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SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS
WHOSE PARTIAL DERIVATIVES IN ABSOLUTE VALUE ARE PREINVEX
ON THE CO-ORDINATES

Muhammad Amer Latif and Sever S. Dragomir

Abstract. In this paper we point out some inequalities of Hermite-Hadamard type for
double integrals of functions whose partial derivatives in absolute value are preinvex on
the co-ordinates on rectangle from the plane. Our established results generalize some
recent results for functions whose partial derivatives in absolute value are convex on the
co-ordinates on the rectangle from the plane.

1. Introduction

The following definition is well known in literature:
Afunction f: 1 - R, @ # | C R, is said to be convex on I if the inequality

f(AX+ (A -A)y)<AfX)+1-A)f(y)

holds for all x, y e  and A € [0, 1].

Many important inequalities have been established for the class of convex func-
tions but the most famous is the Hermite-Hadamard’s inequality. This double
inequality is stated as:

b f f(b
(1.1) f(%b)sﬁfa f (%) dx < #

where f : | - R, @ # | C Risaconvex function, a,b € | witha < b. The inequalities
in (1.1) are in reversed order if f is a concave function.
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The inequalities (1.1) have become an important cornerstone in mathematical
analysis and optimization and many uses of these inequalities have been discovered
in a variety of settings. The Hermite-Hadamard inequality (1.1) has been extended,
refined and generalized in a number of ways, see for instance [6, 7, 9, 20, 24, 29, 32,
34] and the references therein.

In recent years, lot of efforts have been made by many mathematicians to gen-
eralize the classical convexity. These studies include among others the work of
Hanson in [12], Ben-lIsrael and Mond [6], Pini [26], M.A.Noor [21, 22], Yang and Li
[35] and Weir [34]. Mond [6], Weir [34] and Noor [21, 22], have studied the basic
properties of the preinvex functions and their role in optimization, variational in-
equalities and equilibrium problems. In [12], Hanson introduced invex functions as
a significant generalization of convex functions. Ben-Israel and Mond [6], gave the
concept of preinvex function which is special case of invexity. Pini [26], introduced
the concept of prequasiinvex functions as a generalization of invex functions.

Let us recall some known results concerning invexity and preinvexity

Let Kbeaclosed setin R"and let f : K- Rand n: Kx K — R" be continuous
functions. Let x € K, then the set K is said to be invex at x with respect to n (-, -), if

x+1tn(y,x) e K, Vx,y e K, t€[0,1].

K is said to be an invex set with respect to n if K is invex at each x € K. The
invex set K is also called a n-connected set.

Definition 1.1. [34]The function f on the invex set K is said to be preinvex with
respect to 7, if

f(u+tn(v,u)) < (1 -t) f(u) +tf(v),Yu,ve K te[0,1].
The function f is said to be preconcave if and only if —f is preinvex.

It is to be noted that every convex function is preinvex with respect to the map
n(x,y) =x -y but the converse is not true see for instance [34].

In the recent paper, Noor [20] has obtained the following Hermite-Hadamard
inequalities for the preinvex functions:

Theorem 1.1. [20]Let f : [a,a + 1(b,a)] — (0, o) be a preinvex function on the interval
of the real numbers K° (the interior of K) and a, b € K° with a < a + n(b,a). Then the
following inequality holds:

2a + 1(b, a) 1 [eea f (a) + f (b)
1.2) f( > )s T](b/a)fa f(x)dxsT.

Barani, Ghazanfari and Dragomir in [2], presented the following estimates of
the right-side of a Hermite- Hadamard type inequality in which some preinvex
functions are involved.
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Theorem 1.2. [2]Let K C IR be an open invex subset with respect to  : K x K — R.

P
Suppose that f : K — R is a differentiable function. Assume p € R with p > 1. If |f'|*”
is preinvex on K then, for every a,b € K with (b, a) # 0,

f(a) + f(a+n(b,a) 1 a+7(b,a)
(13) . _nmml £ ()dx

p1
P

PN
nb,a) ||[f @+t o)
2 1+ p)% 2

Theorem 1.3. [2]Let K C IR be an open invex subset with respect to  : K X K — RR.
Suppose that f : K — R is a differentiable function. If | f’) is preinvex on K then, for every
a,b e Kwithn(b,a) #0,

a+1(h,a)
(1.4) f(a) + f(a2+ n (b, a)) B n(; . f U o0

1 (b, a)
8

<

(f @]+t (b)|).

For more recent results on Hermite-Hadamard type inequalities for preinvex,
log-preinvex functions, we refer the readers to the latest papers of M. Z. Sarikaya
et. al, [30].

Let us consider now a bidimensional interval A =: [a,b] x [c,d] in R?> witha < b
andc < d. Amapping f : A — R is said to be convex on A if the inequality

f(AX+ QA -A)z, Ay + (L = A)w) < Af(X,y) + (L= A)f(z,w),

holds for all (x,y), (z,w) € Aand A € [0, 1].

A modification for convex functions on A, known as co-ordinated convex func-
tions, was introduced by S. S. Dragomir [10] as follows:

A function f : A - R is said to be convex on the co-ordinates on A if the partial
mappings fy : [a,b] — R, fy(u) = f(u,y) and f; : [c,d] = R, fx(v) = f(x,v) are
convex where defined for all x € [a,b], y € [c, d].

A formal definition for co-ordinated convex functions may be stated as follows:

Definition 1.2. [15] A function f : A — R is said to be convex on the co-ordinates
on A if the inequality

f(tx+ (1 -y, su+ (L —s)w)
<tsf(x,u)+t(1 —s)f(x,w)+s(L-t)f(y,u) + (L -t)(L-5s)f(y,w),

holds for all t,s € [0, 1] and (x, u), (Y, w) € A.



260 M. A. Latif and S.S. Dragomir

Clearly, every convex mapping f : A — IR is convex on the co-ordinates but
converse may not be true [10].

The following Hermite-Hadamard type for co-ordinated convex functions on
the rectangle from the plane IR? were established in [10]:

Theorem 1.4. [10] Suppose that f : A — R is co-ordinated convex on A, then

a+b c+d 1 1 b c+d 1 d la+b
(1.5) f( 5 )s—[b_af f(x, 5 )dx+d—cfc f( 5 ,y)dy]
F e c)fff(”)dydx

s%[ml[f(xc)+f(xd)]dx+—f [f(ay)+ f(b, y)]dy]

- f(a,c)+ f(ad)+ f(bc)+ f(bd)
< ) .

The above inequalities are sharp.

For several recent results on Hermite-Hadamard type inequalities for functions
that satisfy different kinds of convexity on the co-ordinates on the rectangle from
the plane IR? we refer the reader to [1]-[4], [10]-[11], [15]-[17], [25]-[28] and [33].

By using the following lemma:

Lemmal.l. [21, Lemmal]Let f:AcCcR?> — ]R be a partial differentiable mapping on

A = [a,b] x [c,d] in R? witha < b, ¢ < d. If % € L(A), then the following equality
holds:

f(a,c)+ f(ad)+ f(bc)+ f(bd) 1 b d
(1.6) ) +(b_a)(d_c)£[f(x,y)dydx
b d
-%[ﬁfa [f(x,c)+f(x,d)]dx+ﬁfc [f(a,y)+f(b,y)]dy]

_b-ayd-o [ [T 9*f (ta+ (1 - t)bsc+(1—s)d)
-2t fofo(l—zt)(l—zs) -

Sarikaya, et. al [33], proved the following Hermite-Hadamard type inequalities
for differentiable co-ordinated convex functions:

Theorem 1.5. [21, Theorem 2, Page 4] Let f : A ¢ R? — R be a partial differentiable

mappingon A := [a, b]x[c,d] in R? witha < b, ¢ < d. If ' is convex on the co-ordinates

otds
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on A, then one has the inequalities:

f(a,c)+ f(a,d)+ f(bc)+ f(bd) 1 b d
(1.7 ' +(b_a)(d_c)faj;f(x,y)dydx—A‘

4

20| | |Ptad| | |P1og| , |26
_b-a)d-o| | T ows | T 9w || s
- 16 4 !

where
b d
A:%[ﬁfa [f(x,c)+f(x,d)]dx+ﬁfc [f(a,y)+f(b,y)]dy]-

Theorem 1.6. [33, Theorem 3, Page 6-7] Let f : A ¢ R? — IR be a partial differentiable
q

mapping on A := [a,b] x [c,d] in R? witha < b, ¢ < d. If |%

co-ordinates on A, then one has the inequalities:

f(a,c)+ f(ad)+ f(bc)+ f(bd) 1 b
(1.8) | +(b_a)(d_c)fa£f(x,y)dydx—A‘

, g > 1, is convex on the

4

q q q NG

2%f(ac)
otds

2% (a,d)
otds

2% (b,c)
atds

9% (b,d)
otds

S(b—a)(d—ZC) ,
4(p+1)r 4

where

1[ 1 1
A:E[m]; [f(x,c)+f(x,d)]dx+mfc [f(a,y)+f(b/y)]dY]
and%+%:1.

Theorem 1.7. [33, Theorem 4, Page 8-9]Let f : A ¢ R? — R be a partial differentiable

q
mapping on A = [a,b] x [c,d] in R? witha < b, ¢ < d. If |%
co-ordinates on A, then one has the inequalities:

f(a,c)+ f(a,d)+ f(bc)+ f(bd) 1 b d
(9) | ea@al . f(x’y)dde_A‘

, g =1, is convex on the

4

q q q N

P 1(ac) 9 (a,d) P 1(b,ec) & 1(b,d)
< (b—a)(d-c) atds atds Jtds atds

- 16 4 ’

b d
A:%[ﬁfa [f(x,c)+f(x,d)]dx+ﬁfc [f(a,y)+f(b,y)]dy]-
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In a recent paper, M. Matloka [19] introduced a new class of functions which
are (hy, hy)-preinvex on the co-ordinates and established some Hermite-Hadamard
and Fejér type inequalities for this class of functions.

Motivated by the results established in [19], the main aim of the present paper
is to define preinvex functions on the co-ordinates and to establish some Hermite-
Hadamard type inequalities for functions whose second order partial derivativesin
absolute value are preinvex on the co-ordinates. Our established results generalize
those result proved above in Theorem 1.5-Theorem 1.7.

2. Main Results

In this section we first give notion of preinvex functions on the co-ordinates which
generalize the classical convexity on the co-ordinates and then we prove some
inequalities of Hermite-Hadamard type for such functions.

Definition 2.1. [19] LetK; and K; be non-empty subsets of R" and letn; : K;xK; —
R" and 1, : Kz x K, — R". We say K; x K; is invex with respect to n; and n, at
(u,v) € Ky x K; if for each (x,y) € Ky X K; and t, s € [0, 1], we have

(u + tni(x, u), v+ sn2(y, v)) € K1 X Ka.

K1 X K is said to be invex set with respect to n; and n, if K; X K; is invex at each
(u,v) € Ky X K.

Definition 2.2. Let K; x K3 is invex set with respect to n; : K; x Ky — R" and
N2 @ Ko Xx Kz = R". A function f : K; x K; — R is said to be preinvex if for every
(x,¥), (u,v) e Ky xKy and t € [0, 1], we have

f(u+tni(xu),v+tn(y,v) < Q-1 f(xy)+tf(uv).

Definition 2.3. Let K; X K, be an invex set with respect to 1; : Ky x Ky — R" and
N2+ KaxKz; = R". Afunction f : Ky xK; — Ris said to preinvex on the co-ordinates
if the partial mappings fy : K1 = R, fy (u) = f (u,y)and fy : K = R, fx (v) = f (X, V)
are preinvex with respect to n; and n, respectively for all y € K; and x € Kj.

Remark 2.1. If ;1 (x,u) =x —uand 1, (y,v) = y — v then f will be a convex function on the
coordinates.

Remark 2.2. From the Definition 2.3 it follows that if f is preinvex on the co-ordinates on
Ki X K, then

f (U + tTh(Xz U),V + 5772()// V))
<A-t)@A-9)fUv)+Q-1t)sf(uy)
+ (1 =s)tf(x,v) +tsf(x,y).
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Remark 2.3. Every convex function on the co-ordinates is preinvex on the co-ordinates but
the converse in not true. For example the function f(u,v) = —|u||v| is not convex on the
co-ordinates but it is a preinvex function on the co-ordinates with respect to the mappings
u-z, u>0,z>0andu<0,z<0
m(u,z) =

z—u, otherwise

and

v—w, v>0w>0andv<0,w<0

w—vV, otherwise
The following Lemma is essential to establish our results:

Lemma2.1. Let K; x K, be an open invex subset of IR? with respect to the mappings
m : KixKy = Rand g, @ Ky x K — IR Suppose f : K; x K, — R be a twice

partial differentiable mapping such that % e L([a,a+tni(b,a)] x[c,c+sn(d,c)]) with
n1(b, @) # 0, n2(d, c) # 0, where a, b € Ky and ¢, d € K,. Then the following equality holds:

2.1) f@c)+f(ac+n(dc)+fa+nba),c)+fa+n(ba),c+n2(dc))
' 4

1 a+11(b,a) C+1)2(d,C)
+ f (x,y)dydx — A’
(0,3 7z (ol,c)fa f G y)dy

~mban(d,0) [
- o fofo(l—Zt)(l—Zs)

d%f (a+ tnu(b, a), c + sn2(d, c))
X
dtds

dtds,

where

) 1 a+11(b,a)
A :mf [f(x,¢) + f (x, ¢ + 12 (d, ¢))] dx
7 a

1 C+12(d,C)
+mf [fay)+f(@+ni(ba),y)]dy.
’ c
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Proof. By integration by parts with respect to t, we have

If(a+m(ba)ctsna(de))  f(actsna(d,)

m,an(dc) 25 7
2 TS fo 1 25)[ 0

1
2 f df (a+tn(b,a),c+sna(d, c)) dtlds
T]l(b/a) 0 Js

T?z(d/ C) fl (1 _ 25) of (a + T]l(b/ a),c + ST]Z(d/ C))dS
0

4 ds
_ na(d,0) fl o 9f (@ c+smp(d, )
7 | (1-2s) s ds
. 12(d, €) fl fl (129 df (a+tny(b,a),c+ sna(d, C))dsdt.
2 o Jo as

Integrating each integral on right hand side of (2.2) by parts with respect to s and
using the substitution x = a + tni(b,a) and y = ¢ + sny(d, ), we get the desired
identity. This completes the proof of the lemma. O

Theorem 2.1. Let Ky x K be an open invex subset of IR? with respect to the mappings
m : KixKy —» Rand 2 : K; x Ky — R, Suppose f : K; X Kz — R be a twice

2

partial differentiable mapping such that % e L([a,a+tni(b,a)] x[c,c+sn(d,c)]) with
m(b,a) > 0, n2(d,c) > 0, where a, b € Ky and ¢, d € Ky. If '%' is preinvex on the
co-ordinates on K; X Ky, then the following inequality holds:

f@ac)+f(ac+mn(dc)+fla+n(ba),c)+fla+ni(ba),c+n(dc)
4

1 a+11(b,a) C+1)2(d,C)
+— f(x,y)dydx — A’
wean@sl L e ‘

Piag)|  |Rfad)| | |fbe| | [2fbd)
_m (b,a)n2(d,c) || Fws || s | T | os | T | o
- 16 4 !

(2.3)

where A" is as defined in Lemma 2.1.

Proof. From Lemma 2.1 we have:

2.4) |f(a,c)+ f(a,c+mn(dc)+fla+n(ba),c)+fla+ni(ba),c+n(dc)
' 4

1 a-+11(b,a) C+1)2(d,C)
+— f(x,y)dydx — A’
wean@sl L e ‘

b,a)n(d,c) ([ 2% (a+tnu(b d
SO ,c)f f L 211 29 (a+ tnu(b,a), ¢ +smz(d, ¢))
4 o Jo dtds

dtds
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2
By preinvexity of '%| on the co-ordinates on K; X K;, we have

f@c)+f(ac+mn(dc)+fla+n(ba),c)+fla+ni(ba),c+n(dc)

(2.5) | .
1 fa+q1(b,a) C+1)2(d,C) ,
P R f(x,y)dydx — A
sean@al ) (e
m(b,a)n2(d, c) [|9*f (a,¢) fl fl o1
< i T 11— 2t|[1 - 25 (1 — t) (1 — s) dsdt
atas — 1) sdsdt
St —s)dsdt
otds
Since
1 1
f|1—2t|(1—t)dt = [PQ-20-tdt- [/ (1-2t) (-t
O 2
_1
4
and

1 3 1 1
f |1 -2t/ tdt = f (1—2t)tdt—f (1-2t)tdt = —
0 0 3 4

Making use the above in (2.5), we get the inequality (2.3). This completes the proof
of the theorem. O

Theorem 2.2. Let K; x K be an open invex subset of IR? with respect to the mappings
m : KixKy = Rand g, : Ky x K — IR Suppose f : K; x K, — R be a twice
partial differentiable mapping such that % e L([a,a+tni(b,a)] x[c,c+sn(d,c)]) with
ni(b,a) > 0, n2(d,c) > 0, wherea, b € Ky and ¢, d € Ky. If |% ! is preinvex on the
co-ordinates on K; X Ky, g € (1, 00), then the following inequality holds:

f@c)+f(ac+n(dc)+fa+nba),c)+fa+n(ba),c+n2(dc))

(2.6)

4
1 a+11(b,a) C+1)2(d,C)
— f(x,y)dydx — A’
m (b,a)n2(d, c) fa .[ ()
2f@c)|d  |2fad)|?  |2toe) T |2 f(bd)|d 3
171 (b,a)n2(d,c) | | 9tos Itos IJs 9ts

4(p+1)p 4 '
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where A" is as defined in Lemma 2.1 and % + % =1.
Proof. From Lemma 2.1 and Holder’s integral inequality, we have:

f(ac)+ f(ac+mn(dc)+f@+n(ba),c)+f(a+ni(ba),c+n(dc))
4

1 +n1(ba)  ~e+2(d,0)
—_ f (x,y)dydx — A
n (b,a) 12 (d,C)faa fc G y)dy ‘

1
b, a)n2(d, ¢ Y E
<BOIOI[F Ly oo asa
0 0

Lt 92f (a+ tnu(b,a), ¢ + sn(d, ©)
<[ [

dtos
q
is preinvex on the co-ordinates on K; x Ky, we have

2.7)

q 4
dtds)

. Rf
Since |m

28) folfol

92f (a+ tny(b, a), ¢ + sna(d, ¢))|*

St dtds

< azf(a'c)qflfl(l—t)(l—s)dtds+ aZf(a'd)qflfl(l—t)sdtds
~| dtods o Jo Jtds o Jo
&Zf(b’c)qflfl(l—s)tdtds+ &Zf(b'd)qflfltsdtds
otds o Jo otds o Jo
1[|2f @' [02f @ d)|* [0%f (b,c)|" |0%f (b, d)]|*
- Z[ ItJs s ItJs Js ]

Using (2.8) and

1 1 1
f f |1 —2t° |1 — 2s|° dtds = —
o Jo (p+1)

in (2.7) gives us the desired inequality (2.6). This completes the proof of the
theorem. O

Theorem 2.3. Let K; x K be an open invex subset of IR? with respect to the mappings
m Ky xK; = Rand 2 1 Ky x Ky = IR, Suppose f : K; X K; — R be a twice partial
differentiable mapping such that

2

3t © L([a, a+tni(b,a)] x [c,c + sn2(d, c)])

22 |d

with n1(b,a) > 0, n2(d,c) > 0, wherea, b € K; and ¢, d € Ky. If |§ is preinvex on the
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co-ordinates on Ky X Ky, g € [1, o0), then the following inequality holds:

f@c)+f(ac+mn(dc)+f(a+n(ba),c)+fla+ni(ba),c+n(dc)

(2.9)

4
1 a+ni(ba)  e+a(d,C) /
+m£ fc f(XIY)dde—A‘
2iol [21adf | |2i60]0  [216a [\
- mban(de)| | s s o
) 16 4 ,

where A is as defined in Lemma 2.1.

Proof. For g = 1, the proofis similar to that of Theorem 2.1. Suppose now thatq > 1
then from Lemma 2.1 and the power-mean integral inequality, we have:

f(ac)+ f(ac+mn(dc)+f@+mn(ba),c)+f(a+ni(ba),c+n2(dc))
4

1 a+11(b,a) C+1)2(d,C)
+— f(x,y)dydx — A’
m(b,a)nzw,c)fa f Gy ‘

1-1

b,a)n2(d,0) ( [ [ q
< B0 (1" (") oy
0

1 1 2f
><(ffll—zt||1_2|a (@ + tu(b,a), ¢ + sna(d, ) [
0 Jo

dtds
q
is preinvex on the co-ordinates on K; x K;, we have

(2.10) ‘

dtds )

. Rt
Since

s
92f (a+ tny(b,a), ¢ + sna(d, ¢))|*

1 1
(2.11) fof|1—2t||1—25| S5

2
&f(aC) ff(l_t)(l_sm 2t||1 — 2s| dtds

atos
—t)s|1 - 2t||1 — 2s| dtds
82f (b, c)|*

Jtds ff(l_s)m 2t||1 — 2| dtds
82f(b d)|°
fftSIl 2t||1 — 2s| dtds

oatos
*f (a,¢)|* %f (b, c)|*
16 otds otds

dtds

otds

|

otds otds
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1 1 1
f f |1 —2t]]|1 — 2s|dtds = =
0 0 4

in (2.10) gives us the desired results. O

Using (2.11) and

Remark 2.4. Since % < ( 1)2 < 1, if p > 1; the estimation given in Theorem 2.2 is better
1+p)P
than the one given in Theorem 2.3.

Remark 2.5. If n1(b,a) = b —a and n(d,c) = d — ¢, then we get those results proved in
Theorem 1.5-Theorem 1.7 from [21]. This also reveals that our results are more general than
those proved in [21].
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