e., Data_F_50.zip and 
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Data_N_50.zip, which contains only the first 50 signals (channels). Because each channel is 

equivalent to 10240 data samples of 20 seconds, therefore, to make the computation task 

faster, I divided each channel into four segments of 5 sec each (i.e., Seg1=2560, Seg2=2560, 

Seg3=2560, Seg4=2560 data sample points). And these four segments are further considered 

as four independent channels. According to the NWCNT, each segment is first transformed 

into the NWCN. Afterward, the three features: MG, AWD, and EWF are extracted for 

classification. Following Figure 8-6, Figure 8-7 and Figure 8-8 represent the box-plot 

diagram of the feature sets of Bern-Barcelona EEG database with focal and non-focal EEG 

signals. 

Figure 8-6 illustrates the box-plot diagram of the MG feature set of Bern-Barcelona EEG 

database. MG feature values of the non-focal EEG signals are more as compared to focal 

EEG signals. This signifies that the non-focal EEG signals have strong community structure 

as compared to focal, i.e. in case of non-focal EEG signals; the nodes are denser connecting 

inside the groups as compared to focal. In addition, it also depicts that the non-focal EEG 

signals have a better partition of the network as compared to the focal.  

Figure 8-7 represents the box-plot diagram of the Average Weighted Degree feature set 

of Bern-Barcelona EEG database. As I can see from Figure 8-7 that, AWD of the focal 

complex network is more as compared to non-focal. The reason behind is that during focal-

epileptic seizure attacks the EEG signals starts showing fluctuation. In addition, because of 

this fluctuation, the edge weight values will show great change and increases the AWD 

feature. The AWD feature is directly proportionate to the values of edge weights. 

Figure 8-8. illustrates the boxplot diagram of the Edge Weight Fluctuation feature set of 

Bern-Barcelona EEG database. The diagram shows that EWF of the focal complex network 

is more as compared to non-focal. Because during focal-seizure activity, the sudden 

fluctuation increases the maximum edge weight, due to which EWF also increases. 

As discussed earlier, after feature extraction the next step is classification. I have 

implemented the sorting of the feature sets before classification in my previous study of Sleep 

stages analysis (Supriya et al. 2018). In this study, I also want to investigate the effect of 

sorting the feature set before classification on the Epileptic EEG database. After applying the 

sorting the feature set approach, I divided 50% data for training and the remaining 50% for 

testing. In order to explore the performance of the feature sets, I have used six classifiers 
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named as SVM Linear, SVM Rbf, SVM Polynomial, KNN, LDA, and QDA classifier. In the 

case of KNN classifier, different values of K has been analyzed, and it is evaluated that k=1, 

2 gives better significant and same performances as compared to k=3, 4, 5, 6, 7, 8, 9, 10. 

Therefore, k=2 has been used to represent the experimentation in tabular form. 

 

Figure 8-6: Illustration of box-plot diagram of MG feature set for the Bern-Barcelona EEG database.   

 

 

 

Figure 8-7: Illustration of box-plot diagram of AWD feature set for the Bern-Barcelona EEG database.  
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Figure 8-8: Illustration of box-plot diagram of EWF feature set for the Bern-Barcelona EEG database.     

 

. 

       Table 8.2 illustrate the classification accuracy of each feature set individually as well 

as by combining the feature set. From Table 8.2, it is clearly visible that the classification 

accuracy increases by combining all of the feature sets for each classifier as compared to the 

individual feature set. Table 8.2 also validates that LDA classifier performs better as 

compared to QDA and SVM Poly classifier is best among the six classifiers. Based on the 

experimental results of Table 8.2, I can demonstrate that SVM poly is more appropriate and 

provide significant results for this database. 

 

Table 8.2: The classification accuracy results of the Bern-Barcelona EEG database.  

Data 

Group 
Classifiers 

Classification Accuracy of the 

individual feature set  

(Accuracy in %) 

Classification Accuracy of the 

combined feature sets 

(Accuracy in %) 

Focal 

Vs. Non-

Focal 

 AWD EWF MG AWD + EWF + MG 

KNN=2 64 63 72 83 

LDA 57.5 62 71.5 92.5 

QDA 60 58.5 73.5 69.5 

SVM Linear 57.5 60 71.5 91 

SVM RBF 58.5 61 73 95.5 

SVM Poly 59.5 58.5 73 99 
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      Table 8.3 demonstrates the overall classification results with sensitivity, specificity and 

accuracy performance of different classifiers. The accuracy performance of KNN is 83%, for 

LDA is 92.5%, for QDA is 69.5%, SVM with Linear Kernel is 91%, for SVM with RBF is 

95.5%, and SVM with the polynomial kernel function reported highest with 99%. Similarly, 

the sensitivity performance of different classifiers is reported as 83% for KNN, 100% for 

LDA, 42% for QDA, 100% for SVM Linear, RBF and polynomial kernel function. Likewise, 

the specificity performance of different classifiers is reported as 83% for KNN, 85% for 

LDA, 97% for QDA, 82% for SVM Linear, 91% for RBF and 98% for the polynomial kernel 

function.   

     Table 8.4 signifies the comparison of NWCNT with the existing state-of-the-art for this 

Bern-Barcelona EEG database. Table 7.4 also demonstrates that NWCNT provides 

significant outcomes with 100% sensitivity, 98% specificity, and 99% accuracy as compared 

to the state-of-the-art. Moreover, the specificity of NWCNT is 98%, which is also very much 

closer to 98.68% of (Eswaramoorthy, Sivakumaran & Sundarajan 2014). Therefore, I can say 

that NWCNT is one of the most promising technique for this database and research in this 

area. 

Table 8.3: The overall classification results of the Bern-Barcelona EEG database.  

Data 

Group 
Classifiers 

Overall classification performance  

AWD + EWF + Q (%) 

Focal 

Vs. Non-

Focal 

 Sensitivity (%) Specificity (%) Accuracy (%) 

KNN=2 83 83 83 

LDA 100 85 92.5 

QDA 42 97 69.5 

SVM Linear 100 82 91 

SVM RBF 100 91 95.5 

SVM Poly 100 98 99 

 

 

Table 8.4: Comparative analysis of the accuracy of the NWCNT with existing techniques that used the 

Bern-Barcelona EEG database for their experimentation. 

          Authors       Sensitivity (%) Specificity (%) Accuracy (%) 

Eswaramoorthy,  Sivakumaran & 

Sundarajan 2014 
98.7 98.68 98.2 
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Sharma, Pachori & Acharya 2015 90 84 87 

Das & Bhuiyan 2016 90.7 88.1 89.4 

Zhao et al. 2018 - - 77.3 

Dalal Tanveer & Pachori 2018 - - 90.2 

NWCNT 100 98 99 

 

8.5.2 Database 2: Bonn University Epileptic EEG Database  

To further explore the efficiency of NWCNT, I employed it again on a second 

benchmark database known as Bonn University Epileptic EEG data. In this case, EEG signals 

are divided into four test cases (Data Group), where each test case corresponds to the pairs 

of two-classes of EEG signals. Table 8.5 represents the different test cases or groups.  

 

Table 8.5: Different test group along with a description of the different set problem 

Group Data set Classification Problem Description 

1 Set Z vs. Set S Healthy persons EEG Vs. seizure activity 

2 Set O vs. Set S Healthy persons EEG Vs. seizure activity 

3 Set N vs. Set S Epileptic patients without seizure Vs. seizure activity 

4 Set F vs. Set S Epileptic patients without seizure Vs. seizure activity 

 

In this case, the data sample value of each channel is 4097, which is very less as 

compared to the Barcelona EEG database; therefore I have not performed the segmentation 

of the channel. As a result, each channel is used as an independent sample. According to 

NWCNT, each channel is first transformed into the NWCN. Afterward, the feature extraction 

part is progressed by extracting three features: MG, AWD, and EWF. Following Figure 8-9, 

Figure 8-10 and Figure 8-11 represent the box-plot diagram of the feature sets of all the five 

classes (Z, O, N, F, and S) of Bonn University Epileptic EEG database. 

From Figure 8-9, Figure 8-10, and Figure 8-11, a clear significant difference is visible 

in the feature sets of all the three feature vectors of different kind of EEG signals. Figure 8-

9 illustrates the boxplot diagram of MG feature set. From Figure 8-9, I can see that seizure 

activity value shows a clear difference as compared to others. This Figure 8-9 also depicts 

how much strong connection exists among the nodes inside the modules of different EEG 

signals.  Whereas, the boxplot diagram of Average Weighted Degree feature set in Figure 8-



 

153 

 

10 represents that Set S (seizure activity) has the highest value as compared to others. The 

reason behind is the same as mentioned previously that during seizure activity, the EEG 

signal is extravagantly fluctuating. Due to this fluctuation in the EEG, the edge weight 

increases, which in turn increase the AWD value. Likewise, in the case of the Edge Weight 

 

 

 

Figure 8-9: Illustration of box-plot diagram of MG feature set for the Bonn University Epileptic EEG 

database. 

 

Fluctuation feature, as we can see from Figure 8-11 that during seizure activity, the maximum 

edge weight value of NWCN starts changing which in turn increased the value of EWF 

feature.  However, in the case of a healthy person, the EEG signals are not too much 

fluctuating which in turn does not effect the EWF feature.  

Table 8.6. illustrates the classification accuracy performance of different classifiers based 

upon individual feature sets as well as by combining the feature sets. Table 8.6 depicts that 

the classification accuracy of different classifiers increases by combining the feature set as 

compared to the individual feature set. On the combined feature sets, the classification 

accuracy for the group 1 has the value 100% for KNN, QDA, and of SVM classifiers with 

different kernels except for LDA with 99%. For Group 2, the combined feature sets provide 

classification accuracy of 100% for KNN, and different class of SVM classifiers, whereas 

QDA and LDA provide 99%. Similarly, for Group 3, the collective feature sets have 

classification accuracy of 100% for all the three SVM classifiers whereas 99% for KNN and 
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QDA and for LDA is 89%. Likewise, the classification performance of the Group 4 for the 

combined feature sets achieved the accuracy of 100% for KNN, 98% for KNN, SVM linear 

as well as Rbf and 99% for SVM polynomial.  We can also notice from this Table 8.6 that 

the accuracy performance of the combined feature sets for the different classifiers is also very 

close to each other. The closer accuracy results also validate the performance of newly 

developed feature EWF as well as the NWCNT.   

Table 8.7 illustrates the classification performance in terms of sensitivity, specificity and 

accuracy parameters of the NWCNT for the different classifiers. For Group 1, all of the six 

classifiers achieved 100% sensitivity performance whereas except LDA remaining five 

classifiers attained 100% specificity and accuracy. Likewise, in the case of Group 2, except 

QDA all the remaining classifiers achieved 100% sensitivity. Whereas, except LDA the 

remaining five classifiers attained 100% specificity performance. The accuracy performance 

of KNN, as well as different classes of SVM classifiers, are 100% while 99% for the two-

discriminant analysis classifiers. For Group 3, the LDA and SVM class of classifiers achieved 

100% sensitivity and 98% for the KNN and QDA. The specificity performance for the same 

group is 100 % for all the five classifiers except LDA with 78%. The accuracy performance 

for the similar group is 99% for KNN and QDA, 89% for LDA and 100% for all the SVM 

classifiers. In the case of Group 4, the sensitivity performance is 96% for the QDA and SVM 

linear, 98% for SVM Rbf and 100% for KNN, LDA and SVM 

 

 

Figure 8-10:  Illustration of box-plot diagram of AWD feature set for the Bonn University Epileptic EEG 

database. 
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Figure 8-11: Illustration of box-plot diagram of EWF feature set for the Bonn University Epileptic EEG 

database. 

 

 

Polynomial. The specificity performance of the same group is 76% for LDA, 98% for SVM 

Polynomial and 100% for KNN, QDA, SVM with linear and RBF kernel function. The 

accuracy performance for the similar group is 88% for LDA, 98% for QDA, SVM with linear 

and RBF kernel function, 99% for SVM Poly and 100% for KNN. The classification 

performance results are very close to each other for all the different classifiers, which 

demonstrate the validation of NWCNT. Table 8.7 also predicts that the SVM with polynomial 

kernel function is the most suitable classifier with NWCNT as compared to the remaining 

five classifiers. Table 8.8 demonstrates the comparison of the accuracy performance of 

NWCNT with the existing techniques in which the authors used the Bonn same database. As 

it is clearly portrayed from Table 8.8 that NWCNT outperforms as compared to the other’s 

methodology with 100% accuracy to set Z VS. S, set O VS. S, set N VS. S and 99% for set 

F VS. S. 

 However, Chen, Wan & Bao 2017, implemented the same Bonn University and Bern-

Barcelona EEG database for their proposed framework. The accuracy performance of their 

framework was 83.07% for Bern-Barcelona database and 88% for the Bonn University  
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Table 8.6: The classification accuracy results of a different test group of the Bonn University Epileptic 

EEG database 

Data 

Group 
Classifiers 

Classification Accuracy of the 

individual feature set  

(Accuracy in %) 

Classification Accuracy of the 

combined feature sets 

(Accuracy in %) 

 

Group 1 

 AWD EWF MG AWD + EWF + MG 

KNN=2 100 95 64 100 

LDA 88 86 57 99 

QDA 100 97 61 100 

SVM Linear 100 95 57 100 

SVM RBF 100 97 63 100 

SVM Poly 100 97 60 100 

Group 2 

KNN=2 95 90 75 100 

LDA 88 84 71 99 

QDA 95 88 70 99 

SVM Linear 94 88 73 100 

SVM RBF 95 88 73 100 

SVM Poly 94 88 73 100 

Group 3 

KNN=2 98 92 85 99 

LDA 88 87 86 89 

QDA 99 94 86 99 

SVM Linear 96 93 86 100 

SVM RBF 98 93 86 100 

SVM Poly 99 93 86 100 

Group 4 

KNN=2 94 87 80 100 

LDA 87 83 79 88 

QDA 90 85 79 98 

SVM Linear 92 87 83 98 

SVM RBF 94 87 83 98 

SVM Poly 96 87 83 99 
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Table 8.7: The classification performance of different test groups of the Bonn University Epileptic EEG 

database  

Data 

Group 
Classifiers 

Overall classification performance  

AWD + EWF + Q (%) 

Group 1 

 Sensitivity (%) Specificity (%) Accuracy (%) 

KNN=2 100 100 100 

LDA 100 98 99 

QDA 100 100 100 

SVM Linear 100 100 100 

SVM RBF 100 100 100 

SVM Poly 100 100 100 

Group 2 

KNN=2 100 100 100 

LDA 100 98 99 

QDA 98 100 99 

SVM Linear 100 100 100 

SVM RBF 100 100 100 

SVM Poly 100 100 100 

Group 3 

KNN=2 98 100 99 

LDA 100 78 89 

QDA 98 100 99 

SVM Linear 100 100 100 

SVM RBF 100 100 100 

SVM Poly 100 100 100 

Group 4 

KNN=2 100 100 100 

LDA 100 76 88 

QDA 96 100 98 

SVM Linear 96 100 98 

SVM RBF 98 100 98 

SVM Poly 100 98 99 
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Table 8.8. Comparison of the accuracy performance of the NWCNT with existing techniques that used 

the Bonn University Epileptic EEG database for their experimentation  

Authors Data Group Accuracy (%) 

Srinivasan, Eswaran & Sriraam 2005 Z vs S 99.6 

Siuly, Li & Wen 2011 

Z vs. S 

O vs. S 

N vs. S 

F vs. S 

99.9 

93.6 

96.20 

93.60 

Nicolaou & Georgiou 2012 
Z vs S 

F vs S 

93.42 

83.13 

Samiee, Kovacs & Gabbouj 2015 

Z vs S 

O vs S 

N vs S 

F vs S 

99.8 

99.3 

98.5 

94.9 

Siuly et al. 2018 

Z vs S 

O vs S 

N vs S 

F vs S 

99.5 

99 

98.5 

97.5 

Kabir et al. 2018 

Z vs S 

O vs S 

N vs S 

F vs S 

99 

99.25 

99.38 

93.13 

Wang, Gong & Li 2019 

Z vs. S 

O vs. S 

N vs. S 

F vs. S 

100 

100 

98.4 

98.1 

 

NWCNT  

Z vs. S 

O vs. S 

N vs. S 

F vs. S 

100 

100 

100 

99 

  

 

Epileptic EEG database, which is less as compared to NWCNT. As NWCNT achieved 99% 

accuracy for Bern-Barcelona database and 100 % for the Bonn University database. 

     In summary, on the basis of all of the above experimentations, I conclude that the 

innovation of new feature EWF helps to improve the EEG signals classification performance 
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for different classifiers. Furthermore, the investigation results also indicate that NWCNT 

with SVM Polynomial kernel function is a prominent approach for classifying different types 

of EEG signals and promising to detect epileptic seizure activity. The NWCNT has the 

following four main advantages as compared to other complex network technique for 

epilepsy detection: 

1. First, NWCNT does not rely on a threshold value for edge detection. As a result, 

taking less computation time in the transformation of EEG signals to the complex 

network or graph; 

2. Secondly, the projected framework considered all the nodes (all the data points of 

EEG time series) for the construction of the network. Thus, there is no loss of 

information during the transformation of EEG time-series signals to a weighted 

network; 

 

3. Third, the introduced framework is compatible with different EEG recording or 

different nature of EEG signals (the Bern-Barcelona EEG database and Bonn 

University Epilepsy database); 

4. For the Bern-Barcelona database, NWCNT attained 99% accuracy, which is the 

highest classification performance results achieved till now. 

 

I believed that NWCNT can be a helpful resource to the expert’s neurologist and 

researchers for acquiring information in the field of epileptic seizure detection. In addition, 

this research study will pave a way to assist the technicians in developing a software system 

for EEG signals classification and improves the presently available technology. It is my belief 

that this innovative framework can also be applied to identify other brain disorders from EEG 

signals and applies to other databases of time series signals. 

8.6  Summary 

During the epileptic seizure attack, a sudden fluctuation can be catastrophic if not 

detected early enough. This chapter presents a framework to classify epileptic seizures from 

different EEG signals. The NWCNT focus on the extraction of vital information in the form 

of a newly developed feature from EEG signals for epileptic abnormality detection. For this 
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purpose, firstly the time series EEG signals are transformed into the NWCN. Afterward, three 

features MG, EWF and AWD are extracted from the NWCN. Six machine-learning 

classifiers named SVM Linear, SVM Rbf, SVM Polynomial, LDA, KNN, and QDA assessed 

the obtained feature sets. NWCNT outperformed with 99% classification results for 

Barcelona database and 100% for Bonn database. Moreover, experimental results also 

suggested that the newly developed feature is commendable to increasing the classification 

performance. The experimental study in this chapter has explored that the NWCNT is 

suitable to distinguish between two distinct EEG signals. The future step in this research 

study is to implement the NWCNT for multi-class EEG signals with the help of deep learning 

classifiers and also to detect other brain disorders from EEG signals. 
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                                       CHAPTER 9 

CONCLUSION 

 

The application of graph-theory in the neuroscience discipline for the analysis of brain 

anatomy discloses a different qualitative view of brain-activities as well as brain-behavior 

mapping. The graph approaches provide effective techniques for the subjects such as 

discovery and exploration of hierarchical structure, assessment of efficacy as well as 

vulnerability, plus structure-function relations in healthy brains and brain abnormalities. The 

way nodes (or vertices) and edges are allied are related with an abundant number of 

dynamical as well as topological properties at all different scales, i.e., from that of the vertex 

to that of the whole complex network, that ultimately allows the neuroscientists to divulge 

several hitherto unaddressed matters. 

By considering above-mentioned information, this dissertation developed techniques for 

EEG signals analysis and classification by mapping the EEG signals to network using 

network theory. This research project aims to develop different innovative techniques that 

investigate the three issues specifically: Epilepsy detection from EEG, EEG sleep staging, 

and classifying alcohol use disorder from EEG.    

This Ph.D. project introduces different weighted network techniques for the analysis and 

classification of the nonlinear EEG signals. In this research project, different frameworks 

have been developed using three types of EEG signals: alcoholics, Epilepsy, and sleep. The 

first framework introduces the weight in the edges of the visibility graph for identifying the 

epileptic seizures activity from EEG signals. The promising results were achieved with the 

help of the Average weighted degree parameter that is extracted from the WCN. The other 

objective of the first framework is to evaluate the effect of segmentation on EEG signal 

analysis. The experimental results prove that the proposed framework is not affected by the 

segmentation and un-segmentation of EEG signals. 

The second framework introduces an innovative technique for identifying or classifying the 

epileptic seizure using weighted visibility graph-based network. The WVGBN is developed 

by introducing the arctan function as the weight allied to different links in the visibility 

graph-based network. The reason behind introducing the weight associated with links is to 
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find the underlying dynamics of EEG signals, which is best defined by evaluating the 

strength amongst the nodes of the network. In addition, the modularity feature of community 

detection has been the first time used in the analysis of WVGBN. The 100% accuracy results 

for classifying the EEG signals of seizure activity and healthy subjects, proves that the 

proposed framework is significant for epilepsy detection. 

The third framework introduces a weighted horizontal visibility network for analyzing the 

distinct EEG databases. Two parameters correspond to the coherence characteristics   of 

WHVN are mined: Average Weighted Degree, and Average degree. The proposed 

framework is tested on distinct EEG databases: Epileptic database and Alcoholic database.   

10-fold cross validation applied for the classification proves the importance of the 

framework for characterizing the underlying dynamical properties of the WHVN of EEG 

signals.  

The fourth framework applied WVGN for automated classification of distinct sleep states 

using three parameters: AWD, modularity, and AD. This framework achieves higher 

classification outcomes for two different criteria of sleep data evaluation (named: R&Ks and 

AASM). The analysis explored Lorenz and Rossler series based simulation proved the 

validity of the proposed framework against noises. The aim of developing this framework 

was to investigate the effect of weight allied to links of the network for categorizing the 

problem domain of multi-class EEG classification. All the three parameters were first time 

tested for the analysis of EEG data of sleep states. This research discovered that the 

combined parameter sets provide more pertinent outcomes in comparison to separable 

feature.  

The fifth framework proposes a new algorithm to detect epileptic seizure activity by 

developing a new complex network approach named as New Weighted Complex Network 

(NWCN) Technique. A new feature is also developed, named as ‘Edge Weight Fluctuation” 

(EWF), which helps to extract sudden fluctuation in EEG signals. This research work has 

evaluated the significance of the proposed framework by applying it on two dissimilar 

benchmarks Epileptic database, i.e. Bern-Barcelona EEG database and Bonn University 

EEG database. The simulation analysis has been performed with two different chaotic 

signals named Henon map and Logistic map to evaluate the validity of the proposed 

framework. The main aims of this research study were to categorize the focal and non-focal 

signals of recorded from an epileptic patient; classifying the distinct types of EEG signals 
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and to develop a new feature for detecting the sudden fluctuation in the EEG signals. The 

99% accuracy for Barcelona database and 100% of Bonn database proves the effectiveness 

of the proposed framework.  

9.1 Contributions to Four Research Field 

This research project has a major contribution in the following fields: 

  In the network theory: Three different methods techniques are developed for 

analyzing the network: Weighted visibility graph-based network (WVGBN), 

weighted horizontal visibility network (WHVN) and new weighted complex 

network (NWCN) Technique. Moreover, the idea of introducing the two new weight 

methods in the links of the network also plays a significant role in the analysis of 

time series based network.  

 In the analysis of non-linear time series: This study explores the nonlinear time 

series analyses from different aspects. Firstly, the noise-robustness of the complex 

networks was evaluated. Unlike the conventional feature measuring methods, this 

study designed a new feature named Edge Weight Fluctuation for characterizing the 

underlying dynamical properties of the non-linear time-series.  

 EEG diagnosing: Three different types of EEG databases: alcoholic, epileptic, and 

sleep EEGs were used for analysis. Sleep scoring based on a single-channel EEG 

signal is challenging for biomedical engineers and experts. This study applied 

weighted complex networks to extract features from sleep EEGs. 

 Pattern recognition: EEG patterns are complex and time-variant. For example, 

EEG signals from one subject are significantly different from those of another 

subject. Effectively performing supervised classifiers are difficult to obtain in these 

cases because the training set from one subject is significantly different from that of 

others. This research study provides the sorting of the feature set technique for 

effectively classifying the different types of EEG signals.  

 

9.2 Future Work 

Currently, clinical diagnosis of brain abnormalities is generating Multimodel database such 

as: EEG-fMRI data, DEAP database, MAHNOB-HCI database, etc. This research project is 
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based upon EEG database analysis. In future, I have planned to develop weighed complex 

network-based framework for Multimodel database. 

Feature selection approaches are applied for removing the redundant or extraneous features 

to evade the issue of overfitting of the data. By developing a different generalized feature 

set from the main feature sets, it improves the accuracy of the classification process and also 

reduces computational efforts as well as data storage. I have planned to develop new feature 

selection techniques for all the proposed frameworks in this research study.  

This Ph.D. project developed different frameworks based on the offline system for analysis 

of EEG while the clinical diagnosis desire a real-time online system for EEG analysis. In the 

future, I would like to extend my research project for the development of a real-time online 

based system for EEG analysis and classification.  
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