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ABSTRACT 41 

Dietary intakes of linoleic acid (LA) have increased, including in women of reproductive age. 42 

Changes in maternal gut microbiome have been implicated in the metabolic adaptions that 43 

occur during pregnancy.  We aimed to investigate if consumption of a diet with elevated LA 44 

altered fecal microbiome diversity prior to and during pregnancy. Female Wistar Kyoto rats 45 

consumed a high LA diet (HLA: 6.21% of energy) or a low LA diet (LLA: 1.44% of energy) 46 

for 10 weeks prior to mating and during pregnancy. DNA was isolated from fecal samples prior 47 

to pregnancy (embryonic day 0 (E0)), or during pregnancy at E10 and E20. The microbiome 48 

composition was assessed with 16S rRNA sequencing. At E0, the beta diversity of LLA and 49 

HLA groups differed with HLA rats having significantly lower abundance of the genera 50 

Akkermansia, Peptococcus, Sutterella and Xo2d06 but higher abundance of Butyricimonas and 51 

Coprococcus. Over gestation, in LLA but not HLA rats, there was a reduction in alpha diversity 52 

and an increase in beta diversity. In the LLA group, the abundance of Akkermansia, Blautia, 53 

rc4.4 and Streptococcus decreased over gestation, whereas Coprococcus increased. In the HLA 54 

group, only the abundance of Butyricimonas decreased. At E20, there were no differences in 55 

alpha and beta diversity, and the abundance of Roseburia was significantly increased in the 56 

HLA group.  In conclusion, consumption of a HLA diet alters gut microbiota composition, as 57 

does pregnancy in rats consuming a LLA diet. In pregnancy, consumption of a HLA diet does 58 

not alter gut microbiota composition.  59 

  60 



 61 

INTRODUCTION 62 

The omega 6 (n-6) polyunsaturated fatty acid (PUFA), linoleic acid (LA; 18:2n-6; cis, cis-9, 63 

12-octadecadienoic acid), is an essential fatty acid that can only be obtained in the diet. In 64 

Western societies, LA consumption has increased to three times the recommended daily 65 

intake (28).  In Australia, LA availability in the diet has increased by 120% (28) and in the 66 

USA by 158% (5) over the past decades, primarily due to the increased use of plant-based 67 

oils such as corn, safflower, sunflower and soybean in the food supply (35). The high intake 68 

of n-6 FA in the Western diet is reflected in the fatty acid profile of pregnant and lactating 69 

women (2). Optimal maternal health during pregnancy is critical for fetal development, and 70 

maternal stressors can perturb fetal development leading to an increased risk of disease in 71 

later life (13). LA can be metabolised into downstream lipid mediators, including pro-72 

inflammatory eicosanoids and prostaglandins (33). We have recently demonstrated, in a 73 

rodent model of low verses high LA intake during pregnancy, that elevated maternal LA 74 

increases pro-inflammatory prostaglandin concentrations, and alters the circulating lipid 75 

profile of the mother during pregnancy (36). Dietary intake is an important determinant of 76 

gut microbiota composition (7), suggesting that an elevated maternal LA diet may alter 77 

microbiota diversity. Furthermore, gut microbiota diversity is strongly associated a range of 78 

host functions that impact health, including inflammation and lipid levels (23).  79 

The specific species composition of the gut microbiota can be a disease risk factor, as the 80 

microbiota can regulate energy homeostasis and whole body metabolism (14). 81 

Mechanistically, this is via the digestion of polysaccharides to produce essential nutrients (6), 82 

so that bacterial diversity is important for the metabolism of a diversity of nutrients. LA is 83 

biohydrogenated by microbes into the saturated fatty acid stearic acid (19), with a number of 84 



intermediates, or bioactive metabolites (10). Previous research has demonstrated that diet can 85 

influence gut microbial diversity (44) and emerging research has demonstrated that 86 

pregnancy can impact the diversity of gut microbiota (15). In pregnancy, hormonal alterations 87 

modulate the maternal metabolic environment to ensure appropriate fetal nutrition. This 88 

places the mother in a state of metabolic dysfunction that becomes more overt as the 89 

pregnancy advances. This state of metabolic dysfunction can be further impacted by diet and 90 

contributed to pregnancy disorders that occur when physiological metabolic dysfunction 91 

becomes pathological. Current hypotheses suggest that changes to the gut microbiota, under 92 

the influence of pregnancy specific hormones, may contribute to the pregnancy associated 93 

metabolic changes (16). Further, alterations in the maternal gut microbiota during pregnancy 94 

can alter the microbiome and immune system of offspring later in life (29).  95 

At this time, we do not know if elevated maternal LA consumption alters the fecal 96 

microbiome. Therefore, the current study aimed to investigate the effects of elevated maternal 97 

LA consumption on the composition of the gut microbiota prior to and during pregnancy in 98 

a rodent model. We hypothesised that exposure to elevated maternal concentrations of LA 99 

would alter gut microbiota composition, and pregnancy would reduce microbiota diversity 100 

independent of maternal LA intake.  101 

  102 



MATERIALS AND METHODS 103 

Ethical approval, experimental animal model and diet 104 

Wistar Kyoto rats (8 weeks of age, n=6) were purchased from the Australian Resource Centre 105 

(ARC, WA, Australia) and housed in accordance to the Australian Code of Practice for Care 106 

and Use of Animals for Scientific Purpose after ethical approval being granted by the Griffith 107 

University Animal Ethics Committee (NSC/01/17/AEC).  108 

Rats were housed in individually ventilated cages under 12 hours light-dark cycle at a 109 

temperature of 20-22°C and provided with standard food pellets during acclimatisation and 110 

tap water ad libitum throughout the study. After a week for acclimatization, female rats were 111 

randomised to either a control low linoleic acid (LLA: 1.44%) diet or a high linoleic acid 112 

(HLA: 6.21%) diet for 10 weeks. These diets were matched for carbohydrate, protein, fibre, 113 

n-3 PUFA and total fat content (36). The diets were matched for total fat intake by increasing 114 

the content of MUFA in the LLA diet (36). After 8 weeks of dietary exposure, vaginal 115 

impedance was measured daily for at least two estrous cycles using a rodent vaginal 116 

impedance reader (Muromachi Kikai Co. Ltd., Japan). Rats were considered ready for mating 117 

after 10 weeks of dietary exposure and when vaginal impedance was greater than 4.5 × 103 118 

Ω and at this time were placed with a Wistar Kyoto male rat overnight.  The day after mating 119 

was considered embryonic day 1 (E1). The rats were fed the LLA or HLA diet during 120 

gestation as well. The female rat was weighed daily and monitored for weight gain during 121 

pregnancy.  122 

Fecal sample collection for microbiota analysis 123 

To examine the effect of LLA vs. HLA diet on both the non-pregnant and pregnant female 124 

microbiota, fecal samples were collected from female rats at three time points; following 10 125 



weeks of nutritional intervention (non-pregnant; identified as E0), and at E10 and E20. During 126 

the time of fecal sample collection, rats were house individually. The fecal sample was 127 

collected in the morning (10:00-11:00 am). 128 

Extraction of DNA 129 

At the time of collection, fecal samples were weighed, and immediately frozen at −20°C. 130 

DNA was extracted from the thawed fecal sample using a QIAamp DNA Stool Mini Kit 131 

(Qiagen). Briefly, ~250mg of frozen stool was lysed and the DNA extracted using the 132 

manufacturer’s instructions.  The eluted DNA was suspended in 200µL of buffer (Buffer ATE 133 

provided by company) and stored -20°C. 134 

Processing and analysis of 16S rRNA gene sequencing data 135 

16S sequencing of the V1-V3 region of the 16S rRNA gene was performed by the Australian 136 

Genome Research Facility (AGRF), using the forward primer: 137 

AGAGTTTGATCMTGGCTCAG and reverse primer: GWATTACCGCGGCKGCTG to 138 

amplify the 27F-519R target. The read length for paired end sequences was 2x300 bp. The 139 

sequences with 100% overlap were selected for downstream analysis. Paired-ends reads were 140 

assembled by aligning the forward and reverse reads using PEAR1 (version 0.9.5). Primers 141 

were identified and trimmed. Trimmed sequences were processed using Quantitative Insights 142 

into Microbial Ecology (QIIME 1.8) USEARCH (version 8.0.1623) and UPARSE software. 143 

Using usearch tools sequences were quality filtered, full length duplicate sequences were 144 

removed and sorted by abundance. Singletons or unique reads in the data set were discarded. 145 

Sequences were clustered followed by chimera filtered using “rdp_gold” database as 146 

reference. To obtain number of reads in each OTU, reads were mapped back to OTUs with a 147 

minimum identity of 97%. Using QIIME taxonomy was assigned using Greengenes database 148 

(Version 13_8, Aug 2013). 149 



Statistical analysis 150 

The sequencing data did not adhere to the normal distribution and data analysis was 151 

performed using non-parametric statistics with p<0.05 as cut-off for statistical significance. 152 

Data was not corrected for multiple testing due to the small sample size. Data are presented 153 

as median and interquartile range (IQR). Gut microbiota composition at the genus level was 154 

compared using the Calypso software tool (43). Alpha diversity was assessed with the Chao1 155 

and Shannon indices and beta diversity with unsupervised (PCoA) based on the Bray-Curtis 156 

dissimilarity statistic, PERMANOVA (Adonis) and supervised (RDA) analysis. Group 157 

comparisons were conducted with the Wilcoxon Rank test and LEfSe (linear discriminant 158 

analysis (LDA) effect size) analysis. LEfSe analysis identifies bacterial genera that 159 

predominantly explain the differences between the diet groups and the different gestations. 160 

We identified discriminating features that were ranked on their effects size based on a log10 161 

scale.  162 

RESULTS 163 

Effect of a high maternal linoleic acid diet on maternal weight  164 

Maternal consumption of HLA for 10 weeks prior to pregnancy and through gestation did not 165 

affect body weight either prior to pregnancy or during gestation (Figure 1) compared to LLA 166 

controls, similar to our previous study (36).  167 

Gut microbiota composition in response to a HLA diet.  168 

All results are presented at genus level. Before pregnancy (E0), there was no difference in 169 

alpha diversity between dams on LLA or HLA diets with either the Chao1 (Figure 2A) and 170 

the Shannon index (Figure 2B). There was a significant difference in beta diversity in both 171 

unsupervised PCoA (Figure 2C, p < 0.05) and supervised RDA analysis (Figure 2D, p < 0.05), 172 



with the diet explaining 21% of the variation between the groups. PERMANOVA analysis 173 

showed that these variations were significant (P=0.006). In the group comparisons, HLA diet 174 

decreased the abundance of Akkermansia, Peptococcus, Sutterella and 02d06 and increased 175 

the abundance of Butyricimonas, Coprococcus, Uncl. Clostridiales, Uncl. Victivallaceae and 176 

Uncl. YS2 (Figure 2E). The difference in the abundance of Butyricimonas  and Uncl. 177 

Victivallaceae  was significant after correcting for multiple testing (FDR=0.048 for both) but 178 

none of the other differences remained. This was confirmed by the LEfSe analysis, which 179 

showed that these bacterial genera were the main determinants of differences in the gut 180 

microbiota between the diets (Figure 2F). 181 

Gut microbiota composition over gestation with maternal LLA diet 182 

Alpha diversity decreased sharply at E20 as measured by the Chao1 (Figure 3A, p < 0.05) 183 

and the Shannon index (Figure 3B, p < 0.05). There was a significant difference in beta 184 

diversity in both unsupervised PCoA (Figure 3C, p < 0.05), supervised RDA analysis (Figure 185 

3D, p < 0.05) and with PERMANOVA analysis (P=0.03). Gestational age explained 15% of 186 

the variation in beta diversity. In the group comparisons, the abundance of Akkermansia, 187 

Blautia, rc4.4, Streptococcus, Uncl. Bacteroidales, Uncl. Christensenellaceae, Uncl. 188 

Mogibacteriaceae and Uncl. Ruminococcaceae decreased over gestation and only the 189 

abundance of Coproccocus increased over gestation (Figure 3E). In the LEfSe analysis, 190 

Streptococcus, Akkermansia, Uncl. Ruminococcaceae and Uncl. Bacteroidales were 191 

associated with the gut microbiota at E0, Peptococcus with E10 and Coprococcus, 192 

Ruminococcus and Bacteroides with E20 (Figure 3F). 193 

Gut microbiota composition over gestation with maternal HLA diet 194 

Alpha diversity did not change in dams on the HLA diet as measured by the Chao1 (Figure 195 

4A) and the Shannon index (Figure 4B). There was a trend toward significant difference in 196 



beta diversity in the unsupervised PCoA (Figure 4C, p=0.08), supervised RDA analysis 197 

(Figure 4D, p=0.07) and PERMANOVA analysis (P=0.08).  Gestational age explained only 198 

9% of the variation in beta diversity. In the group comparisons, the abundance of 199 

Butyricimonas and Uncl. Lachnospiraceae decreased over gestation, the abundance of Uncl. 200 

Victivallaceae decreased significantly at E10 and the abundance of Uncl. RF39 increased 201 

over gestation (Figure 4E). In animals on the HLA diet, Butyricimonas, Uncl. 202 

Lachnospiraceae, Uncl. Ruminococcaceae and Uncl. Mogibacteriaceae were determinants 203 

of the gut microbiota at E0, Sutterella at E10 and Uncl. RF39 at E20 in the LEfSe analysis 204 

(Figure 4F).  205 

Differences in gut microbiota composition between the maternal diets at E10 and E20 206 

At E10, there was a decrease in alpha diversity as measured by the Shannon index in the HLA 207 

diet group (Figure 5A, P=0.017) but not in the Chao1 index (Figure 5B). There still was 208 

clustering of the samples from LLA and the HLA group with both PCoA (Figure 5C) and 209 

RDA analysis (Figure 5D) though PERMANOVA analysis showed that this was just 210 

borderline significant (P=0.06). When comparing the gut microbiota composition between 211 

the groups, there was significantly lower abundance of Akkermansia in the HLA diet group 212 

but higher abundance of Bilophila, Roseburia, Uncl. Barnesiellaceae and Uncl. YS2 (Figure 213 

5E). This was confirmed by LEfSe analysis that also identified higher abundance of 214 

Desulfovibrio, Bacteroides and Uncl. Victivallaceae in the HLA group contributing to the 215 

differences between the groups (Figure 5F). At E20, there was no difference in alpha diversity 216 

with either the Chao1 or the Shannon index (Data not shown). There were no differences in 217 

beta diversity in the PCoA analysis (Data not shown), the RDA analysis (Data not shown) 218 

and PERMANOVA analysis (P=0.48, data not shown). Only the abundance of Roseburia was 219 



significantly increased in the dams on the HLA diet in the group comparison (Data not shown) 220 

but no differences were observed in the LEfSe analysis (data not shown).   221 

 222 

 223 

DISCUSSION 224 

The level of dietary LA strongly influenced female rat gut microbiota composition. Further, 225 

a high LA diet was associated with a suppression of the relative reduction in bacterial species 226 

diversity observed in pregnant rats on a low LA diet. Our results demonstrate that HLA intake 227 

before conception alters the composition of the gut microbiota in female rats, significantly 228 

resulting in lower diversity of the gut microbiota in addition to changes in the abundances of 229 

specific bacterial genera as compared with a LLA intake. Pregnancy reduces gut microbiota 230 

diversity and alters gut microbiota composition only in dams on a low LA diet. Conversely, 231 

in dams consuming a HLA diet prior to and during gestation, there are no changes to gut 232 

microbiota diversity and only limited changes to gut microbiota composition, with distinct 233 

genera changing abundance over gestation in each diet group. In late pregnancy, there are no 234 

differences between dams on LLA or HLA diet with respect to gut microbiota diversity and 235 

only one genus that was differentially abundant. A recent study demonstrated that microbiota 236 

community taxonomic composition and diversity remain stable during pregnancy (9). 237 

High intake of LA had large effects on the diversity and composition of the gut microbiota 238 

prior to conception, and these changes may have functional consequences. For example, some 239 

of the genera that increased in abundance with the HLA diet are known short chain fatty acid 240 

producers including Akkermansia, Butyricimonas, Coprococcus and members of the 241 

Clostridiales order. Abundance of Akkermansia and especially the species Akkermansia 242 



muciniphila abundance has previously been linked to dietary fat intake, although this 243 

relationship is complex, with both increased and decreased abundance has been reported 244 

depending on the type of lipid, the overall composition of the diet or the presence of additional 245 

treatments (22, 24, 31, 34). In general however, Akkermansia abundance is negatively 246 

correlated with dietary fat intake (30). Here we observed a decrease in Akkermansia 247 

abundance both in response to HLA diet and over gestation in the LLA group.  Akkermansia 248 

is a mucus degrader that synthesises short chain fatty acids that are generally considered 249 

beneficial for the host (e.g. increasing gut barrier function and stimulating beneficial mucosal 250 

microbial networks), and a modulator of the immune system (30). Depletion of this genus 251 

may therefore have detrimental effects on the host through the reduction in short chain fatty 252 

acids.  253 

In response to the HLA diet, we not only observed decreased abundance of Akkermansia but 254 

also of Sutterella, and increased abundance of Butyricimonas and Coprococcus. Alterations 255 

in the abundances of these bacteria in response to increased dietary lipid intake have been 256 

reported previously (3, 26, 32), indicating that all of these genera may be sensitive to the fatty 257 

acid content of the diet. Human pregnancy has previously been reported to reduce the 258 

individual (alpha) diversity of the gut microbiota in humans (21) and rodents (15). Here we 259 

observed a similar decrease in gut microbiota alpha diversity, but only in rats on the LLA 260 

diet, suggesting that a HLA diet may perturbed normal changes in microbial composition.  In 261 

a study of Sprague-Dawley rats on high fat and control diet during gestation and lactation, 262 

changes to beta diversity were reported only in animals on a high fat diet, not on a control 263 

diet (25). This is in contrast to our results, where we only observed altered beta diversity in 264 

the animals on the LLA diet. This may be due to differences in the rat strain, dietary 265 

composition and the small number of pregnant rats (four) on the control diet. The contrasting 266 

results could also be due to the differences between pre-pregnancy exposure to the diet, which 267 



was present in our study but not in the high fat diet study given that it was stated that the 268 

dietary effect increased over time and overcame the pregnancy effect at later time points (25).  269 

In addition, overall weight and weight gain were not different between the two diet groups at 270 

any time point in this study, whereas weight was altered in the high fat diet study, suggesting 271 

that the changes in microbiota diversity in the high fat diet study may be related to weight 272 

gain/perturbed metabolism. Indeed, host-microbial interactions can impact the host’s 273 

metabolism (21). In contrast, the changes in gut microbiota that we observed appear to be 274 

directly linked to LA dietary composition, rather than a secondary effect of a shift in 275 

metabolism.  276 

We observed in this study, that in LLA rats, there was higher microbiome diversity compared 277 

to those consuming the HLA diet. This may be due to the reduced concentration of LA in the 278 

diet, but may also be due to the elevated concentration of MUFA in the LLA diet. The increase 279 

in diversity observed with an increased MUFA diet contradicts the findings from a recent 280 

systematic review (41).  Wolters et al. determined that a high intake of MUFA in non-281 

pregnant humans was thought to decrease bacterial numbers, with no effect on diversity (41). 282 

While the effect of an increase in MUFA independently was not assessed in our study, it 283 

should be noted that, at this time, there is a paucity of data concerning the effect of an elevated 284 

MUFA diet in pregnancy on microbiome diversity and abundance. 285 

Transplantation of human third trimester gut microbiota samples into germ-free mice 286 

rendered them insulin resistant and fat, demonstrating the important link between gut 287 

microbiota and metabolic syndrome (21). One bacterium that has been associated with altered 288 

metabolism in pregnancy is Blautia. In early pregnancy, lower abundance of Blautia was 289 

reported in women with higher integrity of the gut wall barrier (27). Furthermore, women 290 

with excessive weight gain in pregnancy have higher abundance of Blautia (37) and in women 291 



with gestational diabetes mellitus, an inverse correlation between the change in insulin levels 292 

over gestation and Blautia abundance was reported (12). Here we have observed a decrease 293 

in the abundance of Blautia over gestation but only in the LLA diet group. This may indicate 294 

that the abundance of Blautia was higher in the LLA group at the start of pregnancy, though 295 

not significantly so, similar to what has been reported previously in young healthy humans 296 

on a low fat diet (39). Blautia can produce short chain fatty acids and decreases in its 297 

abundance have been associated with insulin resistance (18, 40). Therefore, decreased 298 

abundance of Blautia over pregnancy may be associated with the pregnancy-induced increase 299 

in insulin resistance, indicating that a diet high in LA could perturb metabolism. 300 

 301 

Members of the Clostridium cluster and Roseburia are known to metabolise linoleic acid 302 

through conjugation (8), which is not greatly absorbed (20) but may have local beneficial 303 

effects on the gut epithelium (17). Roseburia is also a short chain fatty acid producer and 304 

immune modulator (11), and is increased in women consuming a vegetarian diet in early 305 

pregnancy (4). The vegetarian diet in the study (4) was higher in LA content; therefore, HLA 306 

diet may specifically increase Roseburia abundance over the course of pregnancy, similar to 307 

what we observe in rats fed a HLA diet. Roseburia abundance increased in pregnancy in 308 

BALB/c (11), suggesting that there may be an interaction between dietary intake and 309 

pregnancy. 310 

Emerging studies in animal models have shown the strong correlation between liver disease 311 

and dysbiosis (1). The gut and liver communicate through biliary tract, portal vein and 312 

circulation (38). We recently reported alteration in inflammatory cytokines in liver from the 313 

rats fed with HLA at E20 (36). This change in hepatic inflammatory cytokines may be 314 

associated with change in abundance of microorganisms. For example, in mouse model of 315 



immune mediated liver injury, Akkermansia muciniphila had protective role by alleviating 316 

inflammation (42). Therefore,  the decrease in abundance of Akkermansia in rats fed with 317 

HLA diet may be associated with liver inflammation previously observed in these rats (36). 318 

In summary, our data demonstrate that HLA intake lowers the diversity and alters the 319 

composition of the gut microbiota in rats. Pregnancy similarly reduces the diversity and alters 320 

the composition of the gut microbiota but only in rats that were consuming a LLA diet. For 321 

the rats that consumed a HLA diet prior to conception, there were only small changes to the 322 

composition of the gut microbiota in pregnancy. These results suggest that HLA intake prior 323 

to conception mimics the changes to the gut microbiota normally observed by the end of 324 

pregnancy. These changes, may affect the risk of development of pregnancy complications 325 

in women consuming a pre-pregnancy diet that is high in LA.  326 
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Figure legends 489 
 490 
Figure 1. Effect of HLA diet on maternal body weight. There was no difference between the 491 

LLA and HLA groups at different ages. Data expressed as mean ± SEM. n=6 (LLA) and n=6 492 

(HLA) at E0, E10 and E20.  493 

 494 

Figure 2: Gut microbiota composition at E0 in the LLA and HLA groups. A-B) There was no 495 

difference in alpha diversity between dams on LLA or HLA diets. C-D) There was a significant 496 

difference in beta diversity in both unsupervised PCoA and supervised RDA analysis, with the 497 

diet explaining 21% of the variation between groups. E) HLA diet decreased the abundance of 498 

Akkermansia, Peptococcus, Sutterella and 02d06 and increased the abundance of 499 

Butyricimonas, Coprococcus, Uncl. Clostridiales, Uncl. Victivallaceae and Uncl. YS2. F) 500 

Representation of bacterial genera driving the differences between LLA and HLA diets at E0 501 

as shown by the LEfSe analysis. n=6 (LLA) and n=6 (HLA). *p<0.05, **p<0.01.  502 

 503 

Figure 3: Gut microbiota composition over gestation in the LLA group. A-B) Alpha diversity 504 

decreased sharply at E20 as measured by the Chao1 and the Shannon index. C-D) There was a 505 

significant difference in beta diversity in both unsupervised PCoA and supervised RDA 506 

analysis. E) The abundance of Akkermansia, Blautia, rc4.4, Streptococcus, Uncl. 507 

Bacteroidales, Uncl. Christensenellaceae, Uncl. Mogibacteriaceae and Uncl. 508 

Ruminococcaceae decreased over gestation and only the abundance of Coproccocus increased 509 

over gestation in LLA group. F) Representation of the bacterial genera driving the differences 510 

between the gestations in animals on the LLA diet.  n=6 (LLA) and n=6 (HLA) at E0, E10 and 511 

E20. *p<0.05, **p<0.01. 512 

 513 
Figure 4: Gut microbiota composition over gestation in the HLA group. A-B) Alpha diversity 514 

did not change in dams on the HLA diet as measured by the Chao1 and the Shannon index. C-515 



D) There was a trend toward significant difference in beta diversity in the unsupervised PCoA 516 

(p=0.08) and supervised RDA analysis (p=0.07). E) In the group comparisons, the abundance 517 

of Butyricimonas and Uncl. Lachnospiraceae decreased over gestation, the abundance of Uncl. 518 

Victivallaceae decreased significantly at E10 and the abundance of Uncl. RF39 increased over 519 

gestation. F) Representation of the bacterial genera driving the differences between the 520 

gestations in animals on the HLA diet.  n=6 (LLA) and n=6 (HLA) at E0, E10 and E20. 521 

*p<0.05, **p<0.01. 522 

 523 
Figure 5: Gut microbiota composition at E10 in the LLA and HLA groups. A-B) there was a 524 

decrease in alpha diversity as measured by the Shannon index in the HLA diet group but not 525 

in the Chao1 index. C-D) There was clustering of the samples from LLA and the HLA group 526 

with both PCoA and RDA analysis. E) There was significantly lower abundance of 527 

Akkermansia in the HLA diet group but higher abundance of Bilophila, Roseburia, Uncl. 528 

Barnesiellaceae and Uncl. YS2 F) Representation of the bacterial genera driving the differences 529 

between LLA and HLA diets at E10. n=6 (LLA) and n=6 (HLA). *p<0.05.  530 

 531 
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