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Purpose. To identify noninvasive immune biomarkers of exercise-induced immunosuppression using the iTRAQ proteomics
technique. Methods. Fifteen healthy males were recruited and subjected to a four-week incremental treadmill running training
program. After each week of training, WBC counts and CD4+ and CD8+ lymphocytes were measured to monitor the immune
function status. iTRAQ proteomics technology was used to identify differential proteins and their characteristics in urine. Results.
Our data showed that theWBC counts, CD4+ lymphocytes, and CD4+/CD8+ ratio decreased by more than 10% after four weeks of
training, suggesting exercise-induced immunosuppression. A total of 1854 proteins were identified in urine during the in-
cremental running using the iTRAQ technology. Compared with the urine before training, there were 89, 52, 77, and 148 proteins
significantly upregulated and 66, 27, 68, and 114 proteins significantly downregulated after each week, respectively. Among them,
four upregulated proteins, SEMG-1, PIP, PDGFRL, and NDPK, increased their abundance with the increased exercise intensity.
Bioinformatics analysis indicates that these proteins are involved in stress response and immune function. Conclusion. Four weeks
of incremental treadmill running induced immunosuppression in healthy males. By using iTRAQ proteomics, four proteins in the
urine, SEMG-1, PIP, PDGFRL, and NDPK, were found to increase incrementally with the increased exercise intensity, which have
the potential to be used as noninvasive immune biomarkers of exercise-induced immunosuppression.

1. Introduction

Exercise-induced immunosuppression is a commonmedical
problem that affects the training regimen in competitive
sports [1]. During exercise-induced immunosuppression,
the symptoms caused by acute respiratory infections may
interfere with training and lead to the decline of mental
attention, muscle strength, and aerobic ability during
training for elite athletes [2, 3]./ese symptoms significantly
affect sports training and sports performance and increase
athletes’ risk of further illness and injury [1]. Although a
large number of studies have shown that nutrient supple-
mentation can effectively prevent the occurrence of exercise-
induced immunosuppression [4–6], there are also studies
suggesting that nutrient supplementation does not blunt the
prolonged exercise-induced reduction in immunity [7].

/erefore, it is important to understand the characteristics of
immune function with increased training load, which will
play an important role in the early recognition and inter-
vention of exercise-induced immunosuppression [8].

/e degree of long-term exercise-induced impairment in
the immune function of athletes mainly depends on exercise
intensity [9, 10]. In 1902, Larrabee reported for the first time
that the exercise load of a marathon exceeded the limits that
the body could tolerate, as the body’s inflammatory response
such as phagocytosis was evident, and neutrophils increased
significantly after a marathon race [11]. In the absence of
food intake, long-term (>1.5 hours) moderate to high-in-
tensity (50%–77% VO2max) exercise leads to the highest
degree of immunological impairment [1]. In general,
moderate exercise, defined as exercise intensity in the range
of 40% to 60% of the maximum heart rate (HRmax) for 5 to
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60 minutes, can enhance the body’s immune function and
reduce the incidence of upper respiratory tract infection
(URTI) [12–14]. Excessive exercise, defined as 70% to 80% of
HRmax for more than 60 minutes, has been demonstrated to
have adverse effects on the immune system [15, 16]. As such,
the infection rate of athletes who perform intense training
increases significantly, indicating that once the training
intensity reaches a threshold, the greater the intensity, the
greater the immunosuppression and the risk of infection
[17]. As a result, the relationship between exercise intensity/
amount and URTI susceptibility forms a “J” curve [18–20],
and the period of immunosuppression after high-intensity
exercise is called “open window” period [18].

/e early prediction of immune function changes by
monitoring biomarkers in the course of high-intensity
training or in the early stages of the competition to avoid
exercise-induced immunosuppression is essential to opti-
mize sports training and competition. Changes in immune
response factors during intense training can be used as
indicators of overtraining [21]. Kakanis et al. [22] found that,
after 2 hours of 90% VO2 cycling exercise, CD4+ (/1//2)
cell levels changed immediately after exercise, while secreted
cytokines such as IL-2, TNF (/1), IL-6, and IL-10 (/2)
were altered 4 hours after exercise. Tuan et al. [23] conducted
high-intensity exercise training for 3 consecutive days on
healthy volunteers (VO2max 85%, 30min per day) and
found that the mitochondrial transmembrane potential
(MTP) of peripheral blood leucocytes decreased immedi-
ately and was still lower 24 hours after the last exercise bout,
which returned to normal level 72 hours after exercise. It is
believed that the mitochondrial transmembrane potential is
a functional marker of leukocyte viability and can be used to
monitor the immune function of short-term high-intensity
exercise. /e above studies have shown that although many
researchers try to find early diagnostic indicators of exercise-
induced immunosuppression, they only focus on limited
markers of immune function. /e testing of immunomo-
dulation indicators is complex and the monitoring of only a
single biomarker and/or one time point often fails to provide
a diagnosis [24]; thus, measuring the coexpression of
multiple biomarkers and at multiple time points is essential
for the diagnosis of immunomodulation [25].

Urine contains cellular and biochemical components
derived from glomerular filtration of plasma, renal tubular
excretion, and urogenital secretions [26]. Urinary proteins
have been used as a noninvasive biomarker that can accu-
rately monitor the body’s stress under various psycho-
physiological changes and identify the body’s condition in
strenuous or unaccustomed exercise, competitions, over-
training, and improper recovery in sports [27, 28]. Urine is
also an ideal source of biomarkers because it contains less
lipid and more polypeptides, which are much higher in
serum or tissue [29]. /e development of proteomics
technology provides a high-throughput, efficient, accurate,
and sensitive research platform and enables the investigation
of the relationship between exercise-induced immunomo-
dulation and urine protein components [30].

In recent years, iTRAQ has been widely used as an in
vitro labeling technique for polypeptides [31]. Extensive

research [32–38] has shown that the application of iTRAQ
technology can be used to identify disease-specific protein
markers. Utilizing iTRAQ proteomics, this study aimed to
determine the effects of 4 weeks of incremental treadmill
running on the characteristics of urinary proteomics and
then identify noninvasive immune biomarkers of exercise-
induced immunosuppression.

2. Methods

2.1. Participants. Fifteen healthy males were recruited from
the student cohort of Guangzhou Sport University. /e
inclusion criteria included the following: nonsmoker and
nondrinker, no regular high-intensity exercise training, no
medication two weeks before the experiment, and no severe
exercise or fatigue in the past three days. /e study was
approved by the Guangzhou Sport University Ethics
Committee. Subjects were informed of the aims and pro-
cedures of the study and provided written informed consent
prior to enrolment into the study. /e baseline character-
istics of the subjects are shown in Table 1.

2.2. Exercise Protocol. All subjects underwent maximum
oxygen uptake testing on a treadmill. /e VO2max protocol
began with an intensity of 8.0 km/h and consisted of in-
crements of 1 km/h every 1min by increasing the speed until
volitional exhaustion. /e criteria for reaching VO2max
were determined by meeting at least 2 of the following [39]:
(1) no further increase in oxygen uptake with increasing
exercise workload, (2) a respiratory exchange ratio greater
than 1.10, and (3) heart rate at or above the age-predicted
maximal (using equation 220-age). /e VO2max data was
utilized to determine the corresponding running speed [40],
and the subjects commenced 4-week incremental treadmill
training 5 days per week, with training intensity adjusted
each week [41]. Training intensity for the first week (W1)
was 60% VO2max; for the second week (W2), 70% VO2max;
for the third week (W3), 80% VO2max; and the fourth week
(W4), 90% VO2max. /e daily training program adopted an
intermittent training mode, and the total running time was
between 48 and 60 minutes. /e detailed training program
and the distance per week are shown in Figure 1.

2.3. Sample Collection. Before the training program, and at
the end of each training week, fasting venous blood and
midstream urine were collected at seven o’clock on each
Sunday morning. Briefly, venous blood was collected using
EDTA anticoagulant vacuum tubes to measure white blood
cell count in the whole blood and CD4+ and
CD8+ lymphocytes. /e white blood cell count was mea-
sured within 4 h after blood was drawn [42], and the CD4+
and CD8+ lymphocytes were measured within 6 h after
blood was drawn [43]. Following the collection of morning
midstream urine, protease inhibitor cocktail (PMSF,
1mmol/L, Amresco) was added to the urine samples to
avoid proteolysis [44]. Urine samples were placed in liquid
nitrogen and then stored at − 80°C until further analysis.
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2.4. Major Instruments and Reagents. /e ADVIA® 120
Hematology System and Full Blood Count Test Kit were
from Siemens, Germany. BD FACSCalibur, and FITCmouse
anti-human CD3, APC mouse anti-human CD4+, and PE
mouse anti-human CD8+, APC mouse IgG1, ƙ isotype
control, PE mouse IgG1, ƙ isotype control, FITC mouse
IgG1 ƙ isotype control, and CalibriteE 3-color kit were from
BD Biosciences, USA. 8-plex iTRAQ Kit was from AB Sciex,
USA. Pancreatin was from Promega, USA. First-dimension
high pH-RP liquid chromatography was measured via
Shimadzu HPLC, USA. Second-dimension liquid chroma-
tography was measured via /ermo Dionex Ultimate 3000
RSLCnano, USA. Mass Spectrometer was performed on a
/ermo Scientific Q Exactive, USA. /e ELISA Test Kits of
SEMG-1, PIP, PDGFRL, and NDPK were from Shanghai
Enzyme-linked Biotechnology Co., Ltd., China. /e Mul-
tiskan Spectrum was from /ermo Scientific, USA.

2.5. Whole Blood Leukocytes and 4eir Classification Tests.
White blood cell count, neutrophil count, and lymphocyte
count were measured using the ADVIA 120 hematology
analyzer according to the manufacturer’s instructions (Bayer
Corporation, Germany).

2.6. Lymphocyte CD4+ and CD8+ Tests. Blood cells were
analyzed on a FACScan (BD Biosciences, USA) equipped
with CellQuest® software./e flow cytometer was calibrated
and standardized with the CalibriteE 3-color kit before
analysis (IVD, BD Biosciences, USA), and then FITC-CD3,
PE-CD8, and APC-CD4 were analyzed by flow cytometry
using standard protocols provided by the manufacturer.

2.7. ExperimentalWorkflow of iTRAQ Labeling and Analysis.
In this study, the urine samples collected from all the par-
ticipants at baseline and at the end of each week were thawed

and combined into one urine sample for each time point and
labeled using iTRAQ Reagent 8-plex kit (Sciex). /e urine
sample before the commencement of the training interven-
tion (UW0) was labeled with labeling reagent 114, and the
urine samples following the first week of training (UW1), the
second week (UW2), the third week (UW3), and the fourth
week (UW4)were labeled with labeling reagents 115, 117, 119,
and 121, respectively. Each labeled urine sample was analyzed
twice via iTRAQ, with two technical replicates of each sample
[45]. /e basic flow of the iTRAQ quantitative proteomics
experiment [46] is shown in Figure 2.

2.8. Database Search and Screening for Differential Proteins.
Protein searches were performed using the ProteinPilotTM
Software 5.0 (AB Sciex). After the search was completed, the
unused value was selected in the database Uniprot human,
unused (ProtScore) for the search result (iTRAQ original
data), unused≥ 1.3 was set, and a protein with a confidence
level of 95% or more was set as the analysis target. Pro-
teinPilotTM FDR analysis was performed and the records
beginning with “RRRRRR” in the search results were re-
moved, and proteins with no quantitative information and
proteins with poor repeatability (|C.V|≥ 0.5) were removed.
On the basis of protein analysis, differential proteins were
screened. AVG≥ 1.5 was set to indicate an upregulated
protein, and AVG≤ 0.67 was set to indicate a downregulated
protein [47].

2.9. Bioinformatics Analysis. For the “co-upregulation” and
“co-downregulation” of differential proteins in incremental
treadmill running exercises, comprehensive biological
functional annotations were performed using the Uniprot
database website and DAVID data analysis software (http://
david.abcc.ncifcrf.gov/home.jsp) [48]. To obtain the overall
distribution of differentially expressed proteins in various

Table 1: Subject characteristics.

Age (y) Height (cm) Weight (kg) BMI (kg/m2) RPE Relative VO2max (ml/kg/min) HRmax (bpm)
19.2± 0.7 170.6± 4.9 61.55± 6.58 20.70± 1.41 6.1± 0.4 48.60± 4.98 200.7± 0.8
BMI: body mass index; RPE: ratings of perceived exertion.

39.73 ± 2.69(km) 46.20 ± 2.97(km) 42.16 ± 2.49(km) 47.73 ± 3.21(km)Distance
per week

60% VO2max
30min × 2

5min interval

Incremental running

Pr
er

un
ni

ng

M T W T F M T W T F M T W T F M T W T F 24h 48h24h 48h24h 48h24h 48h

W1

W2
W3

W4

70% VO2max
20min × 3

5min interval

80% VO2max
12min × 4

5min interval

90% VO2max
8min × 6

5min interval

Figure 1: Four-week incremental treadmill running program and the distance per week.
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Figure 2: Continued.
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functions, genetic enrichment analysis based on Gene
Ontology (GO) of biological processes, cellular component,
and molecular functions was performed, and the functional
information of differentially expressed proteins was ob-
tained. According to the biological functions of the differ-
ential proteins and the physiological reaction processes
involved in the organism, GO clustering was performed to
analyze the possible relationships between the differential
proteins and the signal pathways that these proteins may
participate in. /e differential protein interaction network
was analyzed by the string database [49, 50] (https://string-
db.org/) to observe the interaction patterns between the
differential proteins and to explore the relationship between
them and the changes in immune function during the in-
cremental treadmill running program.

2.10. ELISA Tests. /e protein content of SEMG-1, PIP,
PDGFRL, and NDPK was tested according to the manu-
facturer’s instructions of the ELISA test kits (Shanghai
Enzyme-linked Biotechnology, China), using a Multiskan
Spectrum (/ermo Scientific, USA).

2.11. Statistical Analysis. Data was analyzed using IBM SPSS
22.0 software. One-way ANOVA was used for analyzing the
related data. Data were expressed as mean± standard de-
viation. P< 0.05 was considered statistically significant.

3. Results

3.1. Changes in Immune Function

3.1.1. Changes in Leukocyte Counts in Blood. /e white
blood cell count showed a progressively decreasing trend
and was 15% lower by the end of the 4th week (W4) of the
incremental training, compared with that before training
(W0) (Table 2; P< 0.05). /e major reduction in leukocyte
counts was neutrophils, which progressively decreased
throughout the training program (W4 was 27.4% lower than
that of W0, Table 2; P< 0.05). /ere was no significant
difference in the lymphocyte count (Table 2).

3.1.2. Changes of CD4+ and CD8+ Lymphocytes in Blood.
/epercentage of CD4+ lymphocytes was 11.8% lower by the
end of the fourth week compared with W0 (Table 3;
P< 0.05). Conversely, the percentage of CD8+ lymphocytes
increased after 4 weeks of the incremental load training
program (by 27.3%, P< 0.05). Of note, there were also
significantly higher CD8+ lymphocytes at W1 (Table 3;
P< 0.05) and W3 (Table 3; P< 0.05). /e ratios of CD4+/
CD8+ lymphocytes were significantly lower in W1, W2, W3,
and W4 compared to W0 (Table 3; P< 0.05).

3.2. Differential Protein Status in Urine Proteomics during the
Change in Immune Function. By performing proteomics

Peptide length distribution

Pe
pt

id
e n

um
be

r

2000

1800

1600

1400

1200

1000

800

600

400

200

0

Peptide length
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 >30

(d)

Figure 2: iTRAQ labeling and basic data analysis. (a) Experimental workflow for iTRAQ labeling and analysis. iTRAQ 8-plex labeling was
performed on the collected urine samples. /e labeled fractions were combined and subjected to strong cation exchange (SCX) chro-
matography and desalting, followed by separation using liquid chromatography mass spectrometry (LC-MS/MS), and data analysis and
bioinformatics analysis. (b) Mass distribution of all the identified proteins. /e horizontal axis is the molecular weight of the identified
protein (Unit: kiloDalton, kDa). /e vertical axis is the number of proteins identified. (c) /e isoelectric point map of all the identified
proteins. /e horizontal axis is the isoelectric point of the identified protein and the vertical axis is the number of proteins identified. (d)
Peptide length distribution of all the identified proteins. /e graph shows the percentage of peptides of different lengths in all peptides. /e
abscissa is the number of peptide amino acid residues, and the ordinate is the number of peptides of this length.
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quantitative measurements in the urine, it was found that
there were differential proteins in the subject’s combined
urine samples after each one-week training period. As shown
in Table 4, compared with preexercise urine (UW0), there
were 87 upregulated and 64 downregulated proteins in the
urine after the first week of exercise (UW1). After the second
week of the exercise, the number of differential proteins in
urine (UW2) was significantly reduced. Subsequently, the
number of differential proteins in urine gradually increased
with the increase in exercise intensity, especially for the
number of differential proteins in urine after the 4th week of
intense exercise (UW4). Compared with UW0, both the
number of upregulated proteins and downregulated proteins
were almost doubled.

As shown in Figure 3 and Tables 5 and 6, further analysis
of the differential proteins showed that there were 15 co-
upregulated proteins and 9 co-downregulated proteins in the
urine after each week of training compared to UW0. Among
them, four upregulated proteins, including Semenogelin-1,
Prolactin-inducible protein, Platelet-derived growth factor
receptor-like protein, and Nucleoside diphosphate kinase,
increased with increasing exercise intensity. In addition,
some differential proteins increased with exercise intensity
from the second week of the exercise, such as Glycerol-3-
phosphate phosphatase, Secretogranin-1, Prosaposin, and
Nephronectin (Fragment). Some proteins also decreased
further with exercise intensity from the second week of the
exercise, such as Immunoglobulin kappa constant, Immu-
noglobulin lambda variable 3–21, Signal peptide CUB and
EGF-like domain-containing protein 2, and Uromodulin.

3.3. Bioinformatics Analysis. To further understand the role
of the above 24 differential proteins in immune function
during the incremental treadmill-training program, we used
the Uniprot database website and DAVID data analysis
software to analyze the signaling pathways that may be
related to these proteins and the possible differences between
these proteins. Figure 4 shows various GO enrichments of 24
differential proteins, including biological processes (top
three: immune system processes, transport, and small
molecule metabolic process), molecular functions (top three:

ion binding, antigen binding, and transmembrane trans-
porter activity), and cellular composition (top three: ex-
tracellular area, extracellular space, and plasma membrane).

3.4. Transcriptional Regulatory Network between Differential
Proteins. /e analysis of the 24 differential proteins inter-
action networks through the STRING database (https://
string-db.org/) was undertaken. No corresponding genes
were found for four proteins by the name in Homo sapiens,
including IGKC, IGLV3-21, IGLV4-69, and IGLV2-18, and
the genes of the other 20 proteins in the interaction network
are shown in Figure 5. For functional enrichment in the
network, biological process (GO), in the pathway analysis,
there are 10 genes count in gene set pathways of positive
regulation of response to stimulus (pathway ID, GO:
0048584). /is pathway also includes ten differential pro-
teins, namely, Apolipoprotein A-I (APOA1), Beta-2-gly-
coprotein 1 (APOH), Complement decay-accelerating factor
(CD55), Adhesion G-protein-coupled receptor G1 (Frag-
ment) (GPR56), Leucine-rich alpha-2-glycoprotein (LRG1),
Nucleoside diphosphate kinase (NME2), Nephronectin
(Fragment) (NPNT), Prosaposin (PSAP), Serotransferrin
(TF), and 14-3-3 protein zeta/delta (Fragment) (YWHAZ).
For molecular function (GO), there are two genes count in
gene set pathways of IgG binding (pathway ID, GO:
0019864). /is pathway also contains two differential pro-
teins, Prolactin-inducible protein (PIP), and Uromodulin
(UMOD). /is pathway is associated with the immuno-
logical function of the organism together with three other
proteins: Immunoglobulin lambda variable 3–21, Immu-
noglobulin lambda variable 4–69, and Immunoglobulin
lambda variable 2–18.

3.5. ELISA Validation. Four of the identified differential
proteins in the urine were validated by ELISA (Table 7).
During incremental running, the content of SEMG-1, PIP,
PDGFRL, and NDPK was increased with increasing exercise
intensity. Compared with W0 (before training), upregula-
tion was observed for PIP and NDPK from W1, SEMG-1
from W2, and PDGFRL from W3 (Table 7; P< 0.05).

Table 3: Changes of CD4+ and CD8+ lymphocytes in the blood during 4 weeks of incremental treadmill running.

W0 W1 W2 W3 W4
CD4+ (%) 54.66± 7.84 51.36± 6.26 50.90± 7.99 51.14± 5.25 48.19± 5.61∗∗
CD8+ (%) 32.23± 9.04 39.77± 7.81∗∗ 36.97± 8.46 38.26± 4.24∗ 41.03± 7.07∗∗
CD4+/CD8+ 1.88± 0.73 1.37± 0.47∗∗ 1.50± 0.58∗ 1.36± 0.25∗∗ 1.23± 0.36∗∗
∗p< 0.05; ∗∗p< 0.01, compared with W0.

Table 2: Changes of white blood cell counts and their classification counts during 4 weeks of incremental treadmill running.

W0 W1 W2 W3 W4
White blood cell count (×109) 7.03± 1.70 6.56± 1.34 6.25± 1.06 6.49± 0.94 5.97± 0.95∗
Neutrophil count (×109) 3.71± 1.61 3.22± 0.96 3.07± 0.68 3.16± 0.69 2.69± 0.60∗∗
Lymphocyte count (×109) 2.57± 0.50 2.61± 0.58 2.48± 0.37 2.58± 0.44 2.51± 0.64
∗p< 0.05; ∗∗p< 0.01, compared with W0.
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4. Discussion

In the current study, we found that WBC counts,
CD4+ lymphocytes, and CD4+/CD8+ ratio decreased after
four weeks of incremental treadmill training, suggesting
exercise-induced immunosuppression. By using iTRAQ
technology, we have identified a total of 1854 proteins in the
urine samples. Compared with the urine before training,

there were 89, 52, 77, and 148 proteins significantly upre-
gulated and 66, 27, 68, and 114 proteins significantly
downregulated after each week, respectively. Among them,
four upregulated proteins, SEMG-1, PIP, PDGFRL, and
NDPK, increased their abundance with the increased ex-
ercise intensity. We further used bioinformatics analysis and
found that these proteins are involved in stress response and
immune function. To our knowledge, this is the first study to

Table 4: Changes in the number of differential proteins in urine during exercise-induced immunosuppression.

Compared with UW0 Compared with UW1 Compared with UW2 Compared with UW3
Upregulation Downregulation Upregulation Downregulation Upregulation Downregulation Upregulation Downregulation

UW1 87 64
UW2 50 25 36 35
UW3 75 66 44 52 42 42
UW4 146 112 101 108 113 115 104 90

The amount of co-upregulated proteins

UW2/UW0

7 82

3 12

3

3

27

11 15

10

9

8 4

6 17

UW1/UW0 UW3/UW0

UW4/UW0

(a)

The amount of co-downregulated proteins

5 64

1 12

2

3

18

11 9

5

0

14 4

1 19

UW3/UW0

UW4/UW0UW2/UW0

UW1UW0

(b)

Figure 3: Compared with UW0, the amount of co-upregulated and co-downregulated proteins among the UW1, UW2, UW3, and UW4. (a)
/e amount of co-upregulated differential proteins./ere were 15 co-upregulated proteins in the urine after each week of training compared
to UW0. (b)/e amount of co-downregulated differential proteins. /ere were 9 co-downregulated proteins in the urine after each week of
training compared to UW0.

Table 5: Multiples of differential co-upregulation protein content in urine during exercise-induced immunosuppression.

Accession Name Gene UW1/UW0 UW2/UW0 UW3/UW0 UW4/UW0
A6NDG6 Glycerol-3-phosphate phosphatase PGP 6.402 1.579 5.065 6.770
P02647 Apolipoprotein A-I APOA1 2.838 2.036 5.556 1.616
P02787 Serotransferrin TF 1.641 2.126 3.919 1.542
P04279 Semenogelin-1 SEMG1 5.971 6.339 32.16 38.385
P05060 Secretogranin-1 CHGB 2.981 2.452 2.907 6.679
P08183 Multidrug resistance protein 1 ABCB1 2.754 3.133 1.888 1.941
P12273 Prolactin-inducible protein PIP 51.665 50.957 56.903 61.536
Q02383 Semenogelin-2 SEMG2 7.977 7.670 28.796 40.938
Q15198 Platelet-derived growth factor receptor-like protein PDGFRL 2.489 3.311 21.878 22.699
Q8N436 Inactive carboxypeptidase-like protein X2 CPXM2 1.791 1.850 1.683 1.583
C9JIZ6 Prosaposin PSAP 2.382 1.863 4.002 8.306
D6RH31 Nephronectin NPNT 1.969 1.611 1.739 2.605
E7EX29 14-3-3 protein zeta/delta YWHAZ 1.786 1.675 1.556 2.512
H3BSN7 Adhesion G-protein-coupled receptor G1 GPR56 5.248 4.831 4.875 4.131
Q32Q12 Nucleoside diphosphate kinase NME2 1.905 1.905 1.585 2.188
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Table 6: Multiples of differential co-downregulation protein content in urine during exercise-induced immunosuppression.

Accession Name Gene UW1/UW0 UW2/UW0 UW3/UW0 UW4/UW0
P01834 Immunoglobulin kappa constant IGKC 0.308 0.667 0.530 0.113
P02749 Beta-2-glycoprotein 1 APOH 0.615 0.605 0.619 0.556
P02750 Leucine-rich alpha-2-glycoprotein LRG1 0.264 0.400 0.606 0.443
P80748 Immunoglobulin lambda variable 3–21 IGLV3-21 0.520 0.603 0.337 0.211
A0A075B6H9 Immunoglobulin lambda variable 4–69 IGLV4-69 0.501 0.441 0.619 0.437
A0A075B6J9 Immunoglobulin lambda variable 2–18 IGLV2-18 0.643 0.592 0.608 0.570

A0A0A0MTC8 Signal peptide, CUB and EGF-like
domain-containing protein 2 SCUBE2 0.545 0.667 0.643 0.550

H7BY55 Complement decay-accelerating factor CD55 0.637 0.637 0.347 0.608
X6RBG4 Uromodulin UMOD 0.453 0.631 0.477 0.349
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Figure 4: Gene Ontology (GO) annotation of 24 codifferential proteins./e codifferential proteins were divided into 3 categories: molecular
function (MF), cellular component (CC), and biological process (BP). Each enumerated annotation is assigned by the enrichment protein
number. /e top 10 components for MF, CC, and BP of the codifferential proteins according to the GO database are shown.
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employ the iTRAQ technology to analyze urine proteomics
of exercise-induced immunosuppression. Our data sug-
gested that some urine proteins could be used as biomarkers
of exercise-induced immunosuppression, which are rela-
tively easy to monitor athletes.

High-intensity and large-volume exercise training can
cause significant changes in the immune parameters of the
body’s nonspecific and specific immune system, especially
the response of NK cells, and neutrophils, leading to the
body’s immunosuppression during a heavy training work-
load and for a few days after the training [18]. It has been
widely reported that long-term high-intensity exercise
training will have a strong negative impact on the immune
function of the athletes, resulting in inhibition of immune
function, increased susceptibility to various infectious dis-
eases, and even lead to poor performance during intensive
training [51]. /is study confirmed that the subjects’ white
blood cell count, neutrophil count, CD4+, and CD4+/CD8+
ratio were decreased significantly after 4 weeks of

incremental treadmill exercise. Although the exercise in-
tensity was relatively small during the first two weeks, the
accumulation of daily exercise training also reduced the
immune function. In particular, following the fourth week of
high-intensity exercise training, a significant decrease was
observed in the body’s immune function (immunosup-
pression). /is was evidenced by reductions in white blood
cell count (15%), neutrophil count (27.4%),
CD4+ lymphocytes (11.8%), CD4+/CD8+ ratio (34.6%), and
an increase in CD8+ lymphocytes (27.3%). /e most im-
portant clinically relevant finding during exercise-induced
immunosuppression is a higher risk of URTI [52]. While
reported rates for URTI vary, up to 50% of fitness enthusiasts
in high school and university training rooms have experi-
enced respiratory infections [15]. It has also been reported
that the occurrence rate of URTI for competitive swimmers
exceeded 40% after 4 weeks of intense training [53], while 12
weeks of high-intensity training increased the incidence of
URTI in tennis players [54].

Cytoplasm

Marking the differential protein

Plasma 
membrane

Extracellular 
space

Figure 5:/e genes of differential proteins in the interaction network. For functional enrichment in the network, biological process (GO), in
the pathway analysis, there are 10 genes count in gene set pathways of positive regulation of response to stimulus (pathway ID, GO:
0048584). Molecular Function (GO), there are two genes count in gene set pathways of IgG binding (pathway ID, GO: 0019864)./e red line
shows Gene Fusions, the green line indicates Neighborhood in the Genome, the blue line indicates Cooccurrence across Genomes, the
purple line indicates Experimental/Biochemical Data, the yellow line indicates text mining evidence, the light blue line indicates database
evidence, and the black line indicates coexpression evidence.

Table 7: Changes of differential proteins in the urine during 4 weeks of incremental treadmill running.

W0 W1 W2 W3 W4
SEMG1 (μg/ml) 2.57± 0.81 3.63± 1.26 4.13± 1.40∗∗ 4.51± 1.72∗∗ 6.61± 2.35∗∗
PIP (μg/ml) 55.68± 18.38 79.98± 24.85∗ 81.45± 21.97∗ 84.55± 29.31∗∗ 113.79± 37.32∗∗
PDGFRL (μg/ml) 4.29± 1.01 5.61± 2.08 5.64± 2.12 7.30± 1.92∗∗ 10.98± 3.38∗∗
NDPK (μg/ml) 9.82± 3.20 15.70± 4.54∗ 16.54± 5.37∗∗ 20.39± 8.54∗∗ 29.91± 8.37∗∗
∗p< 0.05, ∗∗p< 0.01, Compared with W0.
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It is interesting to note that the decline in the immune
system can be accompanied by the contemporary occurrence
of proteinuria during long and strenuous exercise [55]. /e
reason for the large number of differential proteins in the
urine collected following the first week of training may be
due to the subject’s inability to adapt to the consecutive
training of the first week [56]. As the body slowly adapts
during the second week, the number of differential proteins
in the urine is significantly reduced. When the exercise load
increases, the number of differential proteins in the urine
gradually increases, especially with high-intensity exercise. It
has been shown previously that intense exercise-induced
proteinuria is related to exercise intensity [57, 58] and that
the doubling of urine proteins caused by high-intensity
exercise in the fourth week suggests an increased glomerular
permeability and kidney secretion caused by exercise stress.
It has been previously reported that exercise intensity affects
kidney function more than exercise load [59].

Of all the differentially expressed urinary proteins in-
duced by incremental training, 15 proteins are consistently
upregulated in all four time points, and 9 proteins are
consistently downregulated in all four time points. Among
them, four proteins SEMG-1, PIP, PDGFRL, and NDPK
increased their abundance with increasing exercise intensity.
SEMG-1 has been detected in the gastrointestinal tract,
skeletal muscle [60], and normal human urine [61]. It is
processed and presented by thymic antigen presenting cells
and is likely to participate in shaping the T-cell repertoire
[62], which is involved in the regulation of immune function
[63, 64]. SEMG-1 is upregulated in exosomes secreted by
vascular endothelial cells under hypoxic stress conditions
[65] and is considered as a new predictor of renal damage
[66]. PIP also plays an important role in immune regulation.
It is abundantly present in saliva and bronchial submucosal
glands and exerts mucosal immunity [67]. PIP binds to
immunoglobulin G (IgG) [68] and CD4-T cell receptor
[69, 70] to exert important biological functions [71–75]. /e
expression of PIP is regulated by immunoregulatory hor-
mones, such as androgen and glucocorticoids [76]. Lack of
PIP leads to impaired /1 immune response [77]. /e ex-
pression of PDGFRL is associated with blood pressure, heart
quality, and insulin sensitivity [78, 79], while NDPK regu-
lates angiogenesis [80], neuronal protection [81], and insulin
secretion regulation [82]. Taken together, previous studies
suggested that the differential protein abundance of SEMG-
1, PIP, PDGFRL, and NDPK in urine is related to the im-
mune function and stress response. Our current results show
that while the body’s immune function is declining, as
evidenced by the decreased white blood cells, CD4+ and
CD4+/CD8+ ratio, the four upregulated proteins in urine
gradually increase during the incremental treadmill-training
program. We, therefore, conclude that SEMG-1, PIP,
PDGFRL, and NDPK may serve as noninvasive immune
biomarkers for exercise-induced immunosuppression.

/rough bioinformatics analysis, it was found that,
during the process of exercise-induced immunosuppression,
the components of the differential proteins in urine are
mainly distributed in the extracellular region, extracellular
space, and plasma membrane. /e reason may be due to the

increased destruction of the plasma membrane by free
radicals, and proteins in the extracellular area, extracellular
space, and the plasma membrane are more likely to enter the
bloodstream [83] and then are filtered out with the increased
permeability of the glomerular filtration membrane into the
urine [84, 85]. /e biological processes of these differential
proteins mainly perform immune system processes, trans-
port, and small molecule metabolic processes.

Further analysis of the functional enrichments of these
differential protein-gene interaction networks revealed that
10 genes of the differential proteins are related to the
pathway of positive regulation of response to the stimulus in
the biological process. In molecular function, 5 genes of the
differential proteins are in the pathway of IgG binding. It is
likely that the incremental treadmill running mobilized the
body’s intense stress response and adaptive immune com-
pensation [86]. Meanwhile, due to the increase of free
radicals and the relative lack of free radical scavenging ability
induced by exercise stress [87], the disruption of normal
membranous structures and the increase of cell membrane
permeability initiated. As the ultrastructural changes of the
glomeruli and tubules and the permeability of glomerular
filtration membranes increase, protein filtration rate in-
creases and the secretion of proteins by the kidney increases
[88], resulting in an increased presence of urinary proteins,
such as those related to stress regulation and immune
function. /erefore, testing these proteins excreted in the
urine can indirectly reflect the body’s stress and immune
function inhibition.

In summary, this current study has identified four dif-
ferential proteins, SEMG-1, PIP, PDGFRL, and NDPK, as
noninvasive immune biomarkers in urine for exercise-in-
duced immunosuppression. Further studies are needed to
validate the noninvasive biomarkers of exercise-induced
immunosuppression, possibly in a different population
(especially in females or elite athletes) or with a different
training program. /e sensitivity and specificity of each
biomarker also need to be tested in future studies.
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