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INEQUALITIES FOR QUANTUM f-DIVERGENCE OF
CONVEX FUNCTIONS AND MATRICES

SILVESTRU SEVER DRAGOMIR

ABSTRACT. Some inequalities for quantum f-divergence of matrices
are obtained. It is shown that for normalised convex functions it is
nonnegative. Some upper bounds for quantum f-divergence in terms
of variational and y2-distance are provided. Applications for some
classes of divergence measures such as Umegaki and Tsallis relative
entropies are also given.

1. Introduction

Let (X,.A) be a measurable space satisfying |A| > 2 and p be a o-
finite measure on (X, A) . Let P be the set of all probability measures on
(X, A) which are absolutely continuous with respect to u. For P, @ € P,
let p = fl—P and g = fl—Q denote the Radon-Nikodym derivatives of P and

1 m
@ with respect to p.

Two probability measures P, () € P are said to be orthogonal and we

denote this by ) L P if

P{g=0})=Q{p=0} =1
Let f:[0,00) — (—00, 00] be a convex function that is continuous at
0, i.e., f(0) = limyo f (u).
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In 1963, 1. Csiszar [3] introduced the concept of f-divergence as fol-
lows.

DEFINITION 1. Let P, @ € P. Then

(1) B@r = [ v [%] au (2),

is called the f-divergence of the probability distributions ) and P.

REMARK 1. Observe that, the integrand in the formula (1.1) is unde-
fined when p () = 0. The way to overcome this problem is to postulate
for f as above that

(1.2) 0f {%} — ¢(2)lim {uf (1)} JreX.

u0 u

We now give some examples of f-divergences that are well-known and
often used in the literature (see also [2]).

1.1. The Class of y“-Divergences. The f-divergences of this class,
which is generated by the function x®, a € [1,00), defined by

Xa(u):w_llav UG[O’OO)

have the form

(13) I (QP)= / p

X

T 4
p

dp = / p' g —p|” dp.
X
From this class only the parameter o = 1 provides a distance in the topo-
logical sense, namely the total variation distance V (Q, P) = [y |q¢ — p| dp.
The most prominent special case of this class is, however, Karl Pearson’s
x2-divergence

e
¢@r = [ Tai-n
x P
that is obtained for oo = 2.

1.2. Dichotomy Class. From this class, generated by the function
fo:]0,00) = R

u—1—1Inu for a=0;

fa (u) = a(117a) [au+1—a—u®] for ae€R\{0,1};

l—u+4ulnu for a=1;
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only the parameter a = 3 (f% (u) =2 (Vu— 1)2> provides a distance,

namely, the Hellinger distance

H(Q.P) = [/Xw—mzdu]é.

Another important divergence is the Kullback-Leibler divergence ob-

tained for av = 1,
KL(Q,P) :/ qln (g> dj.
X p

1.3. Matsushita’s Divergences. The elements of this class, which is
generated by the function ¢,, a € (0, 1] given by
Yo (u) =1 — w"|é ,  u € [0,00),

are prototypes of metric divergences, providing the distances [I,,, (Q, P)]

1.4. Puri-Vincze Divergences. This class is generated by the func-
tions ®,, o € [1,00) given by

1—wul
(U + 1)04—1’

It has been shown in [19] that this class provides the distances [l (Q, P)]é :

D, (u) = u € [0, 00).

1.5. Divergences of Arimoto-type. This class is generated by the
functions

( 1
e [(1+ua)a_zé—1(1+u)] for a € (0,00)\ {1};
Vo (u) := (I+u)ln2+ulnu—(1+u)In(l+u) for a=1,;
[ 511 — for a = oc.

It has been shown in [21] that this class provides the distances [Iy, (Q, P)]min(a’é)
for @ € (0,00) and 3V (Q, P) for o = 0.
For f continuous convex on [0, 00) we obtain the *-conjugate function
of f by
1
f*(u>:uf(_)7 UG(0,00)

u
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and

£ (0) = Tim f* ().

u0

It is also known that if f is continuous convex on [0, 00) then so is f*.

The following two theorems contain the most basic properties of f-
divergences. For their proofs we refer the reader to Chapter 1 of [20]
(see also [2]).

THEOREM 1 (Uniqueness and Symmetry Theorem). Let f, f; be con-
tinuous convex on [0, 00). We have

]f1 (va) = [f (Q7P)v
for all P,() € P if and only if there exists a constant ¢ € R such that

fi(w) = f(u) +c(u—1),
for any u € [0, 00).
THEOREM 2 (Range of Values Theorem). Let f : [0,00) — R be a

continuous convex function on [0, 00).
For any P, () € P, we have the double inequality

(1.4) ) <1 (@, P) < f(0) + f(0).
(i) If P = @, then the equality holds in the first part of (1.4).

If f is strictly convex at 1, then the equality holds in the first part of
(1.4) if and only if P = Q;

(ii) If Q L P, then the equality holds in the second part of (1.4).
If £(0) + f*(0) < oo, then equality holds in the second part of (1.4)
if and only if Q L P.

The following result is a refinement of the second inequality in The-
orem 2 (see [2, Theorem 3J).

THEOREM 3. Let f be a continuous convex function on [0,00) with
f(1) =0 (f is normalised) and f (0) + f*(0) < co. Then

LEO) 4 OV Q. P)

(1.5) 0<1QP) <5

for any QQ, P € P.
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For other inequalities for f-divergence see [1], [5]- [15].

Motivated by the above results, in this paper we obtain some new
inequalities for quantum f-divergence of matrices. It is shown that for
normalised convex functions it is nonnegative. Some upper bounds for
quantum f-divergence in terms of variational and y?-distance are pro-
vided. Applications for some classes of divergence measures such as
Umegaki and Tsallis relative entropies are also given.

2. Quantum f-Divergence

Quasi-entropy was introduced by Petz in 1985, [22] as the quantum
generalization of Csiszar’s f-divergence in the setting of matrices or von
Neumann algebras. The important special case was the relative entropy
of Umegaki and Araki.

In what follows some inequalities for the quantum f-divergence of
convex functions in the finite dimensional setting are provided.

Let M denotes the algebra of all n x n matrices with complex entries
and M™ the subclass of all positive matrices.

On complex Hilbert space (M, (-, -),) , where the Hilbert-Schmidt in-
ner product is defined by

(U, V), =tr (VU), U, VeM,

for A, B € M consider the operators £4 : M — M and Rg : M — M
defined by

LAT := AT and RgT :=TB.
We observe that they are well defined and since
(CAT, T), = (AT, T), = tr (T*AT) = tr (|T*|* A) > 0
and
(RpT,T)y = (TB,T), = tr (T"TB) = tr (|T|*B) > 0

for any T' € M, they are also positive in the operator order of B (M),
the Banach algebra of all bounded operators on M with the norm |||,

where ||T||, = tr (|T|2) , T e M.
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Since tr (|X*]2) = tr (|X|2) for any X € M, then also
tr (T*AT) = tr (T AV2AY2T) =t ((AV2T)" AVT )

—ir (}Al/zT’2) . (’(AUZT)*)Z) = tr <‘T*A1/2‘2>

for A>0and T € M.

We observe that £4 and PR are commutative, therefore the prod-
uct £4Mp is a selfadjoint positive operator in B (M) for any positive
matrices A, B € M™T.

For A, B € M* with B invertible, we define the Araki transform
Aap : M = M by A4 g := L4Mp-1. We observe that for T' € M we
have A4 T = ATB~! and

(AT, T), = (ATB ', T), = tr (T"ATB™").
Observe also, by the properties of trace, that
tr (T*ATB™") = tr (B~'/*T* A2 AVPTB1/?)
_ i (APTE) (AT = (|4
giving that
(2.1) (Up T, T), = tr (|A1/2TB—1/2\2) >0
for any T' € M.

We observe that, by the definition of operator order and by (2.1) we
have r1y <244 p < Rl for some R > r > 0 if and only if

(2.2) rtr (|T)?) < tr <|A1/2TB_1/2‘2> < Rtr (|IT]%)

for any T € M.
We also notice that a sufficient condition for (2.2) to hold is that the
following inequality in the operator order of M is satisfied

(2.3) r|TP? < |[AV*TB2” < R|T[?

for any T' € By (H) .

Let U be a selfadjoint linear operator on a complex Hilbert space
(K;(-,-)). The Gelfand map establishes a *-isometrically isomorphism
® between the set C' (Sp (U)) of all continuous functions defined on the
spectrum of U, denoted Sp (U), and the C*-algebra C* (U) generated by
U and the identity operator 15 on K as follows:
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ForanyfgeC( p(U)) and any «, 5 € C we have

(1) (Oéf+ﬁg)—a¢()+/3<1>()

(i) @(fg)=2(f)® ()aﬂdq’(f):‘b(f)*;

(i) [[@ (NI =[]l == supsespy [f (B

(iv) ®(fo) =1k and @ (f1) = U, where fo(t) =1 and f; (t) =t, for
teSp(U).

With this notation we define

fU)=a(f) forall feC(Sp(U))

and we call it the continuous functional calculus for a selfadjoint operator
U.

If U is a selfadjoint operator and f is a real valued continuous function
on Sp (U), then f (t) > 0 for any ¢ € Sp (U) implies that f (U) > 0, i.e.
f(U) is a positive operator on K. Moreover, if both f and g are real
valued functions on Sp (U) then the following important property holds:

(P) f(t)>g(t) forany te Sp(U) impliesthat f(U)>g(U)

in the operator order of B (K).
Let f : [0,00) — R be a continuous function. Utilising the con-
tinuous functional calculus for the Araki selfadjoint operator R{g p €

B (M) we can define the quantum f-divergence for Q, P € S; (M) :=
{Pe M, P>0with tr (P) =1} and P invertible, by

S5(@,P) = (f (gp) P2, PY2), = tx (PV2] (2Ag p) PV2) .

If we consider the continuous convex function f : [0,00) — R, with
f(0):=0and f(t) =tInt for t > 0 then for @, P € S; (M) and Q, P
invertible we have

Sf (Q7P) :tr[Q(an_lnP>] = U(Q7P)7
which is the Umegaki relative entropy.

If we take the continuous convex function f : [0,00) — R, f(t) =
|t — 1| for ¢ > 0 then for Q, P € S; (H) with P invertible we have

Sp(Q,P)=tr(|Q—P|)=V(Q,P),
where V' (Q, P) is the variational distance.
If we take f : [0,00) — R, f(t) = t* — 1 for t > 0 then for Q,
P € S; (M) with P invertible we have
Sp(Q,P)=tr (Q°P7') = 1=:x*(Q, P),
which is called the y2-distance
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Let ¢ € (0,1) and define the convex function f, : [0,00) — R by
f, (t) = =2 Then

1—q

1—tr(QIP'9)
1—g¢q

?

qu (Q,P) =

which is T'sallis relative entropy.

If we consider the convex function f : [0,00) — Rby f (t) = 1 (vt — 1)2 ,
then

Sp(Q,P)=1—tr (QY°P"?) = 1*(Q,P),

which is known as Hellinger discrimination.
If we take f:(0,00) = R, f(t) = —Int then for Q, P € 51 (M) and
@, P invertible we have

S;(Q,P)=tr[P(InP—nQ)] =U(P,Q).

The reader can obtain other particular quantum f-divergence measures
by utilizing the normalized convex functions from Introduction, namely
the convex functions defining the dichotomy class, Matsushita’s diver-
gences, Puri-Vincze divergences or divergences of Arimoto-type. We
omit the details.

In the important case of finite dimensional spaces and the generalized
inverse P~!, numerous properties of the quantum f-divergence, mostly
in the case when f is operator convex, have been obtained in the recent
papers [17], [18], [22]- [25] and the references therein.

In what follows we obtain several inequalities for the larger class of
convex functions on an interval.

3. Inequalities for f Convex and Normalized

Suppose that [ is an interval of real numbers with interior I and
f I — Ris a convex function on I. Then f is continuous on I and has
finite left and right derivatives at each point of I. Moreover, if T,y € I
and x < y, then f/ () < fl () < f.(y) < f\ (y), which shows that
both f’ and f! are nondecreasing function on I. Tt is also known that
a convex function must be differentiable except for at most countably
many points.
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For a convex function f : I — R, the subdifferential of f denoted by
Of is the set of all functions ¢ : I — [—00, 00| such that ¢ (I) C R and

(G) f(x)> f(a)+ (x—a)p(a) for any z,a € I.
It is also well known that if f is convex on I, then Of is nonempty,
[l fL€df and if ¢ € 3f, then
fL(z) <@(x) < fl(x) for any x € I.

In particular, ¢ is a nondecreasing function.

If f is differentiable and convex on I, then §f = {f'}.

We are able now to state and prove the first result concerning the
quantum f-divergence for the general case of convex functions.

THEOREM 4. Let f : [0,00) — R be a continuous convex function
that is normalized, i.e. f (1) = 0. Then for any Q, P € Sy (M), with P
invertible, we have

(3.1) 0<5(Q.P).
Moreover, if f is continuously differentiable, then also

where the function ¢ is defined as £ (t) =1t,t € R.

Proof. Since f is convex and normalized, then by the gradient in-
equality (G) we have
f) = (=1)f (1)
for t > 0.
Applying the property (P) for the operator 2(g p, then we have for
any T € M

(f (QlQP) T, T>2 > f—lk (1) <(QLQ7P - 132(H)) T, T>2
= f1 (1) [(QgpT. T), = IT,],
which, in terms of trace, can be written as
(33)  t(T"f Qop)T) > f, (1) [tr (le/QTP—Wf) —tr(|T|2)]

for any T' € M.
Now, if we take in (3.3) T' = P2 where P € S; (M), with P invert-
ible, then we get

Sp(@,P) = fL (1) [tr (Q) —tr (P)] =0
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and the inequality (3.1) is proved.
Further, if f is continuously differentiable, then by the gradient in-

equality we also have
(t=1)f ()= f(t)

for t > 0.
Applying the property (P) for the operator 2 p, then we have for
any T € M

(Ao — 1gym) f' Qo) T.T), > (f Rop)T,T),,
namely
RUo.pf Rgp)T.T), — (f Rp) T, T)y > (f (Aor)T.T),,
for any T' € M, or in terms of trace
(3.4) tr (T g pf Rop)T) —tr (T Rop)T) > tr (T*f Rop)T),

for any T € M.
If in (3.4) we take T' = P'/2 where P € S; (M), with P invertible,
then we get the desired result (3.2). O

REMARK 2. If we take in (3.2) f: (0,00) = R, f () = —Int then for
Q, P € S (M) and Q, P invertible we have

(3.5) 0<U(PQ)<x*(PQ).
We need the following lemma.

LEMMA 1. Let S be a selfadjoint operator on the Hilbert space (H, (-, -))
and with spectrum Sp (S) C [v,I] for some real numbers v,I". If g :
[v, '] — C is a continuous function such that

(3.6) g (t) = Al < p for any t € [y, 1]

for some complex number A € C and positive number p, then

3.7) [Sg(5)x,x) — (Sz,2) (g (S)z,2)| < p{|S — (52, 2) Lu|x, )
< p[(S*z,x) — (S’x,x)Q] 2

for any v € H, ||z]| = 1.

Proof. We observe that
(3.8)
(Sg (S) w,x)—=(Sz,2) (g (S) x,x) = ((S — (Sz,2) 1) (9 (S) — Alu) , x)

for any € H, ||z| = 1.
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For any selfadjoint operator B we have the modulus inequality
(3.9) |(Bx,x)| < (|B|x,z) for any z € H, ||z|| = 1.

Also, utilizing the continuous functional calculus we have for each fixed
reH, x| =1

(S = {Sz,2) 1) (9 (S) = Mn)| =[S = (Sz,2) 1u[|g (S) — Alx]
<p|S—(Sz, ) 1ul,
which implies that

(3.10)
(105 = (Sz, %) 1u) (9 (S) — Alp)| @, z) < p(|S — (Sz,2) 1u| v, 2)

for any z € H, ||z|| = 1.

Therefore, by taking the modulus in (3.8) and utilizing (3.9) and
(3.10) we get

(3.11) (59 (S) z,z) — (Sz,z) (g (), x)

= [{(S = (Sz,2) 1y) (9 (S) — AMlp)x

(IS = (Sz,2) 1) (9 (5) — Alu)|x
p{|S — (Sz,x) 1y|z, x)

~— ~— —
8
~

I/\ IN

for any € H,||z|| = 1, which proves the first inequality in (3.7).
Using Schwarz inequality we also have

(|S — (Sz,z) 1y|z,z) < <<S — (S, z) 1H)2 :C,a:>1/2
= [<52x,x> — <Sm,x>2} 1/2

for any « € H,||z|| = 1, and the lemma is proved. O

COROLLARY 1. With the assumption of Lemma 1, we have

(312p < (s x1:>—<Sa:,1:>2§%(F—’y)(\S—(Sm,x)lH\x,x)
1

<

< 3 (T'—7) [<Szx 3:> (Sx 33)2} 1/ <

for any v € H, ||z] = 1.
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Proof. If we take in Lemma 1 g(t) = t, A = $(I'+7) and p =
3 (' =), then we get

(313)  0<(S%,x) — (Sz,a)? < %(r — S = (S 2) 1| 2, 7)

< %(F —7) [<52x,x> — <S£,x>2}

for any z € H, ||z| = 1.
From the first and last terms in (3.13) we have

1/2

[(S%0,2) = (Sw,2)"] " < 5. (0= 1),

which proves the rest of (3.12). O

We can prove the following result that provides simpler upper bounds
for the quantum f-divergence when the operators P and () satisfy the
condition (2.2).

THEOREM 5. Let f : [0,00) — R be a continuous convex function
that is normalized. If Q, P € S; (M), with P invertible, and there
exists R > 1> r > 0 such that

(3.14) rr (|T) < tr (\Q1/2TP—1/2|2> < Rtr (IT)
for any T' € M, then

(3.15) 0<8¢(Q,P) <5 [fL(R)— fL(n]V(Q.P)
1

<5 LB =0 x(@,P)

1

< (R=)[fL(R) = 11.()].

Proof. Without loosing the generality, we prove the inequality in the
case that f is continuously differentiable on (0, c0) .
Since f’ is monotonic nondecreasing on [r, R] we have that

f ()< f @) <f(R) forany t € [r, R],
which implies that

DN | —

for any t € [r, R].
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Applying Lemma 1 and Corollary 1 in the Hilbert space (M, (-, -),)
and for the selfadjoint operator 2lg p we have

Qo.pf Ag.p) T, T)y — (Ag.pT,T), (f' (Aqp) T.T),|

< 3 7/ (R) = £ (] {[2.r — (2T, T), | T.T),
< 1 (R) = 1 ()] [(28,07, 7), — (g, 2]
< JR=7) [ (R~ f1.(7)]

for any T'e M, ||T]|, = 1.
If in this inequality we take T = P2, P € S; (M), with P invertible,
then we get

(Ko rf (Aqr) P12 PY2), = (1 (Aqp) P2, P2),|
1

= 2 [f/ (R) - f ()] <}vaP o <QIQ7PP1/27 P1/2>2 132(H)‘ P1/2’ P1/2>2
/
< % [/ (R) = 1" (r)] [(2%7,3131/2, P2y — <2LQ,PP1/2,P1/2>2]1 :

< E(R—r) [ (R) — . ()],

which can be written as

Sep (Q.P) = 51 (Q. P < 3 [72-(R) ~ f1. (] V (@, P)
<3[R~ 1L )X (@ P)
< TR [FL (R~ £,

Making use of Theorem 4 we deduce the desired result (3.15). O

REMARK 3. If we take in (3.15) f (t) = t* — 1, then we get

(3.16)  0=<x*(Q,P)< 5 (R-7)V(Q,P) <5 (R-1)x(Q,P)

| —

for @, P € Sy (M), with P invertible and satisfying the condition (3.14).
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If we take in (3.15) f (t) = tlnt, then we get the inequality

(3.17) (Qf%é%l(?)V@vaém(g)x@Jﬂ

)

, with P, @ invertible and satisfying the

§£(R—r)ln(

provided that @, P € Sy (H
condition (3.14).
With the same conditions and if we take f (t) = —Int, then

R—r R—r (R—T)2
(3.18) 0<U(PQ)< WV(Q,P) SR x (@, P) < TR

| =

~ 3

If we take in (3.15) f (t) = f, (t) = 1—t

Rl—apl—a
q Rl q—r
<
—z<1-q>( pat ) X(@.F

<10y (s )<R—T>

provided that @, P € S; (M), with P, @ invertible and satisfying the
condition (3.14).

(3.19) 0<S; (Q,P) (Rl_q _ Tl_q) V(Q,P)

4. Other Reverse Inequalities

Utilising different techniques we can obtain other upper bounds for
the quantum f-divergence as follows. Applications for Umegaki relative
entropy and y2-divergence are also provided.

THEOREM 6. Let f : [0,00) — R be a continuous convex function
that is normalized. If Q, P € Sy (M), with P invertible, and there
exists R > 1 > r > 0 such that the condition (3.14) is satisfied, then

(R=1) f(r)+(1—r)f(R)
R—r ’

(4.1) 0< 5 (Q.P) <

Proof. By the convexity of f we have

=g (B=Or AR (Ro0]0) 0] B
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for any ¢t € [r, R] .
This inequality implies the following inequality in the operator order

of B(M)

(Rlm —Rgp) f(r) + Rlgr —rlm) f(R)
R—r ’

f(Rlgr) <
which can be written as

(4.2)  (f (gr)T,T),

f(r)

< T Ry~ 2gn) 1), + L)

<(2[Q,p — TlM) T, T>2

R—r
for any T € M.
Now, if we take in (4.2) T = PY2, P € S; (M), then we get the
desired result (4.2). O

REMARK 4. If we take in (4.1) f (t) = t* — 1, then we get

R+1r+2
R—r

for @, P € S1 (M), with P invertible and satisfying the condition (3.14).
If we take in (4.1) f (¢) = tInt, then we get the inequality

(4.3) 0<X*(QP)<(R-1)(1—r)

(R—1)r R(1—7)

(4.4) 0<U(Q,P)<In|r =+ R r—r

provided that @, P € S; (M), with P, @) invertible and satisfying the
condition (3.14).

If we take in (4.1) f (t) = —Int, then we get the inequality
(4.5) 0<U(PQ) <l [r%R%}

for Q, P € Sy (M), with P, @ invertible and satisfying the condition
(3.14).

We also have:

THEOREM 7. Let f : [0,00) — R be a continuous convex function
that is normalized. If Q, P € Sy (M), with P invertible, and there
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exists R > 1 > r > 0 such that the condition (3.14) is satisfied, then
(R

(4.6) 0<5(Q,P)< _Rl)_g_ r) U (1;7, R)

(R-1)(—r) .
< —F- tesg:%)‘Pf(t,r,R)
fL(R) — [ (r)

R—r

<(R-1)(1—r)

FR-F()_fO-F0)

(4.7) \I/f(t;T,R): R_t PR
We also have
(4.8) 0<5;(Q,P) < (R _Rl)_(i_ r) Uy (1;7, R)
< ;L(R—r)\lff(l;'r,R)
< ! (R—r) sup Uy (t;r, R)
4 te(r,R)
1
< JR-1) [L(R) - 110

Proof. By denoting

(t—r)f(R)+R—-1t)f(r)
R—r

Af(t;r, R) = —f(t), telrR]

we have

(4.9) A (t:r,R) = t—r)f(R)+(R—t)f(r)— (R—7)f(t)

R—r
=) fR) AR f(r) - (T—t+t—7)f(t)
R—r
=) fB) O - (R=D[f )= f()]
M—m
— (R _Bf)—(l;_ T)\Ilf (t;r, R)

for any t € (r, R).
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From the proof of Theorem 6 we have

(4.10) (f (Aq.p)T,T),

< % (Rlp —Rp) T.T), + % (Rgp —r1m) T, T),
<<QLQ,PT7 T>2 - T) .f (R) + (R - <91Q,PT, T>2) f (T)

R—r

for any T e M, ||T]|, = 1.
This implies that

(4.11)

0<(f(QAqpr)T.T), - f ((Ae.rT.T),)

(T, T), — 1) f(R) + (R — (Uq.pT.T)y) f (r)
R—r

= Af (<QLQ,pT, T>2 , T R)

_ (R=(QrT\T),) (Uo.rT.T), — 1)

< — [ ((A.pT, T),)

Uy ((Ag.pT,T)y ;1 R)

R—r
for any ' e M, ||T||, = 1.
Since
(4.12)
U, ((Q[Q}PT, T),;r, R) < sup ¥y (t;r, R)
te(r,R)
B fR)—f@#) f@)—[f(r)
T | R—t T t—r }
f(R)—f(t) f@) = f(r)
<o (S
B f(R) - f(2) [ S@) = f(r)
_tes(l:%) i R—1t } —telg;){ t—r }
= fL(R) = fi(r),
and, obviously
1 1
(4.13) = (R= RlorT\T),) (RorT,T), —r) < 7 (R—71),
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then by (4.11)-(4.13) we have
(4.14)

0<(fRler)T,T),— f
(R — (Ao pT, T> ) (

(.pT.T),)
AorT 1)y = 1)

o~ —

f (<QLQ,PT7 T>2 3Ty R)

< (e = (Ao, T>2) ((Ao,pT, T)y — 1) sup Wy (t;r, R)
-r te(r,R)
< (R - (QgrT,T),) (QgrT T), —r) L =S 0

- T

< TR0 [ (R) - £1.0)]

for any T e M, ||T||, = 1.

Now, if we take in (4.14) T' = P2 then we get the desired result
(4.6).

The inequality (4.8) is obvious from (4.6). O

REMARK 5. If we consider the convex normalized function f(t) =
t2 — 1, then

RQ_tQ t2_7,.2

\If ) = — — —

7t R) T — R—r, te(r,R)
and we get from (4.6) the simple inequality

(4.15) 0<X*(Q.P)<(R-1)(1—r)

for @, P € Sy (M), with P invertible and satisfying the condition (3.14),
which is better than (4.3).
If we take the convex normalized function f(t) = t~! — 1, then we

have
R1—tt ¢t 1—pt R—7p
U, (t:r,R) = — = t R].
rltr ) =—p— t—r e Lentl

Also
Sr(Q,P) =x*(P.Q).
Using (4.6) we get
R—1)(1-r)
4.16 0<x?(P < (
(4.10) <y (@ < E=
for @, P € S; (M), with @ invertible and satisfying the condition (3.14).
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If we consider the convex function f(¢) = —Int defined on [r, R] C
(0,00) , then
—InR+Int —Int+Inr
Ue(t;r,R) = _
st R) R —
(R—=7r)lnt—(R—t)Inr —(t—r)InR
a (M —t) (t —m)
(R—r N\ O
= ID(W> ,t€<T,R).
Then by (4.6) we have
“R - —1)(1—
(4.17) 0<U(P,Q) <l [T%RR;} < (R )]é r)
r

for Q, P € S; (M), with P, @ invertible and satisfying the condition
(3.14).

We also have:

THEOREM 8. Let f : [0,00) — R be a continuous convex function
that is normalized. If Q,P € S; (M), with P invertible, and there
exists R > 1 > r > 0 such that the condition (3.14) is satisfied, then

(4.18) 0<8(QP) <2 {M—f(#)}

Proof. We recall the following result (see for instance [4]) that pro-
vides a refinement and a reverse for the weighted Jensen’s discrete in-
equality:

(4.19) n egun {pi} [%Zf(xz) — f (%le)]

.....

1 & 1 <
< — if(i)_f<_ zz)
<n E?llax {pi} [% ;:1 flz)—f <% ;:1 %)] )

where f : C' — R is a convex function defined on the convex subset C'

of the linear space X, {z;},c; ,, C C are vectors and {p;};c(; ,, are
nonnegative numbers with P, := > "  p; > 0.

.....
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For n = 2 we deduce from (3.6) that

(4.20) 2min {s,1 — s} {M —f (;1: + y)]

<sf(@)+ (1 =s)f(y) = f(sz+(1-5)y)
< 2max{s,1— s} lM—f(x+y)]

for any z,y € C and s € [0,1].

Now, if we use the second inequality in (4.20) for = = r, y = R,
s = =L with ¢ € [r, R], then we have

§2ma><{§:i’;__i} [f(r);f(R) _f<7“J;R>}

- {1+R2_T t_“;RH {f(r)ﬂ;f(R) _f<TJ;R)}

for any t € [r, R].
This implies in the operator order of B (M)

(Rlm —RUgp) f (%tfiQf —rin) f(R) f(Rlgr)

 [fosim ()]

2

2 r+ R
1 — | — 1
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which implies that
(4.22)

0<(fRgpr)T,T)y— f ((ArT,T),)

((Q[Q pT,T), —7) f(R)+ (R — (Ao, pT,T),) f (r)
R—r

()]
e <\%P“§RW\T’T>J
phyn ()

for any T'e M, ||T]|, = 1.

If we take in (4.22) T = PY2 P € S; (M), then we get the desired
result (4.18). O

—f ((QlQ,PTv T>2)

IN

IN

REMARK 6. If we take f (t) =¢* — 1 in (4.18), then we get
1
0<x*(Q.P) < 5 (R=1)°

for @, P € S; (M), with P invertible and satisfying the condition (3.14),
which is not as good as (4.15).
If we take in (4.18) f (t) = ¢! — 1, then we have

2 (R— 7")2
(4.23) 0<x*(P,Q) < m

for @, P € S; (M), with P invertible and satisfying the condition (3.14).
If we take in (4.18) f (t) = —Int, then we have

(R+r)*
(4.24) 0<U(PQ) < (W)

for Q, P € S1 (M), with P invertible and satisfying the condition (3.14).
From (3.18) we have the following absolute upper bound

(R )’
4rR
for @, P € S; (M), with P invertible and satisfying the condition (3.14).

(4.25) 0<U(P,Q) <
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Utilising the elementary inequality Inx < x — 1, > 0, we have that

(R+1)") _ (B=r)
4rR ~ 4rR

which shows that (4.24) is better than (4.25).
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